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Abstract

In future wireless networks, an enormous number of heterogeneous devices will be
connected, leading to a dramatic increase in data traffic. At the same time, future
applications will have significantly higher requirements with respect to data rates, re-
liability, and latency. Conventional approaches, which aim at only improving the com-
munication capabilities of wireless networks, will not be sufficient to satisfy the more
demanding requirements arising in future. Hence, a paradigm shift is needed. While
conventionally perceived as pure communication networks, wireless networks can pro-
vide not only communication resources, but also computation, caching, data collection,
and even user resources. Such resources can be part of the network infrastructure and
of the wirelessly connected devices and their users. This radically different view on
wireless networks as networks of distributed connected resources calls for the develop-
ment of new techniques that jointly consider and leverage different types of resources

in order to improve the system performance.

In this thesis, we show that such new techniques that jointly consider and leverage
different types of resources require context-aware decision making. This is due to the
fact that first, resources need to be shared and secondly, trade-offs between different
types of resources exist. Thirdly, the optimal resource allocation may depend not only
on network conditions, but also on other node-related, user-related or externally given
conditions, the so-called context. We provide an overview of context-aware decision
making by discussing context awareness, architectures of decision making, and designs
of decision agents. Designing a context-aware decision-making framework requires to
formulate a context-aware system model. In particular, decision agents responsible for
resource allocation need to be identified. These agents may be part of a centralized,
decentralized or hierarchical architecture of decision making and a suitable architec-
ture needs to be selected. Finally, designing decision agents requires to model and
classify the problem to be solved and to develop an appropriate method according to
which decision agents take decisions. We emphasize two designs relevant for context-
aware decision making in wireless networks, namely, optimization-based approaches
and machine-learning-based approaches, in the latter case specifically the framework of

multi-armed bandits.

Moreover, in this thesis, we study three candidate techniques for wireless networks
that jointly consider and leverage different types of resources, namely, computation
offloading in multi-hop wireless networks, caching at the edge of wireless networks, and

mobile crowdsourcing. For each technique, we identify a fundamental problem requiring
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context-aware decision making, propose a novel framework for context-aware decision

making, and solve the problem using the proposed framework.

Computation offloading allows wirelessly connected devices to offload computation
tasks to resource-rich servers. This may reduce the devices’ task completion times and
their energy consumption. Computation offloading hence trades computation resources
off against communication resources. In this thesis, for the first time, we study com-
putation offloading in multi-hop wireless networks, where wirelessly connected devices
assist each other as relay nodes. We identify the fundamental problem of context-
aware computation offloading for energy minimization in multi-hop wireless networks.
We propose a novel model that takes into account channel conditions, computing capa-
bilities of the devices, task characteristics, and battery constraints at relay nodes since
the effect of computation offloading on the devices’ energy consumption depends on
these context factors. Based on this model, we take an optimization-based approach
and formulate the considered problem as a multi-dimensional knapsack problem, which
takes into account that offloading decisions in multi-hop networks are non-trivially cou-
pled as communication resources of relay nodes need to be shared. Finally, we propose
a novel context-aware greedy heuristic algorithm for computation offloading in multi-
hop networks. Based on its centralized architecture of decision making, this algorithm
enables a central entity to take offloading decisions using centrally collected context in-
formation. We show that despite its centralized architecture, the algorithm has a small
communication overhead. Numerical results demonstrate that the offloading solution
found by the proposed algorithm on average reduces the network energy consumption
by 13% compared to the case when no computation offloading is used. Moreover, the
proposed algorithm yields near-optimal results in the considered offloading scenarios,

with a maximal deviation of less than 6% from the global optimum.

Caching at the edge allows popular content to be cached close to mobile users in order
to serve user requests locally, thus reducing backhaul and cellular traffic as well as the
latency for the user. Hence, caching at the edge exploits caching resources in order
to save communication resources. In this thesis, we identify the fundamental prob-
lem of context-aware proactive caching for mazximizing the number of cache hits under
missing knowledge about content popularity. We introduce a new model for context-
aware proactive caching that takes into account that different users may favor different
content and that the users’ preferences may depend on their contexts. Using a machine-
learning-based approach based on contextual multi-armed bandits (contextual [MADB]),
we propose a novel online learning algorithm for context-aware proactive caching. Based
on its decentralized architecture of decision making, this algorithm enables the con-

troller of a local cache to learn context-specific content popularity, which is typically
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not available a priori, online over time. The proposed algorithm takes the cache op-
erator’s objective into account by allowing for service differentiation. We analyze the
computational complexity as well as the memory and communication requirements of
the algorithm, and we show how the algorithm can be extended to practical require-
ments. Moreover, we derive a sublinear upper bound on the regret of the algorithm,
which characterizes the learning speed and proves that the algorithm converges to the
optimal cache content placement strategy. Simulations based on real data show that,
depending on the cache size, the proposed algorithm achieves up to 27% more cache
hits than the best algorithm taken from the literature.

Mobile crowdsourcing (MCS) allows task owners to outsource tasks via a mobile crowd-
sourcing platform (MCSP)) to a set of workers. Hence, exploits user resources
for task solving. In this thesis, we identify the fundamental problem of context-aware
worker selection for maximizing the worker performance in under missing knowl-
edge about expected worker performance. We present a novel model for context-aware
worker selection in that can cope with different task types and that explicitly
allows worker performance to be a non-linear function of both task and worker con-
text. Using a machine-learning-based approach based on contextual [MABk, we pro-
pose a new context-aware hierarchical online learning algorithm for worker selection in
[MCS Based on the proposed hierarchical architecture of decision making, this algo-
rithm splits information collection and decision making among several entities. Local
controllers (LCk) in the workers’ mobile devices learn the workers’ context-specific per-
formances online over time. The centrally assigns workers to tasks based on
a regular information exchange with the [LCk. This novel approach solves two critical
aspects. First, personal worker context is kept locally in the [LCk, which reduces com-
munication overhead and preserves the privacy of the workers, who may not want to
share personal context with the [MCSPl Secondly, the [MCSPI is enabled to select the
most capable workers for each task based on what the [LCk learn about their workers’
context-specific performances, which are typically unknown a priori. We analyze the
computational complexity and derive upper bounds on the local memory requirements
of the algorithm and on the number of times the quality of each worker must be as-
sessed. Moreover, we show that the more access to worker context is granted to the
[LCk, the lower are the communication requirements of the proposed algorithm com-
pared to an equivalent centralized approach. In addition, we derive a sublinear upper
regret bound, which characterizes the learning speed and proves that the algorithm con-
verges to the optimal worker selection strategy. Finally, we show in simulations based
on synthetic and real data that, depending on the availability of workers, the proposed
algorithm achieves an up to 49% higher cumulative worker performance than the best
algorithm from the literature.
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Kurzfassung

In zukiinftigen drahtlosen Netzwerken wird eine extrem hohe Zahl an heterogenen
Gerédten miteinander kommunizieren, sodass der Datenverkehr enorm ansteigen wird.
Zudem werden zukiinftige Anwendungen signifikant hohere Anforderungen in Bezug
auf Datenraten, Zuverldssigkeit und Latenzzeiten aufweisen. Konventionelle Ansétze,
die lediglich darauf abzielen, die Kommunikationsfdhigkeiten der drahtlosen Netzwer-
ke zu verbessern, reichen nicht aus, um zukiinftigen Anforderungen gerecht zu wer-
den. Daher ist ein Paradigmenwechsel notig. Konventionell werden drahtlose Netzwer-
ke als reine Kommunikationsnetzwerke verstanden. Zukiinftig verfiigen sie aber ne-
ben Kommunikationsressourcen in zunehmendem Mafle auch iiber Rechen-, Speicher-,
Datenerfassungs- und sogar Nutzerressourcen. Solche Ressourcen sind sowohl Teil der
Netzwerkinfrastruktur als auch der drahtlos verbundenen Geréte und ihrer Nutzer. Die-
se fundamental andere Auffassung von drahtlosen Netzwerken als Netzwerke verteilter,
miteinander verbundener Ressourcen erfordert die Entwicklung neuer Verfahren, die
verschiedene Arten von Ressourcen gemeinsam betrachten und einsetzen, um die Per-
formanz drahtloser Netzwerke zu erhohen.

In dieser Arbeit zeigen wir, dass Methoden zur kontextbezogenen Entscheidungsfindung
fiir neue Verfahren, die verschiedene Arten von Ressourcen in drahtlosen Netzwerken
gemeinsam betrachten und einsetzen, benétigt werden. Dies liegt daran, dass erstens
Ressourcen geteilt werden miissen und dass zweitens zwischen den verschiedenen Arten
von Ressourcen abgewogen werden muss. Drittens kann die optimale Ressourcenalloka-
tion nicht nur von Netzwerkbedingungen, sondern auch von weiteren Kontextfaktoren
abhéngen, die zum Beispiel die Knoten, die Nutzer oder externe Gegebenheiten betref-
fen. Wir geben einen Uberblick iiber kontextbezogene Entscheidungsfindung, indem
wir Kontextbewusstsein, Entscheidungsarchitekturen und Agentenentwiirfe diskutieren.
Zunéchst wird zur Erstellung eines Rahmenwerks fiir kontextbezogene Entscheidungs-
findung ein kontextbewusstes Modell des Systems benétigt. Zudem miissen Entschei-
dungstréiger, sogenannte Agenten, bestimmt werden, die innerhalb des Rahmenwerks
fiir die Ressourcenallokation verantwortlich sind. Die Agenten kénnen Teil einer zentra-
lisierten, dezentralisierten oder hierarchischen Entscheidungsarchitektur sein. Zuletzt
muss ein Entwurf der Agenten erstellt werden, indem das betrachtete Entscheidungs-
problem modelliert und klassifiziert wird, und eine passende Methode entwickelt wird,
anhand derer die Agenten Entscheidungen treffen. Relevante Methoden sind insbeson-
dere Optimierungsansdtze und Ansdtze des maschinellen Lernens, im letzteren Fall

insbesondere das Rahmenwerk des mehrarmigen Banditen.

Dariiber hinaus untersuchen wir in dieser Arbeit drei Verfahren, die verschiedene Arten
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von Ressourcen in drahtlosen Netzwerken gemeinsam betrachten und einsetzen. Die-
se sind die Auslagerung von Rechenaufgaben (Computation Offloading) in drahtlosen
Multi-Hop-Netzwerken, das Speichern von Inhalten am Rand des drahtlosen Netzwerks
(Caching at the Edge) und das Auslagern von Aufgaben an eine grofle Anzahl von mo-
bilen Nutzern iiber das Internet (Mobile Crowdsourcing). Fiir jedes dieser drei Verfah-
ren identifizieren wir ein fundamentales kontextbezogenes Entscheidungsproblem und
schlagen ein neuartiges Rahmenwerk fiir kontextbezogene Entscheidungsfindung vor.

Computation Offloading erlaubt es drahtlos verbundenen Gerdten, Rechenaufgaben
an ressourcenreiche Server auszulagern, was die Bearbeitungszeit der Rechenaufga-
ben und den Energieverbrauch der Geréte verringern kann. Somit wird mithilfe von
Computation Offloading zwischen Rechenressourcen und Kommunikationsressourcen
abgewogen. In dieser Arbeit untersuchen wir zum ersten Mal Computation Offloading
in drahtlosen Multi-Hop-Netzwerken, in welchen drahtlos verbundene Geréte die Da-
ten anderer Gerédte im Sinne einer Relaisstation weiterleiten. Wir identifizieren das
fundamentale Problem des kontextbezogenen Computation Offloadings mit dem Ziel
der Energieminimierung in drahtlosen Multi-Hop-Netzwerken. Wir schlagen ein neu-
artiges Modell vor, welches die Kanalbedingungen, die Rechenfdhigkeiten der Geréte,
die Eigenschaften der Rechenaufgaben und die Batteriebeschrankungen der Relais-
stationen beriicksichtigt, da der durch Computation Offloading erzielte Nutzen von
diesen Kontextfaktoren abhingt. Basierend auf dem vorgeschlagenen Modell wihlen
wir einen Optimierungsansatz und formulieren das betrachtete Problem als ein mehr-
dimensionales Rucksackproblem, welches die nichttrivialen Kopplungen bei der Aus-
lagerung von Rechenaufgaben einbezieht, die sich daraus ergeben, dass die Kommu-
nikationsressourcen der Relaisstationen geteilt werden miissen. Zuletzt schlagen wir
einen neuartigen kontextbezogenen, heuristischen Greedy-Algorithmus fiir Computation
Offloading in drahtlosen Multi-Hop-Netzwerken vor. Basierend auf einer zentralisier-
ten Entscheidungsarchitektur ermoglicht dieser Algorithmus einem zentralen Agenten,
Entscheidungen iiber die Auslagerung von Rechenaufgaben unter Zuhilfenahme von
zentral gesammelten Kontextinformationen zu treffen. Wir zeigen, dass der Algorith-
mus trotz seiner zentralisierten Architektur einen geringen Kommunikationsaufwand
aufweist. Numerische Ergebnisse legen dar, dass das Auslagern von Rechenaufgaben
auf Basis des vorgeschlagenen Algorithmus den Energieverbrauch des Netzwerks im
Mittel um 13% senkt, im Vergleich zu dem Fall, dass alle Rechenaufgaben lokal von
den Geréten berechnet werden. Zudem erzielt der vorgeschlagene Algorithmus, mit ei-
ner maximalen Abweichung von unter 6% vom globalen Optimum, nahezu optimale

Losungen.

Mittels Caching at the Edge werden populédre Inhalte nah bei den mobilen Nutzern
gespeichert, um deren Anfragen lokal zu bedienen, wodurch die Menge an Mobilfunk-
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verkehr und die Latenzzeiten der Nutzer reduziert werden. Somit werden mithilfe von
Caching at the Edge Speicherressourcen ausgenutzt, um Kommunikationsressourcen zu
sparen. In dieser Arbeit identifizieren wir das grundlegende Problem des kontextbezoge-
nen Cachings at the Edge mit dem Ziel der Maximierung der Anzahl an Nutzeranfragen,
die durch die Inhalte im Cache-Speicher abgedeckt werden kénnen (Cache Hits), unter
fehlender a priori Kenntnis der Popularitéit von Inhalten. Wir stellen ein neues Mo-
dell fiir kontextbezogenes proaktives Caching at the Edge vor, welches einbezieht, dass
verschiedene Nutzer verschiedene Inhalte bevorzugen konnen und dass die Préaferenzen
der Nutzer von ihren Kontexten abhingen kénnen. Unter Verwendung eines Ansat-
zes des maschinellen Lernens, basierend auf dem Rahmenwerk des konteztabhingigen
mehrarmigen Banditen, schlagen wir einen neuartigen Online-Lernalgorithmus fiir kon-
textbezogenes proaktives Caching at the Edge vor. Auf Basis einer dezentralisierten
Entscheidungsarchitektur ermoglicht dieser Algorithmus dem Controller eines lokalen
Cache-Speichers, die kontextspezifische Popularitdt von Inhalten, die typischerweise a
priori nicht bekannt ist, online im Laufe der Zeit zu erlernen. Der vorgeschlagene Al-
gorithmus beriicksichtigt die Zielvorgaben des Betreibers eines Cache-Speichers, indem
die Differenzierung von Services ermoglicht wird. Wir analysieren die Komplexitét,
den Speicher- und den Kommunikationsbedarf des Algorithmus und zeigen, wie der
Algorithmus an praktische Anforderungen angepasst werden kann. Auflerdem leiten
wir eine sublineare obere Schranke fiir den sogenannten Regret des Algorithmus her,
welche die Lerngeschwindigkeit des Algorithmus charakterisiert und beweist, dass der
Algorithmus gegen die optimale Inhaltsplatzierungsstrategie konvergiert. Simulationen
auf Basis realer Daten zeigen, dass der vorgeschlagene Algorithmus, in Abh#ngigkeit
der Grole des Cache-Speichers, bis zu 27% mehr Cache Hits erzielt als der beste Al-
gorithmus aus der Literatur.

Mobile Crowdsourcing (MCS)) erlaubt es Inhabern von Aufgaben, diese Aufgaben mit-
tels einer Mobile-Crowdsourcing-Plattform (MCSP]) tiber das Internet an eine grofie
Anzahl von mobilen Nutzern auszulagern. Somit nutzen MCSFAnwendungen Nutzerres-
sourcen zur Aufgabenlosung aus. In dieser Arbeit identifizieren wir das fundamentale
Problem der kontextbezogenen Auswahl von mobilen Nutzern in [MCSFAnwendungen
mit dem Ziel der Maximierung der Arbeitsleistung unter fehlender a priori Kennt-
nis der zu erwartenden Arbeitsleistungen individueller Nutzer. Wir stellen ein neu-
artiges Modell fiir die kontextbezogene Auswahl von Nutzern zur Aufgabenlosung in
[MCSI Anwendungen vor, welches verschiedenartige Aufgabentypen zuldsst, und wel-
ches zudem explizit berticksichtigt, dass die Arbeitsleistung eine nichtlineare Funktion
sowohl des Aufgabenkontextes als auch des Nutzerkontextes sein kann. Unter Verwen-
dung eines Ansatzes des maschinellen Lernens, basierend auf dem Rahmenwerk des

kontextabhdingigen mehrarmigen Banditen, schlagen wir einen neuartigen kontextbezo-
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genen hierarchischen Online-Lernalgorithmus fiir die Auswahl von Nutzern zur Aufga-
benlisung in [MCI-Anwendungen vor. Auf Basis einer hierarchischen Entscheidungs-
architektur teilt dieser Algorithmus die Datenerfassung und die Entscheidungsfindung
unter mehreren Agenten auf. Lokale Controller in den mobilen Endgeraten der Nutzer
erlernen die kontextspezifischen Arbeitsleistungen der Nutzer online im Laufe der Zeit.
Basierend auf einem regelméfliigen Informationsaustausch mit den lokalen Controllern
weist die zentrale den Nutzern Aufgaben zu. Dieser neuartige Ansatz 16st zwei
kritische Punkte. Zum einen verbleibt der personliche Kontext der Nutzer lokal, was
den Kommunikationsaufwand reduziert und die Privatsphére der Nutzer schiitzt, da
letztere ihren personlichen Kontext moglicherweise nicht mit der [MCSP]teilen méchten.
Zum anderen ermoglicht der Ansatz der [MCSP], mithilfe der von den lokalen Control-
lern erlernten kontextspezifischen Arbeitsleistungen der Nutzer, die typischerweise a
priori unbekannt sind, fiir jede Aufgabe die am besten geeigneten Nutzer auszuwéhlen.
Wir analysieren die Komplexitéit des Algorithmus und leiten obere Schranken fiir sei-
nen Speicherbedarf und fiir die maximal benotigte Anzahl an Qualitatsiiberpriifungen
eines einzelnen Nutzers her. Auflerdem zeigen wir, dass je mehr Nutzerkontext die
lokalen Controller zur Verfiigung gestellt bekommen, desto kleiner wird der Kommu-
nikationsbedarf des vorgeschlagenen Algorithmus im Vergleich zu einem &quivalenten
zentralisierten Ansatz. Zudem leiten wir eine sublineare obere Schranke fiir den Regret
des Algorithmus her, welche die Lerngeschwindigkeit des Algorithmus charakterisiert
und beweist, dass der Algorithmus gegen die optimale Nutzerauswahlstrategie kon-
vergiert. Zuletzt zeigen wir mittels Simulationen auf Basis synthetischer und realer
Daten, dass der vorgeschlagene Algorithmus, in Abhéingigkeit der Nutzerverfiigharkeit,
eine bis zu 49% hohere kumulative Arbeitsleistung erzielt als der beste Algorithmus
aus der Literatur.
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Chapter 1

Introduction

1.1 Distributed Connected Resources in Wireless
Networks

Recent years have witnessed a tremendous increase in mobile data traffic [Cis17]. This
trend was fueled by an increasing number and extended capabilities of wirelessly con-
nected devices. Personal hand-held mobile devices, such as smartphones, laptops, and
tablets, have become more and more popular. Equipped with advanced multimedia
and computing capabilities and a plenitude of sensors, today’s mobile devices are ca-
pable of running resource-hungry mobile applications, such as mobile video, which has
become a key generator of mobile data traffic, accounting for half of today’s global
mobile data traffic [Cis17].

Compared to today’s networks, future wireless networks are expected to face even
larger demands. On the one hand, traditional mobile device usage will become even
more ubiquitous. The global number of mobile users is expected to reach 5.9 bil-
lion in 2025 [GSM18]. Aside from mobile video, which is expected to generate an
even higher percentage of mobile data traffic in the upcoming years [Cis17], new types
of computation-intensive and energy-consuming mobile applications are expected to
emerge, such as augmented reality and virtual reality applications. These applications
will require high data rates and low latency [Qual§|. On the other hand, applications
for the Internet of things ([QT]) are expected to become much more important for cus-
tomer as well as industry purposes in future [PDG™16|. Examples of [oT] applications
envisioned in next generation 5G wireless networks comprise smart cities, smart home,
smart factories, smart grids, e-health, and the connected car |GEET16,[PDG™16]|. In
such [oT] applications, heterogeneous devices, such as sensors, actuators, robots, vehi-
cles, smartphones, and other machines and objects embedded with sensors or actuators,
are wirelessly connected to the Internet, and are thereby enabled to communicate using
machine to machine (M2M]) communications in order to perform application-specific
tasks [AFGM™15]. With the rise of [[oT] applications, vast numbers of heterogeneous
devices will communicate in future wireless networks [Evall|, and, depending on the
specific application, high data rates, high reliability, and low latency may be needed.

In view of the increasing amount of data traffic, the increasing number of wirelessly

connected devices, and the increasing application requirements, satisfying the demands
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in future wireless networks in general and allocating resources in particular will become
much more challenging. Conventional approaches typically aim at improving the com-
munication capabilities of the networks, i.e., reducing the delay and increasing data
rates and spectral efficiency [LCQ16], by adding more spectrum, more cells, and opti-
mizing the allocation of the available communication resources with respect to time,
frequency, and space. In particular, over the last years, especially spatial resource
usage based on network densification, but also advanced multiple access techniques
like orthogonal frequency-division multiple access (OFDMAI), and multi-antenna tech-
niques like multiple-input and multiple-output (MIMOI), have boosted the capacity and
average data rate of cellular networks [LCQ16,AZDG16|. However, these technological
advances are not sufficient to satisfy the much more demanding requirements arising
in future networks [WZZ717,WCT™ 14, LCQ16, AZDG16|, such that a paradigm shift
becomes mandatory.

The new paradigm moves from understanding wireless networks as pure communication
networks to understanding them as networks of distributed connected resources that
provide communication, computation, caching [LCQ16,WZZ"17, HYH"16, WHY "18|
CHHT18], data collection [HZL16], and even user resources [RZZS15|. Figure[L.1]shows
an example of a wireless network with heterogeneous wirelessly connected devices and
different types of resources distributed over the network.

On the one hand, such resources may be part of the network infrastructure. As pro-
posed in the mobile edge network architecture, caching and computational resources
may be installed at the edge of the network [HPST15,WZZ"17,[MYZ"17]. For exam-
ple, mobile edge computing (MEC]) servers might be attached to macro base stations
(MBSE) and cloudlets [HRR™18], i.e., small scale data centers, may be attached to Wi-
Fi access points, in order to provide computing services closer to the devices [WZZ717].
Moreover, storage space may be added to small base stations (SBSk), in order to provide
local caching services [WCT™14].

On the other hand, such resources are available in the wirelessly connected devices
themselves and their users, such as the communication and computation capabili-
ties, storage space and sensor equipment of the devices and the human intelligence
of the mobile users. Exploiting these resources, devices and users in a wireless net-
work can become service providers with respect to communication (e.g., data relay-
ing [MMAS™16, WDM™15]), computation (e.g., task processing [LAK17]), caching
(e.g., content storing and sharing [FMASK17]), sensing (e.g., data collection and shar-
ing [HZL16]), and human intelligence (e.g., human-based task completion [RZZS15]).
Starting from this radically different view on wireless networks, the question arises
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Figure 1.1. Wireless network with distributed, connected resources.

how the different resources available in wireless networks should be exploited and op-
timally allocated in order to improve the performance of the system with respect to
a suitable performance criterion that reflects the requirements of offered services and
applications.

1.2 Context-Aware Decision Making in Wireless
Networks

The new paradigm calls for the development of new techniques for wireless networks
that jointly consider and leverage different types of resources in order to improve the
system performance. The goal of introducing such techniques is to allocate the re-
sources available in the wireless network in such a way that the performance of the
system is improved with respect to a performance criterion, e.g., with respect to the

throughput, latency or energy efficiency. The performance criterion may, for example,
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be a global one, i.e., a network performance criterion, such as the network energy con-
sumption, or it may be a local one, i.e., a node performance criterion like individual
energy consumption. Resource allocation requires decision-making during run time.
This is due to the fact that resources are limited and have to be shared among sev-
eral devices, and moreover, since there may exist trade-offs between different types of
resources. More formally, one can think of the different choices (e.g., which resources
to use in which way) within a technique that jointly considers and leverages differ-
ent types of resources, as several available actions from which one or several have to
be selected. Which of the available actions are good choices in turn highly depends
on the pre-defined performance criterion. Moreover, whether a selected action is a
good choice given a pre-defined performance criterion, may not only depend on the
current network conditions, but also on other node-related, user-related or externally
given conditions [MSS13|[FSK™1§|. Conceptually, such conditions may be summarized
under the term context [DA99,|Hen03, MSS13]. Due to the numerous data collection
resources available in wireless networks, such as the large numbers of sensors in mobile
devices, context information is often readily available and may be taken into account
for decision making [BWL18]. A detailed introduction to the concept of context will
be given in Section [2.2.2]

Clearly, decision making requires one or several entities to act as decision agents. In
particular, since the available resources and hence the actions within techniques for
wireless networks that jointly consider and leverage different types of resources, are
distributed over the network, different architectures of decision making are possible,
namely, centralized, decentralized, and hierarchical architectures [Lun92, KB97]. While
in centralized architectures, a central entity typically acts as global decision agent based
on centrally collected information, in a decentralized architecture, several local entities
act as local decision agents based on locally collected information. Finally, in hierarchi-
cal architectures, information collection and decision making may be split up between
decision agents at multiple hierarchically organized levels, enabled by an information
exchange between them. Each type of architecture has its own advantages and dis-
advantages, and which type of architecture is suitable highly depends on the specific
technique, the specific performance criterion, and the information required for decision
making, such as network conditions and other relevant context. The different types of
architectures and their characteristics will be discussed in detail in Section 2.2.3]

In any case, decision agents aim at selecting those actions that achieve the defined
goal by optimizing the performance criterion. Finding the optimal actions is, however,
typically not trivial. How exactly a decision agent selects actions is determined by its
design. The design of a decision agent essentially depends on how the designer models

the problem to be solved by the decision agent. Different approaches differ with respect
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to how much of the decision making process is specified a priori by the designer and
how the remaining problem is solved by the decision agent [KACT15]. One possibility,
which is often suitable in wireless communications [SNHH15|, is to model the problem
as an optimization problem. Such an optimization problem typically consists of a
utility function, a set of constraints, and a set of optimization variables [BV04]. The
utility function formalizes the performance criterion of decision making by describing
the performance as a function of the selected action. The decision agent may use the
utility function to evaluate the performance of selecting an action, while the constraints
give restrictions on the actions that may be selected, and the optimization variables
describe which actions are selected. Then, the decision agent runs an optimization
algorithm in order to search for a (near-) optimal action [BV04].

However, which action gives which performance under a given environment may not
be known a priori by the designer, for instance, since underlying parameters may de-
pend on a random process with unknown statistics or may not be easily measurable.
In this case, one approach is to use reinforcement learning (RL), a type of machine
learning [KACT15]. Here, the designer specifies a set of actions, a set of constraints
on these actions, and a performance criterion. Then, the decision agent runs an on-
line learning algorithm that sequentially selects actions and observes their instanta-
neous performances under different situations in order to learn the performance of the
actions under different situations and thereby maximize the cumulative performance
over time [SB98,Alpl4]. A special case of RILl are multi-armed bandit (MAB) frame-
works [Rob52|ACBF02], which have become a useful tool to tackle problems in wireless
communications [MH16,JZRT17]. A detailed overview of the different approaches to
design decision agents will be given in Section

1.3 Exploiting Distributed Connected Resources

1.3.1 Three Exemplary Techniques

In this thesis, we understand wireless networks as networks of distributed connected
resources and we consider how different available resources may be exploited in order
to improve the system performance of wireless networks. Specifically, we consider in

the sequel how to exploit the following types of resources:
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(i) Computation resources
(ii) Caching resources

(iii) User resources

For each type of resource, we take into account its specific interplay with the commu-
nication resources. In the sequel, for each of the three types of resources (i)-(iii), we
present a technique that exploits the particular resource with the help of context-aware
decision making. Since context-aware decision making requires access to context infor-
mation, the three techniques also rely on data collection resources that allow to collect

the required context information. The following techniques are considered:

(i) Computation offloading in multi-hop wireless networks
(ii) Caching at the edge of wireless networks

(ili) Mobile crowdsourcing

Each of the three techniques has been proposed as a promising candidate to tackle
one of the challenges of wireless networks. Below, we will show that each of the
three techniques requires context-aware decision making in order to best exploit the
resources. In the next sections, we will shortly introduce the three techniques, identify
corresponding problems requiring context-aware decision making, and give overviews
of the state of the art.

1.3.2 Computation Offloading in Multi-Hop Wireless Net-
works

Computation offloading allows wirelessly connected devices to offload computation
tasks to resource-rich servers for remote computation by transmitting the data re-
quired to remotely process the tasks at the servers [KLLB13|. Therefore, computation
offloading is a technique that trades communication resources off against computa-
tion resources. The servers enabling computation offloading may be part of different
types of infrastructures. For example, mobile cloud computing (MCC]) allows devices
to offload computation tasks to centralized computing platforms in remote servers via
the Internet [DLNW13|. In constrast, mobile edge computing (MEC]) offers computing
infrastructure in servers placed at the edge of the wireless networks, e.g., attached
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to base stations [HPST15,WZZT17,[MYZ"17|. Since computing resources are placed
much closer to the mobile devices using [MEC| compared to [MCC], employing [MEC]
rather than [MCC helps to alleviate the backhaul traffic and to reduce the latency.

Computation offloading may improve the performance of wirelessly connected devices
by reducing task completion times, and it also may reduce the devices’ energy con-
sumption [KLLBI13|, thereby facilitating the usage of resource-hungry applications.
Indeed, while today’s mobile devices are smarter than ever, they still encounter limi-
tations with respect to their battery life and computation capabilities when executing
upcoming mobile applications [KLLB13,|ASAT14]. This is an issue for mobile users
since their most desired feature in mobile devices is a longer battery life, according
to several studies [CNNO5, Youl6|[Youl8|. Moreover, many of the machine-type de-
vices communicating in emerging [oT] applications dispose of limited processing ca-
pabilities [SRIT15,MYZ717]. Therefore, such devices may profit from computation
offloading. Whether computation offloading is beneficial for an individual device in
terms of its battery life depends on whether less energy has to be spent for trans-
mitting the task to the server than for local processing. Deciding whether a device
should offload its task or not with the goal of energy minimization requires not only
to trade computation resources off against communication resources by taking into ac-
count channel conditions and computing capabilities of a device, but also requires to
consider the specific task characteristics [KL.10, MN10]. Hence, context information is

relevant for decision making.

Table presents a summary of the most relevant state of the art on decision making
for computation offloading. The organization of Table and its content will be
explained in the sequel. Note that a more detailed review of the state of the art is
presented in Section

In the past, research has mainly considered computation offloading in single-hop
networks where devices have a direct connection to a server to utilize its com-
putation resources. One line of literature designs mechanisms to decide whether
to offload and which parts of an application to offload, aiming at energy savings
or minimization of task completion times from a single mobile device’s point of
view [KL10,MN10, XLLO7, WZL12,[HWN12,|RP03,|LMZL16, KLLB13]. Newer works
also focus on the dynamics among several devices performing computation offloading
in single-hop networks, concerning, e.g., traffic induced by computation offloading or
competition for shared resources. These works aim at minimizing energy, time, or

both energy and time while taking into account the interdependencies between the

nodes [GZQLI12,MBASK18,NMAS™18|/Chel5,|CLD16].
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Table 1.1. Summary of selected related work on decision making for computation
offloading.

Network Point of Optimization
. e . Reference
type view criterion
[KL10]
[MN10]
Min. energy IXLLO7]
: [WZL12|
Device
[HWN12|
[RPO3]
Single-hop Min. time [LMZL16]
Min. energy [KLLB13)
and time
. [GZQL12]
Min.
e CREIY T VIBASK1S]
Network Min. time [INMAS*18]
Min. energy [Chel5|
and time [CLD16]

Since coverage in single-hop networks is limited and transmission may require high
power [LHO0|, it is worthwhile to consider computation offloading in multi-hop wireless
networks. Multi-hop communication allows wirelessly connected devices to communi-
cate directly without the help of a base station, and it allows devices to assist each
other as relay nodes. Using multi-hop communication, messages can travel larger
distances without needing a base station, which extends the coverage of wireless net-
works and reduces the required transmission power [LH00, BKK™09]. In the related
work, a multi-hop scenario is only considered in a different context of “communica-
tion vs. computation,” namely in multi-media sensor networks, where data can be
compressed at sensor nodes before communicating it to a central entity in a multi-hop
fashion [MYMO02,TF09.

Compared to single-hop networks, computation offloading in multi-hop networks poses
new major challenges. If a device offloads a computation task to the server, other
devices may have to serve as relay nodes. However, these relay nodes may have their
own computation tasks as well. Moreover, the relay nodes also dispose of limited
batteries and hence provide only limited communication resources for task relaying.
Finally, several devices may have relay nodes in common, such that they need to
share the communication resources provided by the relays nodes. Therefore, ofloading

decisions are non-trivially coupled in multi-hop networks, which makes it challenging
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to decide which devices should offload their tasks.

1.3.3 Caching at the Edge of Wireless Networks

Caching at the edge allows popular content to be cached close to the mobile users in a
placement phase in order to locally serve the users’ requests for this content in a delivery
phase [BBD14b|. Therefore, caching at the edge exploits caching resources in order to
save communication resources. Local caches for caching at the edge could be attached
to and owned by the mobile network operator (MNQI). Alternatively, local
caches could be part of wireless infostations that provide high bandwidth local data
communication [GBMY97,[IR02,BG14c,BG14a]. Wireless infostations may be installed
in public or commercial areas and may use Wi-Fi for local data communication. Owners
of wireless infostations may either be content providers aiming at increasing their users’
quality of experience or third parties offering caching at infostations as a service to

content providers or to the users [BG14a].

Bringing content closer to the mobile users may reduce backhaul and cellular traffic, and
it may reduce the latency for the user [WCT™14]. Since a significant amount of mobile
traffic is generated by multimedia applications, such as mobile video [Cis17], while at
the same time typically only a small number of very popular contents account for the
majority of content traffic [BCFT99|, caching at the edge may hence enable wireless
networks to cope with larger traffic volumes and it may help to satisfy application-

specific requirements, e.g., with respect to latency.

Due to the vast amount of content available in multimedia platforms and the limited
storage space in local caches at the edge, typically, not all content can be cached locally
and a crucial question is hence which content to cache [BG14b]|. In order to reduce
the load on the macro cellular network as much as possible, the goal is to find a cache
content placement that mazximizes the number of cache hits. This requires to use the
limited caching resources to cache the most popular content. Which is the most popular
content depends on the content popularity distribution [BBD14a].

Table presents a summary of the most relevant state of the art on decision making
for cache content placement in wireless networks. The organization of Table [1.2] and
its content will be explained in the sequel. Note that a more detailed review of the
state of the art is presented in Section [£.2]

One line of related work investigates the problem of cache content placement in various

caching scenarios in wireless networks under the assumption that the content popularity
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Table 1.2. Summary of selected related work on decision making for cache content
placement in wireless networks.

Content Diversity in
. Type of
popularity learnin content Reference
distribution & popularity
[GMDC13] |
No [SGD*13]
Known N/A [BBD14a| |
Yos [PT13]
[PIST16]7
N/A No IMAN14]
. [BBD14b|
Off N
e ¢ [BBZ*15)
Unknown [BG14b)
No [BG14c]
Online [BG14a]
[SAT*14]
Yes [EBSLal4]

distribution is known a priori [GMDC13,SGD"13,BBD14a,[PT13,[PIST16|. However,
in reality, when caching content at a particular point in time, it may be unclear which
content will be requested in future and not even an estimate of the content popularity
distribution may be at hand. Therefore, a second line of literature investigates cache
content placement under missing knowledge about content popularity. If the popularity
distribution is unknown a priori, the controller of a local cache may either apply a
worst-case approach by trying to optimize cache content with respect to worst-case
request arrivals [MAN14]. Alternatively, the controller of the local cache needs to learn
the content popularity distribution [BBD14b,BBZ™15,BG14b,BG14c,BG14aSAT ™14,
EBSLal4]. In this case, methods from machine learning are leveraged to learn content
popularity, using either offline or online methods. Using offline learning approaches,
content popularity is learned during a training phase. Using online learning approaches,
content popularity is learned during run time, such that adaptation to varying content

popularities is possible.

Related work may further be divided into two groups regarding whether diversity in
content popularity across the user population is taken into account. Some related works
assume that there exists one global popularity distribution and that all user requests
follow this distribution. However, it has been shown that the local content popularity

at a local cache is not necessarily the same as the global content popularity monitored
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by the global multimedia platform [GALMOT7,[ZSGK09,BSW12|. This is due to the fact
that there is diversity in content popularity across the user population, i.e., different
users may favor different content. Hence, the controller of a local cache should learn the
local content popularity for a proactive cache content placement. However, since the set
of mobile users connected to a local cache at the edge of the wireless network changes
over time, also the local content popularity may vary according to the preferences of the
mobile users connecting to the local cache over time. Therefore, for a truly proactive
cache content placement, the controller of a local cache needs to take into account the
diversity in content popularity across the local user population when learning content
popularity. However, only few related works take such diversity in content popularity
across the local user population into account for cache content placement.

Among the related works, none takes into account that the users’ content preferences
may depend on their contexts, such as their location [BSW12|, personal characteristics
(e.g., age [MS10], gender [HLO5], personality [RGZ11], mood [Zil88]), or their devices’
characteristics [ZGCT14]. However, acknowledging that content popularity depends
on the users’ contexts, cache content placement needs to be contexrt-aware, in order to

adapt to the preferences of mobile users with different contexts.

Moreover, none of the literature takes into account that cache content placement should
reflect the cache operator’s specific objective. Since an operator may want to offer
service differentiation to its customers (e.g., by optimizing cache content according to
different prioritization levels [KLACO03,|LAS04]), cache content placement should not
only allow for cache hit maximization, but also incorporate the operator’s perspective
by allowing for service differentiation.

1.3.4 Mobile Crowdsourcing

Mobile crowdsourcing (MCS) allows task owners to outsource their tasks via an in-
termediary mobile crowdsourcing platform (MCSP) to a set of mobile users, so-called
workers, who may complete assigned tasks [RZZS15]. Hence, is a technique that
exploits user resources by leveraging human intelligence for task solving.

While earlier crowdsourcing (CS)) systems (e.g., Amazon Mechanical Turk[D were
mainly web-based [DRH11], today, platforms have become increasingly popu-
lar, probably due to the large and ever increasing number of mobile devices [Cis17] and
the growing intensity of mobile device usage [eMal8|. Tasks in systems may, for

Thttps:/ /www.mturk.com
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example, require the mobile users to use their mobile devices in the physical world (e.g.,
photography tasks), possibly even with respect to certain spatial constraints, the latter
being called spatial [ZH16]. Other tasks are virtual tasks (e.g., image annotation,
sentiment analysis), possibly intractable for machine computation, that require human
intelligence for their solution. Such virtual tasks are often non-spatial, i.e., they do not
require the workers to be at a certain location in order to complete the task. While
non-spatial tasks could as well be completed by users of static devices as in web-based
[CS| emerging [MCSl applications for non-spatial tasks (e.g., MapSwip? the GalaxyZoo
appﬂ or commercial ones as Spare5E| or CrowdeeE[) exploit that online mobile users
complete such tasks anytime and anywhere on the go. is hence a technique that
may enable different stakeholders, e.g., network operators, e-commerce companies, or

even the mobile users themselves, to leverage resources of (other) mobile users.

Since different mobile users may have different interests and capabilities, not all mobile
users may be equally suitable to complete a given task [GS14]. Hence, requires
an appropriate assignment of workers to tasks. In order to achieve the best possible
outcome for a task owner, the limited budget of the task owner should be used wisely,
by selecting those workers that mazimize the performance on the given task [TTSRJ14].

Table presents a summary of the most relevant state of the art on decision making
for systems. The organization of Table and its content will be explained in
the sequel. Note that a more detailed review of the state of the art is presented in
Section 5.2

Literature on considers two modes of assigning tasks to workers [KS12]. In the
worker selected tasks (WST]) mode, workers autonomously select tasks from a list.
This simple mode, which is often used in practice (e.g., on Amazon Mechanical Turk),
has the advantage that workers automatically select tasks they are interested in. How-
ever, the WST]mode can lead to suboptimal task assignments since it may be difficult
for workers to find interesting tasks [CHMA10| and, moreover, unpopular tasks might
remain unassigned. Literature on [WST] mode [GWG™16,|/AVC11] combines the mode
with personalized task recommendation (IRIl) |GS14] to ensure that workers find ap-
propriate tasks.

In the server assigned tasks (SAT)) mode, the[MCSP|aims at centrally matching workers
and tasks in an optimal way, e.g., to maximize the number of task assignments, taking

2https://mapswipe.org/
3https://www.galaxyzoo.org/
4https://app.spareb.com/fives
®https://www.crowdee.de/



1.3 Exploiting Distributed Connected Resources

13

Table 1.3. Summary of selected related work on decision making for crowdsourcing

systems.
Task as- Worker Cont(.ext- Worker
. Type of specific
signment perfor- . context Reference
learning perfor-
mode mance protected
mance
Worker Offline Yes Yes [GWGT16]
selected
task Unknown
asks
Online No N/A AVC11
(WST) / AveLy
[KS12|
N N
Known N/A © © [TSK15|
Yes Yes [TGFS17]
Server SC1T]
assigned Offline No N/A |
[ZC17]
tasks Vi
Unk
EAT) Hnown , No N/A [TTSRI14]
Online
[HZL16|
Yes No [uHC14]

possible task budgets into account. The assignment of workers to tasks is typically
based on task and worker information gathered regularly at the Related work
using the mode often either assumes that workers always accept assigned tasks or
that the workers’ performances are known in advance (e.g., in terms of acceptance rates
and quality) [KS12, TSK15,TGFS17]. However, in reality, acceptance rates and quality
are typically not known beforehand and therefore have to be learned by the [MCSPl
A second line of related work therefore considers the matching of workers and tasks
in various scenarios under missing knowledge about worker performance in terms
of acceptance rates or quality and proposes machine-learning-based approaches, some
of them using offline [SC17,ZC17] and others online [HV12,[TTSRJ14, HZL16,uHC14]

learning.

A worker’s performance in terms of acceptance rate and the quality of completed tasks
may depend not only on the specific task, but also on the worker’s current context, such
as the worker’s location or the time of day [GS14]. A worker’s context may change
quickly, which is especially relevant for applications with non-spatial tasks since
workers may complete such tasks anytime and anywhere. Among the discussed related
work, only few incorporate such context-specific worker performance.

Moreover, in the [SAT] mode as well as in the [WST] mode with personalized [TR], the
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workers are typically required to regularly share their current contexts (e.g., their
positions) with the MCSPl This may, on the one hand, require a large communication
overhead and, on the other hand, it may be a privacy concern for workers |[TGFS17,
GWGT™16]. Protecting personal worker context due to overhead or privacy reasons (i.e.,
keeping it completely locally, or sharing only generalized context information with the

[MCSPJ) has only been taken into account by few previous works.

1.4 Open Issues

In this section, open issues with respect to the three decision-making problems discussed
in Sections [[.3.2] - [1.3.4] are summarized.

Computation Offloading Computation offloading has so far not been considered
in multi-hop networks, which, compared to single-hop networks, may extend coverage
and reduce required transmission power. Since communication resources of relay nodes
need to be used and shared for task offloading, offloading decisions are non-trivially
coupled in multi-hop networks. In this regard, the following questions arise:

1. How to formulate a general model for context-aware computation offloading in

wireless multi-hop networks?

2. How to decide in a wireless multi-hop network which devices should offload their
tasks such that the sum energy spent in the overall network for communication
and computation is minimized while taking into account the energy constraint in
each device? How can information about task context be exploited for decision

making?

The underlying optimization problem needs to be analyzed for complexity, and con-
ditions may be derived under which computation offloading in multi-hop networks is

beneficial.

3. What is the computational complexity of the optimization problem?

4. Under which conditions is computation offloading beneficial in multi-hop net-

works?
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Finally, the performance of the proposed algorithm should be tested and its computa-
tional complexity and overhead need to be studied.

5. How well can the proposed algorithm approximate the optimal solution?

6. What is the complexity and what is the overhead of the proposed algorithm?

Caching at the Edge of Wireless Networks A cache content placement algorithm
has not been proposed so far that jointly (i) learns which content to store proactively
in a local cache at the edge of the wireless network online under missing a priori
knowledge about local content popularity such that the average number of local cache
hits is maximized over time, while (ii) allowing for diversity in content popularity across
the user population, (iii) taking into account the dependence of the users’ preferences
on their contexts, and (iv) including the operator’s specific objective by supporting
service differentiation. Hence, this creates the following questions:

7. How to formulate a model for context-aware proactive caching in a local cache at
the edge of the wireless network that (i) takes into account that content popularity
may vary across the user population, (ii) considers that the users’ preferences
depend on their contexts, and (iii) includes the operator’s requirements in terms
of service differentiation?

8. How to decide online without a priori knowledge about content popularity which
content from a large file library to store proactively in a local cache at the edge of
the wireless network such that the average number of local cache hits is maximized
while taking into account the limited cache size and exploiting local information
about user context? How to ensure that cache content placement meets the

operator’s requirements for service differentiation?

The complexity and overhead of the proposed algorithm need to be investigated and
its adaptability to additional practical requirements needs to be proven.

9. What is the complexity and what is the overhead of the proposed algorithm?

10. How well is the proposed algorithm adaptable to practical requirements?

Moreover, the performance of the proposed algorithm should be studied analytically

and numerically.
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11. How well does the proposed algorithm approximate an orcale-based optimal so-
lution, which would require a priori knowledge about content popularity?

12. How well does the proposed algorithm perform compared to conventional algo-

rithms which either do not learn or which do not exploit context information?

Mobile Crowdsourcing (MCS|) A worker selection algorithm for [MCS with non-
spatial tasks has not been proposed so far that jointly (i) learns online which workers
to select for each task under missing a priori knowledge about worker performance
in terms of acceptance rate and quality such that the average worker performance
is maximized over time, while (ii) allowing for different task types, (iii) taking into
account that the worker performance may depend in a possibly non-linear fashion on
both task and worker context, and (iv) protecting personal worker context locally in
order to keep the communication overhead small and to ensure the workers’ privacy.

Therefore, the following questions arise:

13. How to formulate a model for context-aware worker selection in an appli-
cation that allows for different task types and takes into account that worker
performance may vary and depend in a possibly non-linear fashion on both task
and worker context?

14. How to decide online in an application with non-spatial tasks without a
priori knowledge about worker performance which workers from a large set to
select such that the average worker performance is maximized over time, while
taking into account limited task budgets, task and worker context information
and the possibly non-linear relationship between worker performance and context,
without giving the central platform access to the worker context?

The computational complexity and the overhead of the proposed algorithm need to be

investigated.

15. What is the complexity and what is the overhead of the proposed algorithm?

In order to demonstrate the performance of the proposed algorithm, analytical guar-

antees and numerical tests are needed.
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16. How well can the proposed algorithm approximate an orcale-based optimal solu-
tion that would require a priori knowledge about worker performance?

17. How well does the proposed algorithm perform compared to conventional algo-
rithms which either do not learn or which learn in a simpler fashion?

1.5 Contributions and Thesis Overview

This section gives an overview of the thesis and summarizes the main contributions
addressing the open issues discussed in Section [1.4 In the following, the contents of
each chapter are briefly described, along with the main contributions presented in each
of them.

Chapter [2] provides an overview of context-aware decision making in wireless networks.
First, an overview of the components of a context-aware system model is given. Then,
the context model is discussed by giving a short introduction to context awareness.
Moreover, different architectures of decision making and their characteristics are dis-
cussed. Finally, different designs of decision agents and corresponding methods for
decision making are discussed, with an emphasis on optimization-based approaches
and machine-learning-based approaches using multi-armed bandit (MAB|) models, two
specific types of approaches relevant for this thesis.

In Chapter [3] the problem of context-aware computation offloading for energy mini-
mization in multi-hop wireless networks is studied, giving answers to the Questions

by the following contributions:

1. We propose a general model for context-aware computation offloading in multi-
hop wireless networks. The model is applicable to any topology of a multi-hop
network in which a resource-rich server may be reached via an access point (AP]).
The model is compatible with different types of infrastructures for computation

offloading, such as mobile cloud computing (MCC]) and mobile edge computing
(MEC]).

2. We use a centralized architecture of decision making and take an optimization-
based approach. Specifically, we formulate the network energy minimization
problem as an integer linear programming ([LP]) problem and propose a context-
aware greedy heuristic algorithm for computation offloading in multi-hop net-
works. Using this algorithm, a central entity may take offloading decisions based

on centrally collected information about network conditions and task context.
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. We prove the equivalence of the energy minimization problem to a multi-

dimensional knapsack problem and thereby derive the complexity of the opti-

mization problem.

Based on analytical and numerical evaluation, we derive conditions with respect
to the topology, system parameters, and task context under which computation

offloading in multi-hop networks is beneficial.

. We find in numerical simulations that the proposed context-aware greedy heuris-

tic algorithm yields near-optimal results under various network settings and task

contexts.

. We study the computational complexity of the proposed context-aware greedy

heuristic algorithm and the overhead of the proposed centralized architecture of

decision making with respect to its communication requirements.

Chapter 4| addresses the problem of context-aware caching at the edge for cache hit

maximization, and answers Questions by the following contributions:

7.

10.

We propose a model for context-aware proactive caching in a local cache at the
edge of the wireless network. The model explicitly allows different content to be
favored by different users and includes that content popularity depends on the

user’s context.

. We use a decentralized architecture of decision making and take a machine-

learning-based approach. Based on a contextual [MAB] framework, we present
an online learning algorithm for context-aware proactive caching that incorpo-
rates diversity in content popularity across the user population, takes into account
the dependence of the users’ preferences on their contexts, and supports service
differentiation. Using this algorithm, the controller of a local cache can learn
context-specific content popularity online by regularly observing context infor-
mation of connected users, updating the cache content, and observing cache hits

subsequently.

. We study the computational complexity of the proposed context-aware proac-

tive caching algorithm and its overhead in terms of memory and communication

requirements.

We show possible extensions of the proposed context-aware proactive caching
algorithm. Specifically, we consider its combination with multicast transmissions,
the incorporation of caching decisions based on user ratings, the inclusion of

asynchronous user arrivals, and the extension to multiple local caches.
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11.

12.

We analytically bound the loss of the proposed context-aware proactive caching
algorithm compared to an oracle that has a priori knowledge about content pop-
ularity. We derive a sublinear upper regret bound, which characterizes the learn-
ing speed and proves that the proposed algorithm converges to the optimal cache

content placement strategy that maximizes the expected number of cache hits.

We numerically evaluate the performance of the proposed context-aware proactive
caching algorithm based on a real world data set. A comparison shows that by
exploiting context information in order to proactively cache content for currently

connected users, the proposed algorithm outperforms reference algorithms.

Chapter [5] investigates the problem of context-aware worker selection for performance

maximization in mobile crowdsourcing (MCS) with non-spatial tasks, and answers
Questions by the following contributions:

13.

14.

15.

We propose a model for context-aware worker selection in an application.
The model allows different task types by using the concept of task context to
describe the features of a task. The model describes worker performance as a
possibly non-linear function of the task context and of the worker context.

We use a hierarchical architecture of decision making and take a machine-
learning-based approach based on a contextual framework. We propose
a context-aware hierarchical online learning algorithm for worker selection in
applications with non-spatial tasks. The algorithm learns online without
requiring a training phase. By adapting and improving the worker selection over
time, the algorithm can hence achieve good results already during run time. The
proposed algorithm is split into two parts, one part executed by the [MCSP| the
other part by local controllers (LCk) located in each of the workers” mobile de-
vices. An [L{ learns its worker’s performance online over time, by observing
the worker’s personal contexts and her/his performance. The [LC| learns from
its worker’s contexts only locally, and personal context is not shared with the
[MCSPl Each [LC regularly sends performance estimates to the MCSPL Based on
these estimates, the [MCSP] takes care of the worker selection. This hierarchical
coordination approach enables the [MCSPI to select suitable workers for each task
based on what the [LCk have previously learned.

We study the computational complexity of the proposed context-aware hierar-
chical online learning algorithm and its overhead in terms of local memory and
communication requirements. Moreover, we analyze how many times the perfor-

mance of each worker has to be observed. Keeping this number low is crucial
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16.

17.

since observing worker performance requires quality assessments, which may be

costly.

By establishing an analytical upper regret bound, we provide performance guar-
antees for the learned worker selection strategy and prove that the proposed
context-aware hierarchical online learning algorithm converges to the optimal

worker selection strategy.

We numerically evaluate the performance of the proposed context-aware hier-
archical online learning algorithm based on synthetic as well as real data using
different worker performance models. A comparison shows that by exploiting
context information for worker selection, the proposed algorithm outperforms
reference algorithms.

Finally, the main conclusions of this thesis and a brief outlook on future research

directions are presented in Chapter [6]
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Context-Aware Decision Making in
Wireless Networks

2.1 Introduction

Along with the new paradigm of understanding wireless networks as networks of dis-
tributed connected resources, new techniques are envisioned that jointly consider and
leverage different types of resources in order to improve the system performance. In
order to optimize resource usage, these techniques require context-aware decision mak-
ing [BWL18,[MSS13|, as motivated in Section [1.2} A context-aware decision-making
framework for such a technique essentially consists of the following two parts:

(i) A system model needs to be formulated, consisting of five components, of which
an overview will be given in Section 2.2.1] In particular, to allow for context-
aware decision making, the designer needs to define a context model, specifying
which context is needed for decision making and which sources should acquire
the context by using their data collection resources [Hen03,PZCG14}|MSS13].
Moreover, one or several adequate decision agents need to be identified and an
appropriate architecture of decision making needs to be designed within which
the decision agents are responsible for decision making [Lun92,[KB97,|FCGS02].

(ii) The decision agents need to be properly designed, which requires to model
and classify the problem to be solved by the decision agents and to de-

velop an appropriate method according to which the decision agents take de-

cisions [KAC™15,SNHH15,|JZR ™17, MH16].

Context-aware decision making for new techniques that jointly consider and exploit
different resources in wireless networks can be understood as an interaction between de-
cision agents and the environment [KACT15,/SB98]. By designing (i) the system model
and (ii) the decision agents, the specific properties of this agent-environment interac-
tion are determined. Figure [2.1] shows an illustration of a general agent-environment
interaction and connects the components of a context-aware decision making framework
with this general agent-environment interaction. More specifically, Figure shows

a set of decision agents interacting with the environment by taking actions based on
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Architecture of Decision Making
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Design of Decision Agents |- f Agent j Communication NS
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Figure 2.1. General agent-environment interaction and overview of context-aware de-
cision making. Five components of system model for context-aware decision making
shown in brown and design of decision agents shown in yellow.

observations [KACT15] and interacting with each other via communication. Moreover,
Figure depicts how the five components of the system model for context-aware de-
cision making in wireless networks, shown in brown, and the design of decision agents,
shown in yellow, relate to the general agent-environment interaction. These relations

will be explained in the following sections.

In Section [2.2] we introduce the considered system model for context-aware decision
making in wireless networks, by first giving a brief overview of its five components in
Section [2.2.1] and then discussing in more detail two of the components, the context
model in Section and the architecture of decision making in Section2.2.3] Finally,
in Section [2.3] we discuss the design a decision agents by pointing out different methods
for decision making. In this regard, we also give a short introduction to two specific
types of decision-making methods which are relevant for the remainder of this thesis,
namely, optimization-based approaches and machine-learning-based approaches using

multi-armed bandit frameworks.
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2.2 System Model

2.2.1 Overview of Components

Modeling a context-aware decision-making framework for a new technique that jointly

considers and leverages different types of resources in wireless networks, requires to

formulate a system model, which typically consists of the following five components:

(i)

(iii)

A model of the underlying wireless network, including its different available re-
sources and their constraints, is needed. Since the wireless network is part of
the environment with which the decision agents in wireless networks interact, in
Figure the network model is hence related to the environment of the decision
agents.

A context model is required that represents available side information that may
be taken into account for decision making |[Hen03, PZCG14, MSS13]. Such side
information is observed by the decision agents, and in Figure hence relates to
the observation of the environment.

A performance criterion needs to be selected, with respect to which the perfor-
mance of the system should be optimized. Moreover, it needs to be determined
how a decision agent may evaluate the performance of its actions under a given
situation with respect to the performance criterion, e.g., by evaluating a utility
function or by receiving a reward from its environment [KACT15]. Hence, the
performance criterion and its evaluation also relates to the observation of the

environment in Figure 2.1}

One or several adequate decision agents responsible for decision making need
to be identified and an appropriate architecture of decision making needs to be
designed within which the decision agents interact with each other and with the
environment [Lun92,[KB97,[FCGS02]. Hence, in Figure 2.1} the architecture of
decision making relates to the set of decision agents and their interactions.

An action model needs to be defined, determining the different options that the
decision agents may select within the technique (e.g., which resources to use in
which way, or to allocate them to whom in which way). In Figure , the action
model is hence related to the action taken by a decision agent.
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Components , and are common features of system models for resource
allocation problems in wireless networks. In the following, we focus on compo-
nents and , by discussing in detail the context model and the architecture
of decision making.

2.2.2 Context Model

The concept of context awareness, today perceived as important property of techniques
for next generation wireless networks [BWL18]|, was first introduced in computer science
in the area of pervasive computing, where it refers to computing systems which are
able to acquire information about their environment and react based on changes in the
environment [Sch95|. Since then, context awareness and context-aware computing have
become important features in areas such as context-aware communication [SHT02],
wireless mobile autonomic computing and communications |[CFLP16] and mobile and

wireless networking [MSS13] and are expected to also play an important role for the
upcoming [[0T] paradigm [PZCG14].

Many definitions of context and context awareness have emerged over the years. An
early comprehensive definition of context for context-aware applications was given
in [DA99| according to which “Context is any information that can be used to char-
acterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and applications themselves.” Moreover, in [DA99|, location, identity, activity,
and time are characterized to be the four primary types of context. The term context
awareness has been defined in [DA99| as follows: “A system is context-aware if it uses
contezt to provide relevant information and/or services to the user, where relevancy
depends on the user’s task.” While we follow here [DA99], it should be noted that
over the years, several other definitions of context and context awareness have been

proposed [Hen03|MSS13,[PZCG14].

Making use of context requires to formulate a context model. We follow here [Hen03|,
according to which “A context model identifies a concrete subset of the context that is
realistically attainable from sensors, applications and users and able to be exploited in
the execution of the task. The context model that is employed by a given context-aware
application is usually explicitly specified by the application developer, but may evolve
over time.” Using this definition from [Hen03|, it becomes obvious that it is the duty
of the designer to specify the required context. Moreover, this definition of a context

model also reflects another requirement to achieve context-awareness, namely, that in
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order to exploit context, such context first needs to be acquired. Hence, the designer
needs to plan from which sources context should be acquired and what are feasible
amounts of context to be acquired.

Given the above definitions, the side information which may affect the outcome of de-
cision making for resource allocation in wireless networks, such as current network con-
ditions and node-related, user-related or externally given conditions [BWL18|FSK™1§],
may conceptually be summarized under the term context. Hence, decision agents
should take available context information into account for decision making. In wire-
less networks, context may be collected using data collection resources from several
sources |[MSS13|, for instance, using the monitoring capabilities of base stations or of
sensor-rich mobile devices. After context collection, data processing may be needed in
order to aggregate and interpret the collected context and to produce context informa-
tion which can be used by the decision agents [MSS13, BWL18|. Taking into account
contert, decision making becomes context-aware. In wireless communications, context-
aware decision making has been studied before, for instance, for vertical handover
decisions [ZJZ10, AKLO6, FSM™15, FMS™17] and protocol reconfiguration in mobile
devices [PAM10], see also [MSS13] for an overview.

2.2.3 Architecture of Decision Making

When designing a context-aware decision-making framework for a new technique that
jointly considers and exploits different resources, the designer needs to select an appro-
priate architecture of decision making and to identify one or several adequate decision
agents responsible for decision making. In this thesis, following [Lun92/KB97FCGS02],
we distinguish between the following architectures of decision making:

(i) Centralized architecture
(ii) Decentralized architecture

(iii) Hierarchical architecture

Which type of architecture is suitable highly depends on the specific technique, the
specific performance criterion and the information required for decision making, such
as network conditions and other relevant context. The properties of the three types of

architectures are summarized in Table and will be discussed in the sequel.
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Table 2.1. Different types of architectures of decision making.

ar:gl};tpeecflfre Decision agent(s) Information collection
Centralized Central entity At central entity

Decentralized Local entities At local entities
Hierarchical Entities at multiple levels At entities at multiple levels

First, in a centralized architecture, a central entity acts as global decision agent based
on centrally collected information [Lun92|. This architecture may, for example, be use-
ful if a network wide quantity needs to be optimized, i.e., a global performance criterion
exists, and if it is feasible (e.g., in terms of communication overhead or privacy) that
all needed information is collected at a central entity that selects suitable actions for
individual nodes and informs the nodes about its decisions. While using centralized ar-
chitectures facilitates solving global optimization problems up to optimality [FCGS02],
they suffer from the following drawbacks. One disadvantage is that the central entity
is a single point of failure, i.e., in the worst case, the operation of the whole network
may break down if the central entity fails [KB97]. Moreover, a centralized architecture
does not scale easily with increasing network size [KB97|. Classical examples of a cen-
tralized architecture of decision making are cellular networks, in which a base station
acts as global decision agent, for example, taking care of user scheduling so as to avoid
interference |Gol05].

Secondly, in a decentralized architecture, there are several local entities, each of them
acting as local decision agents based on locally collected information |[Lun92]. A de-
centralized architecture is, for instance, useful if either the nodes in the network have
their own local performance criteria and a centralized architecture is not needed (e.g.,
since decisions of local entities do not affect each other) or if there exists a global
performance criterion, but it is not desired or even feasible (e.g., in terms of com-
munication overhead) to implement a centralized architecture [Lun92|. Decentralized
architectures increase the reliability and robustness since no single point of failure ex-
ists and moreover, they are scalable [KB97]. However, in decentralized architectures,
it is often difficult to reach globally optimal performance for global optimization prob-
lems [FCGS02]. In computing, decentralized architectures for decision making can,
for example, be found in resource allocation for virtual machines in cloud comput-
ing [MF14, MMF17]. In wireless networking, they can, for instance, often be found in
mobile ad-hoc networks [RT99,JHF03] and wireless sensor networks [SWKC12|, where
the wireless nodes themselves take local decisions.

Thirdly, it is possible to design the architecture hierarchically, i.e., in such a way that
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information collection and decision making is split up between different decision agents
at multiple hierarchically organized levels, enabled by an information exchange between
them [KB97,FCGS02|. For instance, a set of local entities may be responsible for col-
lecting the information required for decision making, while a central entity may be
responsible for global decision making. By designing a suitable information processing
at the local entities and a suitable information exchange between the local entities and
the central entity, it is in certain cases possible to reduce the amount of data (com-
pared to a centralized architecture) which needs to be transmitted to the central entity
in order to enable the central entity to take globally optimal decisions [KTvK1§|. As
another example, decision making may be split up between multiple levels of decision
agents, e.g., the decision agents at the higher levels take decisions which are used to
coordinate the decision agents at the lower levels, while the decision agents at the lower
levels take local decisions |[Lun92]. Hierarchical architectures are, for example, useful
if a network wide quantity needs to be optimized, i.e., a global performance criterion
exists, but it is not feasible to share all needed information with a central entity. Hi-
erarchical architectures try to combine the advantages of centralized and decentralized
approaches, by being scalable [KB97], reliable [Lun92] and at the same time by fa-
cilitating to solve global optimization problems [FCGS02]. Nevertheless, it should be
noted that using such a hierarchical architecture for solving a global optimization prob-
lem typically requires to decompose the global optimization problem into a hierarchical
structure, which can be challenging [FCGS02|. Hierarchical architectures for decision
making, for instance, can be found in resource allocation for virtual machines in cloud
computing [MF11], they are also part of fog computing |BMZA12] and they are cur-
rently discussed in connection with fronthaul-constrained cloud radio access network

([C-RAN)) architectures [PWLP15,[BASK1S].

2.3 Design of Decision Agents

2.3.1 Methods for Decision Making

There are many different approaches how to design the decision agents for a new
technique that jointly considers and exploits different resources in wireless networks.
The design essentially depends on how the designer models the problem to be solved
by the decision agent. Specifically, different approaches differ regarding how much of
the decision making process is specified a priori by the designer and how the remaining
problem is solved by the decision agent [KACT15]. As outlined in [KACT15], some
important approaches to design decision agents are the following:
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(i) Explicit programming
(ii) Supervised learning
(iii) Optimization

(iv) Reinforcement learning (RL))

In explicit programming, the designer explicitly programs the decisions to be taken
by the decision agent for all possible situations it might face [KACT15]. Since this
approach may be infeasible for complex problems and for new techniques for wireless

networks, we do not consider it for context-aware decision making in wireless networks.

Using supervised learning, a type of machine learning, the designer gives a set of training
examples to the decision agent and the task of the decision agent is to learn the mapping
from the input to the output [Alpl4]. The decision agent runs a supervised learning
algorithm in order to generalize from the training set. This approach requires expert
knowledge from the designer who must build the training set of exemplary situations
and the corresponding best actions [KACT15]. Since such expert knowledge may not
be available for new techniques for wireless networks, we do not consider it for context-

aware decision making in wireless networks.

In optimization, the decision agent is given a set of actions, a set of constraints on these
actions and a utility function to be maximized |[BV04]. The utility function formalizes
the performance criterion selected by the designer as a function of taking an action
under a given situation. The decision agent may evaluate the performance of selecting
an action by inserting it into the utility function. In order to search for optimal actions,
the decision agent runs an optimization algorithm [KACT15]. Hence, a designer may
use such an optimization-based approach if the problem at hand can be modeled as an
optimization problem whose parameters are known by the decision agent. Specifically,
the designer needs to be able to define a utility function that formalizes the desired
performance criterion as a function of taking an action under a given situation. Many
problems in wireless communications can be modeled as mathematical optimization
problems [SNHH15|.

Using reinforcement learning (RL), a type of machine learning, the decision agent is
given a set of actions, a set of constraints on these actions, and a performance crite-
rion. The task of the decision agent is to find an action sequence which maximizes the
performance criterion, but the performance of different actions in different situations

is not known a priori [Alpl4]. The agent has to test the different actions in order to
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discover which performance, or in [RIllanguage, reward, each action yields [SB98|]. For
this purpose, the decision agent runs an online learning algorithm that sequentially
selects actions in order to learn the performances of different actions under different
situations and thereby maximize the cumulative performance over time. Hence, ap-
plying a machine-learning-based approach using [RI] makes sense if the designer can
(or would like to) only provide a performance criterion to the decision agent and
wants the decision agent to learn how to take actions by interacting with an uncer-
tain environment [SB98|. Special cases of RIl are multi-armed bandit (MAB]) frame-
works [Rob52,|ACBF02]. Here, the choice of action only impacts the immediate out-
come, but not the outcomes of future action selections. [MAB| frameworks have become
a useful tool to tackle problems in wireless communications [MH16[JZR™17].

In the sequel, we will give a short overview of optimization and [MABE since these types
of problems and the corresponding solution methods are highly relevant for context-
aware decision making in wireless networks and will be used in the remainder of this

thesis.

2.3.2 Optimization

2.3.2.1 General Problem Formulation

Many problems appearing in wireless communications and, in particular, many resource
allocation problems can be modeled as mathematical optimization problems [SNHH15|.
A (mathematical) optimization problem can be formulated as

min go(y) (2.1)
st.g;(y) <0, j=1,...,J,
y € R,
where y € RF is the vector of optimization variables, the function gy : R¥ — R is
the objective function and the functions g; : R* — R, j = 1,...,J, are the constraint

functions |BV04]. Moreover, the abbreviations “min” and “s.t.” stand for minimize

and subject to, respectively.

2.3.2.2 Classes of Optimization Problems

Different classes of optimization problems are distinguished according to the type of

objective and constraint functions. If the objective function gy and the constraint
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functions g;, j = 1,...,J, are linear functions of the optimization variables y, then
Problem is called a linear programmaing problem. In this case, any locally optimal
point is also globally optimal [BV04]. While no analytical formula for the solution of
the general linear programming problem exists, effective methods exist that can find
the optimal solution reliably and efficiently [BV04]. More precisely, linear programming
is solvable in polynomial time |[Kar84].

If the objective function or the constraint functions are nonlinear, Problem is
called a nonlinear programming problem. Nonlinear programming problems may, in
general, have several local optima [SNHH15] and there are no effective methods for
finding the optimal solution of the general nonlinear programming problem [BV04].

A special case of a nonlinear programming problem is a convex optimization problem, in
which the objective and constraint functions are convex. One characteristic of convex
optimization problems is that any locally optimal point is also globally optimal [BV04].
While no analytical formula for the solution of the general convex optimization problem
exists, effective methods exist that can solve even large instances of convex problems
reliably and efficiently [BV04]. In particular, many classes of convex optimization

problems can be solved in polynomial time [NN94].

If the objective and constraint functions in Problem ([2.1)) are linear and the opti-
mization variables are restricted to be integers, Problem is called integer linear
programming ([LP]) problem. The general [LP| problem belongs to the complexity class
of non-deterministic polynomial-time (NPthard) optimization problems [Sch86]. There
exists no polynomial-time algorithm for the solution of NPrhard optimization problems
— unless P=NP, where P is the class of problems which can be solved in polynomial
time, which would imply that all NP-hard optimization problems could be solved by
a polynomial-time algorithm [CLRS09|. It is widely believed that P # NP and that
hence [NPlhard optimization problems are not solvable by any algorithm whose run-
ning time is polynomially bounded in the size of the input for the algorithm |[CLRS09].
Therefore, the general [LP] problem is believed not to be solvable efficiently to opti-
mality [Sch86]. Indeed, while the optimal solution could be found by enumerating all
feasible solutions, such an approach in general results in an exponential-time algorithm,
i.e., an algorithm which can only be exponentially bounded in the size of the input for
the algorithm [Sch86|. A special case of an[[LP]problem is the knapsack problem, which
will be discussed next since it is needed in the remainder of this thesis.
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2.3.2.3 The Knapsack Problem

The knapsack problem is a well-known optimization problem and a special case of
integer programming [KPP04]. Formally, it may be described as follows. A set Z =
{1,..., 1} of items is given. Each item ¢ € 7 is associated with a profit p; and a weight w;.
Moreover, there is a capacity value c¢. The goal is to select a subset of items which
maximizes the sum profit of the selected items, while the sum weight of the selected
items may not exceed the capacity value c. The knapsack problem can be formulated
as an [[LP] problem with binary variables as follows:

I
max Zpiyi (2.2)
i=1

1
s.t. Zwlyl S C
=1
y; €{0,1} fori=1,..., 1.

Without loss of generality, the parameters appearing in Problem ([2.2)) may be assumed
to satisfy p; > 0, w; > 0 for all « € Z and ¢ > 0. This is because variables corresponding
to non-positive parameters could immediately be fixed to their optimal values as a pre-
processing step, whereby the overall problem is transformed into an equivalent problem

which then satisfies the above assumptions [KPP04].

The knapsack problem is known to belong to the class of NPlhard optimization prob-
lems [KPPO04]. Among the approaches to solve the knapsack problem are methods
known more generally from integer programming, such as dynamic programming and
branch-and-bound, which may be used to solve the knapsack problem up to optimality,
but can be extremely time and memory consuming [KPP04]. Other approaches for the
knapsack problem are so-called approrimation algorithms and approximation schemes
that may find “good enough” solutions in a “reasonable” amount of time [KPP04].
Finally, many heuristics exist, one of them being the so-called greedy algorithm for the
knapsack problem [KPP04]. The idea of this greedy algorithm is as follows. For each
item 1, the profit to weight ratio, or efficiency, defined by eff; := Z— is computed. Then,
items are sorted in decreasing order with respect to their efficiency. Finally, as long as
sufficient capacity is left, items are added to the knapsack one after the other according
to the ranking by starting with the items of highest efficiency. While the solution of
the greedy algorithm may, in general, be arbitrarily bad on certain instances of the
knapsack problem, it is possible to extend the algorithm in a simple fashion to yield
an approximation algorithm for the knapsack problem, whose profit is guaranteed to
be at least half of that of the optimal solution |[KPP04].
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The knapsack problem is important since it may be seen as the simplest ILP| prob-
lem, which itself appears as a sub-problem in many more complex optimization prob-
lems [SNHH15]. Moreover, the knapsack problem and its many variants have a large
number of applications [KPP04]. In wireless communications, different variants of
knapsack problems have, for instance, occurred in opportunistic scheduling [LKO03],
coded caching for wireless content delivery [PT13] and resource allocation in OFDM
wireless networks |[KNY09]. A particular variant of the knapsack problem relevant for
the remainder of this thesis is the multi-dimensional knapsack problem, which will be
discussed next.

2.3.2.4 The Multi-Dimensional Knapsack Problem

The multi-dimensional knapsack problem is a generalization of the basic knapsack prob-
lem, where instead of one capacity constraint, d different capacity constraints occur,
for an integer d > 2 [KPPO04,Fré04]. Formally, again a set Z = {1,...,I} of items
is given. Each item i € 7 is associated with a profit p; and with a weight w;; with
respect to d different attributes j = 1,...,d. Moreover, there is a capacity value ¢; for
each attribute j = 1,...,d. The goal is to select a subset of items which maximizes
the sum profit of the selected items, while the sum weight of the selected items with
respect to any of the attributes may not exceed the corresponding capacity value. The
multi-dimensional knapsack problem can be formulated as an [LPl problem with binary

variables as follows:

I
max Zpiyi (2.3)
i=1

1

s.t. Zwmyz- <cjforj=1,..d
i=1

y; €{0,1} fori=1,..., 1.

The parameters appearing in Problem ([2.3)) may be assumed to satisfy p; > 0, w; ; > 0
forallieZ,j=1,..,d,and ¢; > Oforall j = 1,...,d. Like for the basic knapsack prob-
lem, this is because variables corresponding to parameters which do not satisfy these
assumptions could immediately be fixed to their optimal values as a pre-processing
step [KPPO4) Fré04]. Thereby, the overall problem is transformed into an equivalent
problem which then satisfies the above assumptions.

Like the knapsack problem, the multi-dimensional knapsack problem belongs to the
class of [NPthard optimization problems [KPPO04, Fré04]. Approaches to solve the
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multi-dimensional knapsack problem up to optimality include branch-and-bound algo-
rithms |GP85| and dynamic programming |[HGI18|. In general, such exact approaches
are often extremely time and memory consuming for large problem instances [KPP04].
Moreover, it has been shown that the multiple constraints make the multi-dimensional
knapsack problem much more difficult compared to the basic one-dimensional knap-
sack problem. Specifically, there exists no fully polynomial time approzimation scheme
for the multi-dimensional knapsack problem, unless P=NP, meaning that no efficient
approximation of this problem is believed to be possible [KPP04|Fré04]. Due to the
difficulty of the multi-dimensional knapsack problem, many heuristics exist, which usu-
ally cannot give performance guarantees, such as, greedy-type heuristics inspired by
the greedy algorithm for the one-dimensional knapsack problem [Dob82]. In the de-
sign of greedy-type heuristics for the multi-dimensional knapsack problem, there exist

different approaches how to define the efficiency of an item [KPP04].

2.3.3 Multi-Armed Bandits

2.3.3.1 Balancing Exploration and Exploitation

Multi-armed bandit (MABI) problems are problems of sequential decision making under
uncertainty and constitute a special case of RLI [SB98]. The term multi-armed bandit is
referring to the sequential allocation problem faced by a gambler in a casino who faces
several slot machines (i.e., bandits) and needs to sequentially select one slot machine
to play (i.e., the gambler needs to sequentially decide which arm to pull) [BC12]. In
the most basic [MABI formulation, given a set of actions (also called arms), an agent
selects one action per round and receives a reward which depends on the selected
action [Rob52, ACBF02|. The goal of the agent is to mazimize its cumulative reward
over a sequence of rounds up to the time horizon. However, the agent does not know
the reward distributions of the actions. Instead, it may only observe instantaneous
rewards of selected actions. Selecting a suboptimal action may lead to a loss in terms
of reward. This loss is called the regret of learning and the agent hence tries to minimize
the total regret over the time horizon [ACBF02].

In order to learn about the rewards of the actions, the agent needs to try out the
different actions over time. On the one hand, the agent needs to explore actions,
about which it has little information available. Fxploration may lead to low rewards
in the short run, but it is needed in order to learn about the rewards of all actions and
thereby receive higher rewards in the long run [SB98]. On the other hand, the agent
needs to exploit knowledge obtained so far, by selecting those actions which it already
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discovered to yield high rewards. Fxploitation helps the agent to immediately receive
high rewards [SB98|. Finding a good trade-off between exploration and exploitation is
crucial in order to yield high cumulative rewards over the time horizon [SB9S|.

A solution to a [MAB] problem is a policy or allocation strategy according to which
the actions should be selected throughout the sequence of rounds [ACBF02|. Such a
policy is given by a learning algorithm, which maps the history of action selections
and the associated obtained rewards to the next action selection. The performance
of a learning algorithm may be evaluated in terms of its regret, i.e., the difference in
reward which could have been achieved had the agent selected the best action and the
reward that the agent actually achieved [ACBF02]. If the total expected regret R(T)
of a learning algorithm after T rounds satisfies limp_, o, @ = 0, then the learning
algorithm converges to the optimal allocation strategy when the number T of rounds
goes to infinity. Specifically, this is the case if R(T) is a sublinear function in T,
i.e., if there exists v < 1, such that R(T) = O(T") |TvdSl5a]. Here, O(-) denotes
the O-notation, which can be used to characterize the limiting behavior of a function
by giving an asymptotic upper bound on its growth rate, see |[CLRS09] for a formal

definition.

Various problems in wireless communications have been posed as [MAB| prob-
lems [MH16], such as cognitive jamming [ATvdSB16| or mobility management [STv16].
Modeling problems occurring in wireless communication networks via [MABE is appeal-
ing since models naturally comprise missing a priori knowledge and limited feed-
back, both of which are typical challenges in wireless communication networks where
information exchange may be costly [MH16|. Moreover, many features of wireless net-
works may actually be covered using [MAB| models since, apart from the most basic
[MAB]I problem discussed above, a large variety of further [MAB| models exist, which will
be briefly discussed next.

2.3.3.2 Types of Multi-Armed Bandit Models

Among the variety of [MAB| models, for instance, the following features are covered.
Different MABImodels make different assumptions on the nature of the reward process.
While the reward processes are assumed to be stochastic in the basic model described
above, i.e., the model is stateless and the rewards are generated according to a specific
state-independent probability distribution, other [MABl models assume that the reward
processes are adversarial, and again other [MAB] models assume that the reward pro-

cesses are Markovian, i.e., each action has a state that changes over time according to
a Markov process [BC12, MH16].
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In [MAB| models with dependent arms, dependencies between the rewards of different
actions are taken into account [PCAO07]. In combinatorial MAB] models, several ac-
tions may be taken per round and the reward may depend on the subset of selected
actions [CWY13]. In contertual MABl models, in each round, the agent receives side
information that may affect the rewards of the actions [BC12]. In sleeping [MABl mod-
els, the set of actions may vary over time and the availability of actions may evolve in a
stochastic, Markovian or adversarial manner [KNMS10|. In multi-agent MAB| models,
several agents exist, each one of them aiming at maximizing its reward over its own set
of actions, where the reward received by an agent may depend on the selected actions
of the other agents [MH16].

Next, since it is relevant for this thesis, we will formally introduce the most basic MAD]
problem and discuss learning algorithms proposed for this problem.

2.3.3.3 The Stochastic Multi-Armed Bandit Problem

Formally, the most basic problem, called stochastic multi-armed bandit problem,
is given as follows [Robb52, ACBF02|. Consider a set A of A := |A| actions and a
time horizon T. Over a sequence of rounds ¢t = 1,...,7, an agent may select one
action per round. Playing an action a € A yields a reward sampled from an unknown
reward distribution with expected value denoted by pu,. Rewards are independent
across different actions. Moreover, rewards for the same action are independent and

identically distributed across different rounds.

Let a* denote the optimal action in expectation, i.e., a* = argmax, 4 fto- An oracle
with a priori knowledge about the expected values {4 }aea would select a* in each of
ACBF02|. In contrast,
a learning algorithm that selects action a; € A in round ¢ for ¢t = 1,..., T, yields an
expected cumulative reward of B[S/, ia,] = Y aea ta E[N(T)], where No(T') denotes
the number of times action a € A has been played over the rounds t = 1,...,T, and

the T rounds, yielding an expected cumulative reward of T'- 1.+

where the expectation is taken with respect to the action selections by the learning
algorithm and the randomness of the reward distributions [ACBF02]. The regret R(T)
of the learning algorithm with respect to the oracle after T' rounds is defined as

R(T) =T o — > _ 1ta B[No(T)]. (2.4)
acA

A simple heuristic policy for the stochastic multi-armed bandit problem is the e-greedy

algorithm [SB9§|, which works as follows. First, a parameter ¢ € (0,1) is selected.
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Then, in each round ¢ = 1,..., T, with a probability of (1 — €), the e-greedy algorithm
selects the action with the highest empirical mean reward based on the history of
previous selections and obtained rewards. With a probability of e, the e-greedy al-
gorithm selects a random action. For a constant €, the regret R(T') of the e-greedy
algorithm can only be bounded linearly in the horizon T [KP00|. Therefore, the algo-
rithm does in general not converge to the optimal allocation strategy. If the algorithm
is adapted by decreasing € in a certain fashion over time, logarithmic regret bounds
may be achieved [ACBF02]. However, as in [KP00], in our numerical simulations, we
only consider the standard e-greedy algorithm with constant e since its variants were
not found to be beneficial in practice [VMO05|.

A well-known learning algorithm for the stochastic multi-armed bandit problem is the
algorithm |[ACBF02]. [UCBIlis based on the following idea. For each action,
an upper confidence bound (UCB]) of the expected reward of each action is estimated.
Then, in each round, the action with the highest estimated upper confidence bound is
selected. The[UCBIlpolicy achieves logarithmic regret uniformly over 7" for any reward
distributions of known bounded support [ACBF02|. Hence, R(T") = O(log(T")) holds.
Moreover, it has been shown that the regret of the stochastic multi-armed bandit prob-
lem for any policy is growing at least logarithmically, i.e., R(T) = Q(log(T)) |LR85].
Here, €(-) denotes the Q-notation, which can be used to characterize the limiting behav-
ior of a function by giving an asymptotic lower bound on its growth rate, see [CLRS09]
for a formal definition. Hence, [UCBT] achieves the optimal regret up to a multiplicative
constant. Different variants of [JCBHype policies have been proposed over time also for
other variants of the [MAB]| problem. For example, the awake upper estimated reward
(AUER]) algorithm proposed in [KNMS10] is an extension of [[CBI] to the sleeping arm
case, where the set of available actions is assumed to vary over time according to the se-
lections made by an adversary. Moreover, the algorithm in [LCLS10,/CLRS11]
uses a[UCBltype approach for a contextual [MABl problem with linear payoff functions.

Since contextual [MAB| problems are important in the remainder of this thesis, they

will be discussed next.

2.3.3.4 Contextual Multi-Armed Bandit Problems

In contextual [MADB problems, also called bandits with side information [BC12], in each
round, the agent first observes a side information, called contezt, before choosing among
a set of actions with unknown rewards. The reward received from playing an action may

depend on the observed context. The agent hence needs to learn which action has the
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highest reward in which context, i.e., the best mapping from contexts to actions [BC12],

in order to maximize its expected reward over time.

While there exist various models for contextual [MABk, we next present a specific
contextual MABl model which is based on the models presented in [TZvdS14}TvdS15a].
The model presented next will be useful in the remainder of this thesis. Consider a
set A of A := | A| actions, a bounded context space X := [0,1]” of D dimensions,
and a finite time horizon 7. In each round ¢ = 1,...,;T, the following events happen

sequentially:

(i) A context x; € X is revealed to the agent.
(ii) The agent selects an action a; € A.

(iii) The agent receives a reward r¢g,.

The reward r; 4, is sampled from an unknown reward distribution which depends on the
selected action a; and on the context x;. The expected value of this reward distribution
of action a; under context x; is denoted by pg,(x:). Hence, E[ry,,] = pa, (x¢) holds.
Rewards are independent across different actions, and rewards for the same action are
independent across different rounds. Moreover, the sequence {x;};—; 7 of context
arrivals is generated before the first round, i.e., the actions selected by the agent do
not influence the context arrivals. Finally, it is assumed that a similarity metric over
the context space holds. Specifically, the similarity metric is given by the following
Hoélder continuity assumption. There exist L > 0 and 0 < a < 1 such that

[0 (%) = p1a(X)| < L[x = X[[3, (2.5)

holds for all a € A and for all x,x € X, where || - ||p denotes the Euclidean norm
in RP. The Holder continuity assumption reflects that the expected reward of an

action is similar in similar contexts.

Let a*(x;) denote the optimal action with respect to context x; in expectation,
ie., a*(x;) = argmax,c 4 fto(X;). An oracle with a priori knowledge about the ex-
pected values {iq(X)}acaxexr would select a*(x;) in round ¢, t = 1,...,T, yielding an
expected cumulative reward of E [ZtT:l rt,a*(xt)} = ZtT:l Ha*(x;) [TvdS15al. In con-
trast, a learning algorithm that selects action a; € A in round ¢ for t = 1,..., T, yields
an expected cumulative reward of E [Zle rt,at}, where the expectation is taken with
respect to the action selections by the learning algorithm and the randomness of the

reward distributions [TvdS15a]. Given an arbitrary sequence {x;},—1 1 of context
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arrivals, the regret R(T) of the learning algorithm with respect to the oracle after T'
rounds is defined as

T
R(T) := Zﬂa*(xt) -k
t=1

Z Tt,at] : (2.6)

Various other models for contextual [MABk exist. While all of them have in com-
mon that side information is revealed to the agent, these models differ regarding their
assumptions on how context is generated and on how rewards are formed. Context ar-
rivals may be assumed to be stochastic, e.g., independent identically distributed (LLd)
or non-stationary, or of adversarial nature [BC12|. Moreover, more or less strong as-
sumptions on how rewards are formed may be made. For example, a linear dependency
between reward and context |[LCLS10] or a known similarity metric over the context
space [Slil4] may be assumed. Depending on the specific underlying contextual [MAB]
model, algorithms are proposed tailored to these models and then typically shown to
achieve sublinear upper regret bounds.

Some algorithms are based on contextual [MAB] models like the one presented above,
which assumes a known similarity metric over the contexts. Algorithms for this type
of contextual [MABI model typically group contexts into sets of similar contexts by
partitioning the context space. Then, they estimate the reward of an action under
a given context based on previous rewards for that action in the set of similar con-
texts. For example, based on the model presented above, the algorithms proposed
in [TvdS15a,TZvdS14] use uniform and non-uniform adaptive partitions of the context
space. Moreover, for a model where a Lipschitz similarity metric between context-
action pairs is assumed, [LPP10| proposes a uniform partition of the context space,
and the contextual zooming algorithm [Slil4] proposes a non-uniform adaptive parti-
tion of the context space. The algorithms in |[LPP10,Sli14,TvdS15a, TZvdS14] not
only work for finite, but also for an infinite set of actions.

In contrast, other algorithms are based on models with stronger assumptions regarding
how rewards are formed. For example, the algorithm in [LCLS10,/CLRS11]
assumes that the expected reward is linear in the context. A linearity assumption is
also used in the algorithm based on Thompson-sampling in |[AG13|, and in [GLZ14],
where a clustering is performed on top of a contextual [MAB] setting.

Again other algorithms are based on models with fewer assumptions regarding how
rewards are formed. For instance, the epoch-greedy algorithm relies on a general con-

textual [MABl model with no further assumptions on how rewards are formed [LZ07].
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Also the algorithm in [BLS14] for contextual [MABk with resource constraints and pol-
icy sets makes no further assumptions on how rewards are formed, except that it is
assumed that the marginal distribution over the contexts is known. However, com-
pared to [Slil4} TvdS15a,/TZvdS14], the algorithms in [LZ07, BLS14] work only for a
finite set of actions and are based on the assumption that in each time step, the tuples
(context, rewards) are sampled from a fixed, but unknown distribution, i.e., contexts
are generated in an [L1.dJ] fashion. Therefore, while the algorithms in [LZ07,BLS14] are
more general regarding how rewards are formed, they are more restrictive regarding

the context arrivals since they require context arrivals to be Lid]over time.

Algorithms for contextual MAB] problems may also be distinguished based on their ap-
proach to balance the exploration vs. exploitation trade-off. While the epoch-greedy
algorithm [LZ07] and the algorithms in [TvdS15a,(TZvdS14] explicitly distinguish be-
tween exploration and exploitation steps, the [LInUCB] algorithm |[LCLS10,|/CLRS11],
the contextual zooming algorithm [Slil4], and the algorithms in |[GLZ14,LPP10] follow
an index-based approach, in which in each round, the action with the highest index is
selected. Other algorithms, like the one for contextual [MABEk with resource constraints
in [BLS14], draw samples from a distribution to find a policy which is then used to
select the action. Finally, the algorithm based on Thompson-sampling in [AG13] draws
samples from a distribution to build a belief, and selects the action which maximizes
the reward based on this belief.
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Chapter 3

Computation Offloading in Wireless
Multi-Hop Networks

3.1 Introduction

In this chapter, we consider computation offloading in multi-hop wireless networks,
a technique that trades communication resources off against computation resources.
Using computation offloading, wirelessly connected mobile devices may offload compu-
tation tasks to resource-rich servers for remote computation by transmitting the data
required to remotely process the tasks to the servers |[KLLB13]. Such servers may,
for instance, be part of centralized computing platforms accessible via the Internet
as in mobile cloud computing (MCC]) [DLNW13| or they may be part of computing
infrastructure placed at the edge of the wireless networks as in mobile edge computing
(MEC) [HPST15WZZT17,MYZ717]. Computation offloading may improve the perfor-
mance of wirelessly connected mobile devices by reducing task completion times, and
it also may reduce the devices’ energy consumption [KLLB13|. Thereby, the usage of
resource-hungry applications in future mobile and IoT devices may be facilitated. The
benefit of computation offloading for an individual device in terms of its battery life
depends on whether less energy has to be spent for transmitting the task to the server
than for local processing. Whether the latter is the case, in turn, depends not only
on channel conditions and computing capabilities of the device, but also on task char-
acteristics [KL10,MN10|. Therefore, when deciding whether or not to offload a task,
context information should be taken into account. Computation offloading has so far
not been considered in multi-hop networks, where network coverage may be extended
and required transmission power reduced. As motivated in Section in multi-hop
networks, offloading decisions are non-trivially coupled since communication resources

of relay nodes need to be used and shared for task offloading.

Hence, we here investigate the problem of context-aware computation offloading for
energy minimization in multi-hop wireless networks. In this chapter, we propose an
optimization-based approach and a centralized architecture of decision making. We
use an optimization-based approach since the parameters appearing in the problem
may be assumed to be known. Moreover, we use a centralized architecture of decision

making, cf. Section [2.2.3] since the offloading decisions of the nodes are non-trivially
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coupled and hence need to be jointly optimized. Specifically, we propose a context-
aware greedy heuristic algorithm for computation offloading in multi-hop networks.
Using this algorithm, a central entity may take offloading decisions based on centrally
collected information about network conditions and task context. This chapter presents
work originally published by the author in [MASW™15]. Compared to [MASWT15],
in this thesis, we additionally study the computational complexity of the proposed
algorithm and its overhead by analyzing the communication requirements under the
proposed centralized architecture of decision making. In addition, in this thesis, we
additionally highlight the ideas of the mathematical proofs in the main body of text,
while the full mathematical proofs are given in the appendices. Moreover, in this thesis,

the numerical simulations are extended.

The remainder of this chapter is organized as follows. In Section [3.2) we give a de-
tailed review of the state of the art on decision making for computation offloading.
In Section [3.3 the system model for context-aware computation offloading in multi-
hop networks is introduced. Section provides a formal problem formulation of
context-aware computation offloading for energy minimization in multi-hop wireless
networks using an optimization-based approach and a centralized architecture of de-
cision making. In Section the optimization problem is analyzed. In Section
a context-aware greedy heuristic algorithm for computation offloading in multi-hop
networks is proposed. Section discusses properties of the proposed algorithm. In
Section [3.8] the performance of the proposed algorithm is numerically evaluated. Sec-
tion concludes this chapter.

3.2 State of the Art

In this section, a review of the state of the art on decision making for computation
offloading is presented. This review complements the short review presented in Sec-
tion by discussing in detail the works introduced in Table [T}

Previous works have mainly considered computation offloading in single-hop networks
where devices have a direct connection to a server whose computation resources they
may utilize. One line of work considers computation offloading from the point of view
of one single mobile device. These works aim at energy or completion time mini-
mization by designing mechanisms to decide whether to offload and which parts of
an application to offload. In [KL10] and [MN10|, conditions are derived under which
a mobile device may save energy by using computation offloading. The calculations
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in [KL10] and [MN10] show that energy savings depend on the ratio of “communica-
tion vs. computation”. This ratio not only depends on the communication conditions
(e.g., allocated bandwidth) and computation capabilities of the mobile device (e.g.,
processor speed), but also on the specific characteristics of the tasks to be offloaded.
Computation offloading is especially beneficial for applications with high computa-
tional requirements, but low amount of data to be transmitted. In [XLLO7|, a timeout
scheme is presented which allows a mobile device to save energy by offloading parts
of its computation. Their proposed approach is proven to be 2-competitive, i.e., the
ratio between the performance of the proposed approach and the performance of an
optimal offline algorithm can be bounded by a factor of 2. In [WZL12|, an analytical
solution is given for minimizing the consumed energy by optimal selection of both the
clock-frequency in case of local computation and the data rate over time in case of
computation offloading. In [HWN12|, a dynamic offloading algorithm based on Lya-
punov optimization is presented, which achieves energy savings for a mobile device by
deciding which components of a software should be executed remotely under the cur-
rent network conditions. In [RP03], a policy for energy-optimal remote processing in a
client-server system based on Markov models is proposed which optimizes the energy
consumption at the client. In [LMZL16], policies for task scheduling in a single device
are derived based on a Markov decision process. The proposed algorithm minimizes
the average delay of each task under a power constraint. In the survey on computa-
tion offloading for mobile systems in [KLLB13|, conditions are derived, under which
offloading is beneficial with respect to both the task completion time and the device’s

energy consumption.

Newer works consider the dynamics among several mobile devices using computation
offloading in single-hop networks, e.g., concerning the traffic induced by computation
offloading or the competition for shared resources. In [GZQL12], energy minimization
of computation offloading in a single-hop network is investigated, where mobile devices
may choose between several servers. Here, interdependencies between the devices’ de-
cisions arise from congestion at popular servers and a game-theoretic model is used
to analyze the decentralized dynamics. In [MBASKI18|, a distributed game-theoretic
algorithm for energy minimization in multi-stage computation offoading is proposed,
where mobile devices in a single-hop network may either compute their tasks locally
or offload it to either the [AP| or to a cloud server. The proposed algorithm itera-
tively takes care of both resource allocation and offloading decisions. In [NMAS™18], a
game-theoretic framework is proposed for computation offloading in a single-hop net-
work, where mobile users may offload fractions of their tasks. The proposed algorithm
minimizes the completion time of the tasks in the network and is shown to reach the

globally optimal solution. In [Chel5|, a decentralized game-theoretic framework for
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computation offloading in a single-hop network is introduced which models both en-
ergy and time costs of each single device based on the offloading decisions of others.
Using their mechanism, mobile devices take local offloading decisions that are benefi-
cial for the overall system performance. In |[CLD16|, the offloading decisions and the
resource allocation for multiple users in a single-hop network are jointly optimized with
the goal to minimize both the energy and time costs in the network. The proposed
heuristic algorithm based on separable semidefinite relaxation centrally computes both
the offloading decisions as well as the resource allocation.

A multi-hop scenario has been considered in a different context of “communication vs.
computation”. In [MYMO02] and [TF09|, multi-media sensor networks are investigated,
in which data may be compressed at sensor nodes before communicating it to a central
entity in a multi-hop fashion.

However, to the best of our knowledge, computation offloading has not yet been con-
sidered in multi-hop networks, which may extend network coverage and reduce re-
quired transmission power. Decision-making for computation offloading is challenging
in multi-hop networks as offloading decisions are interdependent due to the need to
use and share communication resources of relay nodes, which may even have their own

computation tasks.

3.3 System Model

3.3.1 Introduction

In this section, we propose a general model for context-aware computation offloading
in multi-hop wireless networks. In accordance with Section [2.2.1] the proposed general
model consists of the following five components:

(i) A network model is formulated to specify the assumptions on the multi-hop com-

munication in the underlying multi-hop wireless network.

(ii) A context model is defined, which is used to characterize the devices’ computation
tasks.

(iii) As performance criterion to be minimized, the network energy consumption is

considered and an energy consumption model for communication and computation
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is formulated, which can be used to compute for each task the required energy
for computing the task locally and the required energy for transmitting the task
to the server.

(iv) A centralized architecture of decision making is proposed, where a central entity

takes offloading decisions.

(v) An action model is determined, which determines the different choices of the
central entity, namely, which tasks should be offloaded and which should not.

The proposed general model for context-aware computation offloading in multi-hop
wireless networks is applicable to multi-hop networks of any topology in which an [AT]
gives access to a resource-rich server. Moreover, the model is compatible with different
types of infrastructures for computation offloading, such as in [MCC| and MEC|

3.3.2 Network Model

We consider an ad-hoc wireless multi-hop network consisting of a set N = {1,..., N}
of N :=|N| > 2 mobile devices, called nodes 1 to N. We assume there exists a server
connected to a stable energy supply, which is capable of parallel task processing and
which offers computing resources to the mobile devices as a service for computation
offloading [SHPT14]. More specifically, mobile devices may rent virtual machines in the
server with guaranteed properties (e.g., certain number of cores and clock rate) in order
to offload their tasks [SHP™14]. Since we focus on the problem of which devices should
offload their tasks due to the scarcity of communication and computation resources
within the wireless multi-hop network, we assume here that the computation resources
in the server are sufficient for all devices to offload their tasks. How to manage the
computation resources in a cloud server with limited computation is, for instance,
discussed in [MF11, MF14, MMF17|. Moreover, how to select among different types
of virtual machines offered by a cloud server from mobile device perspective is, for
example, discussed in [SHPT14].

We further assume that there exists an [AP] via which the server may be reached. Our
model is generic with respect to the infrastructure of computation offloading, i.e., the
server may either be directly attached to the [AP] as in [MEC [MYZ™17], or the server
may be located in a distant cloud and reached via the [AP] over the Internet, as in
[MCC] [DLNW13|. An illustration of the considered network model is depicted in Fig-
ure [3.1 where a multi-hop wireless network with an [AP] giving access to a server is
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computing server = communication resources
(in cloud or at mobile edge)

ﬂ computation resources
Vaw k- - p

E data collection resources

Figure 3.1. Network model.

shown. The nodes in the network dispose of communication, computation and data
collection resources. The data collection resources are shown here since for taking
meaningful offloading decisions, information about channel conditions, computing ca-
pabilities of the devices, and task characteristics needs to be collected, as will be

explained in the next sections.

We consider a computation offloading session during which the location of the nodes
— which may change in between different sessions — is assumed to be fixed. Such
an assumption is reasonable for scenarios in which nodes move slowly compared to
the duration of a computation offloading session. For instance, considering users in a
stadium, a conference center or a lecture hall, their positions can be assumed to be
static for the duration of a computation offloading session. Moreover, we assume here
that the network is connected, i.e., for each node, there exists at least one route to the
[APl This is because if the network were not connected during a given computation
offloading session, the nodes without connection to the server could not take part
in the computation offloading session anyhow and could therefore be neglected when
taking offloading decisions. Finally, we assume that the computation offloading session
is associated with an a priori given routing table, i.e., we assume that some existing
routing protocol for wireless ad-hoc networks is used to fix a unique route from
each node in the network to the [AP] depending on the current positions of the nodes
and the current channel conditions. We make this assumption since we want our model

and approach to work on top of any routing protocol, which has as output a routing
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Figure 3.2. An exemplary multi-hop network in graph representation.

table with unique routes from the nodes in the multi-hop network to the[APlL According
to the routes stored in the routing table, nodes close to the server may have a direct
one-hop connection to the [AP] while other nodes may have to access the [AD] via a

unique multi-hop route.

Based on the given routing table, the current state of a multi-hop network may be
represented as a graph, by setting the [AP] and nodes 1 to N as vertices of the graph
and by including an edge between two vertices if and only if a link exists between the
corresponding nodes in the routing table. Since each node has a unique route to the
[AP]| the resulting graph is a rooted tree, where the root represents the [APl We refer
to the internal nodes of this tree as relay nodes and denote the set of all relay nodes
by R. Using basic tree properties [Foul0], it follows that the number R := |R| of
relay nodes satisfies R < N — 1. We refer to the leaf nodes of the tree as non-relay
nodes. Moreover, for a node n € {1,..., N}, we denote the set of relay nodes on the
multi-hop route from node n to the [AP| by R,. The nodes on route R,, from node n
to the [AP] are called node n’s predecessors. The direct predecessor of node n is called
node n’s parent. Those nodes of which node n is a predecessor, are called node n’s
successors. Figure |3.2] shows an exemplary multi-hop network in graph representation
with an [AP] giving server access and with 7 nodes. Nodes 1, 2 and 3 are relay nodes,
i.e., R ={1,2,3}. Nodes 4, 5, 6 and 7 are non-relay nodes. The route from node 6 to
the [APlis Rg = {2, 1}, i.e., nodes 2 and 1 are predecessors of node 6. Node 2 is the
parent of nodes 6 and 7. Since node 3 does not have any predecessor node, the route
from node 3 to the [APlis R3 = (). The successors of node 3 are nodes 4 and 5.
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3.3.3 Context Model

We define a context model to characterize the devices’ computation tasks. In a com-
putation offloading session, each node n, n = 1,..., N, is assumed to have a non-
splittable task suitable for computation offloading |[KL10,|KLLB13]. A task is de-
scribed based on two properties, which characterize its data requirements. On the
one hand, computing the task of node n requires processing a specific number L, of
CPU cycles |[KL10,|KLLB13]. On the other hand, the task is characterized by the
number B, of bits that need to be transmitted when offloading the task for remote
processing [KL10,|KLLB13]. The ratio f—: between the number B, of bits needed for
transmission and the number L,, of CPU cycles needed for computation is application-
specific [MN10]. We refer to the number B, of bits needed for transmission and the
number L, of CPU cycles as task context. As will be discussed in the sequel, the en-
ergy consumption for local computing as well as computation offloading depends on the
task context. Therefore, the task context needs to be taken into account for offloading

decisions.

3.3.4 Model of Energy Consumption for Task Processing and
Transmission

We consider network energy minimization as performance criterion. The goal is hence
to select the best subset of nodes for computation offloading, such that the overall
energy spent in the system is minimized. Hence, an energy consumption model for
communication and computation is needed, which can be used to compute for each
task the required energy for computing the task locally and the required energy for
transmitting the task to the server. Next, we formulate such a model based on existing
tractable models for energy consumption in mobile devices and for wireless communi-
cation. Note that we aim at minimizing the energy consumption of the mobile devices,
and hence do not consider the energy consumed by the resource-rich server for task
processing.

On the one hand, depending on the processor speed M, (in cycles / s) and the processing
power Pc, (in W) of node n, the energy per CPU cycle ec,, (in J/cycle) for local
computing at node n is according to [KL10| given by

@CVn = ,77/‘ (31)
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Therefore, depending on the number L, of CPU cycles, if node n computes its task
locally, the amount E¢, of energy consumed by node n is according to [KL10] given
by

EC,n = eC,nLn- (32)

On the other hand, depending on the transmit power Pr, (in W) of node n, the
bandwidth b,, of node n, the complex channel coefficient h,, from node n to its parent,
and the noise power o2 at node n, the energy per bit e, (in J /bit) node n consumes
for data transmission can be approximated using Shannon’s formula [T'V05| as

Pr,
ern = L TS (3.3)
by log, (1 n Tn_n>

2
On

Hence, depending on the number B,, of bits, if node n uses computation offloading, the

amount Ef , of energy node n consumes is according to [KL10] given by
By, =ernBn (3.4)

when transmitting its own task to its parent. In addition, node n’s predecessors on
route R,, to the [AP] consume energy when relaying node n’s task. Depending on the
number B, of bits, the energy E7t, consumed by a predecessor node r € R, is given
by

E’},n = eT,ana (35)

where e, is the corresponding energy per bit consumed by node r for data transmis-
sion, given analogously as in (3.3]), by replacing in (3.3) each n with an r. In sum,
if node n uses computation offloading, the total amount Er, of energy spent in the

network is hence given by

Brn=E%,+ Y Ep,. (3.6)

re€Rn
As in [KL10, HWN12|Chel5|, we neglect the energy consumed on the feedback link
from server to node, as the amount of feedback information for transmission of the
result is small in many applications. However, our model may be extended to include
the energy consumption of the feedback link as well. In this case, the structure of the

problem would remain the same.

Since the nodes in the network dispose of limited energy resources, for a computation

offloading session, the amount Eoy, (in J) of energy which node n provides for this
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session needs to be taken into account. While the values E¢, and Er, depend on
the network topology and the characteristics of the task, the amount Ey,, , of energy
provided by node n may in general be chosen arbitrarily. In the sequel, we assume
that each node n provides at least enough energy such that both options for its own
task are feasible, i.e., the provided energy of node n is sufficient for computing task n
locally or for submitting task n to node n’s predecessor in the route R, to the [APl
Formally, this holds if

Eprovn > max(Ecy,, B1,,) foralln =1,..., N. (3.7)

By assuming that each node is capable of computing its task locally and transmitting
its task to its parent, we discard trivial cases, in which a node could not choose from
the two options offloading and local computing due to its own battery constraints.

3.3.5 Architecture of Decision Making

We propose a centralized architecture of decision making, cf. Section [2.2.3] where the
offloading decisions are taken by a central entity, for example, by a controller in the
[APl We use a centralized architecture since the goal of minimizing the energy spent
in the overall network requires to jointly optimize the non-trivially coupled offloading
decisions of the nodes in the network. Clearly, when designing the corresponding
algorithm for centralized decision making, it needs to be ensured that the amount of
information to be collected centrally is kept low.

3.3.6 Action Model

The central entity should decide for each node n, n = 1, ..., N, whether the node should
compute its task locally or, if enough resources are available at relay nodes, whether
node n should use computation offloading by transmitting the task to the server for
remote processing. In this case, the corresponding number B, of bits needs to be
transmitted to the [AP] via multi-hop route R,,. The action with respect to node n is

formalized by the binary variable y,,, where

1, if node n transmits its task to the server

Yy = ) . (3.8)
0, if node n computes its task locally.

The vector of actions with respect to all nodes in the network is given by y :=

[Y1,...,yn].  We denote the set of nodes transmitting their tasks to the server
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by Nt := {n € {1,..,N} : y, = 1} and the set of nodes computing their tasks
locally by N¢ := {n € {1,..., N} : y, = 0}. In a computation offloading session, after
the central entity has selected the action of each node and informed the nodes about
its decisions, the nodes from set N transmit their tasks to the server, where we as-
sume that a scheduling scheme is used, which allows the nodes to transmit their tasks
in an interference-free fashion. Such interference-free transmissions may be achieved
by giving nodes orthogonal resources, such as individual sub-carriers using frequency-
division multiple access (FDMA]) or fractions of time using time-division multiple access
(TDMA]) [Gol05]. The server then processes the received tasks in parallel and sends
the results back to the corresponding nodes.

3.4 Problem Formulation

In this section, using the models from Sections -[3.3.6] we take an optimization-
based approach by formulating the problem of context-aware computation offoading
for energy minimization in multi-hop wireless networks as a network-wide optimization
problem to be solved by a central entity, for example, by a controller in the [APl We
use an optimization-based approach, cf. Section since based on the existing
tractable task and energy models for mobile devices [MN10], as given in Section [3.3.4]

the parameters appearing in the problem may be assumed to be known.

Aiming at the global goal of minimizing the total energy spent in the network, a
network cost function needs to be formulated, which computes the total energy spent
in the network for local computing and transmission to the server as a function of the
nodes’ actions. Based on the energies E¢, and Er, computed in and , the
total energy Ee(y) spent in the network for local computing and transmission to the
server as a function of the actions y of all nodes is given by

N
EHet(Y) = Z (ynET,n + (1 - yn>EC,n)
n=1
N N
- Z yn(ET,n - EC,n) + Z EC,n- (39)
n=1 n=1

The network cost function in (3.9) is a linear function in the action vector y. Moreover,
since the second term Ziv:l E¢,, is independent of y, it can be neglected when solving

an optimization problem with objective function Epe(y).

The nodes’ limited energy resources may impose constraints on possible actions. On

the one hand, the limited energy resources of a non-relay node n ¢ R only need to be
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sufficient for locally processing its own task or transmitting its own task to its parent,
which by the assumption in is always the case. On the other hand, assuming that a
relay node r € R provides a total amount £, of energy for a computation offloading
session and assuming that the node should at least ensure that its own standard action
of local computing is always possible, regardless of the actions of other nodes in the
network, node r should reserve an amount of E¢ , for itself. Therefore, if node r reserves
an amount of Ec, for itself, it may spend an additional amount E,.o, — Ec, > 0 of
energy for relaying tasks of successor nodes. Hence, the energy Epoy, — Ec, > 0
provided by any relay node r € R for a computation offloading session restricts the
offloading decisions at successor nodes. This can be formalized as follows:

> ynEr, < Bpovr — Ecy (3.10)

{n:reRn}
The constraint in (3.10)) is linear in the action vector y.
Employing the network cost function in (3.9) as objective function and taking into

account the energy constraints at relay nodes in (3.10)), the optimal actions minimizing
the network cost may be obtained by solving the following [LP| problem with binary

variables:
N
min Z yn(ET,n - EC,n) (311)
n=1
s.t. Z ynEr}n < Epvovy — Eop forr e R
{n:reRn}

yn € {0,1} forn=1,...,N.

Here, the number of constraints corresponds to the number R = |R| of relay nodes and

is hence topology-dependent. Moreover, based on (3.2), (3.4) and (3.5]), Problem (3.11])

depends on the task context.

3.5 Problem Analysis

3.5.1 Equivalence to Multi-Dimensional Knapsack Problem

In this section, Problem (3.11)) is analyzed. As we show below, Problem (3.11]) corre-
sponds to a specific type of [LP problem with binary variables, namely, to the multi-
dimensional knapsack problem, which was introduced in Section [2.3.2.4]
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Proposition 3.1. Problem (3.11) corresponds to a multi-dimensional knapsack prob-
lem.

The proof of Proposition can be found in Appendix[A.T] The proof works straight-
forward by rewriting Problem (3.11)) into the format of a multi-dimensional knapsack

problem as given in ([2.3]) in Section [2.3.2.4

From Proposition [3.1]it follows by the discussion in Section [2.3.2.4| that Problem (i3.11])
belongs to the complexity class of [NPthard optimization problems, such that it is widely

believed that there exists no polynomial-time algorithm for its solution. Moreover,
by Section [2.3.2.4] it is even believed that no fully polynomial time approximation
scheme exists for Problem (3.11). Therefore, we propose a heuristic algorithm for

Problem (3.11)) in Section [3.6]

3.5.2 Feasibility

Next, we investigate the feasibility of Problem . Problem is always feasible
since it is always possible that all nodes compute their tasks locally. This can be easily
checked by inserting the corresponding action y = [0, ..., 0] into Problem (3.11)), which
yields a feasible solution.

3.5.3 Variable Reduction

Here, we discuss a possible pre-processing step which can be used in certain cases to
reduce the problem size. This is due to the fact that under certain conditions, the
optimal action of a node may immediately be found, without solving the overall Prob-
lem . In detail, this is the case when the parameters corresponding to the node
in Problem do not satisfy the nonnegativity assumptions, which hold without
loss of generality for multi-dimensional knapsack problems as stated in Section [2.3.2.4]
For such cases, one may apply rules of how to fix decision variables corresponding
to negative parameters to their optimal values in multi-dimensional knapsack prob-
lems [KPP04]. Applying these rules in a pre-processing step reduces the number of
variables appearing in Problem and hence the problem size. In the sequel, we
give two rules of variable reduction in Problem , which we derived from the rules
of variable reduction in multi-dimensional knapsack problems [KPP04]. The following

rules may be used as pre-processing steps before solving Problem (3.11]).
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e Rule 1: If for any node n, Ev,, > Ec, holds, i.e., less energy is consumed when
computing node n’s task locally compared to the overall energy consumed when
transmitting node n’s task to the server via the multi-hop route, then node n
should compute locally. This is because transmitting to the server would not
decrease the consumed energy in the network and possibly consumes energy at
relay nodes, which could otherwise be used for other task transmissions. Thus,
the optimal action for node n is y;; = 0.

e Rule 2: If for any relay node r € R, Epovr = Ec, holds, i.e., node r reserves
its provided energy resources for computing locally, then each successor node of
relay node r has to compute locally. Thus, for each node n with r € R,, the only
possible (and therefore optimal) action is y; = 0.

3.5.4 Decomposition

Depending on the network topology, Problem may be decomposed into several
smaller problems. For this purpose, consider a multi-hop network in its graph represen-
tation. As described in Section [3.3.2], the resulting graph is a rooted tree, whose root
represents the [AP] giving access to the server. In order to decompose Problem ,
this tree is partitioned into subtrees, where each subtree consists of one child node of
the [AP] and all its successor nodes. Then, Problem can be decomposed into one
sub-problem per subtree since only decisions of nodes on the same subtree are cou-
pled by energy constraints of common relay nodes. As an example, Figure [3.3| shows
how the exemplary multi-hop network from Figure|3.2]is partitioned into two subtrees,
as indicated by the dashed and the dotted line. In this example, the corresponding
Problem (3.11]) can be decomposed into two smaller problems, one for each of the two
subtrees.

3.5.5 Analytical Results for Special Topologies

In the following, we prove analytical results for Problem in case of special topolo-
gies. We start with a star topology, cf. Figure[3.4] which establishes the connection of
Problem to computation offloading in single-hop networks. Next, by considering
a line topology, cf. Figure the impact of a non-decomposable topology with maxi-
mum number of relay nodes on the benefit of computation offloading is investigated. In
this way, we derive conditions with respect to the topology, under which computation

offloading is beneficial in multi-hop networks.
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Figure 3.3. Partition of an exemplary multi-hop network in graph representation into
subtrees.
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Figure 3.4. An exemplary network in star topology.

Consider a network of N nodes in star topology, i.e., a single-hop network with a root
and N leaves. Figure|3.4/shows an example of a network in star topology. Since there is
no relay node in a star topology, the corresponding energy minimization Problem (3.11))
does not contain any energy constraints. Thus, in this case, Problem may
be optimally solved node-wise (i.e., decomposed into one sub-problem per node, cf.
Section by determining for each node n individually which is the less energy
consuming action based on the values of Er, and E¢,. Hence, the following statement
holds.

Proposition 3.2. Consider Problem (3.11)) in the case of a star topology. The globally
optimal actions vy, n=1,...,N, are given by

Oa Zf ET,n Z EC,n-

Next, consider a network of N nodes in line topology, i.e., a network consisting of one

single rooted branch whose nodes can be labeled according to their hop distance to
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Figure 3.5. An exemplary network in line topology.

the [AP] from 1 to N. An example of a network in line topology is given in Figure [3.5
In this case, the number R of relay nodes satisfies R = N — 1. Therefore, the corre-
sponding Problem (|3.11)) contains the highest possible number of energy constraints.
However, since the tree consists of one single branch, the energy constraints have a
special structure, which allows to give an analytical result of Problem (3.11)) in case of
a homogeneous network, where the energies per node are equal.

Proposition 3.3. Consider Problem (3.11)) in the case of a line topology in a homo-

geneous network, where there exist constants Ec > 0, Eyink > 0, By > 0 with

Ec, = Ec forall n=1,...,.N (3.13)
B, = Biink forall n,r=1,.... N with n>r (3.14)
Eorovin = Eprov forall n=1,...,N — 1. (3.15)

Then, the optimal actions vy, n=1,...,N, are given by

1, ifn< < and n < e 4
y:; — {0 !;se FEiink —  Euink (316)

The proof of Proposition can be found in Appendix The idea of the proof is
as follows. Two cases are distinguished and for each case, it is shown that the optimal
actions are given by . First, the case of F,,, = E is considered. This is a special
case in which it is easy to show that the optimal actions are given by . Then,
the case of Fpov > Ec is considered. Due to the special structure of the line topology,
it is possible to simplify the formula for the total amount Er, of energy spent in the

network when node n uses computation offloading, as given in (3.6]). Together with the

pre-processing Rule 1 from Section [3.5.3] this yields that n < % has to be satisfied

for any node n whose optimal action it is to use computation offloading. Moreover, due
to the special structure of the line topology, where the set of successor nodes of a relay
node is given by all nodes which have higher hop distance to the [AP] the constraints
in Problem can be simplified. Using this fact in combination with a concept
for knapsack problems called dominance |[KPPO04], one can prove that computation
offloading is the optimal action for any node n which has n < Lorov=lo 4 7, Combining

Elink
these results, it follows that the optimal actions are given by (i3.16]).
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Proposition [3.3]illustrates that in a homogeneous line topology, computation offloading
is optimal for any node n, whose hop distance n to the [ADP] satisfies the two condi-

tions n < E?,Ck and n < % + 1. Hence, combining the two conditions yields a
threshold. All nodes whose hop distance to the [AP]is smaller than the threshold will
use computation offloading. All nodes whose hop distance to the [APlis larger than the

threshold will compute locally.

Note that for topologies consisting of several parallel homogeneous lines to the [AP]
Problem (3.11)) is decomposable to each of these lines based on the result from Sec-
tion [3.5.4, Hence, in this case, Proposition [3.3] may be applied to each of these indi-

vidual lines.

3.6 Proposed Algorithm

In this section, using an optimization-based approach and a centralized architecture of
decision making, we propose a context-aware greedy heuristic algorithm for computation
offloading in multi-hop networks to tackle the energy minimization Problem (3.11])).
Using the proposed algorithm, a central entity, e.g., a controller in the [AP] may take
offloading decisions based on centrally collected information about network conditions
and task context.

Since Problem ([3.11]) corresponds to a multi-dimensional knapsack problem by Propo-
sition (3.1} we propose to use the primal greedy heuristic for multi-dimensional knapsack
problems [KPP04| for tackling Problem . The primal greedy heuristic is a central-
ized polynomial-time algorithm. In the context of computation ofloading in multi-hop

networks, the main idea of this algorithm is as follows.

After pre-processing based on Rules 1 and 2 from Section [3.5.3] the nodes are sorted in
decreasing order of a carefully chosen efficiency measure, which will be detailed below.
Then, starting from the node with the highest efficiency, the algorithm adds one node
at a time to the set of nodes which offload their tasks, but only, if this does not violate
any of the energy constraints at relay nodes. If an energy constraint is violated, the
node is added to the set of nodes which locally compute their tasks. The critical
point of the algorithm is the choice of efficiency measure. Here, we select an efficiency
measure [Dob82, KPP04] that takes into account (i) how much energy is saved when

node n is chosen for computation offloading compared to when node n computes its
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task locally and (ii) which portions of energy provided by relay nodes it requires:

Eq,—FE
eff, = G E;f” . (3.17)
ZTGRH EprOV,T;ECJ‘

The pseudocode of the context-aware greedy heuristic algorithm for Problem ((3.11)) is
given in Algorithm . Since Problem (3.11]) is decomposable to subtrees, as described
in Section [3.5.4] Algorithm [3.1] may be applied separately to each of the individual
subtrees.

Algorithm 3.1 Context-Aware Greedy Heuristic Algorithm

: Input: Problem (3.11])

Pre-process Problem according to Rules 1 and 2 from Section m
Let 1, ...,y5 be the variables not fixed in pre-processing

forn=1,...N do

Initialize y,, := 0
E n_E n
eff,, = b L

2 oreRn ﬁ
7: end for
8: Sort efficiencies eff,, into decreasing order and save
into vector ord := indices of ordered efficiencies
9: for j=1,..,N do
10: Yord(j) = 1

11: if decision vector y not feasible then
12: Yord(j) = 0

13: end if

14: end for

3.7 Properties of Proposed Algorithm

3.7.1 Performance Guarantees for Special Topologies

Here, we give performance guarantees of the proposed algorithm in case of certain
special topologies. Specifically, we show that the proposed algorithm automatically
selects the globally optimal actions for networks in star and line topology.

We start with networks in star topology, as introduced in Section |3.5.5]

Proposition 3.4. Consider Problem (3.11)) in the case of a star topology. Then, the
context-aware greedy heuristic algorithm in Algorithm always selects the globally

optimal actions according to (3.12)).
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The proof of Proposition [3.4] can be found in Appendix [A.3] The proof is straightfor-
ward by checking the steps of Algorithm in case of a star topology, which yields
that exactly the globally optimal actions according to (3.12)) are selected.

Next, we consider networks with homogeneous line topologies, as introduced in Sec-
tion [3.5.9l

Proposition 3.5. Consider Problem (3.11)) in the case of a line topology in a ho-
mogeneous network as introduced in Proposition 3.5, Then, the context-aware greedy

heuristic algorithm in Algorithm[3.1] always selects the globally optimal actions accord-

ing to (3.16).

The proof of Proposition [3.5 can be found in Appendix [A.4] The idea of the proof is
as follows. Like in the proof of Proposition [3.3 two cases are distinguished. First, the
case of Fy,o, = Ec is considered, which is a special case in which it is easy to show that
Algorithm selects exactly the optimal actions in from Proposition . Then,
the case of Fyov > Ec is considered. Due to the special structure of the line topology,
it is possible to simplify the formula for the total amount Er, of energy spent in the
network when node n uses computation offloading, as given in (3.6). Together with
the fact that Algorithm [3.1] uses Rule 1 from Section during pre-processing, this
yields that n < -£< has to be satisfied for any node n which Algorithm considers

Erink
as candidates for computation offloading. Moreover, due to the special structure of

the line topology, one can show that Algorithm sorts the nodes according to their
hop distance to the [APl Then, Algorithm selects nodes for computation offloading
according to their hop distance, starting with node 1, as long as this does not violate
any of the energy constraints. Specifically, one can show that Algorithm selects
nodes with hop distance n < % + 1 for computation offloading. This shows that

Algorithm selects exactly the globally optimal actions according to (3.16]).

3.7.2 Computational Complexity

Here, we analyze the computational complexity of the proposed algorithm as a func-
tion of the number N of nodes and the number R of relay nodes in the network. For
this purpose, we identify the most computationally expensive procedures in the algo-
rithm. Note that the computational complexity is described based on the O-notation,
which can be used to characterize the limiting behavior of a function by giving an
asymptotic upper bound on its growth rate [CLRS09]. In Line 2 of Algorithm
the pre-processing according to Rules 1 and 2 has a computational complexity that
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grows as O(R + N) since at most every node n € N and every relay node r € R need
to be considered once. Computing the efficiency measure of N nodes in lines 4-7 has
a computational complexity that grows as O(NR). This is because for each node n,
each of its relay nodes on the route to the [AP] needs to be considered once, and there
are at most R relay nodes on this route. Sorting at most N values in line 8 has a
computational complexity that grows as O(Nlog N) [CLRS09]. Finally, in lines 9-
14, checking for at most each node n € N, and for at most each relay node r € R,
whether the remaining battery of the relay node r is sufficient to add node n to the
set of nodes using computation offloading has a complexity that grows as O(NR).
This is because each of the N nodes has to be considered once in combination with
each of the R relay nodes. Overall, the computational complexity of Algorithm is
hence O(NR + Nlog N)). Therefore, the proposed algorithm is a polynomial-time al-
gorithm with a computational complexity that grows, depending on the ratio between
relay and non-relay nodes, at most quadratically as a function of the number N of
nodes in the network.

3.7.3 Communication Requirements

The context-aware greedy heuristic algorithm is based on a centralized architecture of
decision making, where a central entity takes offloading decisions based on centrally col-
lected information. Here, we investigate the communication overhead of the proposed
algorithm due to its centralized approach. In detail, we compute the communication
requirements for collecting the information required for decision making under the as-
sumptions that the central entity is a controller located in the [AP] and that the central
controller knows the routing table, which contains the multi-hop route R, from each
node n to the[APl In order to take the offloading decisions based on the context-aware
greedy heuristic algorithm, the controller needs to compute the efficiency measure eff,,
in for each node n = 1, ..., N. Therefore, for a node n, the controller needs to
know the values E¢ ,,, Erp, E%’n, Epovr and E¢, for each of node n’s relay node r € R,,.

The following procedure is proposed in order to minimize the required communica-
tion exchange between the nodes and the controller: Each node n (i) determines its
parameters ec,, and er,, according to (3.1) and (3.3), (ii) determines its provided en-
ergy Epovn, (iil) retrieves task context information B,, and L,, and (iv) computes E¢,,
based on . Then, node n sends the values er,, B,,, Ec pn, Eprov,n to the controller, by
transmitting them via the multi-hop route R, to the[APl Based on the received values,
the controller may then compute the missing values Ef, , for any r € R, n =1,..., N,

and Er,,n=1,..., N, using (3.4)), (3.5) and (3.6]). Subsequently, the controller applies
the context-aware greedy heuristic algorithm and thereby takes the offloading decisions.
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In the above procedure, each node n needs to transmit four scalar variables to the
[AD| via its multi-hop route R,,. Compared to the typical sizes of candidate tasks for
computation offloading (e.g., 420 kbyte for a face recognition application in [SMF712]),
the signalling overhead due to centralized decision making is hence small.

3.8 Numerical Results

3.8.1 Simulation Setup

We evaluate the proposed algorithm and we analyze the benefit of computation off-
loading in multi-hop networks with respect to different topologies, system parameters
and task contexts based on simulations. We simulate networks of N = 20 nodes with
star, line as well as random topologies. The results for random topologies are obtained
by simulating 100 random trees and averaging the results. We fix the following param-
eters homogeneously for each node n. For task sizes, the number of CPU cycles is set
to L,, = 1000 Mcycles |Chel5| and the number B, of bits is kept variable so that we can
investigate different ratios of f—z. For the energy characteristics of the devices, i.e., the
energy ec, per bit and the energy et ,, per CPU cycle, we take for both parameters the
respective best (i.e., lowest) value which was obtained in experiments with real devices
in [MN10]. This is because we want the simulations to be based on a fair ratio between
the devices’ energy characteristics with respect to computation and communication.

In detail, for local computing, we set ec, = [MN10] and for transmission, we

1 _J
730 Mcycle

set et = 8—(15[)#% [MN10]. Note that based on the selected values of ec,, er, this
yields an energy ratio of ZC—” ~ 0.0094 b'tls in our simulations. Concerning the energy
T,n cycle

resources spent by nodes for relaying, unless otherwise stated, we assume that each
node spends an additional 100% of its own required computing energy for relaying,
i.e., Eprovn = 2Ec,, (default value).

3.8.2 Reference Algorithms

We evaluate the proposed algorithm by comparing it with the following reference al-
gorithms.

e The global optimum of Problem ({3.11)) gives a lower bound on the network energy
consumption that the proposed algorithm can achieve. Therefore, the global
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optimum may be used as benchmark. Since Problem (3.11)) is an [LPI problem,
we use the integer programming solver Gurobi [Gurl5| to find a globally optimal

solution.

In addition, we consider pure local computing, i.e., that all nodes in the network
compute their tasks locally. Comparing the solution of pure local computing
with the offloading solutions obtained by the global optimum and by the context-
aware greedy heuristic algorithm allows to assess the benefit of using computation
offloading in multi-hop networks.

3.8.3 Evaluation Metrics

We use the following metrics to assess the benefit of using computation offloading in

multi-hop networks and to evaluate the proposed algorithm.

e We compute the total energy spent in the network and the corresponding fraction

of nodes transmitting their task to the server when the offloading decisions are
taken according to the algorithm. Formally, let y# denote the vector of actions
of all nodes selected by an algorithm A. Then, the energy spent in the network

is computed as e (y*) using (3.9).

Moreover, the fraction of nodes transmitting their tasks to the server is computed

as
e{l,.,N}:y2=1
where | - | denotes the cardinality of a set.

3.8.4 Results

In our simulations, we analyze the benefit of computation offloading in multi-hop net-

works with respect to different topologies, system parameters and task contexts and

we evaluate the context-aware greedy heuristic algorithm by comparing its solutions

to the global optimum. Note that each figure shown in the sequel displays results of

(i) the context-aware greedy heuristic algorithm, (ii) the global optimum and (iii) pure

local computing, and for each algorithm, each figure displays results under (a) ran-

dom, (b) star and (c) homogeneous line topologies. Note, however, that the figures
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only display one curve for (i) the context-aware greedy heuristic algorithm, namely,
with respect to (a) random topologies. We do not display a separate curve for (i) the
context-aware greedy heuristic algorithm under the (b) star and (c¢) homogeneous line
topologies since the context-aware greedy heuristic algorithm produces the same re-
sults as the global optimum under these topologies, such that the curves for the global
optimum under these topologies actually correspond to the results of the context-aware
greedy heuristic. Moreover, note that each figure only displays one curve for (iii) pure
local computing. This is because pure local computing is not affected by the topology
and hence produces identical results under (a) random, (b) star and (c¢) homogeneous
line topologies.

Figure 3.6/shows the results of (i) the context-aware greedy heuristic algorithm, (ii) the
global optimum and (iii) pure local computing under (a) random, (b) star and (c) ho-
mogeneous line topologies, for varying ratios f—: between the number B,, of bits needed
for transmission and the number L, of CPU cycles needed for computation Fig-
ure m gives the total energy spent in the network under varying ratios 2= i . As can
be seen in Figure . under all three types of topology and all three approaches
the energy spent in the system is a non-decreasing function of the ratlo . In detail,
the result of pure local computing does not depend on the ratlo ” (smce L, is fixed
in our simulations) and hence stays constant for i 1ncreas1ng and the corresponding
energy spent in the system gives an upper bound for the ofﬂoadlng solutions obtained
by the context-aware greedy heuristic algorithm and by the global optimum. When
the ratio f—: increases, i.e., transmitting a task to the server becomes more expensive
in comparison to local computation, the energy spent in the system increases and con-
verges to the same value under the offloading solutions obtained by the context-aware
greedy heuristic algorithm and by the global optimum and with respect to all topolo-
gies. Convergence is reached when f—: R 0.0094;;%. Once convergence is reached,

i.e., for " Z 0. 0094Cblctlse, the energy spent in the system under the offloading solu-
tions obtalned by both the context-aware greedy heuristic algorithm and by the global
optimum corresponds exactly to the energy spent in the system under pure local com-

puting. The reason for this is that based on the assumed energy characteristics of the

. . . ec.n
devices, cf. Section [3.8.1, we have an energy ratio of ei’ ~ 0. 0094Cb‘$fe in our simu-

lations. Hence, when the ratio 22 2 0.0094 2% we have Bu > 2 o1 equivalently
cycle L, = ern’ )

E%’n = ern,Bn % ecnln = Ecn, Where we used (| and . This means that

~

for any task in the network, the network’s energy cost for transmitting that task to
the server are as at least as high as the energy cost for local computing. Therefore,

Whenever 2 0.0094 b‘ts , all nodes compute their tasks locally.

Next, we compare the results obtained by the different approaches under the random

topology. In Figure|3.6(a), under the random topology, using the greedy offloading so-
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lution instead of pure local computing reduces the network energy consumption by 13%
when averaging over the whole range of f—:. Moreover, under the random topology,
the results obtained by the context-aware greedy heuristic algorithm lie very close to
the global optimum, with a maximal deviation of less than 5% from the optimal re-
sults over the whole range of f—:. In general, as Figure |3.6(a)| shows, the smaller the
ratio of ]Lg—:, the more energy can be saved when using computation offloading instead
of pure local computing, no matter whether the offloading solution obtained by the
context-aware greedy heuristic algorithm or the global optimum is used.

Finally, we study how the underlying topology affects the benefit of computation off-
loading in multi-hop networks. Comparing the results of the global optimum for the
different topologies in Figure , one can see that averaged over the whole range
of f—:, the energy consumption of the star topology (i.e., a single hop network) is much
smaller than that of a random topology, which itself is slightly smaller than that of
the line topology. Moreover, Figure |3.6(a)| shows, comparable to what has been shown
in [KL10,MN10], that computation offloading noticeably pays off in single-hop networks
for any ratio of f—: as long as f—: < ZE—Z holds. This is because in single-hop networks,
each node for whom transmission to the server is cheaper, uses computation offloading,
as was also shown analytically in Section [3.5.5] In contrast, for multi-hop networks,
Figure shows that the effect of computation offloading becomes particularly ap-
parent for very small ratios of f—:, for which f—: < ZEZ, or equivalently, E7, < Ecp,
holds, where we used and . This means that computation offloading in multi-

hop networks is beneficial (i) for applications with very high computation effort and

very small amounts of data to be transmitted (i.e., large L,, and small B,,) and/or (ii) if
the devices’ energy capabilities in terms of computation are much worse than in terms
of communication (i.e., large ec,, and small er,,). In addition, the benefit of computa-
tion offloading is more prominent in topologies with on average smaller hop distances
to the [APl If many hops are involved, such as in a line topology, having f—: < % is
even more important in order to benefit from computation offloading, as can also be

seen from the results in Section B.5.5

Figure [3.6(b)[ shows the fraction of nodes transmitting their task to the server under
varying ratio % between the number B, of bits needed for transmission and the num-
ber L, of CPU cycles needed for computation. As shown in Figure 3.6(b), under all

three types of topology and all three approaches, the fraction of nodes transmitting
Bn
L_n'
computing, the fraction of nodes transmitting their task to the server is obviously zero

their task to the server is a non-increasing function of the ratio For pure local

for any value of the ratio %. Moreover, when the ratio % increases, i.e., transmitting
n n

a task to the server becomes more expensive in comparison to local computation, the

fraction of nodes transmitting their task to the server decreases under the offloading
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solutions obtained by the context-aware greedy heuristic algorithm and by the global
optimum and with respect to all topologies. This results from the fact that when data
transmission gets more expensive, more and more nodes instead compute locally. In
addition, when the ratio f—: increases, the fraction of nodes transmitting their task to
the server converges to zero under the offloading solutions obtained by the context-
aware greedy heuristic algorithm and by the global optimum and with respect to all
topologies. In analogy to the results discussed above for Figure convergence
is reached when f—: R 0.0094% since then, as discussed above, for any task in the
network, the network’s energy cost for transmitting that task to the server are at least
as high as the energy cost for local computing and therefore, all nodes compute their
tasks locally. It can be observed in Figure , that the curves of the context-aware
greedy heuristic and the global optimum under random and line topologies coincide and
that they are step functions. The lines coinciding shows how close the context-aware
greedy heuristic approaches the result of the global optimum. While we have seen in
Figure that the context-aware greedy heuristic deviates at most 5% from the
global optimum in terms of the energy consumption, it actually always selects the same
number of nodes to transmit their tasks to the server. The steps in the graphs reflect
the impact of the energy E,oy,, which the nodes provide per computation offioading
session. If there is not enough energy left for a node at one of its relay nodes to further
perform computation offloading, the node is forced to compute locally, leading to an
abrupt increase of the energy spent.

Next, in order to evaluate the effect of the provided energy E,ov ., We fix the task

size to B,, = 124 kbyte and run simulations for varying parameter Fpov . With B, =

124 kbyte, the energy ratio satisfies % R 0.001;;%, i.e., tasks are computationally

expensive, but very cheap in terms of data transmission. Specifically, due to the energy
ratio of Zj: = 0.0094613’/;5e in our simulations, using (3.2)) and (3.4), this yields E7, ~
%OEC,n, i.e., local computation of a task is roughly 10 times as expensive as one-hop

transmission of the task. We use such a small number B,, of bits since we do not want
the offloading decisions to be constrained by the task size in this particular simulation
in order to see the pure effect of the provided energy FEiovn. Figure shows the
results of (i) the context-aware greedy heuristic algorithm, (ii) the global optimum
and (iii) pure local computing under (a) random, (b) star and (c) homogeneous line
topologies for varying Epoy .. Figure gives the total energy spent in the network
and Figure shows the corresponding fraction of nodes transmitting their task to
the server. Clearly, pure local computing and the offloading solution for star topologies
is not affected by a change of Ey,oy . However, Figure shows that for random and
line topologies, with increasing value of oy, the energy consumption is decreasing

when optimal or greedy offloading solutions are applied since more and more nodes
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offload their tasks to the server. The context-aware greedy heuristic algorithm again
yields similar results as the global optimum, with a maximum deviation of less than 6%
from the optimal result. Moreover, for both random and line topologies, the network
energy consumption converges for large values of E,,oy 1, but to two different values. At
the same time, for both random and line topologies, the fraction of nodes transmitting
their tasks to the server converges for large values of E,,qy ,, but also to two different
values. This is due to the fact that if E¢, < Er, holds for a node, this node will
never use computation offloading, no matter how large the provided energy Ei oy, iS.
Hence, there exists a point after which a further increase of Ej,oy, does not lead to
more nodes offloading their tasks. Since the energy costs Er,, are especially high in a
line topology due to the large number of hops, in this case, the fraction of offloading

nodes is lower than in a random topology.

From our simulations, we may conclude the following. First, computation offloading
in multi-hop networks is beneficial for highly computation-intensive applications with
small amounts of data to be transmitted. Secondly, the effect of computation offloading
strongly depends on the provided energy Ey,o,. With higher amounts of provided
energy, computation offloading may save more energy in the overall network, but the
energy savings do not grow arbitrarily for larger values of provided energy since for some
tasks, it is always cheaper to compute them locally even if more energy is provided by
relay nodes. Thirdly, even though the context-aware greedy heuristic algorithm has no
performance guarantee for general multi-dimensional knapsack problems, it yields very
good overall results in the considered offloading scenarios, with a maximal deviation
of less than 6% from the optimal results for the considered set of parameters.

3.9 Conclusions

In this chapter, we have investigated how to trade computation resources off against
communication resources in wireless networks. Specifically, we have studied the prob-
lem of context-aware computation offloading for energy minimization in multi-hop wire-
less networks. We have proposed a general model for context-aware computation off-
loading, which takes into account the challenges of multi-hop networks, i.e., the need to
use and share communication resources of relay nodes. Moreover, we have modeled the
problem as an optimization problem and shown its equivalence to a multi-dimensional
knapsack problem. We have proposed a context-aware greedy heuristic algorithm for
computation offloading in multi-hop networks using a centralized architecture of deci-
sion making. Using this algorithm, a controller in the [APl may take offloading decisions

based on centrally collected information about network conditions and task context.
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The computational complexity of the proposed algorithm has been shown to grow at
most quadratically as a function of the number of nodes in the network. Moreover, the
communication overhead of the proposed centralized architecture of decision making
has been shown to be small. In addition, the proposed algorithm has shown very good
performance in simulations under various network settings and task contexts, with a
maximal deviation of less than 6% from the optimal results. On average, the offloading
solution found by the proposed algorithm reduces the network energy consumption
by 13% compared to the case when no computation offloading is used. Our numerical
as well as analytical results have revealed that devices in multi-hop networks benefit
noticeably from computation offloading for highly computation-intensive applications
with small amount of data to transmit. Additionally, the outcome is strongly affected
by the amount of energy provided by relay nodes, but the energy savings do not grow

arbitrarily when the provided energy is increased.
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Chapter 4
Caching at the Edge of Wireless Networks

4.1 Introduction

In this chapter, we study caching at the edge of wireless networks. Caching at
the edge exploits caching resources at the edge of the wireless network in order
to serve users locally with popular contents [BBD14b|. Such caching resources
could be attached to macro base stations (MBSk) and small base stations (SBSk)
owned by the mobile network operator or they could be part of wireless
infostations installed in public or commercial areas by either a content provider
or a third party [GBMY97,1R02, BG14c, BG14a|. Caching popular content in lo-
cal caches in a placement phase and locally serve the users in a delivery phase
may reduce backhaul and cellular traffic and it may reduce the latency for the
user [WCT™14]. In order to reduce the load on the macro cellular network as
much as possible, the most popular content should be cached locally such that the
number of cache hits is maximized. As described in Section [1.3.3] this requires
knowledge about the popularity distribution, which is typically not available a pri-
ori [BBD14b,BBZ"15,BG14b,BG14c,BG14a,SAT ™14, EBSLal4]. Moreover, local con-
tent popularity may vary according to the preferences of the mobile users connecting
to a local cache over time [GALMO7,ZSGK09,[BSW12|. The users’ preferences, in
turn, may depend on their contexts [BSW12, MS10, HL05, RGZ11,Zil88,|ZGCT14]. Fi-
nally, cache content placement needs to take into account the cache operator’s specific
objective, which may include the need for service differentiation [KLACO03,LAS04].

We hence consider the problem of maximizing the number of cache hits in a local cache

at the edge of the wireless network, taking into account the following aspects:

(i) A priori, there is no knowledge available about local content popularity.
(ii) Content popularity can vary across the user population.
(iii) Content popularity can depend on the users’ contexts.

(iv) The cache operator’s specific objective with respect to service differentiation

needs to be taken into account.
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In the sequel, we propose a machine-learning-based approach and a decentralized archi-
tecture of decision making. We use a machine-learning-based approach since the content
popularity is not known in advance and needs to be learned. Moreover, we use a decen-
tralized architecture of decision making and let the controller of a local cache take local
caching decisions since the content popularity at a local cache is not necessarily the
same as the global content popularity and since the set of mobile users with potentially
different interests in the vicinity of a local cache changes over time. In detail, we propose
an online learning algorithm for context-aware proactive caching based on a contextual
multi-armed bandit (contextual [MAB]) model. Using this algorithm, the controller of
a local cache at the edge of the wireless network is enabled to learn context-specific
content popularity online over time. This chapter presents work originally published
by the author in [MAvK16,MAvK17]. Compared to [MAvK16,MAvK17], in this the-
sis, the regret bound is improved in its constant factors due to a new proof technique.
Furthermore, in this thesis, an analysis of the computational complexity and of the
communication requirements of the proposed algorithm is added. Also, in this thesis,
the ideas of the mathematical proofs are additionally summarized and discussed within
the main body of text, while the full mathematical proofs are given in the appendices.
In addition, in this thesis, the numerical results are revised to show a better comparison
of the proposed algorithm with the oracle solution, which assumes a priori knowledge

about local content popularity.

The remainder of this chapter is organized as follows. Section [4.2] provides a detailed
review of the state of the art on decision making for caching at the edge. In Sec-
tion [4.3] we introduce the system model for context-aware proactive caching at the
edge. A formal problem formulation of context-aware proactive caching for maximiz-
ing the number of cache hits under missing knowledge about content popularity is
presented in Section [4.4] and it is shown that the formulated problem can be under-
stood as a contextual problem. In Section [4.5, we propose an online learning
algorithm for context-aware proactive caching. In Section [4.6] properties of the pro-
posed algorithm are discussed. In particular, an analytical upper bound on the regret
of the proposed algorithm is derived, which proves that the algorithm converges to the
optimal cache content placement strategy. Extensions of the proposed algorithm to
practical requirements are presented in Section £.7] The performance of the proposed

algorithm is evaluated numerically in Section Section [4.9| concludes this chapter.
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4.2 State of the Art

In this section, a review of the state of the art on decision making for caching at
the edge is presented. We start by shortly discussing algorithms that continuously
update the cache during the delivery phase. Then, since it corresponds to the type of
problem considered in this thesis, we discuss in detail the related work on cache content
placement problems with a separate placement phase and a separate delivery phase.

Many practical caching systems apply caching algorithms which update the cache con-
tinuously during the delivery phase, such as the well-known Least Recently Used (LRU))
or Least Frequently Used (LEUI) algorithms [CI97]. While many of these algorithms
are rather simple and typically do not consider future content popularity, recently,
advanced algorithms updating the cache continuously during the delivery phase were
proposed which also learn content popularity trends [LXvdSL16b,|LXvdSL16a].

In contrast to approaches which update the cache continuously during the delivery
phase, in the related work, cache content placement is also often studied for wireless
caching problems with a separate placement phase and a separate delivery phase. Also
the problem of cache content placement considered in this thesis is based on a placement
phase and a delivery phase. Therefore, in the remainder of this section, we review and
discuss related works on cache content placement for wireless caching problems with
a placement phase and a delivery phase. This review complements the short review
presented in Section by discussing in detail the works introduced in Table [I.2]

One line of literature considers cache content placement under the assumption that
knowledge about content popularity is available in advance. The efficiency of content
delivery is increased in [GMDC13| by combining content caching at user devices and
collaborative device-to-device communication. In [SGD™13], the problem of minimiz-
ing the average delay experienced by users that can be connected simultaneously to
several cache-enabled is considered and an approximation algorithm for uncoded
caching among is proposed. In [BBD14a], analytical expressions for the outage
probability and average content delivery rate in a network of equipped with caches
are derived. Ref. [PT13] proposes an approximation algorithm for distributed coded
caching, where the goal is to minimize the probability that mobile users get parts of
content delivered from the instead of the[SBSk. A small cell network in which the
and the can perform multicast transmissions is considered in [PIST16]| and

a multicast-aware caching scheme is presented for minimizing the energy consumption.

However, in reality, prior knowledge about content popularity may not be available at

a local cache. Therefore, a second line of literature investigates cache content place-
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ment under missing knowledge about content popularity. In this case, the controller
of a local cache may apply a worst-case approach by trying to optimize cache content
with respect to a worst-case request scenario. For instance, Ref. [MAN14] combines
caching at user devices with a coded multicast transmission in the delivery phase and
derives information-theoretic gains of caching under a worst-case approach since con-
tent popularity is assumed to be unknown. The proposed coded caching approach is
optimal up to a constant factor.

As an alternative to such a worst-case approach, the controller of the local cache may
take a machine-learning-based approach and learn the content popularity distribution.
Refs. [BBD14b,BBZ™ 15| declare a proactive caching paradigm and propose a proactive
caching algorithm for small cell networks. Using collaborative filtering, a fixed global
content popularity distribution is estimated in a training phase based on a given train-
ing set of content popularities. The learned content popularity distribution is then used
for selecting the cache content to maximize the average user request satisfaction ratio
based on the users’ required delivery rates. A framework is used in [BG14Db],
where an learns a fixed content popularity distribution online by regularly up-
dating its cache content and observing the numbers of requests for the cached files.
Over time, the thus optimizes its cache content placement to maximize the traffic
served locally. The proposed framework is extended in [BG14c, BG14a] for a wireless
infostation by additionally taking into account the costs for adding files to the cache
and by deriving theoretical sublinear upper regret bounds for the proposed algorithms.
Ref. [SAT™14] proposes another extension of the above framework, which in-
corporates coded caching and hence exploits the topology of users’ connections to the
[SBSk. In [EBSLal4|, using a spectral clustering algorithm, users are clustered into
groups of similar interests based on their requests in a training phase. Then, each user
group is assigned to one [SBS. Each then learns the content popularity of its fixed
user group over time. Therefore, the approach in [EBSLal4| relies on a stable user
population.

The above discussed related work on learning-based cache content placement can
be categorized as follows. Learning approaches are either tailored to a specific
type of content popularity distribution [SAT'14], such that the approach is lim-
ited to cases where the type of distribution is known a priori, or they are model-
free [BBD14b, BBZ*15, BG14b|, BG14c, BG14a, SAT 14, EBSLal4] in the sense that
they work for any type of content popularity distribution. Moreover, learning ap-
proaches are either based on offline learning [BBD14b, BBZ™ 15|, or on online learn-
ing |[BG14b|, BG14c, BG14a,|[SATT14,[EBSLal4], the latter ones being able to better
adapt to varying content popularities. Some learning approaches require a training
phase [BBD14b, BBZ"15, EBSLal4], while others manage to only learn during run
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Table 4.1. Related work on learning-based cache content placement with placement
and delivery phase and detailed comparison with proposed algorithm.

[BG14b],
BBD14b
Reference | | [BG14¢], [SAT*14] | [EBSLal4] | This work
[BBZ*15]
[BG14a]

Model-free Yes Yes No Yes Yes
Type. of Offline Online Online Online Online
learning

Free of
training No Yes Yes No Yes
phase
Regret No Yes No No Yes
bounds
Diversity in
content No No No Yes Yes
popularity
User
context- No No No No Yes
aware

SeerC.e (.hf_ No No No No Yes

ferentiation

time [BG14b, BG14c,[BG14a,[SATT14]. While some algorithms are only numerically
evaluated [BBD14b, BBZ 15, SAT 14, EBSLal4], other related works are able to give
performance guarantees by providing analytical regret bounds for their learning algo-
rithms [BG14b, BG14c, BG14a). Additionally, while most related works assume that
there exists one global popularity distribution and that all user requests follow this
distribution [BBD14b, BBZ™ 15, BG14b, BG14c, BG14a, SAT™ 14|, only few works take
into account that there can be diversity in content popularity across the user population
since different users may favor different content [EBSLal4]. Among the related works,
none takes into account that the users’ content preferences may depend on their con-
texts, which is needed for proactive cache content placement in order to adapt to the
preferences of mobile users with different contexts. Moreover, none of the literature
takes into account that cache content placement should reflect the cache operator’s

specific objective who may want to offer service differentiation to its customers.

Table gives an overview of the discussed related work on learning-based cache
content placement with a placement and a delivery phase and provides a detailed
comparison of the related work with the proposed algorithm. In contrast to the related

work, cf. Table 4.1 we propose a context-aware proactive caching algorithm, which for
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the first time jointly considers the following aspects:

(i)

(iii)

The proposed algorithm does not assume a priori knowledge about content popu-
larity, which might be externally given or estimated in a separate training phase.
Instead, without requiring a training phase and model-free, the proposed algo-
rithm learns content popularity online by regularly updating the cache content
and observing the users’ requests for cache content. Based on an analytical
bound, we give performance guarantees of the proposed algorithm, and prove
that the learned cache content placement strategy converges to the optimal cache
content placement strategy which maximizes the expected number of cache hits.

The proposed algorithm explicitly allows different content to be favored by dif-
ferent users. Incorporating such diversity in content popularity across the user
population makes the proposed algorithm suitable for mobile scenarios, where

users with different preferences connect to the wireless caching entity over time.

The underlying model explicitly incorporates that content popularity depends on
a user’s context, such as her/his personal characteristics, equipment, or external
factors, and the proposed contert-aware caching algorithm learns this context-
specific content popularity. Using the proposed algorithm, the controller of a
local cache may proactively cache content specifically tailored to the preferences
of currently connected users based on what it has previously learned in similar
situations, instead of simply caching those files that are popular on average, across
the entire population of users.

The proposed algorithm takes into account the operator’s specific objective by

allowing for service differentiation.

4.3 System Model

4.3.1 Introduction

In this section, we propose a model for context-aware proactive caching in a local cache
at the edge of the wireless network. In accordance with Section [2.2.1] the proposed

overall model consists of the following five components:

(i)

A network model is formulated specifying the assumptions on the wireless network

and introducing the wireless local caching entity that performs caching at the
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edge. The network model is applicable to different types of caching entities, such
as [SBSk equipped with caches, or wireless infostations.

A context model is defined, which includes side information that may impact a
user’s content preferences and hence the content popularity in a local cache.

As general performance criterion to be maximized, the number of cache hits is
considered. However, if the cache operator wishes to offer service differentiation,
the performance criterion to be maximized is the number of weighted cache hits,
where different cache hits may have different weights. Hence, two submodels with
respect to the performance criterion are formulated.

(a) Since the number of cache hits depends on the content popularity, which in
turn depends on the users’ preferences and hence on the users’ contexts, a
model of context-specific content popularity is formulated, which explicitly
allows different content to be favored by different users and that content

popularity depends on a user’s context.

(b) A model of service differentiation is formulated, which allows the cache

operator to provide differentiated services to its customers.

A decentralized architecture of decision making is proposed, where caching deci-

sions are taken by the wireless local caching entity.

An action model is formulated, which determines the different choices of the
wireless local caching entity, namely, which content should and which should not
be cached.

Based on the above, we also design an internal system architecture of the wireless local

caching entity for context-aware proactive caching.

4.3.2 Network Model

We consider a wireless local caching entity which may, for example, be an[SBSequipped
with a cache in a small cell network or a wireless infostation [GBMY97,1R02,BG14c,
BG14a]. The caching entity has a limited storage capacity and a reliable backhaul

link to the core network. In its cache memory, the caching entity may store up to m

files from a finite file library F, which consists of |F| € N files, where we assume that

all files are of the same size. This assumption can be made without loss of generality

since otherwise, a finer packetization could be used and files could be divided into
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Figure 4.1. Network model.

smaller blocks of the same size [SGD™13|LXvdSL16b]. An illustration of the considered
network model is depicted in Figure 4.1 and will be discussed in detail further below.

We assume that the caching system operates in discrete time slots t = 1,2,...,T,
where 7' denotes the finite time horizon. Users located in the coverage area may
connect to the caching entity in order to request locally cached files. Due to the users’
mobility, the set of connected users may change dynamically over time. We assume
that at most Upax € N users may be simultaneously connected to the caching entity.
The number of users connected to the caching entity in time slot ¢ is denoted by Uy,
with 1 < U; < Upax, where we assume that the set of users does not change within a
time slot. However, the model explicitly allows that the set of connected users changes
from one time slot to another, and hence takes user mobility into account. We do not
make any assumptions on the nature of the arrival process of the number of users other
than that the sequence {U;}:—1
caching entity.

r is not influenced by caching decisions taken by the

-----

In each time slot, the caching entity broadcasts the information about the current
cache content in order to inform the connected users about it [BG14b,BG14c,BG14a].
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Whenever a user is interested in a file that is currently stored in the cache of the caching
entity, the user’s device requests the file directly from the caching entity. Upon receiving
a request for one of its cached contents, the caching entity serves the corresponding user
via local communication. In this case, there is no additional traffic induced on neither
the macro cellular network nor the backhaul network. Whenever a user requests a file
that is not cached in the caching entity, the user’s device does not request the file from
the caching entity, but instead, it connects to an to receive the file via the macro
cellular network. The then downloads the file from the core network or from a
content distribution network via its backhaul connection. Hence, in this case, traffic
occurs on both the macro cellular as well as the backhaul network.

To sum up, the caching entity may only observe cache hits, i.e., requests for cached files,
but it cannot observe cache misses, i.e., requests for non-cached files, since the latter
are directly handled via the macro cellular network. While this restriction is usually not
used in wired caching scenarios, it is reasonable for wireless caching since it prevents
the caching entity from being congested by cache misses [BG14b, BG14c, BG14a]. On
the contrary, learning content popularity is more difficult under this restriction. In the
illustration of the considered network model in Figure [£.1] device 1 connects to the
to request a file since the desired file is not locally cached in the caching entity.
This corresponds to a cache miss from the point of view of the caching entity. Device 2
requests a cached file from the caching entity. This corresponds to a cache hit at the
caching entity.

4.3.3 Context Model

Cache content placement requires knowledge about content popularity. Since differ-
ent users may favor different content, content popularity may vary across the user
population. Moreover, various factors may impact a user’s content preferences. Such
factors may be summarized under the term contert. Some examples of context di-
mensions are presented in Table Among relevant context dimensions are personal
characteristics, such as demographic factors (e.g., age [MS10|, gender [HLO5|), per-
sonality [RGZ11], or mood [Zil8§]. Other context dimensions that may influence a
user’s content preferences are the characteristics of her/his user equipment |[ZGCT14],
such as the type of device used to access and consume the content (e.g., smart phone,
tablet), its capabilities, or its battery status. Moreover, external factors may affect a
user’s content preferences, such as the user’s location, the time of day, the day of the
week, and the taking place of events (e.g., soccer match, concert). This categorization

only gives examples of possible context dimensions, but obviously the categorization
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Table 4.2. Examples of context dimensions of different types.

Type Examples
Demographic factors,
Personal characteristics personality,
mood

Type of device,
User equipment device capabilities,
battery status

Location,
time of day,

External factors
day of the week,

events

is neither exhaustive nor is knowledge about the impact of the context dimensions
on content popularity available. Moreover, while a caching entity may have access to
user context by exploiting the data collection resources of mobile devices, as indicated
in Figure [4.1] or information from external sources (e.g., social media platforms), this
access may be restricted to only certain context dimensions due to reasons of privacy
or communication overhead. However, the proposed model and algorithm do not rely
on specific context dimensions to be available. Instead, the model and algorithm can
use the information that is collected from the user. Hence, if context information may
be accessed by the caching entity, the proposed algorithm may exploit this available

context information.

Formally, the context information which may be accessed by the caching entity is mod-
eled as follows. We denote the number of monitored context dimensions per user by D
and we denote the D-dimensional context space by X'. The context space X is assumed
to be bounded and can hence be set to X := [0, 1]P without loss of generality. Hence,
we assume that the context of a user is described in terms of D context dimensions,
and that in each of the D context dimensions, the user context is described by a value
from [0, 1], such that the overall context of a user is hence a vector in [0, 1]P. Clearly,
in practice, a pre-processing might be needed here which maps the actual monitored

user context information to a vector in X = [0, 1].

In time slot ¢, the context vector of a currently connected user i € {1, ..., U;} is denoted
by x;; € X. Moreover, the set of context vectors of all connected users in time slot ¢
is denoted by &} := {x;;}i=1,..v,- We do not make any assumptions on the nature of

the context arrival process other than that the sequence {X;};—1. 7 is not influenced

-----

by caching decisions taken by the caching entity.
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4.3.4 Model of Context-Specific Content Popularity

Next, a model of content popularity in dependence of a user’s context is given. As
stated before, we assume that the caching system operates in discrete time slots. A
user may request several files within one time slot. The number of times a user with
context vector x € X requests a file f € F within one time slot is a random variable
with unknown distribution. This random demand is denoted by d¢(x) and its expected
value is denoted by pf(x) := E [df(x)]. The random demand d;(x) is assumed to take
values in [0, Rpax), where Rpax € N is the maximum possible number of requests for
the same file a user may submit within one time slot. Hence, if R, > 1, it is possible
for a user to request the same file repeatedly within one time slot.

Based on this notation, in time slot ¢, given the context vector x;; of a connected
user i € {1,...,U;}, the random variable describing the demand for a file f € F of
that user is given by d;(x;;) and its expected value is given by p7(x;;). We assume
that in time slot ¢, the random variables {d¢(x:;)}i=1,. v, rer are independent of each
other and each random variable df(x;;) is independent of past caching decisions and
previous demands. Moreover, by d¢(x;;,t), we denote the actual instantaneous demand
of user i € {1,...,U;} in time slot ¢, i.e., the realization of the random variable dy(x; ;)

in time slot t.

4.3.5 Model of Service Differentiation

The general goal of the caching entity is to minimize the load on the macro cellular
network and the backhaul network by selecting the cache content in such a way that the
traffic it can serve locally is maximized, which corresponds to maximizing the number

of local cache hits.

However, the caching entity may additionally need to take into account the cache
operator’s specific objective since in certain cases, a cache operator may want to offer
service differentiation to its customers. Service differentiation might not be adequate
for an [MNOIl operating an since due to net neutrality restrictions, the should
actually purely maximize the number of cache hits. However, service differentiation
may be interesting for the operator of an infostation, e.g., a content provider or a third

party operator, whose customers may be both users and content providers.

As an example, the operator of an infostation may prioritize certain users by caching
content favored by these users. Hence, a cache hit produced by a prioritized user corre-

sponds to a higher value for the operator, as compared to a cache hit by a regular user.
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To formalize such requirements for service differentiation among users, we consider that
different service groups exist and that each user is member of one service group. For-
mally, we consider a finite set G of service groups. For service group g € G, let v, > 1
denote a fixed and known weight associated with receiving one cache hit from a user of
service group g. Let Umax := max,eg vy. There are different approaches how the opera-
tor may choose the weights associated with the different service groups. For example,
the weights may be chosen based on payments, e.g., users may buy higher weights. As
another example, the weights may be chosen based on subscription, e.g., subscribers
may obtain priority compared to one-time users. Also, the weights may be chosen
based on the importance of users for the operator, e.g., in case the operator wants to
prioritize certain target groups due to advertisement or reputation. Alternatively, the
weights may even be chosen by the users themselves based on their interests, e.g., users
may indicate their degree of openness in exploring other than their most preferred con-
tent. In any case, cache content placement that takes into account such service weights
should aim at maximizing the number of weighted cache hits. If content popularity
is heterogeneous across the user population, by maximizing the number of weighted
cache hits, service differentiation affects the selection of cache content.

The case discussed above is not the only type of service differentiation that may be
interesting for the operator of an infostation. Especially if the operator is a third party
whose customers are different content providers, the operator may want to provide
differentiated services to content providers. For example, the operator may prioritize
certain content providers by preferably caching their content. To formalize such re-
quirements for service differentiation among different content providers, we consider
that each content is associated with a weight. Formally, for file f € F, we consider a
fixed and known prioritization weight wy > 1 associated with receiving one cache hit
for file f. Let wmax := maxserwy. The prioritization weights may either be chosen
individually for each file or per content provider.

The case that no service differentiation is needed and hence the goal remains to max-
imize the number of (non-weighted) cache hits, may formally be modeled as the case
where there is only one service group g with weight v, = 1 and the prioritization weights
satisfy wy = 1 for all f € F. Therefore, the case without service differentiation is a
special case of the proposed model and while this special case is not treated explicitly

in the sequel, it is implicitly contained in the remainder of this chapter.

In time slot ¢, the service group to which a currently connected user i € {1,...,U;}
belongs is denoted by g;; € G and its corresponding weight is given by v,, .. Moreover,
the set of service groups to which the set of users in time slot ¢ belongs is denoted

by Gt := {gti}i=1...v,- We do not make any assumptions on the nature of the arrival
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process of the service groups other than that the sequence {G;}:—1. . r is not influenced
by caching decisions taken by the caching entity.

4.3.6 Architecture of Decision Making

We propose to use a decentralized architecture of decision making, cf. Section [2.2.3]
in which the wireless local caching entity takes local caching decisions. We use a
decentralized architecture since the unknown local content popularity is not necessarily
the same as the global content popularity [GALMO07,ZSGK09,BSW12] and since the
set of mobile users with potentially different interests in the vicinity of a caching entity

changes over time.

4.3.7 Action Model

The caching entity’s actions are formalized as follows. We introduce a binary vari-
able y; s for each file f € F and each time slot ¢ € {1,..., T}, where

1, if file f is available in the cache in time slot ¢,
yt,f = (41)

0, otherwise.

Since the caching entity may store up to m files from the finite library F in its local

cache, the following capacity constraints
> pp<m, t=1,..T, (4.2)
fer

have to hold. We denote the set of cached files in time slot ¢ by

Co:={feF: ys=1} (4.3)

4.3.8 Internal Architecture of Wireless Local Caching Entity

The internal system architecture of the wireless local caching entity for context-aware
proactive caching is designed similarly as the architecture presented in [LXvdSL16b,
LXvdSL16a]. Figure shows an illustration of the context-aware proactive caching
architecture. The main building blocks are a Local Cache, a Cache Management entity,

a Learning Module, a Storage Interface, a User Interface, and a Context Monitor. The
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Figure 4.2. Context-aware proactive caching architecture.

Cache Management contains a Cache Controller and a Request Handler. The Learning

Module consists of a Decision Engine, a Learning Database, and a Context Database.

The workflow comprises several phases as enumerated in Figure [4.2] and is described

in the sequel.

e Initialization

(1) The cache operator informs the Learning Module about the goal of caching
(including details about weights in case of service differentiation) and about the
time horizon. Thereupon, the Learning Module fixes the appropriate periodicity
of context monitoring and cache refreshment. Then, the Cache Management and

the Context Monitor are informed about the periodicity.

e Periodic Context Monitoring and Cache Refreshment

(2) The Context Monitor periodically retrieves context information about cur-
rently connected users from the User Interface and optionally collects additional
context information from external sources (e.g., social media platforms). In case
of service differentiation, if different service groups exist, the Context Monitor
also retrieves the service groups of the connected users. (3) The collected infor-
mation is delivered from the Context Monitor to the Context Database in the

Learning Module. (4) The Decision Engine periodically extracts the new context
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information from the Context Database. (5) Based on a comparison with results
stored in the Learning Database in previous time slots, (6) the Decision Engine
decides which files to cache in the upcoming time slot. (7) The Cache Controller
is instructed by the Decision Engine to refresh the cache content accordingly.
(8) The Cache Controller compares the current and the required cache content
and then removes non-required content from the cache. If required content is
missing, the Cache Controller requests the Storage Interface to fetch the content
from storage servers and to store it into the local cache. (9) Then, the User Inter-
face is informed about the new cache content by the Cache Controller. (10) The
User Interface informs currently connected users about the new cache content.

e User Requests
(11) If a user requests a cached file, the User Interface forwards the request to the
Request Handler. The Request Handler stores the request information, retrieves
the file from the local cache and serves the user.

e Periodic Learning
(12) Upon completion of a time slot, the Request Handler hands the information
about all requests that have arrived in this time slot to the Learning Module. The
Learning Module updates the Learning Database with the context information
collected in the beginning of the time slot and with the number of requests for
cached files that have arrived in the time slot according to the information from
the Request Handler.

4.4 Problem Formulation

4.4.1 Formal Problem Statement

In this section, using the models from Section [4.3] we formulate the problem of context-
aware proactive caching at the edge for maximizing the number of cache hits under
missing knowledge about content popularity to be locally solved by a wireless local
caching entity. As stated before, the caching system operates in discrete time slots t =
1,2,...,T, where T denotes the finite time horizon. As depicted in Figure [£.3] the

following sequence of operations is executed in each time slot ¢:

(i) The caching entity monitors the contexts X, = {x;;};—1__p, of the U; currently
connected users as well as the service groups G; = {¢+.; }i=1,.., to which the users

belong.
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observe select cache content C; serve user requests
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Figure 4.3. Sequence of operations of context-aware proactive caching in time slot ¢.

(ii) The caching entity updates the cache content based on the contexts X;, the
service groups G; and their corresponding service weights, the file prioritiza-
tion weights wy, f € F, and knowledge from previous time slots. Then,
the caching entity informs the connected users about the current cache con-
tent Cr = {ct1, .o, Ceom }-

(iii) Until the end of time slot ¢, users may request the currently cached files as given
in C;. The caching entity serves the users’ requests for cached files. Moreover, the
caching entity observes the demand d_, ; (x¢4,t) of each user i = 1, ..., U; for each
cached file ¢, ; € C;, j = 1,...,m, during this time slot, i.e., the caching entity
monitors the number of cache hits for each cached file.

Consider a sequence of T time slots with arbitrary user arrivals, i.e., consider a se-
quence t = 1,....,7 with an arbitrary sequence of user numbers {U;},—; 1 and
with arbitrary sequences of user contexts {X;, = {xt;}i=1. v, }+=1..7 and service
groups {G; = {gt.i}i=1,..v, }t=1,. 7. The goal of the caching entity is to select the cache
content in such a way that the expected cumulative number of weighted cache hits up
to the finite time horizon 7' is maximized. Based on the action model in Section
and the capacity constraints in 7 the problem of cache content placement can be

formally written as

T Uy
max Z Z Yty Z Uge,ilbf (Xt,i) (4.4)
i=1

t=1 feF

st gy <m, t=1,..T,
ferF

vy €10,1}, feF, t=1,..T,
with y, ¢ of (4.1), wy and vy, , as defined in Section |4.3.5] jif(x;;) as defined in Sec-
tion and the constraints from (4.2)).

Problem (4.4) depends on the context-specific content popularity, i.e., the expected
demands of connected users as a function of their contexts.
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4.4.2 Oracle Solution

First, we classify Problem under the assumption that the caching entity had a
priori knowledge about context-specific content popularity. Hence, only in this section,
suppose that the caching entity had a priori knowledge about context-specific content
popularity like an omniscient oracle, i.e., assume that the caching entity would know
the expected demand pf(x) = E [d(x)] for any pair consisting of a context vector x €
X and a file f € F. Under this assumption, Problem corresponds to an [LP]
problem, cf. Section[2.3.2.2] Since the sub-problems for the different time slots are not
coupled, Problem can be decoupled into 7" independent sub-problems.

The sub-problem associated to any time slot ¢ corresponds to a knapsack prob-
lem, see Section , with a knapsack of capacity m and with |F| items, where
item f € F has a unit weight and a non-negative profit wy Zletl Vg, Mg (X¢i). Due
to the unit weights, each sub-problem is actually a special case of the knapsack
problem which may be solved efficiently. In detail, the optimal solution of the sub-
problem in time slot ¢ can be easily computed in a running time of O(|F|log(|F]))
as follows. Given the contexts X; and the service groups G;, the optimal solution is
given by ranking the files in F according to their expected weighted demands and
by caching the m highest ranked files. We denote these top-m files for pair (X;, G;)
by fi(X:, Gr), fo (X, Gr), oo, [ (X, Gi) € F. Formally, for j = 1,...,m, they satisfy

Uy

fi (X, Ge) € argmax wy Z Vg, 1 (Xei), (4.5)
FERNULZHA (XG0 i

where U)_, {f(X;,G:)} := 0. Note that several files may have the same expected
demands, i.e., the optimal set of files may not be unique, which is also captured here.
Moreover, by C; (X, Gt) == Up—{fi (X, Gi)}, we denote an optimal choice of files to
cache in time slot ¢. Then, an optimal overall solution to Problem (4.4) is given by the
collection

C*={C; (X, G) 1.1 (4.6)

We call the optimal collection in (4.6) the oracle solution since it may be calculated
by an omniscient oracle based on a priori knowledge about context-specific content
popularity.

4.4.3 Contextual Multi-Armed Bandit Formulation

Now, we characterize Problem (4.4]) under missing knowledge about content popularity

since typically, the caching entity does not have a priori knowledge about content pop-
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ularity. In this case, the caching entity cannot simply solve Problem as described
in Section[d.4.2]since it does not know the expected demands iy (x) = E [d;(x)]. Hence,
a machine-learning-based approach for designing the decision agent, cf. Section [2.3.1
is required since the caching entity can only learn the content popularity by caching
different files over time and subsequently observing their cache hits. Considering the
problem formulation in Section , Problem can be understood as a contextual
problem, cf. Section [2.3.3.4] as follows. The caching entity corresponds to an
agent which needs to sequentially select from a set of actions. In our case, the set of
actions is given by the set F of files. There is a sequence of time slots t = 1,..., T,
or, rounds, in the wording of Section [2.3.3.4] each of them consisting of three events
happening sequentially. In each time slot, the caching entity first observes user con-
texts Xy = {x¢;}iz1
set of contexts revealed to an agent in the beginning of a round. Then, the caching

v,- This corresponds to a

----------

entity selects a subset of m files from set F. This corresponds to an agent selecting a
subset of actions. Then, the caching entity observes the demands for each cached file.
This corresponds to an agent receiving a reward for each selected action. Taking into
account the assumptions about the arrival processes of the number of users, their con-

texts and service groups in Sections — Problem (4.4]) hence corresponds to a
contextual [MAB] problem with a similar model as the one presented in Section

The main difference between Problem (4.4) and the model in Section is that in
Problem (4.4)), the agent may select several (in detail, m) actions per round instead
of only one as in the model in Section Hence, Problem (4.4) may formally be
called a contextual combinatorial [MAB| problem, cf. Section [2.3.3.2] However, neither
the objective function nor the constraint in Problem (4.4)) is combinatorial, in contrast
to “real” combinatorial [MABI problems, where the reward may depend on the subset
of selected actions and constraints may be combinatorial. Therefore, Problem ({4.4])
is therefore more accurately a contextual [MAB] problem with several action selections
per round, but not of combinatorial nature.

Having formulated Problem as a contextual MABl problem, the task of the caching
entity is as follows. The caching entity needs to learn the unknown expected de-
mands p17(x) = E[d(x)] over time by regularly updating the cache content and ob-
serving the users’ contexts and their demands for the cache content. Since the caching
entity needs both to learn expected demands and to maximize the number of weighted
cache hits online over time, the caching entity has to find a suitable trade-off between
caching files about which little information is available (exploration) and files of which
it believes that they will yield a high number of cache hits (exploitation). Which files
to cache in a time slot depends on the history of cached files in the past and the corre-

sponding observed demands. An algorithm which maps the history to the selections of
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files to be cached is called a learning algorithm. The loss of learning can be evaluated
by comparing the learning algorithm and the oracle solution given in in terms of
their respective achieved cumulative weighted numbers of cache hits. Formally, for a
sequence of T time slots with arbitrary user arrivals, the regret of learning with respect

to the oracle solution is given by

T) - Z Z Z Vg, ; (wf (Xt,Ge) E [df (X Qt)(xt iy t)} —E [th,ijt,j (Xt,u t)]) ) (47)

t=1

where d.,  (x;;,t) denotes the instantaneous demand for the cached file ¢;; € C; of
user ¢ with context vector x;; at time ¢. Here, the expectation is taken with respect to
the selections made by the learning algorithm and the distributions of the demands.

4.5 Proposed Algorithm

Using the formulation as contextual problem in Section [£.4.3] we propose an
online learning algorithm for context-aware proactive caching that is based on the
contextual [MAB] algorithms in [LPP10,Sli14}, TvdS15a,/TZvdS14], cf. Section
for a discussion of these works within the context of the literature. The closest
contextual MAB algorithm to our proposed algorithm is presented in [TZvdS14]. In
their considered contextual problem, there are several learners, each of which
observes a single context arrival in each time slot. Then, each learner needs to select
a subset of actions with the goal to maximize the sum of expected rewards. While
multiple learners are present in [TZvdS14], only one learner is present in the caching
problem considered in this chapter. Specifically, this learner corresponds to the caching
entity which needs to select a subset of files to cache in each time slot. Moreover, the

algorithm proposed below extends the algorithm from [TZvdS14] as follows:

e The proposed algorithm allows multiple contexts to arrive in each time slot, and
the algorithm then selects a subset of actions with the goal to maximize the sum
of expected rewards given the set of context arrivals. In the considered caching
problem, where each user has her/his own context, this allows the caching entity
to observe the set of contexts of the set of currently connected users and then to
cache a subset of files with the goal to maximize the sum of expected numbers

of cache hits given the users’ contexts.

e Moreover, the proposed algorithm allows each arriving context to be annotated

with a weight, so that when different contexts arrive within the same time slot,
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differentiated services may be provided per context, by selecting a subset of ac-
tions with the goal to maximize the sum of expected weighted rewards. In the
considered caching problem, this allows the caching entity to prioritize certain
users when selecting the cache content, by placing more weight on expected cache

hits of prioritized users.

e Finally, the proposed algorithm allows each action to be annotated with a weight,
such that certain actions may be prioritized. In the considered caching problem,
this allows the caching entity to prioritize certain files when selecting the cache

content, by placing more weight on these files.

Here, we give a short overview of the proposed algorithm. The proposed algorithm is
based on the assumption that users with similar context on average have similar content
preferences. Under this natural assumption, the algorithm can exploit observations of
the users’ context information together with the users’ requests for cached files for
improving future caching decisions. During initialization, the algorithm uniformly
partitions the context space, i.e., it splits the context space uniformly into smaller sets
of similar contexts. This partition of the context space is later used at run time, where
the algorithm learns content popularity independently in each of these sets of similar
contexts. At run time, the algorithm operates in discrete time slots. In the beginning
of a time slot, the algorithm observes the contexts of currently connected users. Then,
the algorithm selects the files to cache in this time slot. For this purpose, the algorithm
first checks based on a control function, which will be defined below, if there are files
that have not been cached sufficiently often before. On the one hand, if this is the
case, the algorithm enters an exploration phase and caches a random set of files from
the set of files that have not been cached sufficiently often before. Exploration phases
enable the algorithm to learn the popularity of files that have not been cached often
before. On the other hand, if this is not the case, the algorithm enters an exploitation
phase and caches files that on average were requested most when cached in previous
time slots with similar user contexts. After the selected files have been cached, the
algorithm observes the users’ requests for these files until the end of the time slot. In

this way, the algorithm learns context-specific content popularity over time.

We call the proposed algorithm the context-aware proactive caching (CAC) algorithm.
The pseudocode of [CAC]is given in Algorithm In detail, [CAC] proceeds as follows.

During initialization, [CAC] creates a uniform partition Pr of the context space X =

[0,1]7 into (hr)” D-dimensional hypercubes of identical size ;- x ... x 7-. The

parameter hr is an input to the algorithm which determines the number of sets in the

partition. An adequate choice of the parameter hr will be proposed in Section 4.6.1
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Algorithm 4.1 [CACt Context-Aware Proactive Caching Algorithm

1: Input: T, hy, K {1,....,T} = R,
2: Initialize context partition: Create partition P of context space [0, 1]? into (hy)P

10:
11:
12:
13:
14:
15:

16:

17:
18:
19:
20:
21:
22:
23:
24:

25:

26:
27:
28:

hypercubes of identical size
Initialize counters: For all f € F and all p € Pr, set Ny, =0
Initialize estimated demands: For all f € F and all p € Pp, set jiy, =0
foreacht =1,...,7T do
Observe number U; of currently connected users
Observe user contexts X; = {x;;}i=1,. v, and service groups G = {¢+i }i=1...1,
Find P; = {pt,}i=1...v, such that x;; € pr; € Pryi=1,...,U;
Compute the set of under—explored files ¢ in
if 7 # () then > Exploration
Fier = size(F})
if Fle:+ > m then
Select ¢ 1, ..., ¢, randomly from F*°
else
Select ¢y 1, ..., ¢t Fye, @S the Fiey files from Fp

Select ¢t pe 415 s Coym @ the (m— Fey) files f1 .6 (1), .. fm FuePeG: ()

from (|4.9)
end if

else > Exploitation
Select ¢;1, ..., Com as the m files fip,6,(t), ..., fmprc, (t) from (E.10)
end if
Broadcast information about cache content C;
Observe demand d;; of each user ¢ =1, ..., U, for each file ¢, ;,7 = 1,...,m
for:=1,...,U; do
for j=1,...,mdo

~ 'u'Ctj pthct]ptz+d]Z _
Fetjpes = Ne, jpyi+1 and NCt GoPti th,jmt,i +1
end for
end for

end for
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Moreover, initializes a counter Ny, (t) for each pair consisting of a file f € F
and a set p € Pr. The counter Ny, (t) corresponds to the number of times in which
file f € F was cached while a user with context from set p was connected to the
caching entity before time slot ¢ (i.e., if 2 users with context from set p were connected
in one time slot and file f was cached, the counter is increased by 2). Additionally,
initializes the estimate fis,(t) of each pair consisting of a file f € F and a
set p € Pr. The estimate fif,(t) corresponds to the estimated demand for file f € F
under contexts from hypercube p € Pr in time slot . The estimated demand is
calculated as the sample mean of previously observed demands: Let &,(t) be the set
of observed demands of users with context from set p when file f was cached before time
slot t. If before time slot ¢, file f was never cached when users with context from set p
appeared, we have &,(t) = 0 and fif,(t) := 0. Otherwise, the estimated demand of
file f in set p is given by the sample mean jif,(t) := Fi(t)l zdegf’p(t) d. The set E;,(t)
itself does not appear in Algorithm since the estimated demand fis,(t) may be
updated based on jif,(t — 1), Ns,(t — 1) and based on the observed demands in time
slot t — 1. Moreover, in Algorithm , the argument ¢ is dropped from counters Ny ,(t)
and fir,(t) since previous values of these counters do not have to be stored.

In the beginning of each time slot t, first observes the number U; of currently
connected users, the users’ contexts X, = {X;;}i=1..v,, and the service groups G; =
{9t:}i=1,..v, to which the users belong. Then, determines for each of the context
vectors x;; € AX; the set p,; € Pr, to which the context vector belongs. Hence,
for x;; € X,,[CAC finds p,; € Pr such that x;; € p;; holds. The collection of these sets
is denoted by P; := {pt}i=1..v,- Then, the algorithm determines whether to enter an
exploration phase or an exploitation phase. In order to determine which phase to enter,
the algorithm checks whether there are files that have not been explored sufficiently
often. For this purpose, the algorithm calculates the set of under-explored files F;*°
based on

Fe = UL {f € F: Ny, (t) < K1)}, (4.8)

where K : {1,...,T} — R, is a deterministic, monotonically increasing control function,
which is an input to the algorithm. The choice of the control function is crucial since
it determines the trade-off between exploration and exploitation. An adequate choice

of the control function, which guarantees a good balance in terms of this trade-off, will

be proposed in Section [£.6.1]

Let Fler := |F;°| be the size of set F°. If the set F* is non-empty, i.e., Fuer > 0,
enters an exploration phase. In case the set F}'° contains at least m elements, i.e.,

Fiet > m, the algorithm randomly selects m files from F}' to cache. In case the set F;*°
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contains less than m elements, i.e., F; < m, it selects all Fi,, files from F}* to cache.
Since the cache is not fully filled by Fye; < m files, (m — Fye;) additional files may be
cached. In order to exploit knowledge obtained so far,[CAC]selects (m— Fye+) additional
files from F\ F}* as follows. [CACranks the files in F \]—" 1e according to their estimated
weighted demands, and selects those (m — Fyey) files fip,6,(t); ) fne Fue PG (1) €
F \ F which satisfy for j = 1,...,m — Fies:

fima() € agmax wpd vy iigp(t). (4.9)
fef\(fyeu;gl{fk,pt,gt(t)}) =

If the set of files defined by (4.9) is not unique, ties are broken arbitrarily. Note
that by this procedure, even in exploration phases, the algorithm additionally exploits,
whenever the number of under-explored files is smaller than the cache size.

If the set ]:t“e is empty, [CAC]enters an exploitation phase and selects m files from F as
follows. Cl ranks the files in F according to the estimated weighted demands, and
selects those m files fip,6,(t), ..., fm.prc.(t) € F which satisfy for j = 1,...,m

fjﬂ’t,gt (t) € argmax wy ngt,i/lﬁpt,i(t)‘ (4'10)
feRN(UiZitfepna ) =t

If the set of files defined by (4.10) is not unique, ties are again broken arbitrarily.

After caching the selected files, the algorithm broadcasts the information about cache
content C;. Then, the algorithm observes the users’ requests for these files until the end
of the time slot. Upon completion of the time slot, it updates the estimated demands

and the counters of cached files.

4.6 Properties of Proposed Algorithm

4.6.1 Upper Bound on Regret

In this section, the performance of [CAClis analyzed by determining its regret with re-
spect to the oracle solution, as defined in (4.7)). Specifically, the theorem presented be-
low shows that the regret of [CAClis sublinear in the time horizon 7', i.e., it is shown that

there exists v < 1 for which R(T") = O(T") holds. This bound on the regret guarantees

RO _

that [CAC] converges to the oracle solution for 7' — oo, since then limy_,o =5 =
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holds. The regret bound bases upon the assumption that the expected demand for a
file is similar in similar contexts, meaning that users with similar contexts are likely
to consume similar content. This assumption is natural since when the users’ content
preferences differ based on the users’ contexts, one may divide the user population into
segments of users with similar context and similar preferences. The similarity assump-
tion is captured by the following Holder continuity assumption, cf. Section

Assumption 4.1 (Holder continuity assumption). There exist L > 0 and 0 < o < 1
such that

g (%) = s (X)| < Lllx = |5 (4.11)

holds for all f € F and for all x,x € X, where || - ||p denotes the Euclidean norm
in RP.

While Assumption [4.1]is needed for the analysis of the regret, it is important to note
that [CACImay also be applied to data which does not satisfy this assumption. However,
a regret bound may not be guaranteed in this case.

The following theorem shows that the regret of [CAClis sublinear in the time horizon 7T'.

Theorem 4.1 (Bound for R(T)). Let K(t) = tFaiD log(t), t = 1,....,T, and hy =
[Tﬁ] If [CAQ is run with these parameters and Assumption m holds true, the
regret R(T) is bounded by

R(T) < mUnaxUsax Wrax <RmaX2D|]-“| - (log(T)T3+5 + T5+D)

2Rmax 2a+D @ 2a+D 7T2
T340 + 2L D2T34D + U Rnax | F|— 1. 4.12
T 2a+D)/Ba+ D) * * | '3) (4.12)

The leading order of the regret is hence O <log(T)T%>.

The proof can be found in Appendix The idea of the proof is as follows. First,
the regret is decomposed into two terms, one term representing the regret due to
exploration phases and one term representing the regret due to exploitation phases.
Each of the two terms is then bounded separately. Bounding the first term works
as follows. The loss due to selecting suboptimal files in exploration phases may be
upper-bounded by a constant. Moreover, it is shown that the number of exploration
phases is limited and can be bounded sublinearly in 7', given an appropriate choice of

the input parameters. Overall, this leads to a sublinear upper bound on the regret due
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to exploration phases. The idea for bounding the second term is as follows. First, one
distinguishes between two different types of exploitation phases, depending on whether
the estimated demand fiy,, ,(t) of each file f € F in each current hypercube p;;, i =
1,...,Uy, is “close” to its expected value E[jif,, ,(t)]. Then, for exploitation phases in
which the latter holds true, one can show that even if a suboptimal set of files is selected,
the loss cannot be very large, but can in fact be bounded sublinearly in 7', given an
appropriate choice of input parameters. For the second type of exploitation phases, the
loss due to selecting suboptimal files is upper-bounded by a constant. Moreover, one
can show that the number of this type of exploitation phases is limited by a sublinear
bound in T" given an appropriate choice of the input parameters. Overall, this leads to
a sublinear upper bound on the regret due to exploitation phases. Then, the overall

regret bound follows by setting the appropriate input parameters.

Note that the proof technique used in this thesis is inspired by [KTvK18| and it is
different from the one used in our original publications on context-aware proactive
caching [MAvK16, MAvK17]. Using the new proof technique, the regret bound pre-
sented in Theorem improves the regret bounds derived in [MAvK16,MAvK17] in
some of the constant factors (while the order of the regret remains the same). The
regret bound given in Theorem is sublinear in the time horizon T'. Hence, when T'
goes to infinity, converges to the optimal cache content placement strategy that
maximizes the expected number of weighted cache hits. Moreover, since Theorem [4.1]is
applicable for any finite time horizon T, it characterizes [CACTs speed of convergence.
Finally, Theorem shows that the regret bound for the general case with service
differentiation is a constant multiple of the regret bound in the special case without
service differentiation, in which v, = 1 and wyx = 1 holds. Therefore, also in the

case without service differentiation, the order of the regret is of order O <T SaiD log(T )) .

4.6.2 Computational Complexity

Here, we analyze the computational complexity of the proposed algorithm within one
time slot ¢ as a function of the dimension D of the context space and of the library
size |F|. For this purpose, we identify the most computationally expensive procedures
in the algorithm.

The complexity of line 6 in Algorithm [4.1] does neither grow with D nor |F|, and hence
the computational complexity of this line is O(1). The observation of the user contexts
grows as O(D) since user contexts are vectors of length D, and each entry needs to be

considered once. In Line 8, finding the hypercube in the partition of the context space
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to which a user context vector belongs, has a complexity that grows as O(D). This is
because, one can give a separate index to each hypercube in each context dimension and
then compute the index of the hypercube to which a context vector belongs in each of
the D context dimension once and independently of the other dimensions. Computing
the set of under-explored files in Line 9 has a complexity that grows as O(|F|) since each
file has to be considered once. Lines 10 and 11 have a computational complexity that
grows at most as O(|F|) by considering each file at most once. Line 12 neither grows
with D nor |F|, and hence its computational complexity is O(1). Selecting m files in
lines 13, 15-16 or 19 neither grows with D nor |F| and is hence of order O(1). Ranking
the files in lines 16 or line 19 has a complexity that grows as O(|F|log | F|) since at most
| F| files need to be sorted |[CLRS09]. Finally, the remaining lines neither grow with D
nor |F|, and hence their computational complexity is O(1). Overall, the computational
complexity of the proposed algorithm grows hence as O(D + |F|log|F|), i.e.,
has a computational complexity that grows linearly as a function of the number
of context dimensions and log-linearly as a function of the file library size.

4.6.3 Memory Requirements

Here, we study the memory requirements needed for running the proposed context-
aware proactive caching algorithm. The memory requirements of mostly consist
of the counters and estimates kept by the algorithm during its runtime, cf. [TvdS15a].
The algorithm keeps the counter Ny, and the estimate jis, for each pair consisting
of a set p € Pr and a file f € F. The number of files in F is |F|. Moreover, if
the input parameters from Theorem are used, the number of sets in P is upper-
bounded by (hy)P = fTﬁ]D < (14 Tﬁ)D . Therefore, the required memory
is upper-bounded by 2|F|(1 + Tﬁ)D . This shows that the required memory is
sublinear in the time horizon 7T'. This means that when 7" goes to infinity, the algorithm
approaches infinite memory requirements. However, since in practice, only the counter
and estimate of those sets p € Pr have to be kept to which at least one of the already
arrived user contexts belonged, the actual number of kept counters and estimates may
be much smaller than given by the upper bound.

4.6.4 Communication Requirements

Here, we study the communication requirements of [CAC] in one time slot t. In time
slot ¢, the caching entity observes the contexts of the U; currently connected users. If

all context information is collected from the mobile devices (instead of from external
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sources, see Section , the mobile device of each user needs to submit a vector of
length D to the caching entity. Moreover, in time slot ¢, the caching entity informs the
users about the current cache content by sending a broadcast, consisting of identifiers
of the m currently cached files. This broadcast would also have to be sent using a
proactive caching algorithm for caching at the edge which does not exploit context
information [BG14b,BG14c,BG14a]. Hence, the only additional data transmission in
resulting from context awareness is the transmission of the U; context vectors,
and the amount of data that each mobile device needs to transmit is only linear in the
dimension D of the context space. Moreover, even less data needs to be transmitted by
the mobile devices if a part or all of the context information is collected from external

sources (e.g., social media platforms).

4.7 Extensions

4.7.1 Multicast Transmissions

Multicasting has been shown to be beneficial in combination with caching [MAN14,
PIST16]. may be extended to include multicast transmissions in the following
way. Instead of serving each request for a cached file by a unicast transmission,
may wait for several incoming requests and then serve requests for the same file by
a multicast transmission. In detail, [CAC| could be extended as follows. Each time
slot ¢ is divided into a fixed number of intervals. During each of the intervals, the
incoming requests for cached files are first monitored and accumulated. At the end of
an interval, requests for the same file are served by a multicast transmission. Since
there may be files which are only requested once within an interval and since knowledge
about such low content popularity may already be available based on what has been
previously learned, a request for a file with low estimated demand could, however, still
be immediately served by a unicast transmission. In this way, unnecessary delays for
the users are prevented in cases in which another request is unlikely and thus a multicast
transmission may not be needed anyway. Finally, service differentiation could be taken
into account when incorporating multicast transmissions into [CACl For example, [CACH
may always serve high-priority users via unicast transmissions such that their delay is

not increased due to waiting times for multicast transmissions.
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4.7.2 User Ratings

A content provider operating an infostation may want to cache content which is not
only requested often, but which also receives high ratings from the users. Instead of
selecting the cache content with respect to the expected demands d;(x) in order to
maximize the number of (weighted) cache hits, may be adapted to additionally
take user ratings into account for cache content placement in the following way. Assume
that a user may rate a content after she/he has requested and consumed the content.
Further assume that the rating lies in a range [ryin, "max] C Ry. For a context x,
let rf(x) be the random variable describing the rating of a user with context x in case
she/he requests file f and makes a rating thereafter. Then, we define the random

variable

dy(x) :=rp(x)dg(x), (4.13)
which reflects both the demand and the rating of a user with context x for file f.
By carefully designing the range of ratings, the content provider forms the trade-off
between ratings and cache hits. When applying with respect to cif(x) instead
of d¢(x), the algorithm additionally needs to observe the user ratings in order to learn
content popularity in terms of ratings. If user ratings are always available, Theorem [4.]]
applies and provides a regret bound of O (T% log(T ))

However, users may not always submit a rating after consuming a content. When a
user’s rating for a file is missing, we assume that does not update the counter
and estimate of the corresponding file based on this user’s content request. However,
as a result, [CAC] may require a higher number of exploration phases. Hence, the regret
of [CAC is influenced by the willingness of the user population to submit ratings of
requested content. Let 8 € (0,1) be the probability that a user submits a rating after
requesting a file. Then, the regret of [CAC]is bounded as follows.

Theorem 4.2 (Bound for R(T) for rating-based caching with missing ratings).
Let K(t) = t3aiD log(t), t = 1,...,T, and hy = (Tﬁ} If [CAQ is run with
these parameters with respect to cif(x), Assumption from Section holds true
for E[czf(x)] and a user submits a rating with probability 5 after requesting a file, the
regret R(T) is bounded by

1 2a
R(T) < mUpaxVmaxWmax (ERmaX2D|}"| . (log(T)Tﬁ + Tﬁ)

2Rmax 2a+D o 2a+D 7T2
T3040 + 2L D 2T 304D + U o R | Fl— |- 4.14
" a1 D)/BatD) anE * | '3) (4.14)

The leading order of the regret is hence O (%T% log(T)>.
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The proof can be found in Appendix The proof of Theorem [4.2] works analogously
to the proof of Theorem applied to df(x) instead of d(x), by first dividing the regret
into two terms representing the regret due to exploration and exploitation phases, and
then bounding each of the terms separately. The regret due to exploitation phases then
remains exactly the same. However, the regret due to exploration phases changes, since
in case of rating-based caching with missing ratings, does not update the counter
and estimate when no rating is given for a requested file. Hence, the required number
of exploration phases may increase. It can be shown that the expected number of
exploration phases can be upper-bounded by % times the number of exploration phases
of the original case considered in Theorem [£.1 The rest of the proof works analogously
to the proof of Theorem [4.1]

Note that the proof technique used in this thesis is inspired by [KTvK18| and it is
different from the one used in our original publication on context-aware proactive
caching [MAvK17). Using the new proof technique, the regret bound presented in
Theorem improves the regret bound derived in [MAvK17] in some of the constant
factors (while the order of the regret remains the same). Comparing Theorem with

Theorem [4.1], in case of rating-based caching with missing ratings, the regret of [CAC]is
1
8
number of content requests received by a user until the user submits one rating. Note

scaled up by a factor - > 1 in one summand. This factor corresponds to the expected
that, however, the time order of the regret remains the same. Hence, [CAC]is robust
under missing ratings in the sense that if a few users refuse to rate requested content,
still converges to the optimal cache content placement strategy when T' goes to
infinity.

4.7.3 Asynchronous User Arrival

Our model in Section assumed that the set of connected users may change from
one time slot to another, but that it remains static within each time slot. This means,
that only those users may request files within a time slot that were connected to the
caching entity in the beginning of that time slot. However, it is possible to extend [CAC]
such that it takes into account that users connect to the caching entity asynchronously,
i.e., within the time slots of [CACL If, after the context monitoring in the beginning of
a time slot, a user immediately disconnects from the caching entity without requesting
any file, that user should be excluded from learning. Hence, in [CAC| the counters
and estimates are not updated for immediately disconnecting users. If, after cache
content placement within a time slot, a user connects to the caching entity, her/his

content requests may be used for learning, even though her/his context has not been
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considered in the caching decision of that time slot. Therefore, in [CAC| the counters

and estimates are updated based on this user’s content requests.

4.7.4 Multiple Wireless Local Caching Entities

Practical caching systems contain multiple caching entities and each of the caching
entities needs to learn its local content popularity. In such a network consisting of
multiple caching entities, [CAC] which was designed for cache content placement in a
single caching entity, could be applied separately and independently by each caching
entity. However, may also be extended to the case that coverage areas of caching
entities overlap. We call this extension the context-aware proactive caching with area
overlap (CACad)) algorithm. The main idea of is that caching entities may
learn content popularity faster by not only learning from their own cache hits, but also
by learning from cache hits occurring at neighboring caching entities with overlapping
coverage area. For this purpose, caching entities overhear cache hits from users in the

intersection to neighboring coverage areas.

Specifically, extends as follows: monitors user context and selects
cache content in the same way as does. However, using [CACad, a caching en-
tity not only observes its own cache hits (line 22 in Algorithm , but it overhears
cache hits occurring at neighboring caching entities from users in the intersection to
neighboring coverage areas. Subsequently, using [CACadl the caching entity not only
updates the counters and estimates of its own currently cached files (lines 23-27 in
Algorithm , but it additionally updates the counters and estimates of files of which
it overheard cache hits at neighboring caches. In this way, the caching entity may learn
faster.

4.8 Numerical Results

4.8.1 Simulation Setup

We evaluate by comparing its performance to several reference algorithms in
simulations based on a real world data set from MovieLens [HK15]. MovieLens is an
online movie recommendation system operated by the research group GroupLens at the
University of Minnesota. The MovieLens 1M DataSet [Gro03] contains 1 000 209 ratings
of 3952 movies made by 6040 MovieLens users within the years 2000 to 2003. Each
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entry of the data set consists of an anonymous user ID, a movie ID, a rating (integer
between 1 and 5) and a time stamp. Moreover, demographic information is available
about the users’ gender, age (in 7 categories), occupation (in 20 categories) and Zip-
code.

In our simulations, we assume that the movie rating process from the MovieLens data
set corresponds to a content request process of users connected to a wireless local
caching entity (see [LXvdSL16b, LXvdSL16a] for a similar approach). Hence, when
a user rates a movie at a certain point in time in the MovieLens data set, in our
simulations, at the same point in time, this specific user requests this specific movie
from either the caching entity (in case the movie is locally cached in the caching entity)
or from the macro cellular network (in case the movie is not locally cached in the
caching entity). Since users typically rate movies after watching them, this approach of
translating a movie rating process to a content request process is reasonable. Moreover,
for our simulations, we only use the data collected within the first year of the MovieLens
data set, since around 94% of the ratings were provided within this time frame. Then,
assuming that the caching entity updates its cache content on an hourly basis, we divide
a year’s time into 8760 time slots of one hour each (thereby setting 7" = 8760). Finally,
we assign the content requests and corresponding user contexts to the 8760 time slots
according to their time stamps, where we interpret each request as if it was coming
from a separate user. Figure depicts the content request process resulting from
the described approach based on the MovieLens data set. Clearly, the content request
process is bursty and flattens out towards the end.

Regarding the user context, we assume that at the beginning of a time slot, the caching
entity has access to the context of all users responsible for the requests in the coming
time slot. The context dimensions used in our simulations are gender and age. Note
that we do not use occupation as context dimension in our simulations since by mapping
occupations to a [0, 1] variable, we would have to classify which occupations are more
and which are less similar to each other.

In our simulations, each algorithm is run over the sequence of time slots t = 1,...,T.
All simulation results are obtained by averaging over 100 runs of the algorithms. Con-
cerning the choice of input parameters, in e-Greedy, we set € = 0.09 which is the value
at which heuristically the algorithm on average performed best. Moreover, in[CAC] we
set the control function to K (t) = Acac-tFtD log(t) with A\cac = 1/(|F|D). Compared
to the control function in Theorem [£.1] the additional factor reduces the number of
exploration phases which allows for better performance.
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Figure 4.4. Number of content requests in used data set as a function of time slots.
Time slots at an hourly basis.

4.8.2 Reference Algorithms

We evaluate [CAC| by comparing it with the following five reference algorithms.

e The Oracle has perfect a priori knowledge about the expected demand of each

file in each context. In each time slot, the Oracle selects the top-m files as derived
in (4.5).

The algorithm is based on an upper confidence bound (UCB]) and consists
of a variant of the [UCBIT] algorithm. [UCBIl is a classical learning algorithm
for the stochastic problem with logarithmic regret order [ACBF02|, cf.
Section [2.3.3.3] However, it does not take context information into account, i.e.,
the logarithmic regret is with respect to the average expected demand over the
whole context space. While the classical [JCB1] takes one action per time slot, our
modified [UCB] takes m actions per time slot, which corresponds to selecting m
files.

The e-Greedy algorithm is a simple algorithm for the stochastic [MAB|problem, cf.

Section [2.3.3.3] which learns from the history of reward observations [ACBF02],
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but without taking into account context. While the e-Greedy usually takes one
action per time slot, we modified e-Greedy to take m actions per time slot, which
corresponds to selecting m files. In detail, in the considered caching scenario,
the e-Greedy caches a random set of m files with probability € € (0,1) and the
algorithm caches the m files with highest to m-th highest estimated demands
with probability (1 —¢€). The estimated demands are calculated as sample means
of previous demands for cached files.

e Myopic is an algorithm taken from [BG14b|, which is investigated since it is
comparable to the well-known caching algorithm [LRU]| cf. Section 4.2l Myopic
only learns from one time slot in the past. Starting with a random set of files,
in each of the following time slots, Myopic discards the files which have not
been requested in the previous time slot. The discarded files are then randomly

replaced by other files.

e The Random algorithm caches a random set of files in each time slot.

4.8.3 FEvaluation Metrics

The following metrics are used for evaluation purposes.

e The absolute performance of the algorithms is assessed based on the evolution of
the number of cache hits per time slot and the cumulative number of cache hits.

e A relative performance measure is given by the cache efficiency, which describes
the percentage of requests which can be served by cached files. Formally, the
cache efficiency is defined as the ratio of cache hits compared to the overall

demand, i.e.,

cache hits
oo 0 -100. 4.15
cache efficiency in % cache hits + cache misses (419)

4.8.4 Results

First, we consider the case without service differentiation and we investigate the long-
term behavior of based on the following scenario. We assume that the caching
entity may store up to m = 200 movies out of the |F| = 3952 available movies so that
the cache size corresponds to about 5% of the file library size [BG14b|. We run all
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algorithms 100 times on the data set and average the results. Then, we study their
performance as a function of time, i.e., over the time slots t = 1,...,T. Figure
shows the number of cache hits per time slot achieved by the different algorithms as a
function of time. As can be seen in Figure the number of cache hits per time slot
achieved by the different algorithms is bursty over time. This is due to the fact that
the content request process itself is bursty (cf. Figure . Figure shows that
all algorithms roughly follow this bursty content request process. Since it is difficult
to compare the results achieved by the different algorithms based on Figure , we
plot the same data again, but this time based on the cumulative numbers of cache hits.

Figure shows the cumulative number of cache hits up to time slot ¢ achieved by
the different algorithms as a function of time. As shown in Figure , the cumulative
numbers of cache hits achieved by the different algorithms all follow the same trend,
but on different levels. Random and Myopic achieve much smaller cumulative numbers
of cache hits than the remaining algorithms. This is because Random does not learn at
all and Myopic only learns from one time slot in the past. e-Greedy and [UCB| show a
better performance than Random and Myopic since they learn from the whole history
of observed demands. Interestingly, it can be observed that e-Greedy outperforms
[UCB| even though it uses a simpler learning strategy. The proposed algorithm
outperforms Random, Myopic, e-Greedy and [UCH] since it not only learns from the
whole history of observed demands, but additionally learns from context information.
At the time horizon, the cumulative number of cache hits achieved by corresponds
to 1.14, 1.37, 3.98 and 5.50 times the cumulative numbers of cache hits achieved by
e-Greedy, [UCBl Myopic and Random, respectively. Moreover, yields a result
close to the Oracle, which gives an upper bound to the other algorithms. In detail,
the cumulative number of cache hits achieved by corresponds to 0.91 times the
cumulative number of cache hits achieved by the Oracle.

Next, we investigate the impact of the cache size m by varying it between 50 and 400
files. This corresponds to between about 1% and 10% of the file library size. The re-
maining parameters are kept as before and the results are again averaged over 100 runs
of the algorithms. Figure 4.6 shows the overall cache efficiency achieved at the time
horizon T, i.e., the cumulative number of cache hits up to 7T is normalized by the
cumulative number of requests up to T, as a function of the cache size m. The overall
cache efficiency of all algorithms is increasing with increasing cache size. Moreover,
the results indicate that Random and Myopic perform by far worse compared to the
other algorithms. Again, e-Greedy and [UCB] are outperformed by the proposed
In detail, averaged over the considered range of cache sizes, the average cache effi-
ciency of is 28%, compared to average cache efficiencies of 25%, 21%, 8% and 6%
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achieved by e-Greedy, [CBl Myopic and Random, respectively. Moreover, regarding
the achieved cumulative numbers of cache hits, based on which the cache efficiencies
in Figure were computed, achieves up to 27% more cache hits than the next
best algorithm e-Greedy in the considered range of cache sizes. Finally, with its average
cache efficiency of 28%, [CAC lies not far away from the average cache efficiency of 32%
achieved by the Oracle.

Now, we consider a case of service differentiation, in which two different service
groups 1 and 2 with weights v; = 5 and vy = 1 exist. Since service group 1 rep-
resents a higher value, users of this service group should be prioritized in caching
decisions. In our simulations, we randomly assign 20% of the users to service group 1
and classify all remaining users as service group 2. Then, we adjust each algorithm to
take service differentiation into account by incorporating the weights corresponding to
the service groups into the algorithms. The results are again averaged over 100 runs
of the algorithms. Figure 4.7 shows the cumulative number of weighted cache hits up
to time slot ¢ for a cache size of m = 200 as a function of time. A comparison with
Figure shows that the general behavior is similar to the case without service
differentiation. The cumulative numbers of weighted cache hits achieved by the dif-
ferent algorithms all follow the same trend, but on different levels. Again, Random

and Myopic achieve much lower performance compared to the remaining algorithms.
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e-Greedy and show a better performance than Random and Myopic. However,
all of them are outperformed by the proposed At the time horizon, the cumu-
lative number of weighted cache hits achieved by corresponds to 1.15, 1.21, 3.91
and 5.36 times the cumulative numbers of weighted cache hits achieved by e-Greedy,
[UCBl, Myopic and Random, respectively. In addition, achieves results still close
to the upper bound provided by the Oracle. The cumulative number of weighted cache
hits achieved by corresponds to 0.89 times the cumulative number of cache hits
achieved by the Oracle.

Finally, we investigate a scenario of multiple caching entities and compare the perfor-
mance of the two proposed algorithms and We consider two caching
entities and divide the used data set as follows. We assume that a fraction o € [0,0.3]
of randomly selected requests is made in the intersection of the two coverage areas,
whereas the remaining requests are randomly assigned to either the one or the other
caching entity since they are considered to be made by users solely connected to one
caching entity. The parameter o hence can be seen as a measure of the overlap between
the caching entities. Now, on the one hand, we run [CAC|separately on each caching en-
tity and, on the other hand, we run on both caching entities. Figure [4.8 shows
the cumulative number of cache hits achieved in sum by the two caching entities at the
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time horizon T as a function of the overlap parameter o. As expected, and
perform identically for non-overlapping coverage areas (i.e., when o = 0). Moreover,
the numbers of cache hits achieved by both and [CACad increase with increasing
overlap. This is because it is more likely that users in the intersection of the coverage
areas can be served since these users have access to both caches. Hence, even though
the caching entities do not coordinate their decisions on cache content, more cache hits
occur. Comparing with [CAC| it can be seen that for up to 25% of overlap
(0 < 0.25), outperforms The reason is that by overhearing cache hits
at the neighboring caching entity, both caching entities learn content popularity faster
using [CACad However, [CAC yields higher numbers of cache hits for very large over-
lap (o > 0.25). This is because when applying in case of a very large overlap,
neighboring caching entities overhear such a large number of cache hits, that they learn
very similar content popularity distributions. Therefore, it is likely that their caches
contain the same files after some time. In contrast, a higher diversity in cache content
is maintained over time when is applied. In general, further gains in the number
of cache hits could be achieved by jointly optimizing the cache content of all caching
entities. However, this would either require coordination among the caching entities or
a central decision agent selecting the cache content of all caching entities, which would
result in a high communication overhead. In contrast, the heuristic approach used by
neither requires coordination nor communication between caching entities and
yields good results for reasonably sized overlaps.

4.9 Conclusions

In this chapter, we have studied how to exploit caching resources in order to save
communication resources in wireless networks. In detail, we have investigated the
problem of context-aware proactive caching at the edge for maximizing the number
of cache hits under missing knowledge about content popularity. We have proposed a
model for context-aware proactive caching that allows different content to be favored
by different users and that takes into account that the content popularity depends on
the user’s context. Moreover, we have taken a machine-learning-based approach by
modeling the problem as a contextual [MAB| problem. We have proposed an online
learning algorithm for context-aware proactive caching using a decentralized architec-
ture of decision making. Using this algorithm, the controller of a local cache at the
edge of the wireless network may learn context-specific content popularity online by
regularly observing context information of connected users, updating the cache content

and observing cache hits subsequently.
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The computational complexity of the proposed algorithm has been shown to grow
linearly as a function of the number of context dimensions and log-linearly as a function
of the file library size. Moreover, the memory and communication requirements of the
proposed algorithm have been analyzed and extensions to practical requirements have
been made. Moreover, we have derived a sublinear upper bound on the regret, which
analytically bounds the loss of the proposed algorithm with respect to an oracle that
executes the optimal cache content placement strategy given a priori knowledge on
content popularity. The regret bound characterizes the learning speed and proves that
the proposed algorithm converges to the optimal cache content placement strategy.
Simulations based on real data have shown that, depending on the cache size, the
proposed algorithm achieves up to 27% more cache hits than the best algorithm taken
from the literature by exploiting contextual information for proactive cache content

placement.
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Chapter 5

Mobile Crowdsourcing

5.1 Introduction

In this chapter, we consider mobile crowdsourcing (MCS), a technique that exploits
user resources for task completion. Specifically, task owners may outsource tasks via
an intermediary mobile crowdsourcing platform to a set of mobile users, or
workers, who are free to decide whether or not to complete assigned tasks [RZZS15].
Recently emerging applications exploit that online mobile users may complete
tasks anytime and anywhere on the go by considering non-spatial tasks, i.e., tasks
that do not require the workers to be at a certain location for task completion. [MCSis
hence a technique that may enable different stakeholders to leverage human intelligence
for task completion [RZZS15|. Clearly, different workers may have different interests
and capabilities, and therefore not all of them may perform equally well on a given
task [GS14]. In order to achieve the best possible outcome on a given task under a
possibly limited budget by the task owner, the most suitable workers should hence be
assigned to a task [TTSRJ14]. As described in Section [1.3.4] selecting the best workers
for each task in an application requires knowledge about the performance of
each worker in terms of her/his acceptance rate and quality, but such knowledge is
typically not available a priori and hence needs to be learned [SC17,ZC17, HV12,
TTSRJ14,HZL16,juHC14]. Moreover, a worker’s performance may depend not only on
the specific task, but also on the worker’s current context |GS14], and this dependency
may be of non-linear nature. Finally, due to communication overhead and privacy
concerns of workers, it may be required to protect personal worker context locally
instead of sharing it with the central [TGFS17,GWGT™16], which makes it even
more difficult for the MCSP| to select the most suitable workers.

Hence, we investigate the problem of maximizing the worker performance in an [MCS]

application with non-spatial tasks, taking into account the following aspects:

(i) A priori, there is no knowledge available about each worker’s individual perfor-
mance in terms of her/his acceptance rate and quality.

(ii) Tasks of different types may arrive to the [MCSPl
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iii) A worker’s performance may depend ina pOSSibly non-linear fashion on both the
task and the current worker context.

(iv) A worker’s personal context should be kept locally in order to keep the commu-

nication overhead small and to ensure the worker’s privacy.

In this chapter, we propose a machine-learning-based approach and a hierarchical ar-
chitecture of decision making. We take a machine-learning-based approach since the
expected performance of a worker is not known in advance and hence needs to be
learned. Moreover, we take a hierarchical architecture of decision making since the
workers’ personal contexts should be kept locally in order to keep the communication
overhead small and to protect the workers’ privacy. In detail, we propose a context-
aware hierarchical online learning algorithm for worker selection in applications
based on a contextual model. The algorithm is split into two parts. On the
one hand, a local controller (LC) in each of the workers’ mobile devices is respon-
sible for learning its corresponding worker’s context-specific performance in terms of
acceptance rate and quality online over time, by regularly observing the worker’s con-
text, her/his decisions to accept or decline tasks and the quality in completing tasks.
Based on these observations, the [LC| regularly estimates the worker’s context-specific
performance and sends this estimate to the [MCSPL On the other hand, the [MCSPI
is responsible for the worker selection, which it does based on performance estimates
received from the [LCk. This hierarchical coordination approach enables the [LCk to
learn context-specific worker performances and it enables the [MCSPI to select suitable
workers without having access to the workers’ personal contexts, which stay locally
with the [LCk. Moreover, workers receive personalized task requests based on their
interests and skills, while at the same time the number of quality assessments, which

are needed to observe worker performances, but may be costly, is kept low.

This chapter presents work originally published by the author in [KTvK18]. Compared
to [KTvK18], in this thesis, the ideas of the mathematical proofs are additionally sum-
marized and discussed within the main body of text, while the full mathematical proofs
are given in the appendices. Furthermore, in this thesis, the computational complexity
of the proposed algorithm is analyzed. The remainder of this chapter is organized as
follows. Section [5.2]provides a detailed review of the state of the art on decision making
for crowdsourcing systems. The system model for context-aware worker selection in an
application is introduced in Section [5.3] In Section [5.4], we give a formal problem
formulation of context-aware worker selection for maximizing the worker performance
in under missing knowledge about expected worker performance and show that
the problem can be understood as a contextual [MABI problem. In Section we
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propose a context-aware hierarchical online learning algorithm for worker selection in
[MCSl Properties of the proposed algorithm are discussed in Section [5.6] Specifically,
by deriving an analytical upper bound on the regret of the proposed algorithm, it
is shown that the algorithm converges to the optimal worker selection strategy. In
Section the performance of the proposed algorithm is demonstrated numerically.
Section |5.8] concludes this chapter.

5.2 State of the Art

In this section, we give a detailed review of the state of the art on decision making
for crowdsourcing (CS) systems. We start by shortly discussing strategic behavior in
and quality estimation in in case of missing ground truth. Then, we discuss
in detail the related work on without strategic behavior and with available ground
truth since the problem considered in this thesis is of this type.

One line of work on systems deals with strategic behavior of workers and task
owners in [CS systems. Such strategic behavoir could concern pricing and the effort
spent in task completion [AvdS16]. Another line of work on deals with how to
estimate the quality of a completed task in case of missing ground truth, for instance,
using online learning for quality estimation |[LL17].

In contrast, many related works consider task assignment and worker selection problems
in [CSlsystems without taking into account strategic behavior and under the assumption
that it is possible to assess the quality of a completed task. Also the problem considered
in this thesis belongs to this type. Therefore, in the remainder of this section, we
review and discuss this type of related work on worker selection in [CSl This review
complements the short review presented in Section by discussing in detail the
works introduced in Table [L.3l

In this thesis, worker selection in for non-spatial tasks is considered. Note
that the related work discussed below not only covers decision making in [MCH sys-
tems [RZZS15], but also in general web-based [CS systems [DRH11] as well as in spa-
tial systems [ZH16], since these works are also relevant for comparison with our
approach. Also note that in general, task assignment and worker selection problems
in [CS systems are often modeled as problems of online decision making due to the
dynamic nature of tasks and/or workers typically arriving over time |[SV13].

We start by discussing related work on general systems. Ref. [HV12] proposes a
competitive online task assignment algorithm in the server assigned tasks ([SAT]) mode
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that learns the skills of sequentially appearing workers in order to maximize the utility
of a task owner on a given set of task types, with finite number of tasks per type.
In [TTSRJ14], an online task assignment algorithm in [SAT| mode with sublinear regret
is proposed for expert [CSl Based on a bounded [MAB| model, the algorithm aims at
maximizing the utility of a budget-constrained task owner under uncertainty about the
skills of a finite set of expert workers with known different prices and limited working
time. The algorithm hence learns the average skill of a worker. Ref. [SC17] proposes a
real-time algorithm in mode for finding the top-k workers for sequentially arriving
tasks. In a first step, tasks are categorized offline into different types and the similarity
between a worker’s profile and each task type is computed. Then, in real time, the
top-k workers are selected for a task based on a matching score that takes the similarity
scores and historic worker performance into account. The performance estimates are
proposed to be updated offline in batches. Ref. [AVC11| proposes methods for learning
a worker preference model that can be used for personalized task recommendation (TRI)
in the worker selected tasks (WST]) mode. The proposed methods use the history of
worker preferences on different tasks.

Among the related work on [MCS| systems, Ref. [GWGT16] proposes algorithms for
optimal [TR] in [WST] mode that take into account trade-offs between the privacy of
worker context, the utility to recommend the best tasks and the efficiency in terms
of communication and computation overhead. In their approach, a server performs
[TR] based on a generalized context shared by the worker. The statistics used for
[TR] are collected offline via a proxy which ensures differential privacy guarantees. This
approach allows to flexibly adjust the shared generalized context and makes TRk based
on offline statistics and generalized, instead of individual, worker context. In [HZL16|,
an online learning algorithm for mobile crowdsensing in [SAT] mode is proposed to
maximize the revenue of a budget-constrained task owner by learning the sensing values

of workers with known prices.

A taxonomy for spatial was first introduced in [KS12], where a location-entropy
based algorithm for[SATImode is proposed to maximize the number of task assignments
under uncertainty about task and worker arrival processes. The server decides about
task assignment based on centrally collected knowledge about the workers’ current loca-
tions. In [TSK15], the above framework is extended to maximize the quality of assign-
ments under varying worker skills for different task types. In both [KS12] and [TSK15|,
worker context is collected centrally. Moreover, it is assumed that workers always ac-
cept assigned tasks within certain known bounds and that worker skills are known a
priori. In [uHC14], an online task assignment algorithm is proposed for spatial
with [SAT] mode for maximizing the expected number of accepted tasks by selecting
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appropriate workers for sequentially arriving tasks. The problem is modeled as a con-
textual [MAB] problem. Then, the [InUCB]l algorithm, cf. Section [2.3.3.4] is adapted to
the problem by assuming that the acceptance rate of a worker is a linear function of the
worker’s distance to the task location and of the task type. However, such a linearity
assumption is restrictive and it especially may not hold in [MCS with non-spatial tasks.
Ref. proposes an algorithm for privacy-preserving spatial in mode.
Using differential privacy and geocasting, the algorithm preserves worker context in
terms of their locations while optimizing the expected number of accepted tasks. The
algorithm is based on the assumption that the workers’ acceptance rates are identical
and known. Ref. proposes exact solutions and approximation algorithms for
acceptance maximization in spatial [CS| with mode. The algorithms are performed
offline for given sets of available workers and tasks based on a probability of interest for
each pair of worker and task. The probabilities of interest are computed beforehand

using maximum likelihood estimation.

The above discussed related work on decision making for systems can be cat-
egorized as follows. As seen above, different works consider different types of
[CY such as general [HV12,[TTSRJ14,[SC17,/AVC11], [GWGT16, HZL16]
or spatial [KS12, TSK15, uHC14) [ TGFS17,|ZC17). Moreover, the works differ
regarding the considered task assignment mode, some works considering the
mode [HV12, TTSRJ14,|SC17, HZL16, KS12, TSK15, uHC14, TGFS17, ZC17|, others
considering the WST] mode [AVC11,|GWGT16]|, where each mode has its specific
advantages and disadvantages, as discussed in Section Some related works
assume that the workers’ performances are known in advance (e.g., in terms of
acceptance rates and quality) [KS12, TSK15, TGFS17], while others consider the
more realistic case of task assignment wunder missing knowledge about worker per-
formance [HV12,TTSRJ14, SC17,/AVC11,|GWGT16, HZL16, uHC14, ZC17]. In the
latter case, different types of machine-learning-based approaches are applied, us-
ing, for instance, offline learning [GWGT16| ZC17], batch learning or on-
line learning [HV12, TTSRJ14, AVC11,|HZL16, uHC14], the last approach being able
to better adapt to varying worker performances. While some of the learning al-
gorithms are only numerically evaluated [SC17, AVC11,|GWGT16,ZC17], other re-
lated works additionally provide analytical regret bounds for their learning algo-
rithms [HV12, TTSRJ14, HZL16, uHC14]. While some works consider only one
type of tasks [TTSRJ14, HZL16, TGFS17], others take into account that different
types of tasks may occur in applications [HV12,SC17,AVC11,GWGT16|, KS12,
'TSK15, uHC14, ZC17]. Moreover, while some works are unaware of worker con-
text [HV12,|[TTSRJ14,SC17,/AVC11||[HZL16,|ZC17], others take worker contest into
account [GWGT16,KS12,TSK15,uHC14, TGFS17], which is important since at least in
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the[MCSlapplications considered in this thesis, worker context may affect worker perfor-
mance. However, even among the works which take worker context into account, only
few consider such context-specific worker performance [GWGT16,uHC14, TGFS17). Fi-
nally, among the works which take worker context into account, only some consider
that personal worker context needs to be protected due to overhead and privacy reasons

(i.e., keeping it completely locally, or sharing only generalized context information with
the MCSP]) [GWGT16, TGFS17].

Table gives an overview of the discussed related work on worker selection in
systems and provides a detailed comparison of the related work with the proposed
algorithm. Compared to the related work, cf. Table 5.1, we propose a context-aware
hierarchical online learning algorithm for worker selection in for non-spatial tasks
that for the first time jointly considers the following aspects:

(i) The proposed algorithm does not assume a priori knowledge about worker per-
formance, but learns worker performance in terms of acceptance rate and quality
online to maximize the average worker performance over time without requiring a
training phase. Since the algorithm learns in an online fashion, it adapts and im-
proves the worker selection over time and can hence achieve good results already
during run time. By deriving an upper bound on the regret of the algorithm, we
provide performance guarantees and prove that the algorithm converges to the
optimal worker selection strategy.

(ii) The proposed algorithm allows different task types to occur. The concept of task
context is used to describe the features of a task, such as its required skills or
equipment.

(iii) The proposed algorithm allows that a worker’s performance depends (in a possibly
non-linear fashion) on both the task context and on the worker context, such as
the worker’s current location, activity, or device status. The proposed algorithm
learns this context-specific worker performance.

(iv) The proposed algorithm is split into two parts, one part executed by the [MCSP]
the other part by [LCk located in each of the workers’” mobile devices. Based
on this new hierarchical coordination approach between the and [LCk, the
proposed approach combines the advantages of the and the [WSTI mode for
task assignment. In particular, suitable workers can be selected for each task
while at the same time, the workers’ personal contexts are protected by keeping
them locally, which keeps the communication overhead small and ensures the

workers’ privacy. Moreover, workers receive personalized task requests based on
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their interests and skills, while the number of possibly costly quality assessments
is kept low.

5.3 System Model

5.3.1 Introduction

In this section, we propose a model for context-aware worker selection in an [MCS]
application for non-spatial tasks. In accordance with Section|2.2.1] the proposed overall
model consists of the following five components:

(i) The network model contains a model of an [MCS| application and introduces the
IMCSP] that serves as intermediary between task owners and workers.

(ii) A context model is defined, which describes the side information about the worker
and the task that may impact a worker’s performance in terms of her/his accep-
tance rate and quality when completing a task.

(iii) As performance criterion to be maximized, the cumulative worker performance
is considered. Since the worker performance depends on the worker and task
context, a model of context-specific worker performance is formulated, which ex-
plicitly allows worker performance to be a (possibly non-linear) function of the
task context and of the worker context.

(iv) A hierarchical architecture of decision making is proposed. Responsible for infor-
mation collection and decision making are a set of [LCk and the [MCSP], respec-
tively. Hence, a model of an [L(]is proposed.

(v) An action model is formulated, which determines the different choices of the
[MCSP], namely, which workers should be requested to complete a task.

5.3.2 Network Model

We consider an [MCS| application for non-spatial tasks. The [MCS| application is coor-
dinated by an [MCSPl By W, we denote the set of W := |W| workers. A worker is a
mobile user who has set up the MCSlapplication in her/his mobile device. A worker can
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be in the following two modes. A worker is called available if the [MCSl application on
her /his device is running. In this case, the MCSP| may request the worker to complete

a task, which the worker may then accept or decline. A worker is called unavailable if
the [MCY application on her/his device is turned off.

Task owners may place non-spatial tasks of different types into the [MCSPlL We assume
that tasks arrive at the sequentially and we denote the sequentially arriving
tasks by t = 1, ..., T, where T' denotes the total number of tasks. The submission of a
task t is accompanied by a tuple (b, ¢;), where b, > 0 denotes the budget that the task
owner is willing to pay for this task and c; denotes the task context. The task context
is a vector containing information about the task, and will be formally introduced in
Section [5.3.3] The task owner is charged by the [MCSP] for each worker that completes
the task after being requested by the [MCSPl Specifically, we assume that the
charges the task owner a fixed price e; € [enin, €max] Per worker that completes task ¢,
where e, > 0 and ey > enin correspond to lower and upper price limits, respectively.
The price e; may depend on the task context ¢; and is determined based on a fixed
and transparent context-specific price list held by the MCSPl We assume that for each
task t, the budget b, satisfies b; € [e;, Wey], i.e., the budget is sufficient to pay at least
one and at most W workers for completing the task. Moreover, we assume that the
sequence {b;};—1 7 is not influenced by decisions about worker selection taken by the
[MCSPl Based on the budget b, and the price e;, the [MCSP| computes the maximum
number my := Lz—ij € {1, ..., W} of workers who should complete the task.

Following [HV12, TTSRJ14, HZL16|, we assume that each task has the following prop-

erties:

e Depending on the budget and price of a task, the task owner would like to receive
replies from possibly several workers who completed the task.

e [t is possible to assess the quality of a single worker’s reply.
e The qualities of different workers’ replies are independent.

e The qualities of different workers’ replies are additive, i.e., if two workers complete
the task and their respective qualities are A and B, the task owner receives a
total quality of A + B.

Such tasks belong to the class of crowd solving tasks [GS14], examples being translation
and retrieval tasks [HV12]. Note that we assume that there exists a type of quality
assessment which can be used to evaluate how well a worker performed in completing a
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task. Among possible types of quality assessment are manual quality ratings from task
owners, or an automatic quality assessment using either local software in the mobile
devices or using the resources of a cloud. The proposed model and algorithm are
agnostic to the specific type of used quality assessment. In general, however, quality
assessments may be costly. Therefore, the number of worker performance observations

may have to be kept low in order to keep the cost for quality assessment low.

At the arrival of a task, not all workers may be currently available since workers may
arbitrarily turn on and off their [MCS application in their mobile device over time.
Therefore, the set of available workers may change dynamically over time. We denote
the set of workers available at the arrival of task ¢ by W, C W, as defined by W, :=
{i : worker i is available at arrival time of ¢}, where W; := |W,| € {1, ..., W} denotes
the number of available workers at the arrival of task £. Our only assumptions on the
nature of the arrival process of the availability of workers are that (i) for each arriving
task, at least one worker is available and that (i) the sequence {W,};—1 7 is not
influenced by decisions about worker selection taken by the [MCSPL

If sufficiently many workers are currently available at the arrival of task ¢, the [MCSP|
requests m; workers to complete the task. Note that each task is only processed once
by the [MCSP], even if not all m; requested workers complete the task. Therefore, if not
all of the m; requested workers complete task ¢, the MCSP] charges the task owner only
for the actual number of workers that completed the task since only these workers are
compensated. Moreover, it may also happen that fewer than m; workers are currently
available at the arrival of task ¢. In this case, the [MCSP| requests all available workers
to complete the task. To sum up, the [MCSP] aims at selecting a subset of min{m,, W;}
workers which maximizes the worker performance for the task. Figure [5.1] shows an
illustration of the considered model, where a task arrives at an [MCSP| which in turn

needs to select an appropriate subset of currently available workers for the task.

5.3.3 Context Model

Appropriate worker selection requires knowledge about worker performance. Since
a worker can have certain preferences regarding the types of tasks she/he likes,; the
worker may hence have different acceptance rates on different tasks. Moreover, since
a worker has a certain set of skills, she/he may hence provide different quality when
completing different tasks. Therefore, a worker’s performance in terms of acceptance
rate and quality may depend on the features of the task. The features of a task may

be summarized under the term contezt. Possible features of a task could be the skills
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O N MCSP

LN e; — price per worker for task ¢
task owner | task t = (b¢, ¢¢) ,
b, — budget o compute my; = [ ]
¢; — task context e select min{m, W;}

appropriate workers
for task ¢

[ available worker

unavailable worker

E data collection resources

set W of workers

Figure 5.1. Network model.

needed (e.g., the required levels of creativity or analytical skills) or the equipment
required (e.g., a camera or a specific application) to complete the task.

Formally, we model task context as follows. We denote the number of task context
dimensions by C' and we denote the C-dimensional task context space by C. The
context space C is assumed to be bounded and can hence be set to C := [0, 1]¢ without
loss of generality. Hence, we assume that the feature information about a task is
described in terms of C' context dimensions. In each of the C' context dimensions, a
task is classified via a value between [0, 1], such that the overall task context is hence
a vector in [0,1]°. In practice, a pre-processing may be needed to bring the feature
information into the correct format (e.g., the required levels of creativity or analytical
skills may be translated to continuous values between 0 and 1; whether a camera or a

specific application is needed may be encoded as binary 0 or 1).

The performance of a worker in terms of acceptance rate and quality may not only
depend on the characteristics of the specific task to be completed, but also on the
worker’s personal current situation and environment. Possible relevant personal context
dimensions could be the worker’s current location (in terms of geographic coordinates)
or the time of day , the type of location (e.g., at home, in a coffee shop), the
worker’s current activity (e.g., commuting, working) or the current device status (e.g.,
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battery state, type of wireless connection). The worker’s current context may change
quickly, which is especially relevant for [MCS| applications with non-spatial tasks since
workers may complete such tasks anytime and anywhere. We summarize such factors
again under the term context.

Formally, a worker’s current context is modeled as follows. We denote the number of
personal context dimensions of a worker ¢ € W by X; and we denote the X;-dimensional
personal context space by A&;. The context space & is assumed to be bounded and
can hence be set to X; := [0,1]% without loss of generality. Here, we allow each
worker ¢ € W to have an individual personal context space X; since each worker may
allow the application access to an individual set of context dimensions (e.g., the
worker allows access to a certain set of sensors of the mobile device that are used to
derive her/his context). In each of the X; context dimensions, the context corresponds
to a value between [0, 1] such that the overall personal worker context is hence a vector
in [0, 1]%i. In practice, the context information may be derived using data collection
resources from the mobile devices as indicated in Figure [5.1 e.g., based on sensor
readings. Moreover, a pre-processing of the collected data may be needed in order to
bring the feature information into the correct format.

We further call X; x C = [0, 1]% x [0,1]¢ = [0, 1]P the joint (personal and task) context
space of worker ¢ € W, where D; := X; + C' is the dimension of this joint context
space. The joint (personal and task) context of worker i is hence a vector in [0, 1]:.
The reason for considering the joint context is that the performance of a worker on
a specific task at a specific point in time may depend jointly on the current personal

context and on the task context.

Based on the above notation, for a task ¢, the task context is denoted by ¢, € [0, 1],
the personal context of a worker ¢ € W, at the arrival time of task t is denoted
by x;; € X; and the joint (personal and task) context of worker ¢ € W, is given by the
concatenation (x;;,¢;) € &; x C. We do not make any assumptions on the nature of the
task context arrival process other than that the sequence {c;}¢—1 7 is not influenced
by decisions about worker selection taken by the MCSPl Moreover, we do not make any
assumptions on the nature of the personal context arrival process of any worker i € W

other than that the sequence {Xt,i}{t;iewt} is not influenced by decisions about worker
selection taken by the [MCSPl
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5.3.4 Model of Context-Specific Worker Performance

Next, a model of worker performance in dependence of the joint personal and task
context is proposed. The performance of a worker is a function of both (i) the worker’s
willingness to accept a task and (ii) the worker’s quality in completing a task. We
assume that a worker’s quality can take values in a range [¢min, Gmax] € Ro 4. Both
the willingness to accept a task and the quality may depend on the worker’s current
personal context and on the task context. Let p;(x,c) denote the performance of
worker ¢ € VW with current personal context x € A} for a task with task context ¢ € C.
The performance can be decomposed into (i) worker i’s decision d;(x,c) to accept
(d;(x,c) = 1) or reject (d;(x,c) = 0) the task and, in case the worker accepts the task,
also on (ii) worker i’s quality ¢;(x,c) when completing the task. Hence, we can write

pi(x,¢) = ¢;(x,c)d;(x, c). (5.1)

The performance p;(x, c) is a random variable whose distribution depends on the dis-
tributions of the random variables d;(x, ¢) and ¢;(x, ¢). Since the decision d;(x, c) is bi-
nary, it is drawn from a Bernoulli distribution with unknown parameter m;(x, c¢) € [0, 1].
Here, m;(x,c) = E[d;(x, c)] represents worker i’s acceptance rate given the joint con-
text (x,c). The quality ¢;(x,c) is a random variable with unknown distribution
and we denote its expected value conditioned on d;(x,c) = 1 (i.e., task acceptance)
by v;(x,¢) := E[gi(x, ¢)|d;(x,c) = 1]. Hence, v;(x, c) represents the average quality of
worker ¢ with personal context x when completing a task of context ¢ after accepting
it. Therefore, the performance p;(x,c) of worker ¢ € VW given the joint context (x,c)

has unknown distribution, takes values in [0, gmax] and its expected value satisfies
El[pi(x,c)] = 6;(x,c), (5.2)

where 6;(x, c) := m;(x, ¢)v;(x, ).

Based on the above notation, for a task ¢, given the joint personal and task con-
text (x¢;,¢:) € A; x C of a worker ¢ € W,, the random variable describing the
performance of this worker on this task is given by p;(x:;,¢;) and its expected
value is given by 6;(x:;,c;). We assume that for any task ¢ € {1,...,7T}, the ran-
dom variables {p;(x:,ct)}ien, are independent of each other and each random vari-
able p;(x:;,¢;) is independent of past decisions about worker selection taken by the
[MCSP] and of previous worker performances. Moreover, by p;(x:;, ¢, t), we denote
the actual instantaneous performance of a worker ¢ € W, that has been requested to

complete task ¢, i.e., the realization of the random variable p;(x;, c;) for task ¢.
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5.3.5 Architecture of Decision Making

We propose to use a hierarchical architecture of decision making, cf. Section [2.2.3
by splitting the decision making on the one hand, and the information collection and
learning, on the other hand, between several entities. We use a hierarchical architec-
ture since the workers’ personal contexts should be kept locally in order to keep the
communication overhead small and to protect the workers’ privacy, but at the same
time, the worker selection should be centrally coordinated in order to ensure that the
best workers are selected. In the proposed model, the [MCSP) is responsible for worker
selection. For selecting suitable workers, context-specific worker performance needs to
be taken into account, however, personal worker context should not be shared with
the [MCSPl Therefore, we propose that in the mobile device of each worker, a soft-
ware called local controller (LC) is installed. We denote by [LCl i the [LC of worker i.
Depending on the requirements of the specific application concerning communi-
cation overhead and the requirements of the workers concerning privacy, the [LCk may
be owned by different parties. Either the [MCSP] may own the [LCk and in this case,
the [LCk could be part of the software of the application. Alternatively, the [LCk
may also be included in a separate software that could be owned by either the workers
or by a trusted third party [GWGT16, TGFS17]. The proposed model and algorithm
are agnostic to the specific owners of the [LCh, as long as each [LC| has access to its
corresponding worker’s personal context. Moreover, we propose that an [LC| has the
following functionality:

e The[LO can reach its worker via the user interface of the [MCS| application.
e The[Ld can communicate with the MCSP] and, if needed, also with task owners.

e The [LC can perform low complexity processing, such as storing, comparing and

updating variables and performing simple arithmetic operations on them.

Using this functionality, in the algorithm proposed in this chapter, the [LC| of a worker
is responsible for regularly executing the following tasks sequentially:

(i) Observe the worker’s context
(ii) Estimate the worker’s context-specific performance and send it to the [MCSP]

(iii) Observe the worker’s instantaneous performance when the worker was requested
by the [MCSPl to complete a task
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In this way, over time, the[L(|learns its worker’s context-specific expected performance
based on observations and the [MCSP] is enabled to select an appropriate subset of
workers for each task.

5.3.6 Action Model

In the proposed model, the [MCSP] selects workers for each task. This is formalized in
terms of actions taken by the [MCSPI as follows. We introduce a binary variable y, ; for
each task t € {1,...,T} and each worker ¢ € W,, where

1, if worker 7 is requested to complete task t,
Yti 1= (5.3)

0, otherwise.

As described in Section [5.3.2] for task ¢, based on the budget b; and the price e; per
worker, the[MCSP|may select m; := L%J € {1, ..., W} workers. Therefore, the following

constraints have to hold:

i <mVt=1,..T (5.4)
1EW;
We denote the set of workers that the [MCSPI selects and requests to complete task ¢
by

St = {Z < Wt “Uti = 1} (55)

5.4 Problem Formulation

5.4.1 Formal Problem Statement

In this section, based on the models presented in Section [5.3] we formulate the prob-
lem of context-aware worker selection for maximizing the worker performance in
applications with non-spatial tasks to be solved in hierarchical fashion by the
and the [LCk. As stated above, we assume that tasks ¢ = 1,...,T arrive sequentially.
Consider now an arbitrary sequence of T task and worker arrivals, i.e., consider a
sequence of tasks ¢ = 1,..., T with arbitrary task budgets {b;};—1 7, arbitrary task
contexts {c;}—1.. 1, arbitrary worker availability {Wt}tzle and arbitrary worker
contexts {X¢;}iew,t=1,.7. The goal of the system of MCSP| and [LCk is to select work-
ers for each task in such a way that the expected cumulative worker performance up
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to task T is maximized. Based on the action model in Section [5.3.6] the problem
of selecting, for each task, a subset of workers which maximizes the sum of expected
performances given the task budget is given by

T
max Z Z i (Xt Ct)Yri (5.6)

t=1 ieW,
s.t. Zyt’i Smt YVt = 1,...,T
iEW,
Yii € {0, ].} Vi € Wt, vVt = ]_, ,T

with y;; of , 0;(x¢, ct) as defined in Section and the constraints from (5.4]).
Problem includes the expected context-specific worker performances 0;(x;;, c;),
i.e., the expected performances of available workers as functions of their joint personal
and task contexts.

5.4.2 Oracle Solution

First, we analyze Problem under the assumption that there would be an entity
that had a priori knowledge about context-specific worker performances and access to
the current personal worker contexts. Hence, only in this section, suppose that there
exists an entity which (i) is an omniscient oracle, knowing the expected performance
of each worker under each joint personal and task context a priori, and that this entity
(ii) is centrally informed about the current personal contexts of all available workers

for each arriving task.

For such an entity, Problem corresponds to an[[LP]problem, cf. Section . As
the sub-problems in Problem for the different tasks are not coupled, Problem ([5.6))
can be decoupled into T" independent sub-problems, one for each arriving task. For a
task t, if fewer workers are available than required, i.e., W; < m,, the trivial optimal
solution of the sub-problem associated to task t is to request all available workers
to complete the task. In contrast, if for a task ¢, W; > m; holds, the sub-problem
associated to task ¢ corresponds to a knapsack problem, cf. Section [2.3.2.3] with a
knapsack of capacity m; and with W, = |W,| items, where item ¢ € W, has a unit
weight and a non-negative profit 0;(x;;, c;). Due to the unit weights, the sub-problem
in this case actually is a special case of the knapsack problem that may be solved
efficiently. Indeed, the optimal solution of the sub-problem can be easily computed
in a running time of at most O(W log(W)) as follows. The optimal solution is given
by ranking the available workers in W, according to their context-specific expected

performances and by selecting the m, highest ranked workers.
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For a task ¢t € {1, ..., T}, we denote an optimal subset of workers to select for the task

by §; = {321, <> St min {mt,Wt}}' Formally, these workers satisfy

sp; € argmax  0;(x,¢;) for j=1,...,min{my, W}, (5.7)
WAL 574

where U2=1{5;:k,k} := (). Note that several workers may have the same expected perfor-
mance and hence the optimal set of workers may not be unique, which is also captured
here. Moreover, note that an optimal set S; of workers for task ¢ depends on the task
budget b;, task context c;, price e;, the set W, of available workers and their personal
contexts {X¢;}iew,, but we write S instead of S/ (bt, ¢, er, Wy, {X¢ti }iew,) for brevity.
Let

S = {St*}tzl,...,T (5'8)

be the collection of optimal subsets of workers for the collection {1,...,T'} of tasks.
We call this collection the centralized oracle solution, since it requires an entity with a
priori knowledge about expected context-specific worker performances and with access

to personal worker contexts to make optimal decisions.

5.4.3 Contextual Multi-Armed Bandit Formulation

Now, we characterize Problem ([5.6) under the conditions actually faced by the [MCSP]
and [LCk. Namely, the set of and [LC do not have a priori knowledge about
expected performances, and the workers’ personal contexts are only locally available
in each mobile device, but may not be shared with the [MCSPL

If for an arriving task ¢, fewer workers are available than required, i.e., W; < my, by
simply requesting all available workers (i.e., S; = W;) to complete the task, the MCSP|
automatically selects the optimal subset of workers. Otherwise, if W; > m; holds for an
arriving task ¢, the [MCSP| cannot simply solve the sub-problem for task ¢ appearing in
Problem like the centralized oracle. This is because on the one hand, it does not
know the expected performances 6;(x;;, c;) and on the other hand, the [MCSP] cannot
access the workers’ personal contexts. Hence, in this case, a machine-learning-based
approach, cf. Section [2.3.1], is needed since the system of [MCSP| and [LCk can only
learn the workers’ performances by selecting different workers over time and observing

their instantaneous performances.

Considering the problem statement in Section[5.4.1}, under the conditions actually faced
by the MCSP]and [LCk, Problem ([5.6)) can be understood as a contextual [MAB| problem
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as follows, cf. Section[2.3.3.4l The[MCSP|and[LC| can be understood as a set of agents,
where one of them (the [MCSP]) needs to sequentially select from a set of actions. In the
considered problem, the set of actions is given by the set W of workers. There is
a sequence of tasks t = 1,..., T that corresponds to a sequence of rounds faced by the
agents. At the arrival of a task ¢, only a subset W, C W of workers may be available
and hence the set of actions may be different in each round. For each arriving task, the
following events happen sequentially. First, the MCSPlreceives the task and especially
observes the task context ¢,. Moreover, the[LC|of each available worker i € W, observes
its worker’s personal context x;;. This corresponds to several contexts revealed to the
agents in the beginning of a round. Secondly, the MCSP]selects a subset of min{m;, W;}
workers from set VW, and requests them to complete the task. This corresponds to an
agent selecting a subset of available actions. Thirdly, each [LC of a requested worker
observes the instantaneous performance of the worker. This corresponds to the agents
receiving a reward for each selected action. Taking into account the assumptions about
the arrival processes of the tasks, workers and their performances in Sections -
m Problem ([5.6)) corresponds to a contextual [MAB| problem with a similar model
as the one presented in Section [2.3.3.4. The main differences between these two models
are as follows:

e In Problem , the agent may select several actions per round instead of only
one and the number of actions to be selected may be different in each round.
Therefore, formally, Problem is a contextual combinatorial MAB| problem,
cf. Section [2.3.3.2l However, since neither the objective function nor the con-
straints in Problem are combinatorial, Problem (4.4)) is more accurately a
contextual [MAB] problem with several action selections per round, but not of

combinatorial nature.

e In Problem (j5.6)), actions may be unavailable in arbitrary rounds, whereas in the
model in Section [2.3.3.4] actions are always available. Therefore, Problem (/5.6
is a contextual [MAB] problem with sleeping arms, cf. Section [2.3.3.2

e Instead of one agent as in the model in Section [2.3.3.4] Problem has to be
solved cooperatively by several agents, where one coordinating agent (i.e., the
[MCSP)) selects a subset of actions in each round based on the estimates of a set
of learning agents (i.e., the [LCk), where each learning agent observes the context
of one particular action and learns the rewards of this action.

Consequently, a coordination mechanism between the [MCSP| and [LCk needs to be de-
signed in order to enable the [LCk to learn their workers’ context-specific performances
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over time and to enable the [MCSP] to select suitable workers for each task to maximize
the worker performance on this task given its task budget. Specifically, over time, the
system of [MCSP] and [LCk has to use a suitable trade-off between ezploration and ex-
ploitation, by, on the one hand, selecting workers about whose performance only little
information is available and, on the other hand, selecting workers who are likely to
have high performance. For each arriving task, the selection of workers depends on the
history of previously selected workers and the corresponding observed performances.
Since observing worker performance requires quality assessments that may be costly,
the number of performance observations should be limited in order to keep the cost for
quality assessment low. An algorithm which maps the history of previously selected
workers and observed performances to the next selections of workers is called a learning
algorithm. The performance of such a learning algorithm can be evaluated by com-
paring its loss with respect to the centralized oracle solution given in in terms of
the achieved cumulative worker performance. Formally, for an arbitrary sequence of T’
task and worker arrivals, the regret of learning with respect to the centralized oracle
solution is given by

T min{m¢,W;}

Z Z (pst Xt st 5 Cg,y t) - pst,j (Xt,st,ju Ct, t)) . (59)

where py, (X5, ,,C,t) denotes the instantaneous performance of the selected
worker s;; € S, j € {1,...,min{m,;, W,}}, with personal worker context vector x;;
for task ¢t with task context c;. Here, the expectation is taken with respect to the se-
lections {S; }+—1,. v made by the learning algorithm and the randomness of the workers’

performances.

Equivalently, one can write the regret R(T') as

T min{m¢, W}

Z Z (647, ke, €0) = Elf, (50, 00)]): (5.10)

5.5 Proposed Algorithm

Based on the formulation as a contextual problem given in Section [5.4.3] we
propose a context-aware hierarchical online learning algorithm for worker selection in
[MCSl The algorithm is based on the assumption that a worker’s expected performance
is similar in similar joint personal and task contexts. Therefore, by observing the

task context, a worker’s personal context and her/his performance when requested to
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complete a task, the worker’s context-specific expected performances can be learned
and exploited for future worker selection.

The proposed algorithm is based on the contextual [MABI algorithms in [TvdS1ba,
TZvdS14, MAvK16,MAvK17| and extends these works as follows:

e While in [TvdS15a,(TZvdS14,MAvK16,MAvK17], a learning agent observes a set
of contexts and selects a subset of actions based on these contexts, the proposed
algorithm is decoupled to several learning agents, each observing the context of
one particular action and learning the rewards of this action, and a coordinating
agent, which selects a subset of actions based on the learning agents’ estimates.
In the considered problem, an action corresponds to a worker, the learning
agents correspond to the [LCk which learn the performances of their workers, and
the coordinating agent corresponds to the MCSPL which selects workers based on

the performance estimates from the [LCl

e While in |TvdS15a,TZvdS14,[MAvK16,MAvK17], the same number of actions is
selected per round, the proposed algorithm allows different numbers of actions
to be selected per round. In the considered problem, this corresponds
to allowing different required numbers of workers for different tasks. Hence, in
contrast to [TvdSlba, TZvdS14,|MAvK16, MAvK17], the learning speed of the
proposed algorithm is affected by the arrival process of the numbers of actions
to be selected.

e While in |[TvdS15a, TZvdS14, MAvK16,MAvK17], each action has the same con-
text space, the proposed algorithm allows each action to have an individual con-
text space of an individual dimension. In the considered problem, this
corresponds to allowing workers to give access to individual sets of context di-
mensions. Therefore, in contrast to [T'vdS15a, TZvdS14, MAvK16,MAvK17], the
granularity of learning may be different for different actions.

e Finally, while in [TvdS15a,TZvdS14MAvK16/MAvK17|, all actions are available
in any round, the proposed algorithm allows actions to be unavailable in arbi-
trary rounds. In the considered problem, this corresponds to allowing that
workers may be unavailable. Hence, in contrast to [TvdS15alTZvdS14,MAvK16,
MAvK17], the best subset of actions in a certain round depends on the specific
set of available actions in this round.

We call the proposed algorithm the hierarchical context-aware learning (HCL) algo-
rithm. Fig. shows an overview of the main steps of [HCILI for a task ¢ € {1,....,7}
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Figure 5.2. Overview of operation of [HCI] algorithm for task ¢.

in an exemplary [MCS application with W = 6 workers. A short summary of [HCII is
given next. When a task arrives at the MCSP] the broadcasts the correspond-
ing task context to the [LCk. Upon receiving information about a task, the [LC| of an
available worker first observes its worker’s personal context. Then, on the one hand, if
its worker’s performance has been observed sufficiently often before, given the current
joint personal and task context, the [LC| relies on previous performance observations
to estimate its worker’s performance and sends a performance estimate to the [MCSP]
On the other hand, if its worker’s performance has not been observed sufficiently often
before, the [LC| informs the [MCSP] that its worker has to be explored. Subsequently,
based on the messages received from the [LCk of available workers, the selects a
subset of workers. The [LC of a worker selected by the then requests its worker
to complete the task and observes whether or not the worker accepts the task. In
case the worker was selected for exploration purposes and then accepts the task, the
[LC additionally observes the quality of the completed task. How exactly the quality
of the task is observed, depends on the type of quality assessment used by the
application. For example, the [LC]l may get a quality rating from the task owner or
the [LCl may generate an automatic quality assessment using either local software or
the resources of a cloud. The reason for only making a quality assessment when a
worker was selected for exploration purposes is that quality assessment may be costly
and therefore, [HCI] keeps the number of quality assessments low. Clearly, if quality
assessment in the application is cheap, [HCI] can be adapted to always observe
worker quality, which may increase the learning speed.

In [HCT], a worker’s personal contexts and performance observations in terms of task
acceptance and quality are only locally stored by the[LCl Thereby, (i) personal context
is kept locally, (ii) the space required for storing worker information at the MCSPlis kept
low, (iii) if necessary, task completion and result transmission may be directly handled
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between the [LCl and the task owner, (iv) workers are assigned to tasks which they are
interested in and at which they are good, but without the need to share their context
information, and (v) even though an [LC| has to keep track of its worker’s personal
contexts and performance observations, the computation and memory overhead for

each [LO is small.

Next, [HCT] is discussed in more detail, starting with the operation of the [LCk. The
pseudocode of [HCI] for [LC] 4 is given in Algorithm [5.1] First, for synchronization
purposes, [LCl 7 receives the finite number T of tasks to be considered, the task context
space C and its dimension C' from the [MCSPl In addition, [LCl i checks to which
context dimensions of worker ¢ it has access in order to define the personal context
space X; and its dimension X;. Thereafter, [LCl7 sets the joint context space to X; x C
with size D; = X; + C. Moreover, [LCl i needs to set a parameter hr; € N and a
control function K; : {1,...,T} — R, during initialization, which are both described
below. Then, [LC] i initializes a uniform partition Qr; of worker i’s joint context
space [0,1]Pi. The partition consists of (hr;)P D;-dimensional hypercubes of equal
1

h;_ XX Hence, the granularity of the partition of the context space is

determined by the 7parameter hr;. Additionally, [LCl ¢ initializes a counter N; ,(t) for

size

each hypercube ¢ € Qr;. The counter N;,(t) represents the number of times before
(i.e., up to, but not including) task ¢, in which worker i was selected to complete a task
for exploration purposes when her/his joint context belonged to hypercube ¢. Finally,
for each hypercube ¢ € Qr;, [LC ¢ initializes the estimate ém(t), which represents the

estimated performance of worker ¢ for contexts in hypercube ¢ at the arrival of task t.

For each of the arriving tasks ¢t = 1,...,T, [LC ¢ executes the following steps. [LCl 4
only takes actions for an arriving task ¢, if its worker 7 is currently available, i.e.,
if i € W, holds. This is because if a worker is unavailable, it may mean that she/he is
offline. Therefore, we consider the [LCl to only take actions if its worker is available. If
this is the case, [LC] 7 first receives the task context ¢; from the [MCSPl Additionally,
[LCl i observes worker #’s current personal context x;; and determines the hypercube
from Qr; to which the joint context (x;;,c;) belongs. If there are multiple such hy-
percubes, one of them is randomly selected. We denote this hypercube by ¢;; € Qr;.
It satisfies (x4, ¢t) € g Subsequently, [LCl ¢ checks if worker ¢ has not been selected
sufficiently often before when worker ¢’s joint personal and task context belonged to
hypercube ¢;. For this purpose, [LCl ¢ compares the counter N;g, . (t) with K;(t),
where K; : {1,...,T} — R, is a deterministic, monotonically increasing control func-
tion, set in the beginning of the algorithm. On the one hand, if worker ¢ has been
selected sufficiently often before (N4, . (t) > K;(t)), [LCl 7 relies on the estimated per-
formance éi,qz,@- (t), and sends it to the [MCSPL On the other hand, if worker i has
not been selected sufficiently often before (Ny,, ,(t) < K;(t)), LC 7 sends an “explore”
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Algorithm 5.1 [HCTJALGE Local Controller ¢ of Worker 3.

31:
32:
33:
34:

. Receive input from [MCSP} 7', C, C
Receive input from worker i: X;, X;
Set joint context space &; x C, set D; = X; + C
Set parameter hy; € N and control function K; : {1,...,T} — R4
Initialize context partition: Create partition Qr; of [0, 1] into (hz;)
of identical size
Initialize counters: For all ¢ € Qr;, set N;, =0
Initialize estimated performance: For all ¢ € Qp;, set éi,q =0
foreacht =1,...,7T do
if 1 € W, then
Receive task context c;
Observe worker ¢’s personal context x;;
Find the set ¢;; € Qr; such that (x¢;,¢t) € qr;
if N, ., > Ki(t) then
Send message; := éi,qm to
else
Send message; := “explore” to [MCSPI
end if
Wait for [MCSPJ's worker selection
if [MCSP selects worker 7 then
Give task context c; to worker i
Request worker ¢ to complete task ¢
Observe worker ¢’s decision d
if message, == “explore” then
if d == 1 then
Observe worker i’s quality ¢, set p :=¢q
else
Set p:=0
end if

é~ _ eiqtiqutl"l‘p
4t T N; . 41
Nivqtz = Nl‘hz + ]‘
end if
end if
end if

end for

Di hypercubes
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message to the MCSPl The control function K;(t) is hence used to decide whether a
worker should be selected for exploration purposes (to achieve reliable estimates) or
whether the worker’s performance estimates are already reliable and can be exploited.
Since the trade-off between exploration and exploitation is hence determined by the
control function, the choice of the control function is crucial to ensure a good result of

the learning algorithm. A suitable choice of the control function will be proposed in

Section (.6.11

Thereafter, [LCl 7 waits for the to take care of the worker selection. On the one
hand, if the MCSP] does not select worker 7, [LC]7 does not take further actions. On the
other hand, if the MCSP|selects worker 4, [LC|7 hands the task context information ¢; to
worker ¢ via the user interface of the application and requests worker 7 to complete
the task. Then, [LCl47 observes whether or not worker ¢ accepts the task. If worker i was
selected for exploration purposes, [LCl7 makes an additional update of a counter and of
an estimate. For this purpose, if worker 7 accepted the task, [LCl7 additionally observes
worker i’s quality in completing the task (e.g., by requesting a quality rating from the
task owner or by generating an automatic quality assessment) and sets the observed
performance to the observed quality. If worker i declined the task, [LCl ¢ sets the
observed performance to 0. Then, based on the observed performance, [LCl i computes
the estimated performance éiqu. (t + 1) for hypercube ¢;; and the counter N;, . (t +
1). Note that in Algorithm [5.1] the argument ¢ is omitted from counters N;,(t) and
estimates 6, ,(t) since it is not necessary to store their respective previous values.

By definition of [HCI] the estimated performance éi,q(t) corresponds to the product of
(i) the relative frequency with which worker i accepted tasks when the joint context be-
longed to hypercube ¢ and (ii) the average quality in completing these tasks. Formally,
the estimate 6, 4() is computed as follows. Let & 4(t) be the set of observed perfor-
mances of worker ¢ before task t when worker ¢ was selected for a task and the joint
context was in hypercube ¢. If before task ¢, worker i’s performance has never been
observed before for a joint context in hypercube g, we have &; ,(t) = () and ém(t) = 0.
Otherwise, the estimated performance is given by 6;,(t) := m EPG&,q(tZ p. Note
that the set & ,(t) does not appear in [HCIl since the estimated performance 6; ,(t) can
be computed based on 6; ,(t — 1), N; 4(t — 1) and on the performance for task ¢ — 1.

Next, we discuss the operation of the [MCSPl The pseudocode of [HCI] for the MCSP|
is given in Algorithm [5.2] First, for synchronization purposes, the [MCSPl informs the
[LCk about the finite number T of tasks to be considered, the task context space C
and its dimension C'. Then, for an arriving task ¢ with budget and task context given

by (bt, ¢¢), the MCSP| computes the maximum required number m; of workers, based
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Algorithm 5.2 [HCLJQIMCSPE Worker Selection at [MCSPL

1: Send input to[LCk: T, C, C
2: foreacht=1,...,7 do

3:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:
32:
33:
34:

Receive task ¢ with budget and task context (b, c;)
Compute m; = L%J
Set Wt = (Z)
Set Wye = ()
Broadcast task context c;
for each:=1,...,W do
if Receive message; from [LCl¢ then
Wt == Wt U {Z}
if message, == “explore” then
Wwpe =wWpe u {i}
end if
end if
end for
Compute W, = |W,|
if W, < m; then > SELECT ALL
Select all W; workers from W,
else
Compute Wyer = W}
if Wyer == 0 then > EXPLOITATION
Rank workers in W, according to estimates from (message;)iew,
Select the m; highest ranked workers
else > EXPLORATION
if Wyer > m; then
Select m; workers randomly from W;*
else
Select the W, workers from W;°
Rank workers in W, \ W} according to estimates from

(message; )icw,\wye
Select the (m; — Wye:) highest ranked workers
end if
end if

end if
Inform [L.Ck of selected workers

35: end for
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on the budget b; and the corresponding price e, per worker. Moreover, the [MCSP) ini-
tializes two sets. First, the set W, represents the set of available workers when task ¢
arrives. Secondly, the set W} is the so-called set of under-explored workers, contain-
ing all available workers which have not been selected sufficiently often before given
their respective current joint personal and task context. After broadcasting the task
context c;, the waits for messages from the [LCk. When the [MCSP] receives a
message from an [LC| it adds the corresponding worker to the set W, of available work-
ers. In addition, the checks whether a received message is an “explore” message.
If this is the case, the MCSPladditionally adds the corresponding worker to the set W)
of under-explored workers. Note that by the definitions of Algorithms [5.1] and [5.2] the
set of under-explored workers is hence given by

W = {i € Wy : Ni, (1) < Ki(t)}. (5.11)

Next, the [MCSPl computes the number W; of available workers. If W; < m,; holds,
i.e., at most the required number of workers is available, the [MCSP] enters a select-all-
workers phase and selects all available workers to complete the task. Otherwise, the
[MCSPI continues by calculating the number W, := [W}*| of under-explored workers.
In case there is no under-explored worker, the enters an exploitation phase. It
ranks the available workers in W; according to their estimated performances, which it
received from the respective[LCk, and then selects the m; highest ranked workers. This
approach enables the [MCSP] to make use of context-specific estimated performances
without actually observing the workers’ personal contexts. In case there are under-
explored workers, the enters an exploration phase. These phases are needed
such that all [LCk are able to update their estimated performances sufficiently often.
Depending on the number W, of under-explored workers, two different cases may
occur. Either the number W, of under-explored workers is at least m,, in which case
the selects m; under-explored workers at random. Or the number W, of under-
explored workers is smaller than my, in which case the [MCSP] selects all W, under-
explored workers. Since the [MCSP| may select m; — W, additional workers, it ranks
the available sufficiently-explored workers according to their estimated performances
received from the respective [LCh, and then additionally selects the (m; — Wy ) highest
ranked workers. Hence, when the number of under-explored workers is small, additional

exploitation is carried out in exploration phases.

After worker selection, the[MCSPlinforms the[LL.Chk of selected workers that their workers
should be requested to complete the task. Note that since the does not have
to keep track of the workers’ decisions, the [LCk may handle the contact with the task
owner directly (e.g., the task owner may send detailed task instructions directly to an
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[LO of a selected worker; after task completion, the [LC] may send the result directly to
the task owner).

5.6 Properties of Proposed Algorithm

5.6.1 Upper Bound on Regret

The performance of [HCI] is evaluated by analyzing its regret with respect to the cen-
tralized oracle solution, as defined in (5.10). The theorem given below proves that
the regret of [HCI] is sublinear in T, i.e., there exists v < 1 for which R(T) =
O(T") holds. Hence, [HCLI converges to the centralized oracle solution for 7" — oo,
since limp_so R(T = 0 holds. The regret bound is derived based on the assumption
that under a similar joint personal and task context, a worker’s expected performance is

also similar. This similarity assumption can be formalized as follows, cf. Section

Assumption 5.1 (Holder continuity assumption). There exist L >0, 0 < a < 1 such
that

|0i(x, ¢) = 0i(%, €)| < Ll[(x,¢) = (%,¢)]

, (5.12)

holds for all joint contexts (x,c), (X,¢) € X; x C = [0,1]P" of all workers i € W,

where || - ||p, denotes the Euclidean norm in RP:.

Note that Assumption is required to derive the upper bound on the regret. In
contrast, [HCI] may also be applied to data which does not satisfy this similarity as-
sumption. In this case, the regret bound may, however, not hold.

The theorem given below shows that the regret of [HCI]is sublinear in 7.

Theorem 5.1 (Bound for R(T")). Given that Assumptzon- 1 holds, when[Ld1i, i € W,

runs Algorithm with parameters K;(t — {3t log(t), t = 1,....T, and hr; =
1

[T3+Di |, and the [MCSH runs Algorithm (5.4, the regret R(T) is bounded by

2a+D;
R(T) < sV Y 27 (1og(T)T3a+D + T, ) (5.13)
€W
QQmax 2a+D; o T a  2a+D;
T50; 4 g W2 + 25 LD? T5arD;
+iezw(2a+Di)/(3a—l—D) T 3+ ;V

a+Dmax

Hence, the leading order of the regret is O(T3a+Dmax log(T)), where Dpax =
max;cyy D,L
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The proof of Theorem [5.1]is given in Appendix[A.7] The idea of the proof is as follows.
First, the regret is decomposed into three terms. The three terms represent the regret
due to select-all-workers phases, exploration phases and exploitation phases. Each of
the three terms is then bounded separately. First, it is shown that the regret due to
select-all-workers phases is actually always zero, since the [MCSP] always selects the
optimal set of workers in these phases. Bounding the regret due to exploration phases
works as follows. The loss due to selecting suboptimal workers in exploration phases
may be upper-bounded by a constant. Moreover, it can be shown that the number of
exploration phases is limited and can be bounded sublinearly in 7', given an appropriate
choice of the input parameters of the algorithms. Overall, this leads to a sublinear
upper bound on the regret due to exploration phases. The idea for bounding the regret
due to exploitation phases is as follows. First, one distinguishes between two different
types of exploitation phases, depending on whether the estimated performance éiqu (1)
of each available worker 7 € W; in the current hypercube ¢ ; is “close” to its expected
value ]E[éi,qt,i(t)]. Then, for exploitation phases in which the latter holds true, one
can show that even if a suboptimal set of workers is selected, the loss cannot be very
large, but can in fact be bounded sublinearly in 7', given an appropriate choice of
input parameters. For the second type of exploitation phases, the loss due to selecting
suboptimal workers is upper-bounded by a constant. Moreover, one can show that the
number of this type of exploitation phases is limited by a sublinear bound in 7" given
an appropriate choice of input parameters. Overall, this leads to a sublinear upper
bound on the regret due to exploitation phases. Then, the overall regret bound follows
by setting the appropriate input parameters in the algorithms.

The regret bound given in Theorem [5.1] is sublinear in T, i.e., [HCI] converges to the
optimal worker selection strategy in the sense that when the number 7" of tasks goes to
infinity, the averaged regret @ diminishes. Moreover, since Theorem ﬂ is applicable

for any finite number 7' of tasks, it characterizes how fast [HCI]is learning.

5.6.2 Computational Complexity

Here, we analyze the computational complexity of the proposed algorithm for handling
one task t. First, the computational complexity of Algorithm [5.1] executed by the
LA of a worker ¢ € W is analyzed as a function of the dimension D; of worker i’s
joint context space. For this purpose, we identify the most computationally expensive
procedures in the algorithm. The complexity of line 10 in Algorithm does not
grow with D;, and hence the computational complexity of this line is O(1). Observing

worker i’s personal context has a computational complexity that grows as O(D;) since
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each entry of the context vector has to be accessed once. Finding the hypercube in
the partition of the context space to which the joint context belongs, has a complexity
that grows as O(D;). This is because one can give a separate index to each hypercube
in each context dimension and then compute the index of the hypercube to which a
context vector belongs in each of the D; context dimension once and independently of
the other dimensions. The procedures in the remaining lines of Algorithm do not
grow with D; and are hence of order O(1). Overall, the computational complexity of
the proposed [HCI algorithm for the [LCl of worker i grows hence as O(D;), i.e., it grows
only linearly with the dimension of the context space.

Next, the computational complexity of Algorithm is analyzed as a function of the
number W of workers. The complexity of lines 3-7 in Algorithm does not grow
with W, and hence the computational complexity of these lines is O(1). Determining
the set W, of available workers and the set W;*¢ of under-explored workers in lines 8-
15 has a complexity that grows as O(W). This is because each worker needs to be
considered at most once for each of the two sets. Lines 16 and 20 have a computational
complexity that grows at most as O(W) by considering each worker at most once.
Lines 17, 21 and 25 do not grow with W and their complexity hence grows as O(1).
Selecting workers in either line 18, 23, 26 or 28 and 30 has a computational complexity
of O(W) by considering at most each worker once. Ranking the workers in line 22 or
line 29 has a computational complexity that grows as O(W log W) since at most W
workers need to be sorted [CLRS09]. Hence, the computational complexity of the
proposed [HCIJ algorithm for the [MCSP| is hence of order O(W log W), i.e., it has a

log-linear complexity with respect to the number of workers.

5.6.3 Local Memory Requirements

We study the required local memory size in the mobile device of a worker when the
L executes Algorithm [5.1} In Algorithm [5.1} [LCl i stores the counters N;, and es-
timates 0”1 for each ¢ € Qr;. Using the parameters from Theorem . the number
of hypercubes in the partition Qr; is (hr;)?" = [Tdaw 1P < (1 + T3+P:)Pi. Hence,
the number of variables to store in the mobile device of worker ¢ is upper-bounded
by 2 (1 + T#’%)Di. Therefore, the required memory size depends on the num-
ber D; = X; + C of context dimensions. If a worker allows access to a high number X;
of personal context dimensions and/or the number C of task context dimensions is
large, [HCT] learns the worker’s context-specific performance with finer granularity and
therefore the assigned tasks are more personalized, but also the required local memory

size increases.



140 Chapter 5: Mobile Crowdsourcing

5.6.4 Communication Requirements

Next, we deduce the communication requirements of [HCI from its main operation
steps. First, for a task ¢, the [MCSP] broadcasts the task context to the [LCk, which
is one vector of dimension C' (i.e., C' scalars), assuming that the broadcast reaches all
workers in a single transmission. Subsequently, the [LCk of available workers send their
workers’ estimated performances to the [MCSPL This corresponds to W, scalars to be
transmitted, i.e., one scalar sent by each [LC] of an available worker. Finally, the
informs selected workers about its decision, which corresponds to m; scalars sent by
the [MCSPl Therefore, in total, a number C' + W; + m; of scalars are transmitted for
task t. Among these, C' + m; scalars are transmitted by the [MCSPl and one scalar is
transmitted by each mobile device of an available worker.

In order to evaluate whether the hierarchical approach of [HCI] for decision making
induces communication overhead compared to a centralized approach, we now derive
the communication requirements of a corresponding centralized approach for context-
aware worker selection. In such a centralized approach, for each task, the personal
contexts of available workers would be collected in the MCSPl which would then select
workers based on the task and personal contexts and finally inform selected workers
about its decision. The communication requirements of this centralized approach are
hence as follows. First, for a task ¢, the[LCl of each available worker i sends the current
worker context to the [MCSP], which is a vector of dimension D; (i.e., D; scalars). In this
step, in sum, a number Eiewt D; of scalars are hence transmitted. Then, after worker
selection, the [MCSP| requests selected workers to complete the task, which corresponds
to my scalars sent by the [MCSPl Finally, the [MCSP] broadcasts the task context to
the selected workers, which is one vector of dimension C' (i.e., C scalars), assuming
that the broadcast reaches all addressed workers in a single transmission. Therefore,
in total, a number ., D; +m; + C of scalars are transmitted for task £. Among
these, C' + my; scalars are transmitted by the MCSPl and D; scalars are transmitted by
the mobile device of each available worker i € W,.

Comparing now [HCI]with the centralized approach, the mobile device of any worker i €
W with D; > 1 has to transmit less data using [HCIL] than using the centralized ap-
proach. Moreover, under the assumption that any broadcast reaches all addressed
workers using one single transmission, using [HCIJ instead of the centralized approach
reduces the sum communication requirements (for all mobile devices and for the MCSP|
in sum) by an amount of 3,_ (> iew, Di = Wy) > 0 scalars since D; > 1for all i € W.
This shows that (i) the sum communication requirements of using [HCI] are at most as

high as that of the centralized approach, and (ii) the more context dimensions the [LCk
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are allowed to access, the lower are the communication requirements of [HCI] compared
to an equivalent centralized approach.

5.6.5 Worker Quality Assessment Requirements

[HCLJ explicitly takes into account that quality assessments may be costly by only
requesting a quality assessment if a worker is selected for exploration purposes. In the
sequel, we give an upper bound on the number A;(T) of quality assessments per worker
up to task T'.

Corollary 5.1 (Bound for number of quality assessments up to task T"). Given that
Assumption from Section holds, when [LA i, i € W, runs Algorithm
with the parameters given in Theorem [5.1, and the runs Algorithm the
number A;(T') of quality assessments of each worker i up to task T is upper-bounded by

A(T) < (1 +TsaiDz~>Di <1+10g(T)Tﬁ>. (5.14)

The proof of Corollary[5.1]is given in Appendix[A.8] The proof of Corollary[5.1]is based
on the proof of Theorem as follows. Since a quality assessment is only requested
in [HCT] if a worker is selected for exploration purposes, it is sufficient to derive an
upper bound on the number of times a worker can at most be selected for exploration
purposes. In the proof of Theorem [5.1] it is shown how the number of exploration
phases per worker can be upper-bounded sublinearly in 7. This upper bound is then
used to prove Corollary [5.1. From Corollary [5.1], we see that the number of quality
assessments per worker is sublinear in 7. Hence, limp_. Al — holds, so that

T
for T" — o0, the average rate of required quality assessments approaches zero.

5.7 Numerical Results

5.7.1 Simulation Setup

5.7.1.1 Synthetic and Real Data

We evaluate [HCI] by comparing its performance to several reference algorithms in

simulations based on both synthetic as well as real data. The difference between
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the two approaches lies in the arrival processes of workers and their contexts. To
produce synthetic data, we generate workers and their contexts based on predefined
distributions described below. In case of real data, similar to the approaches in [KS12,
uHC14,|ZC17], we use a data set from Gowalla |[CML11]. Gowalla was a location-
based social network where users shared their locations by checking in at “spots”,
i.e., certain places in their vicinity. We use the check-ins from the Gowalla data set
to simulate the arrival process of workers and their contexts. The Gowalla data set
used here consists of 6442892 check-ins of 107092 distinct users over the period of
February 2009 to October 2010. Each entry of the data set consists of the form (User
ID, Check-in Time, Latitude, Longitude, Location ID). Similar to [ZC17], we first
extract the check-ins in New York City, which leaves a subset of 138954 check-ins
of 7115 distinct users at 21 509 distinct locations. This resulting Gowalla-NY data set
is used for the simulations below. Figures [5.3(a)| and [5.3(b)| show the distributions of

the total number of check-ins per user and the number of distinct locations visited per
user in the Gowalla-NY data set, respectively.

For both synthetic and real data, we simulate an to which a set of W = 100
workers belongs. For synthetic data, 100 workers are created in the beginning. For
real data, we randomly select 100 users from the Gowalla-NY data set, which represent
the 100 workers of the application. Then, we use this reduced Gowalla-NY data
set containing the check-ins of 100 users.

5.7.1.2 Task Properties

The task context is assumed to be uniformly distributed in C = [0,1] (i.e., C = 1).
Task owners have to pay a fixed price e; of either 0.75 or 1 monetary units per re-
quested worker that completes a task ¢, depending on whether the task context c; lies
in either [0,0.5] or (0.5,1]. The quality of a completed task lies in the range g, = 0
and ¢uax = 5. The task budget is sampled from a normal distribution with expected

value 20 and standard deviation of 5, truncated between 1 and 100.

5.7.1.3 Worker Availability

For synthetic data, we let each worker be available with a probability of p = 0.7 (default
value) for each arriving task. For the real data, we use a Binomial distribution with
parameters W = 100 and p = 0.7 (default value) to sample the number of available
workers W; for an arriving task. In this way, the number of available workers in our



5.7 Numerical Results 143

10*

number of users
H
o
N

200 400 600 800 1000 1200
total number of check-ins

10°
0

(a) Distribution of total number of check-ins of users in the data set.

10%

number of users
H
o
N

0 200 400 600 800 1000
number of visited locations

10°

(b) Distribution of number of distinct locations visited by users in the data set.

Figure 5.3. Statistics of Gowalla-NY data set.
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experiments using the real and the synthetic data are distributed in the same way.
For the real data, having sampled W,, we randomly draw samples from the reduced
Gowalla-NY data set (consisting of the check-ins of 100 users) until these samples
contain W, distinct users. These W, sampled users correspond to the available workers
at the arrival of task t. Hence, users with higher number of check-ins in the reduced
Gowalla-NY data set translate to workers that are more often available for the MCSP|

5.7.1.4 Worker Context

The personal context space of worker i is set to X; = [0, 1]* (i.e., X; = 2). The first
personal context dimension refers to the worker’s battery state, which is sampled from
a uniform distribution in [0,1]. The second personal context dimension refers to the
worker’s location, which is sampled differently in case of synthetic and real data. For
synthetic data, the worker’s location is sampled from 5 different (personal) locations,
using a weighted discrete distribution with probabilities {%, %, %, 2—14, i} to represent
the fact that workers may spend more or less time using the application in
different places (e.g., at home more often than at work). For real data, we set the
worker’s location to be the check-in location of the respective user from the sample. If
a user was sampled several times until we sampled W; distinct users, we choose her /his

first sampled check-in location.

5.7.1.5 Expected Worker Performance

We use two different models to generate expected worker performance.

Discrete Performance Model The joint personal and task context space X; x C
(of dimension D; = 3) is split into a uniform grid. For synthetic data, the space is
split into 5 identical parts along each of the 3 dimensions, i.e., 5-5 -5 = 125 subsets
of &X; x C are created. For real data, along the dimensions of task context and battery
state, the context space is split into 5 identical parts each, but along the dimension of
location context, the context space of worker ¢ is split into [; identical parts, where [;
corresponds to the number of distinct locations visited by the corresponding user from
the reduced Gowalla-NY data set. Hence, 5 -5 - [; subsets are created. Then, for both
synthetic and real data, in each of the subsets, the expected performance of a worker
is a priori sampled uniformly at random from [0, 5]. Note that for the real data, since
the expected performance differs per visited location, workers with higher number of

visited locations have a higher number of different context-specific performances.
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Hybrid Performance Model We assume a continuous dependency of the expected
(1

performance on two of the context dimensions. Let z; ) and 331(2) be worker ¢’s battery
state and location, respectively, and let ¢ be the task context. We assume that the

expected performance 6; of worker i is given by

0; <c, mgl), x§2)> = Qmax * W; (xz(?)) : fm,o? (c) - xgl), (5.15)

where w; <x§2)> is a (discrete) location-specific weighting factor that is a priori sam-
pled uniformly between [0.5, 1] for each of worker i’s (finitely many) locations. More-
over, fm,a? is a truncated Gaussian probability density function with mean p; and stan-
dard deviation o;, which has been normalized such that its maximum value equals 1.
For worker 7, the mean y; is a priori sampled uniformly from [0.1,0.9] and the standard
deviation is set to o; = 0.1 - ;. Hence, the expected performance is a continuous func-
tion of task context and battery state. The hybrid model has the following intuition.
The expected performance of a worker is location-specific. Along the task context, the
expected performance varies according to a worker-specific Gaussian distribution, i.e.,
each worker performs well at a specific type of tasks. Finally, the expected performance
grows monotonically with the battery state, i.e., with more battery available, workers

are more likely to perform well at tasks.

5.7.1.6 Instantaneous Worker Performance

For each occurring joint worker and task context, the instantaneous performance of
a worker on an assigned task is sampled by adding noise uniformly sampled from
[—1,1] to the expected performance in the given context. Note that the noise interval
is truncated to a smaller interval if the expected performance lies close to either 0

or qmax .

5.7.2 Reference Algorithms

The following algorithms are used for comparison.

e The (centralized) Oracle has perfect a priori knowledge about context-specific
expected worker performances and knows the current contexts of all available

workers. For each task ¢, the Oracle selects the best subset of workers according

to (5.7).
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o [LinUCH is an algorithm for contextual [MABE, cf. Section [2.3.3.4] that

assumes that the expected performance of a worker is linear in its con-
text [LCLS10|, |[CLRS11]. In the considered [MCS| problem, based on a linear
reward function over contexts and previously observed context-specific worker
performances, for each task, [[InTUCB] chooses the m; available workers with high-
est estimated upper confidence bounds on their expected performance.
has an input parameter A\ ucg, controlling the influence of the confidence bound.
[CInUCB] is used in [uHC14] for task assignment in spatial [CSl

is an extension of the well-known [UCBT] algorithm, cf. Section
to the sleeping arm case [KNMS10]. It learns from previous observations of
worker performances, but without taking into account context information. In the
considered problem, based on the history of previous observations of worker
performances, [AUER] selects the m; available workers with highest estimated
upper confidence bounds on their expected performance. [AUER] has an input

parameter Apzugr, which controls the influence of the confidence bound.

e-Greedy is an algorithm for the stochastic problem, cf. Section [2.3.3.3
that learns from the history of reward observations [ACBF02], but without taking
context into account. In the considered [MCSl problem, e-Greedy works as follows.
e-Greedy selects a random subset of available workers with a probability of € €
(0,1). With a probability of (1 — €), e-Greedy selects the m; available workers
with highest estimated performances. The estimated performance of a worker is
computed as the sample mean of her/his previous performances.

Myopic is a heuristic algorithm that learns only from the last interaction with
each worker. For task 1, it selects a random subset of m; workers. For each
of the following tasks, it checks which of the available workers have previously
accepted a task. If more than m; of the available workers have accepted a task
when requested the last time, Myopic selects out of these workers the m; workers
with the highest performance in their last completed task. Otherwise, Myopic
selects all of these workers and an additional subset of random workers so that

in total m,; workers are selected.

e Random selects a random subset of m; available workers for each task t.

Note that we have adapted the [MAB algorithms [LinUCB], [AUER] and e-Greedy as
these algorithms would have originally selected only one worker per task, while we

required them to instead select m; workers per task. Moreover, in the list above, we

described the behavior of the five reference algorithms for the case m; < W;. In the

case of m; > W,, we have adapted each of the five algorithms such that it selects all
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Table 5.2. Choice of parameters for different algorithms.

‘ Algorithm ‘ Parameter | Selected value

[HCTI AHCL 0.003
LinUCB] ALinUCB 1.5
[AUERI AAUER 0.5
e-Greedy € 0.01

available workers. Finally, while we used standard centralized implementations of the
five reference algorithms, they could also be decoupled to a hierarchical setting like the
one used by [HCTL

5.7.3 Parameter Selection

The reference algorithms [LinUCB|, [AUER] and e-Greedy each require an input param-
eter that affects the performance of the respective algorithm. Moreover, also in [HCI]
where we set a = 1, choose hp; = (Tﬁfﬂ, i € W, as in Theorem , and set the
control function to K;(t) = Ancy, - {aain; log(t), t = 1,...,T, i € W, we have included
the factor Apcr, € (0, 1] into the control function as an additional input parameter to
reduce the number of exploration phases. In order to find an appropriate input param-
eter for each of the four algorithms, we first generate 20 synthetic instances using the
discrete performance model, where each instance consists of a sequence of T'= 10000
task and worker arrivals sampled according to Section Then, for each algorithm,
we make a parameter sweeping, by running the algorithm for a range of different in-
put parameters, each time averaging the results over the 20 instances, in order to find
the parameter at which the algorithm on average performs best. Table shows the
parameters at which each of the algorithms on average performed best, respectively.

These parameters are used in all of the following simulations.

5.7.4 FEvaluation Metrics

Each algorithm is run over a sequence of tasks ¢t = 1, ..., T and its result is evaluated

using the following metrics.

e We compute the cumulative worker performance at T achieved by an algorithm,

which is the cumulative sum of performances by all selected workers up to (and
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including) task 7. Formally, if the set of selected workers of an algorithm A
for task t is {sfj}jzl,m,min{mtwﬁ} and P, (t) is the observed performance of
worker sfj, the cumulative worker performance at 1" achieved by algorithm A
is

T min{m¢ Wi}

=> Z Pap (8)- (5.16)

e As a function of the arriving tasks, we compute the average worker performance
up to t achieved by an algorithm, which is the average performance of all selected
workers up to task t. Formally, it is defined by

t  min{mg,W;}

gL X e (5.17)

5.7.5 Results

5.7.5.1 Results under the Discrete Performance Model

First, we generate 100 synthetic and 100 real instances, in both cases using an availabil-
ity probability of p = 0.7 and the discrete performance model. Each instance consists
of a sequence of T' = 10 000 task and worker arrivals sampled according to Section

Then, we run the algorithms on these instances and average the results.

For both synthetic and real data, Table compares the cumulative worker perfor-
mance at T of an algorithm A with the one of [HCIJ by displaying I'r(A)/T'+(HCL).
As expected, Random gives a lower bound on the achievable cumulative performance.
Moreover, the results of [LInUCB], [AUER] e-Greedy and Myopic lie close to the result
of Random. This shows that algorithms which either do not take context into account
(i.e.,[AUER] e-Greedy and Myopic) or have a linearity assumption between context and
performance (i.e., LINUCB]), cannot cope with the non-linear dependency of expected
worker performance on context. In contrast, [HCL clearly outperforms[LinUCB| [AUERI
e-Greedy and Myopic, even though [HCI] observes worker performance only when re-
questing a worker for exploration purposes, while the other algorithms have access to
worker performance whenever a worker is requested. This is due to the fact that [HCIJ
smartly exploits context. Moreover, [HCI reaches a result close to the Oracle, which
is an upper bound to the other algorithms due to its a priori knowledge. Comparing

synthetic and real data, [HCL] has a better performance on the synthetic data, but it
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Table 5.3. Comparison of cumulative worker performance at 1" for p = 0.7 under the
discrete performance model. For an algorithm A, the table shows I'r(A)/T'7(HCL).

‘ Algorithm ‘ Synthetic data | Real data ‘

Oracle 1.04 1.20
[HCTI 1.00 1.00
LinUCH] 0.69 0.78
[AUERI 0.68 0.77
e-Greedy 0.68 0.76
Myopic 0.64 0.74
Random 0.64 0.73

still reaches a good result on the real data, even though using real data, each worker
has her/his own diversity in context arrival and hence in expected performance (since
users in the Gowalla-NY data set have different numbers of visited check-in locations),
i.e., for some workers, the context partition used by [HCIL] may be more coarse than
given by the worker’s real context arrival process, while for others, it may be more fine

granular.

Figures [5.4(a)| and [5.4(b)| show the average worker performance up to task ¢ as a func-

tion of the sequentially arriving tasks t = 1,...,T in case of synthetic and real data,
respectively. We see that over the sequence of tasks, the average worker performance
achieved by Random and Oracle stay nearly constant at around 2.5 and 4.1, respec-
tively, for both synthetic and real data. [LInUCB| [AUER], e-Greedy and Myopic increase
the average worker performance slightly, starting between 2.4 and 2.5 at t = 1 and end-
ing with average performance of between 2.5 and 2.7 at t = T. On the contrary, [HCI]
is able to increase the average worker performance from 2.5 att =1upto39att =T
for the synthetic data, and from 2.5 at t = 1 up to 3.4 at t = T for the real data. Hence,
[HCILl learns context-specific worker performances and selects better workers over time.

Finally, we evaluate the impact of worker availability by varying the parameter p. For

each value of p, we average the results over 100 synthetic instances and over 100 real

instances for T'= 10000, respectively. Figures [5.5(a)| and [5.5(b)| show the cumulative

worker performance at 1" achieved by the algorithms for different p in case of synthetic
and real data, respectively. For small p = 0.1, all algorithms yield approximately the
same performance. This is as expected since given our modeling of task budget, for
small p, the number of available workers is often smaller than the required number of
workers. Since each of the algorithms enters a select-all-workers phase in this case, each
algorithm performs optimally. For increasing worker availability p, the cumulative per-

formance at T" achieved by each of the algorithms increases. However, the gap between
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Oracle and [HCTJ on the one hand, and the remaining algorithms on the other hand,
is increasing for increasing p. For example, for the synthetic data, at p € {0.3,0.7,1},
the cumulative performance achieved by [HCI] corresponds to {1.16,1.46,1.49} times
the one achieved by the respective next best algorithm {[AUER] [LinUCB]| [LinUCBHI}.
Moreover, for the real data, at p € {0.3,0.7,1}, the cumulative performance achieved
by [HCTI corresponds to {1.07,1.29,1.34} times the one achieved by the respective next
best algorithm {e-Greedy, [LinUCB| [LinUCBI}. Hence, the more workers are available,
the more severe is the effect of not selecting the best workers and only [HCI] is able to

cope with the more difficult worker selection.

5.7.5.2 Results under the Hybrid Performance Model

Next, we evaluate the different algorithms under the hybrid performance model. Note
that worker performance is differently distributed in the hybrid than in the discrete
performance model, so that the absolute values in the results presented next are not
comparable to those in Section [5.7.5.1

First, we run the algorithms on 100 real instances for 7" = 10000 and p = 0.7 using the
hybrid performance model. Figure [5.6] shows the average worker performance up to
task t as a function of the sequentially arriving tasks ¢ = 1,...,T". The average worker
performance achieved by Random and Oracle stay nearly constant at around 0.29
and 0.88 over the sequence of tasks. [AUER] e-Greedy and Myopic increase the average
worker performance only slightly, from between 0.28 and 0.31 at ¢ = 1 to between 0.36
and 0.42 at t = 7. [LInUCBl has a larger increase from 0.37 at t = 1 to 0.55 at t = T.
Compared to the discrete performance model, LInUCB] performs better here due to the
monotonic dependency of expected performance on battery state. Still, [HCLl has the
largest increase from 0.31 at t =1 up to 0.73 at t =T

Finally, we evaluate the impact of worker availability p. For each value of p, we average
the results over 100 real instances for 7" = 10000. Figure shows the cumulative
worker performance at T achieved by the algorithms for different p. Again, for higher p,
the algorithms achieve higher cumulative performances at 7. While performs
better compared to the results under the discrete performance model, still, the gap in
cumulative performance between [HCI] and [LInUTUCB] is increasing for increasing p. For
example, at p € {0.3,0.7, 1}, the cumulative performance achieved by [HCI] corresponds
to {1.05,1.32,1.40} times the one achieved by [LInUCBL
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5.8 Conclusions

In this chapter, we have investigated how to exploit user resources in wireless networks.
Specifically, we have studied the problem of context-aware worker selection for max-
imizing the worker performance in an application with non-spatial tasks under
missing knowledge about each worker’s individual performance. We have proposed a
model for context-aware worker selection in applications, which allows different
task types to occur and which allows worker performance to be a possibly non-linear
function of the task context and of the worker context. Then, taking a machine-
learning-based approach, we have modeled the problem as a contextual [MAB]| problem.
Moreover, we have proposed a context-aware hierarchical online learning algorithm for
worker selection in applications based on a hierarchical architecture of decision
making. In the proposed algorithm, decision making and information collection is split
among different entities. On the one hand, [LCk located in each of the workers’ mobile
devices learn their workers’ performances online over time, by regularly observing the
workers’ personal contexts and their instantaneous performances. On the other hand,
the centralized [MCSP|selects workers for tasks based on a regular information exchange
with the [LCk. This hierarchical coordination approach ensures that the most suitable
workers are requested by the over time. Moreover, the learning in [LCk ensures
that personal worker context can be kept locally and does not need to be shared with
the [MCSP| but still workers are offered those tasks they are interested in the most.

The computational complexity of the algorithm has been shown to grow linearly with
the dimension of the context space for the [LCk and log-linearly with respect to the
number of workers for the [MCSP| respectively. Upper bounds on the local memory
requirements of the proposed algorithm in the mobile devices as well as on the number
of times the quality of each worker must be assessed have been derived. In addition,
it has been shown that the more context dimensions the [LCk are allowed to access,
the lower are the communication requirements of the proposed hierarchical approach
compared to an equivalent centralized approach. Besides, we have derived a sublinear
upper bound on the regret, which analytically bounds the loss of the proposed algo-
rithm with respect to an oracle that selects workers optimally under a priori knowledge
about expected worker performance. The regret bound characterizes the learning speed
and proves that the algorithm converges to the optimal worker selection strategy. Fi-
nally, simulations based on synthetic and real data have shown that, depending on
the availability of workers, the proposed algorithm achieves an up to 49% higher cu-
mulative worker performance than the best algorithm from the literature by smartly

exploiting context information for worker selection.
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Chapter 6

Conclusions

6.1 Summary

The contributions of this thesis can be summarized as follows. In this thesis, we
understand wireless networks as networks of distributed connected resources — a recent
paradigm shift that is mandatory in view of the expected increases in the amount
of data traffic, the number of wirelessly connected devices and the requirements of
emerging mobile and [[oT] applications, all of which will pose heavy burdens on future
wireless networks. Following this new paradigm, new techniques are needed that jointly
consider and leverage different types of resources available in wireless networks, namely,
communication, computation, caching, data collection and user resources, in order to
improve the system performance. In this thesis, it is shown that such new techniques
require context-aware decision making in order to best exploit and allocate the different
available resources. An overview of context-aware decision making is provided, by
discussing context awareness, different types of architectures of decision making and
different designs of decision agents. Finally, three candidate techniques for wireless
networks are studied that jointly consider and leverage different types of resources,
namely, computation offloading in multi-hop wireless networks, caching at the edge of
wireless networks and [MC3 For each technique, we identify a fundamental problem
requiring context-aware decision making and we propose a novel framework for context-

aware decision making that we use to solve the problem.

In Chapter [, the need for the new paradigm of understanding wireless networks as
networks of distributed connected resources is motivated. Moreover, the concept of
context-aware decision making is introduced. Finally, three exemplary techniques are
highlighted that jointly consider and leverage different types of resources of wireless
networks. For each of the three techniques, a fundamental problem is identified and
it is shown that context-aware decision making is required in order to best exploit the

resources.

In Chapter [2] an overview of context-aware decision making in wireless networks is
given. It is briefly outlined of which components a context-aware system model con-
sists and the concept of context is introduced. Moreover, centralized, decentralized

and hierarchical architectures of decision making are introduced and it is discussed for
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which types of problems each of the architectures is suitable. Finally, different designs
of decision agents and corresponding decision-making methods are discussed, with an
emphasis on optimization and [MABI frameworks, two specific types of approaches ap-
pearing in this thesis.

In Chapter [3] it is studied how to trade computation resources off against communica-
tion resources in wireless networks by considering computation offloading in multi-hop
wireless networks. Using computation offloading, wirelessly connected devices may off-
load computation tasks to resource-rich servers for remote computation and thereby
reduce their task completion times and their energy consumption. The effect of compu-
tation offloading on the energy consumption of an individual device depends not only
on channel conditions and computing capabilities of the device, but also on task char-
acteristics. Therefore, context information needs to be taken into account for deciding
whether or not to offload a task. In this thesis, for the first time, we consider compu-
tation offloading in multi-hop networks, where network coverage may be extended and
required transmission power reduced. Since communication resources of relay nodes
need to be used and shared for task offloading, offloading decisions are non-trivially
coupled in multi-hop networks. Therefore, in this chapter, the fundamental problem
of context-aware computation offloading for energy minimization in multi-hop wireless
networks is identified. First, a novel model for context-aware computation ofoading
in multi-hop wireless networks is proposed that takes into account channel conditions,
computing capabilities of the devices, task characteristics, and battery constraints at
relay nodes. Based on this model, using an optimization-based approach, the prob-
lem is formulated as a multi-dimensional knapsack problem, which takes into account
the non-trivial coupling of offloading decisions. Then, using a centralized architecture
of decision making, a new context-aware greedy heuristic algorithm for computation
offloading in multi-hop networks is proposed. This algorithm enables a controller in
the access point to take offloading decisions based on centrally collected information
about network conditions and task context. The computational complexity of the pro-
posed algorithm is analyzed and it is shown that the communication overhead of the
proposed centralized architecture of decision making is small. Furthermore, numeri-
cal results demonstrate that the proposed algorithm on average reduces the network
energy consumption by 13% compared to the case when no computation offloading
is used. Moreover, the proposed algorithm yields near-optimal results in the consid-
ered offloading scenarios, with a maximal deviation of less than 6% from the global

optimum.

In Chapter [, it is investigated how to exploit caching resources in order to save com-
munication resources in wireless networks by studying caching at the edge. Caching at

the edge uses caching resources close to the mobile users to cache popular content in
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a placement phase in order to locally serve user requests for this content in a delivery
phase. In this way, the backhaul and cellular traffic may be alleviated and the latency
for the user may be reduced. A crucial question is which content should be locally
cached such that the number of cache hits is maximized. Caching the most popular
content requires knowledge about the content popularity distribution, which is typi-
cally not available a priori. Moreover, local content popularity may vary according to
the preferences of the mobile users connecting to the local cache over time. The users’
preferences, in turn, may depend on their contexts. Finally, cache content placement
needs to take into account the cache operator’s specific objective, which may include
the need for service differentiation. Hence, in this chapter, the fundamental problem of
context-aware proactive caching for cache hit maximization at the edge of the wireless
network under missing knowledge about content popularity is identified. First, a new
model for context-aware proactive caching is introduced, allowing different content to
be favored by different users and including that the content popularity depends on
the user’s context. Then, a machine-learning-based approach is pursued and the prob-
lem is modeled as a contextual problem. Based on this model, a novel online
learning algorithm for context-aware proactive caching is proposed using a decentral-
ized architecture of decision making. This algorithm enables the controller of a local
cache to learn context-specific content popularity online over time and to take service
differentiation into account. The computational complexity and the memory and com-
munication requirements of the proposed algorithm are analyzed and it is shown how
the algorithm can be extended to practical requirements. Furthermore, a sublinear
upper bound on the regret of the algorithm is derived, which characterizes the learning
speed and proves that the proposed algorithm converges to the optimal cache content
placement strategy. Finally, simulations based on real data show that, depending on
the cache size, the proposed algorithm achieves up to 27% more cache hits than the

best algorithm taken from the literature.

In Chapter |9} it is studied how to make use of user resources in wireless networks by
considering [MCSl Using [MCY] task owners outsource their tasks via an intermedi-
ary [MCSP] to a set of workers, which allows different stakeholders to leverage human
intelligence for task solving. Since different workers may have different interests and
capabilities, not all of them may perform equally well on a given task. Hence, in order
to maximize the worker performance on a given task under the task budget, the most
suitable workers should be assigned to the task. Assigning the best workers to each task
requires knowledge about the expected performance of each worker, which is typically
not available a priori. Additionally, a worker’s performance may depend not only on
the specific task, but also on the worker’s current context, and this dependency may be

of non-linear nature. Furthermore, due to communication overhead and privacy con-
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cerns of workers, it may be required to keep personal worker context locally instead of
sharing it with the central MCSP], which makes it difficult for the to select the
most suitable workers. Therefore, in this chapter, the fundamental problem of context-
aware worker selection for maximizing the worker performance in an [MCS| application
with non-spatial tasks under missing knowledge about each worker’s individual perfor-
mance is identified. First, a novel model for context-aware worker selection in [MCY| is
proposed that allows different task types to occur and that allows worker performance
to be a possibly non-linear function of the task context and of the worker context.
Based on this model, a machine-learning-based approach is taken and the problem is
modeled as a contextual [MABI problem. Using a hierarchical architecture of decision
making, a new context-aware hierarchical online learning algorithm for worker selec-
tion in[MCQ is proposed. In the proposed algorithm, decision making and information
collection is split among different entities. While a set of [LCk located in the workers’
mobile devices learns the workers’ context-specific performances online over time, the
centralized [MCSP| assigns workers to tasks based on a regular information exchange
with the [LCk. This novel hierarchical coordination approach ensures that the most
suitable workers are requested to complete the task by the [MCSPI over time, while
personal worker context is kept locally in the [LCk, thus preserving the workers’ privacy
and reducing communication overhead. The computational complexity of the proposed
algorithm both for the [LCk and the [MCSPl is analyzed. In addition, upper bounds on
the local memory requirements of the proposed algorithm in the mobile devices as well
as on the number of times the quality of each worker must be assessed are derived.
Moreover, it is shown that the more access to worker context is granted to the [LCk,
the lower are the communication requirements of the proposed algorithm compared
to an equivalent centralized approach. Furthermore, a sublinear upper bound on the
regret is derived, which characterizes the learning speed and proves that the proposed
algorithm converges to the optimal worker selection strategy. Finally, numerical results
based on synthetic and real data show that, depending on the availability of workers,
the proposed algorithm achieves an up to 49% higher cumulative worker performance
than the best algorithm from the literature.

6.2 Outlook

We end this thesis with an outline of future research directions.

Computation Offloading In this thesis, we have proposed a context-aware greedy
heuristic algorithm for computation offloading in multi-hop wireless networks, aiming
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at minimizing the network energy consumption. The following extensions may be
pursued in future. First, one may consider that nodes may process tasks for each
other, i.e., considering a cooperative multi-hop network [FTH16|. In this case, for each
node, it not only has to be decided whether or not to offload its task, but also to which
other node to offload. Secondly, the approach may further be extended by changing the
architecture of decision making to a decentralized one, where the nodes of the network
take individual offloading decisions. In this case, a coordination mechanism is needed
to ensure that the offloading decisions are valid and are aligned with the overall network
goal. The author of this thesis has contributed to first steps in this direction in a follow-
up paper [ASMKI16|. Finally, we have assumed that the parameters appearing in the
optimization problem are known. However, our approach could further be extended by
no longer assuming that the ratio between the number of bits needed for transmission
and the number of CPU cycles needed for computation are known a priori. Instead, this
ratio would first have to be predicted as a function of the type of task and application,
e.g., using machine-learning methods [KLLB13].

Caching at the Edge In this thesis, we have proposed an online learning algorithm
for context-aware proactive caching, aiming at maximizing the number of cache hits in
a local cache at the edge of the wireless network under missing knowledge about con-
tent popularity. Extensions in the following directions would be useful. First, we have
considered that each content corresponds to one file in the library. However, in adap-
tive video streaming, videos are encoded into different representations that correspond
to different qualities of the video [PIAT14]. How to assign different representations of
different videos to multiple caches at the edge under a quality of experience metric is
a challenging problem that has been studied in [LTZ™ 18] assuming a priori knowledge
about video popularity. However, since video popularity is typically unknown a pri-
ori and has to be learned, adaptive video streaming should be studied in combination
with context-aware proactive caching under missing knowledge about content popular-
ity. Secondly, we have considered that the goal of the caching entity is to maximize
the number of cache hits, but we did not consider the cost for placing content into
the cache. Such a cost may occur due to the bandwidth consumption on the backhaul
when the file to be cached is fetched from the distant file server. While a cache replace-
ment cost has been considered for proactive caching under missing knowledge about
content popularity in [BG14a,BG14c|, these works did not take context into account
for learning content popularity. Combining context-aware proactive caching with cache
replacement costs is very challenging under arbitrary context arrivals since cache re-
placement costs require to keep the cache content static as often as possible, which is
difficult if contexts arrive in an arbitrary manner. Therefore, cache replacement costs

should be studied under suitable stochastic assumptions on the context arrival process
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such that future changes in context can be estimated and taken into account for cache

content replacement.

Mobile Crowdsourcing In this thesis, we have proposed a context-aware hierarchi-
cal online learning algorithm for worker selection in applications with non-spatial
tasks, aiming at maximizing the worker performance under missing knowledge about
each worker’s individual performance. This work could be extended as follows. First,
in this thesis, we have considered that each worker is paid the same amount of compen-
sation for completing a particular task. This could be extended by allowing workers
to have a personal price as in [TTSRJ14] or even different personal prices for differ-
ent task types. In this case, the problem becomes a combinatorial contextual
problem such that methods from combinatorial [MABE |[CWY13,|QCZ14] need to be
investigated to handle this problem. Secondly, we have considered that an [LC] uses
available context information for learning worker performance. However, it may hap-
pen that not all of the available context dimensions are equally relevant for learning
a worker’s performance. Hence, in order to reduce the costs for monitoring and the
required memory space for keeping monitored context information in the mobile device
of its worker, an should additionally discover the most relevant context dimen-
sions. For this purpose, how to learn relevance within contextual [MABE needs to be
studied [TvdS15b].

Context-Aware Decision Making in Wireless Networks In this thesis, we have
seen that many problems in wireless networks require context awareness since the
optimal decisions depend not only on the current network conditions, but also on
other node-related, user-related or externally given conditions. The contextual
frameworks presented in this thesis are not restricted to the scenarios considered in
this thesis, but can also be used to model and solve further problems of context-aware
sequential decision making with limited feedback and missing a priori knowledge in
wireless networks. The author of this thesis has already started to work in this direction
and has contributed to publications that have adapted the contextual framework
from Chapter 4] to beam selection in 5G mmWave Vehicular Communications [AMS*18]
SKAT18].

Distributed Connected Resources in Wireless Networks Overall, we have
studied in this thesis how to exploit different available resources in order to improve
the system performance of wireless networks. In detail, three techniques have been

considered, each of which exploits one type of resources (i.e., computation, caching,



6.2 Outlook 161

user resources) and considers its interplay with the communication resources, while
relying on data collection resources to collect context information for decision making.
Going, however, one step further, all the different types of resources, i.e., commu-
nication, computation, caching, data collection and user resources, should be consid-
ered jointly based on a joint modeling in order to understand their interrelationships
and interdependencies. Moreover, a joint optimization of the allocation of all the
different resources could possibly further improve the system performance. So far,
approaches in this direction have considered the trade-offs between and the joint op-
timization of subsets of the above resource types, for instance, by jointly optimizing
where to place and/or how to allocate computation, communication and caching re-
sources [HYH" 16, LCQ16,WZZ"17,|CHH" 18, WHY "18]. This approach may be ex-

tended as follows.

First, we have seen in this thesis that for optimally allocating computation, communi-
cation or caching resources, context information needs to be taken into account, which
itself needs to be collected using data collection resources. Since the usage of data col-
lection resources has a cost (e.g., energy or delay cost for sensing), one cannot simply
continuously collect data in order to have all kinds of (possibly not needed) context
available for decision making. Instead, finding and only relying on those sources which
provide the relevant context is crucial [KLJT10]. Moreover, computation resources
are required in order to process collected context such that decision agents may actu-
ally use it, and caching resources are needed to store the collected context [MSS13].
Additionally, trade-offs between data collection resources (e.g., in terms of sensing)
and communication resources exist [KASK19]. Overall, trade-offs between data col-
lection resources and the other types of resources exist and we therefore argue that
such trade-offs need to be included into the joint resource allocation of wireless net-
works. Since data collection has a cost, as in active sensing [YZvdS18], it needs to be
further investigated, how much data collection resources need to be sacrificed in order
to collect sufficient context information for taking well-informed decisions about the
joint allocation of all the other types of resources. To sum up, data collection resources
should be included into the joint optimization of resources in the same way as the more

“traditional” communication, computation and caching resources.

Secondly, we have seen in this thesis how human intelligence may be leveraged within
wireless networks. While users are already being perceived as service providers in
the context of [RZZS15], user resources should be more broadly understood as
an essential type of resource available in wireless networks. For instance, users can
actively take part in solving intelligence tasks (e.g., image annotation) that may be
difficult for machines to solve or even intractable for machine computation [RZZS15].

In this way, human intelligence enhances the computing capabilities of the network.
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As another example, users can actively take part in sensing tasks (e.g., environmental
sensing) that might be solved very efficiently by a large set of users in the area of
interest taking sensor readings with their mobile phones [HZL16|. In this way, human
intelligence also enhances the data collection capabilities of the network. We argue,
however, that rather than understanding user resources as part of the computing or
data collection resources, user resources should be treated as a separate type of resource
since human behavior introduces additional uncertainties (due to the users’ preferences,
skills and strategic behavior) that need to be taken into account.
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Appendix

A.1 Proof of Proposition

In this appendix, we prove Proposition from Section [3.5.1] proving that Prob-
lem ([3.11]) corresponds to a multi-dimensional knapsack problem.

Proof of Proposition[3.1. We turn the minimization Problem into its equiva-
lent maximization problem and we rewrite the energy constraints of Problem (3.11])
to eliminate the index sets {n : r € R, }. For that purpose, we define trivial coeffi-
cients Ef , := 0 for all n,r with r ¢ R,. Hence, Problem ({3.11)) is equivalent to the
following problem:

N

—max Y yu(Ecn — Bra) (A1)

n=1

s.t. Zyn ’71n‘n_ prov,r EC,T fOI'?":L...,R

yn €4{0,1} forn=1,...,N.

Setting the profits as p, == Ec, — Ev,, for n = 1,..., N, the weights as w,,, = Er,
forn =1,..,N, r =1,..., R, and the capacity values as ¢, := Fov, — Ec, for r =
1, ..., R, Problem corresponds to a multi-dimensional knapsack problem as in
with R constraints. O

A.2 Proof of Proposition

In this appendix, we prove Proposition from Section [3.5.5 thereby deriving the
globally optimal actions of Problem (3.11)) in the case of a line topology.

Proof of Proposition[3.3 First, assume that E,. = Ec holds. In this case, Rule 2
from Section [3.5.3 states that y% = 0 for nodes n = 2,..., N. Moreover, by Rule 1 from
Section y; = 0 holds if Ey, > E¢. Clearly, if Ej < Ec, then yf = 1. Hence,
it follows that

Eprov EC +1

*: ’ Elmk A2
In {0, else. (8.2)




164 Appendix

Now, assume without loss of generality that E.,, > FEc holds. In a line topology,
predecessors of node n are all nodes with smaller hop distance to the[AP] i.e., nodes 1
to n — 1. Hence, in the homogeneous setting of Proposition , the energy Er,, for
transmission of node n’s task to the server in (3.6)) reduces to

n—1 n—1
Ern,=Et, + Z EYt,, = Ejnk + Z Ejink = n - Ejink. (A.3)

r=1 r=1
Using Equation (A.3)) and the fact that the successor nodes of a relay node r, r =
1,...,N — 1, are given by all nodes which have higher hop distance to the [AP] i.e.,
nodes r + 1 to N, Problem (3.11)) becomes

N
min Z Yn(NEjink — Ec) (A.4)
n=1
N
s.t. Z YnLink < Eproy — Ec forr=1,..., N -1
n=r+1

yn € {0,1} forn=1,...,N.

As discussed in pre-processing Rule 1 in Section [3.5.3] each node whose optimal action
it is to transmit its task to the server must have Er,, < Ec. By Equation (A.3), this is
equivalent to n - Ejy < Ec or n <

EElfk The concept of dominance [KPP04] may now
be used to prove which variables y,, are nonzero in the optimal solution, i.e., to find out
for which node the optimal action is to use computation offloading. Translated to the
computation offloading scenario, a node n dominates a node k if (i) node n provides
at least as much energy savings when using computation offloading as node k£ and if
(ii) node n needs at most as many energy resources from any relay node in the network
as node k£ when using computation offloading. Both conditions are satisfied if the nodes’
indices satisfy n < k since (i) then the objective values satisfy nFEyj,— Ec < kB — Fc
and since (ii) nodes n and k need the same amount of energy from common relay nodes
by homogeneity, but node n has lower hop distance to the [AP] than node & and thus
needs energy of fewer relay nodes. Hence, a node n dominates all nodes k with k > n.
Therefore, a dominance ordering of the nodes arises according to their hop distance
to the [APl Hence, starting from node 1, which dominates all other nodes, one may
set y, = 1 for one node after the other, as long as this does not violate any of the
energy constraints. Node 1 has the tightest energy constraint since among the relay
nodes, which all have the same energy available, node 1 has the highest number of
successor nodes. Suppose nodes 1 to n — 1 were already chosen to offload their tasks,

ie,y,=1for k=1,...,n—1. Then, enough energy is available for node n to transmit

if

Z 1- Elink S Eprov - EC7 (A5)
k=2
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or, equivalently,

Eov — F
n—1< p°El_k < (A.6)
To sum up, the optimal action vector is hence given by
: E Eprov—FEc
y = L, ifn < g% andn < =Pp—= 41 (A7)
" 0, else.
This concludes the proof. O

A.3 Proof of Proposition 3.4

In this appendix, we prove Proposition 3.4 from Section[3.7.1] showing that the context-
aware greedy heuristic algorithm in Algorithm always selects the globally optimal
actions in case of a star topology.

Proof of Proposition|3.4]. During pre-processing, Algorithm [3.1] applies Rule 1 from
Section by setting y, = 0 for any node n with Er,, > Ec,. After pre-processing,
each remaining node n satisfies Ep,, < Ec,. Algorithm then sorts the remaining
nodes according to the efficiency measure and, one after another, a remaining node n
is added to the set of transmitting nodes by setting its variable to 3, = 1. Since no
relay node exists in the star topology and hence, no energy constraints occur in the
corresponding Problem , all remaining nodes are added to the set of transmitting
nodes. Hence, Algorithm sets y, = 1 for any node n with Ey,, < Ec,. To sum up,
the output of Algorithm is

1, if Br, < Ec.,
yn:{’ PR (A-8)

07 if ET,n 2 EC,na

which corresponds exactly to the optimal actions for a star topology according to (3.12))
in Proposition |3.2] O

A.4 Proof of Proposition [3.5

In this appendix, we prove Proposition 3.5 from Section[3.7.1] showing that the context-
aware greedy heuristic algorithm in Algorithm always selects the globally optimal
actions in case of a homogeneous line topology.
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Proof of Proposition[3.5 First, assume that Ep., = Ec holds. In this case, Rule 2 ap-
plies during pre-processing. In the homogeneous line setting of Proposition [3.5 Rule 2
reduces to the following: If K., = Ec, then y,, = 0 for nodes n = 2,..., N. Hence,
in this case, Algorithm selects y, = 0 for nodes n = 2,..., N and it selects y; = 0
if Eynk > E¢ using pre-processing Rule 1 and y; = 1 otherwise. Hence, formally in

this case, Algorithm selects nodes according to

= L, ifn<g 2o andn<%+l (A.9)
" 0, else,

which corresponds exactly to the optimal actions for a homogeneous line topology

according to (3.16]) in Proposition [3.3]

Now, assume without loss of generality that E.,, > Ec holds. In a line topology,
predecessors of node n are all nodes with smaller hop distance to the [AP] i.e., nodes 1
to n — 1. Hence, in the homogeneous setting of Proposition , the energy Er, for
transmission of node n’s task to the server in ({3.6]) reduces to

n—1 n—1
Erp=Ef,+ Y Ei, = B+ Y Bk = 1 B (A.10)
r=1 r=1

During pre-processing, Algorithm [3.1] applies Rule 1 from Section [3.5.3| by setting y,, =
0 for any node n with Er, > Ec,. Using (A.10]), this is equivalent to n > EC ~. The
remaining nodes, for which n < E]fc must hold are sorted according to their eﬂimency
measure. Using (A and using the fact that R, = {1,...,n — 1} in a line topology,

the efficiency measure for a node n is given by

off. — EC,n - ET,n
B
reERy Eprov,r—EC;r
. Ec —n - Eyny (A.11)
Znil Elink ’
r=1 Eprov—FEc
_ Ec—n- By
_ . Elink
(n 1) Eprov_EC

For any n < j, we have Ec — n - Ejn > Ec — j - Ejne and (1”L—1)-EEI+“_“EC <
prov

(j—1)- % Therefore, the efficiency measures eff,, and eff; of any two nodes n

and j with n < j satisfy eff,, > eff,;. Hence, Algorlthmsorts the nodes with n < E1 =
according to their hop distance to the [AP], where the node with the smallest hop

distance has the highest efficiency. Then, starting from the node with lowest hop
distance, Algorithm sets y, = 1 for one node after the other, as long as this does
not violate any of the energy constraints. Node 1 has the tightest energy constraint
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since among the relay nodes, which all have the same energy available, node 1 has the
highest number of successor nodes. Suppose nodes 1 to n — 1 were already chosen to
offload their tasks, i.e., yp = 1 for kK =1,...,n — 1. Then, enough energy is available for

node n to transmit if

Z 1- Elink S Eprov - EC» (A12)
k=2
or, equivalently,
E rov. E,
n< 2 C g (A.13)
Ejink

To sum up, Algorithm [3.1] selects the actions as

: E Eprov—FEc
A a1

0, else,

which corresponds exactly to the optimal actions for a homogeneous line topology

according to (3.16]) in Proposition [3.3| O

A.5 Proof of Theorem [4.1]

In this appendix, we prove Theorem from Section |4.6.1} showing that the regret of
is sublinear in the time horizon 7', which guarantees that converges to the
oracle solution for T" — oo. First, two lemmas are proved and then the results of the
two lemmas are combined to conclude the proof.

Given a sequence of 7" time slots with arbitrary user arrivals, let 7 C {1,...,7'} be the
set of time slots in which enters an exploitation phase, and let 7.¢. = {1,..., T} \ 7r
be the set of time slots in which enters an exploration phase. The sets 7p and 77
are random sets that depend on the cache selections made by and the randomness
of the observed demands. Let R, (T") and R;(T) represent the regret due to exploration
phases and due to exploitation phases, respectively. Using the expressions above, the
regret R(T") in can be decomposed as follows:

R<T) =E [Ror(T) + Roi(T)] ) (A15)

where
m U
Roe(T) =Y ) v, (wf;(xt,gt)ﬂf;(xz,gt) (Xt,i) = We, ; fle, (Xt,z')> (A.16)
ters j=1 i=1
m U

Ru(T) =Y > w,, (wf;(xt,gt)uf;(xz,gt) (Xt,i) = Wey j fey 5 (Xt,z')>- (A.17)

tefp j=1 i=1
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The regret is computed by considering the loss due to caching a subset of
files {ctj}j=1, m instead of the top-m files for pair (X}, G,) for each time slot. The
loss is given by substracting the sum of weighted expected demands of the top m-files
from the sum of weighted expected demands of the selected files.

Next, we will bound the expected values of the two summands above separately.

First, a bound for E [R.,(T)] is given.

Lemma A.1 (Bound for E[R.(T)]). Let K(t) = t*log(t), t = 1,...,T, and hy =
[T7], where 0 < z < 1 and 0 < v < %. If [CAQ is run with these parameters, the
regret B[ Ro (T')] is bounded by

E[Ror(T)] < mUmaxVmaxWimax Rmax2 | F| - log(T)T*P + 177P). (A.18)

Proof of Lemma[A.1]l Let t € 75 be a time slot for which enters an exploration
phase. Since the expected demand pus(x) for any f € F, x € [0,1]” is bounded
in [0, Rmax] and the service weights are bounded by vy« for the different service groups

and by wpay for the prioritization weights, it follows that

m U

ROF(T) = Z Z Z Vg, 4 <(wf;‘(Xt,gt)ﬂfj*(Xt,gt) (Xti) = Wey ;j Mey ; (Xt,i)>

ters j=1 i=1

S Z mUmaxvmaxwmameaX~ (Alg)

tes

Hence, the regret can be bounded by

E[Ror (T)] S E Z mUmaX/Umaxwmameax

ters,

= mUmaXUmaxwmameax E Z L. (AQO)

tews,

For t € 77, the set of under-explored files F;*° is non-empty, i.e., there exist a user i €
{1,...,Us} with corresponding set p;;, and a file f € F, for which Ny, () < K(t) =
t*log(t) holds. By definition of F;*¢, up to time slot 7', there can be at most [1*log(7T)]
exploration phases in which file f is selected due to a context from set p;;. Since

there are (hr)” hypercubes in the partition, there can be at most (hy)?[T?log(T)]
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exploration phases in which file f is selected due to its under-exploration. Hence, the
number of exploration phases is upper-bounded as follows:

E > 1 < (hy)P[T1og(T)]. (A.21)

teTt fer

Note that this upper bound is rather loose because several files may be explored simul-
taneously, in which case they do not induce separate exploration phases. Further, we

conclude

E[Ro:(T)] < mMUnaxVmaxWimax Bmax > (hr)? [T7 log(T)]. (A.22)
feF

Using (hy)P = [T7]P < (277)P = 2PT7P | we have
E[Ro:(T)] < mUpaxVmaxWinax Rmax2° | F| - log(T)T*P + 177P). (A.23)

]

Next, we give a bound for E [Ry;(T)].

Lemma A.2 (Bound for E[Ry(T)]). Let K(t) = t*log(t), t = 1,...,T, and hy =

[T7], where 0 < z < 1 and 0 < 7 < %. If[CAd is run with these parameters and

Assumption [4. 1] from Section holds true, the regret E [Ry;(T)] is bounded by

13
]E[Rm(T)] < 277/’/U'maxUmaxU)mameax1 P + 2mUmaxvmaxwmaxLD2 T
T2
7T2
+mU§1axvmaxwmax max|f’ 3" (A24)

Proof of Lemmal[A.Z Let t € 7r, ie., enters an exploitation phase. Since the
set of under-explored files is empty in exp101tat1on phases (i.e., 7/ = 0), Ny, () >
K(t) =t*log(t) holds for all f € Fand alli=1,...,U;.

Now, let V(t) be the event that in time slot ¢, the estimated demand fis,, () of each
file f € F in each of the current hypercubes p;;, ¢ = 1,...,U;, is “close” to its true
expected value E[fiy,, ,(t)], i.e.,

V(t) = (g i (1) = Bl (D] < H(2) for all f e Fri=1,.., U} (A.25)

for an arbitrary H(t) > 0.
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Next, we distinguish between exploitation phases in which V() or its complementary
event, denoted by V(t), hold. Let Iy, denote the indicator function. Then, we can

write
Ry (T)
m U
-3 (0 (X (om0 )
terr j=1 i=1
m U
+Z<[{V°(t)} <Z Z Vgyi (wf;(xt,gt)uf;(xmgt)(Xt,i) — Wey ;i fey ; (Xt,i)>> . (A26)
teFr j=1 i=1

Using that the expected demand pi4(x) for any f € F, x € [0, 1] is bounded in [0, Rppax]
and the service weights are bounded by vy, for the different service groups and by wyyay
for the prioritization weights, this term can further be bounded as

Ry(T)
m U
< Z (I{V(t)} ) (Z Z Vgei (wf;(Xt,gt)Mf; (Xt,Ge) (Xt,i) — Wey ey ; (Xt,i)>)
terr j=1 i=1
+ Z mUmaxvmaxwmameax-[{Vc(t)}- (A27)
teTr

First, we bound the first term in (A.27). We start by noting that in an exploitation
phase t € 7r, since [CAC selected files {c; ;}=1,..m instead of {f;(é\’t,gt)}jzl,m,m, we
have

m U m U
Z Z Ugt,iwf;(Xt’gt)ﬂf;(Xtvgt)vpt,i (t) < Z Z Vg, s Wey s Fley j pri (t). (A.28)
j=1 i=1 j=1 i=1

We also know that when V' (¢) holds, we have
U p.:(8) = Bl ()] < H(t) for all fe Fri=1,.., U} (A.29)

almost surely. Finally, note that by the Holder continuity from Assumption
since X;; € py; and for calculating fiy,, (t), only contexts from hypercube p;; are
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used, for each f € F, it follows that

1y (%03) = Elftgp, (8]

1
~ g ol pg(Xei) —d
e, 2 () M

:Eﬂﬁi@ ) wmwwwmmu

- degfmt’i (t)

[
e 5 (st Bl )
_| Fei (0] A€ p, ; (t)
1 1 ! )
<E| - Z LH[—,...,—] ]
|€f7pt,i(t)| 4t s (0 hr hr |11p
i (A.30)

where we used the definition of /iy, ,(t) and the linearity of expectation in the first line
and the law of total expectation in the second line [BW16]. In the third line, we used
the property of conditional expectation which allows to pull known factors out of the
conditional expectation [BW16]. In the fourth line, we used the triangle inequality and
since the corresponding context of each of the observed demands d € &y, ,(t) came
from hypercube p; ;, we used the Hélder continuity from Assumption and exploited

the size % X ... % % of the hypercubes. Hence, for the first term in (A.27)), by first
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using , then ( and then (A.2§)), it follows that

m U
Iy iy - (Z Z (9 <wf;(xt,gt)/ﬁf;(xz,gt) (X1,i) — Wey , fey (Xt,i))>

=1 i=1

m U
< ]{V (Z Z Vg, ; (wf (X:,Gt) E[ﬂf;(-Xt,gt)7pt,i<t>] — We, ; E[lact,j»pt,i(t)]

7j=1 i=1

+ Wy, 60 LD b + wct’jLDgh;"‘)>

m U
< Iy - (Z > v, (wf* G (0G0 s (£) = Wy fiey 0 (1)

J=1 =1
+ wff(Xt,gt)H(t) + wct,jH(t>

+ Wy, 60 LD by + wct’jLDgh;"))

m U
Z Z Vge, (wf;m,gt)H (t) + we, , H(t)

+ wf;(xt,gt)LD%h;a + wct’jLDghT“) (A.31)

holds almost surely. Taking the expectation of (A.27) and exploiting that ((A.31)) holds
almost surely for any ¢ € 7 under V (¢) yields

Z mUmaxvmaxwmameax[{Vc(t)}] . (A32)

teTr
Finally, using that the service weights are bounded by wv., for the different service

groups and by Wy for the prioritization weights and using h* = [T7]7* < T, we
further have

T
E[Roi(T)] <Y 2mUnaxUmaxWinax (H(t) + LD‘iT—CW)
t=1

Z mUmaxUmaxwmameax]{Vc(t)}] . (A33)

teETT



A.5 Proof of Theorem |E| 173

Next, we take care of the term with the expected value in (A.33]). We can write

E Z mUmaxvmaxwmameaxI{Vc(t)}]

teETT

= mUmaxUmaxwmameax E|E |:Z ]{Ve(t)}

tETT

== mUmaxUmaxwmameax E Z E |:I{Vc(t)} 7~_T:|

LteTT i

= mUmaxUmaxwmameax E Z Pr(vc(t) ‘%T>] ) (A34)

LteTr

where we used the law of total expectation and the property of conditional expectation

which allows to pull known factors out of the conditional expectation [BW16].

Next, we bound Pr(V(t)|7r) for t € 7r. The event V¢(¢) can be written as
Vc(t) = {Hf € "rvi S {17 D) Ut} s.t. Iﬂf,pt,i(t) - E[ﬂf,pt,i(t)ﬂ > H(t)} (A35)
Hence,

Pr(Ve(t)|7r)
=Pr(3f e Fie{l, ..U} st |ipp, () = Eligp, (D]l = H(t)|7r)

<SS Pr(lfisp, (8) = Eljigp, (0] = H(E)|7r). (A.36)

feF i=1

For t € 7p, we get by the definition of F*°, that Ny, .(t) > K(t) = t*log(t) holds
for each f € F and each i = 1,...,U,, and hence, |y, ,(t)] > t7log(t). For f € F,
i=1,..,U;, and t € 7p, applying Hoeffding’s inequality [Hoe63| and using |y, , (£)] >
t*log(t), we get

Pr(lfis s (t) = Elitgp,, (]| = H(#)|7r)
) . (A.37)

< 2exp (—2H(t)2tz log(t)
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Hence, the regret due to exploitation phases is bounded by
E[Rm(T)]

T
< 2mUnaxVmaxWiax <H(t) + LD‘ST—M)

t=1

+ mUmaxUmaxwmax Rmax ]E

S 2 <—2H(t)2tz log(#) R?;X)

terr feF i=1

T
< 2mUnaxVmaxWrax <H(t) + LD‘JTM)
t=1

T Ut
1
+ MU naxUmax Winax Rinax Y > Y 2€xp <_2 H (1)t log(t) 7 ) . (A38)

t=1 feF i=1 max

So far, the analysis was performed with respect to an arbitrary H(t) > 0. Set-
ting H(t) := Ruaxt 2, we get

E [Roi (T>]

T
S Z 2Tnl’jﬂlax,Ulfnax/u)Irlax (Rmaxt; + LD%TQ’Y)

t=1

T U e
+ MU nmaxUmaxWmax Fmax Z Z Z 2 exp (_2R12nax(t 2)%t log(t)>

2
t=1 feF i=1 Rinax
T T
S QmUmaxUmaxwmaXRmax E t_E + QmUmaxvmaxwmax E LD?T_OC,Y

t=1 t=1

T
+ U2 U Winax Riunax | F| Y 2672

t=1
1-3 -
S 2Tn'(]maxUmaxu}maxRmax1_—z + 2mUmax'UmaxwmaxLD5T It
2
2
2 ™
+ mUmaxvmaxwmameax|f|_a (A39)

where, in the last step, we used the result from (A.74)) in Appendix and the value
of the Dirichlet series [GR14]. O

The overall regret in ({A.15) can now be bounded by applying Lemmas and [A.2]

Proof of Theorem[].1. First, let K(t) = t*log(t), t = 1,..,T, and hy = [T7],
where 0 < z < 1 and 0 < v < %. Then, under Assumption by combining
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the results of Lemmas and [A.2] the regret R(T) is bounded by

R(T) < mUnaxVmaxWinax Rnax2” | F| - (log(T)T*7 + T77)

=

+ + 2mUnaxUmasx Winax LD 2 T

2

7T2

Umaxwmameax|-F| ? (A40)

+ QmUmaxUmaxwmax Rmax 1

+ mU?

max

The summands contribute to the regret with leading orders O(T**"log(T)), O(T'~3)
and O(T'"*7). We balance the leading orders by setting the parameters z and ~y
according to z := 225 € (0,1), v := & € (0,5). Then, the regret R(T) is bounded

3a+D
by
D 2atp oD
R(T) < mUpaxVmaxWmax Bmax2” | F| - (log(T)T3e+D + T'324D)
2mU maxVmaxWmax max %
(2a+ D)/(3a+ D)
2

2 U W LD 3 T35 mU;avaanmRmaXm%. (A.41)

The leading order of the regret is hence O (log(T )ngig> O

A.6 Proof of Theorem 4.2

In this appendix, we prove Theorem from Section [£.7.2] yielding an upper bound
on the regret of [CAC] for rating-based caching with missing ratings.

Proof of Theorem[{.2. The proof of Theorem works analogously to the proof of
Theorem (applied to d;(x) instead of df(x)), by first dividing the regret into two
summands and bounding each summand. The only difference in is that the
counters are not updated if no ratings are given for requested files. Since the control
function remains the same, the regret due to exploitation phases is not influenced by
missing ratings. Therefore, the only difference occurs in the proof of the regret due to
exploration phases. In the proof of Lemma [A 1] it is argued that for each file f € F,
the number of exploration phases, in which f is selected since it is under-explored
is bounded above by [T%log(T)]| for each set in the partition of the context space.
However, in case no rating is given within one time slot in which a file was selected and
requested, the counters of are not updated. Hence, in this case, the number of
required exploration phases increases. Due to the uncertainty of rating revealings, this
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number of exploration phases is also uncertain. Next, an upper bound on the expected

value of this number is given.

Consider a fixed file f € F and a fixed time slot ¢. The number U; of users in time
slot ¢ lies between 1 and Uy,a,. With probability 3, a user reveals her /his rating after
requesting file f. Assume that among the U; users, a number 1 < [; < U, of them
requests file f in time slot ¢. (Note that in the case that no user requests file f, the
counters in are updated and hence, this case does not increase the number of
exploration steps.) Then, the probability of not receiving any rating from these [,
users in time slot ¢ is given by (1 — ). Moreover, this probability is maximal in
case [y = 1, i.e., when only one user may potentially rate file f. In the following, we
consider this worst case, that exactly one user requests file f and may potentially rate
file f in any relevant time slot ¢. Consider a fixed hypercube p € Pr of the partition.
Let 77,(7T") be the number of exploration phases until there are [T%log(7")] ratings for
file f revealed in hypercube p. Then, the expected number of exploration phases for
file f in hypercube p at the time horizon T is given by E[rs,(T")]. Let X;,(y) be the
number of time slots, in which file f is cached, the context of the user requesting file f
comes from hypercube p, but the user does not give a rating for file f, until y ratings

have been given. Then,
Elrsp(T)] = E[Xyp([T7log(T)])] + [T7 log(T)] (A.42)

holds. The random variable Xy, (y) has negative binomial distribution [DS12] with a
probability of 1 — /3 that no rating is revealed. Hence, its expected value at [1*log(7T)]

1S

(1= 8)[T* log(T)]

E[X7p([T*1og(T)])] = 3

(A.43)

Therefore,

E [r7,(T)] = %(TZ log(T)]. (A.44)

Hence, going back to the general case (in which 0 < [; < U; holds for the number [, of
users requesting file f in time slot ¢), an upper bound on the expected number of time
slots of exploration phases, in which a file f is selected for any of the (hy)? hypercubes
of the partition is given by %(hT)D [T#log(T')]. The remainder of the proof works as

in the proof of Lemma given in Appendix [A.5] O

A.7 Proof of Theorem 5.1

In this appendix, we prove Theorem from Section [5.6.1] showing that the regret of
[HCT] is sublinear in T', which guarantees that [HCI] converges to the centralized oracle
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solution for T' — oo. First, we prove three lemmas and then, we combine the results
of the three lemmas to conclude the proof.

Given an arbitrary length T sequence of task and worker arrivals, let 7 be the set of
tasks in {1,..., 7'} for which W; > my, and 7¢ = {1,..., T} \ 7p. 7 is also called the set
of select-all-workers phases. Also let 7 C 71 be the set of tasks in 7 for which the
[MCSP]is in exploitation phase, and 7% = 77 \ 71 be the set of tasks in 7 for which the
[MCSP]is in exploration phase. 7 and 7% are random sets that depend on the selections
of the [MCSP] and the randomness of the observed performances. Let Ry (7T'), Ro:(T)
and R.;(T) represent the regret due to select-all-workers phases, due to exploration
phases and due to exploitation phases, respectively. Using the expressions above, the
regret R(T) in (5.10) can be decomposed as follows:

R(T) = E[Ran(T) + Rex(T') + Rei(T')] (A.45)

where

min{m¢,W;}

aH Z Z st Xt St ) t) - est,j (Xt,styja Ct)) (A46)

ety

mm{mt,Wt

Z Z st Xt st ) Ct) est,j (Xt,st,ja Ct)) (A47)

teTh

mln{mt,Wt

Z Z 5% i Xt St i Ct) est,j (Xt,st,ja Ct)) . (A48)

teETT

The regret is computed by considering the loss due to selecting work-
ers {8¢;}j=1,...min{m,w;} instead of the optimal workers {s};};—1 . min{m,w,) for each
task. This loss is computed by subtracting the sum of expected performances of the

optimal workers from the sum of expected performances of the selected workers.

Next, we will bound the expected values of each of the three summands above sepa-
rately. First, we show that the regret due to select-all-workers phases is 0.

Lemma A.3 (Value of E[R.(T)]). When[Ld i, i € W, runs Algorithm with an
arbitrary deterministic function K; : {1,....,T} — R4 and an arbitrary hr; € N as
input, and the MCSD runs Algorithm[5.9, the regret E [Ra(T)] satisfies

E[Ran(T)] = 0. (A.49)

Proof of Lemma[A.3. For t € 75, i.e., W, < my, the MCSP] enters a select-all-workers
phase. Moreover, for W; < my, the trivial optimal solution is to request all available
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workers to complete task t. Hence, the [MCSPls selection of workers is optimal and
therefore, select-all-workers phases do not contribute to the regret, i.e., E[R.(T)] =
0. O]

Next, a bound for E [R,(T)] is given.

Lemma A.4 (Bound for E[R.(T)]). When[Ld i, i € W, runs Algorithm with
input parameters K;(t) = t¥log(t), t = 1,...,T, and hy; = [T7], where 0 < z; < 1
and 0 < v; < 3-, and the [MCSP runs Algorithm the regret B [Ro(T)] is bounded
by

E[Ror(T)] < Wmax » 2" (log(T)T* 7P 4 7707, (A.50)
€W

Proof of Lemma[A.] Let t € 75 be a task for which the [MCSP] enters an exploration
phase. By design of [HCT] in this case, W; > m; holds, i.e., m; = min{m;, W;}. Since
the expected performance of a worker is bounded in [0, gmax], it follows that

RalT) = 303 (0 (01 00) = O (1 0)

tets j=1
S Z MiGmax- (A51)

=

Hence, the regret can be bounded by

E[Ror(T>] <E Z MtQmax

=

< Wama E [ > 1] (A.52)

ters

since my < W holds for all t =1, ..., T.

For t € 77, the set Wi of under-explored workers is non-empty. Hence, there exists
an available worker i € W, with Njg, ,(t) < K;(t) = t*log(t). By definition of W}*,
up to task 7', worker i can induce at most [T% log(7T)] exploration phases for each of
the (hr;)P" hypercubes of the partition Qr;. Hence, the number of exploration phases
is upper-bounded as follows:

E|S 1] < 3 (he) > [T log(T))]. (A.53)

tere iEw
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This upper bound is rather loose as several workers might be explored simultaneously,
in which case they do not induce separate exploration phases. From (A.53)), we conclude
E[Ror(T)] € Wemax 3 (hrs) P [T log(T)]. (A.54)
iew

Using (hyp;)Pi = [T P < (2T7)Pi = 2PiT7 P we find

E[Ror(T)] < Wmax » 27 (log(T)T*+7P 4 7708, (A.55)
iew

O

Next, we give a bound for E [Ru(T)].

Lemma A.5 (Bound for E [Ru(T)]). Given that Assumption from Section [5.6.1]
holds, when [LA i, i € W, runs Algorithm with parameters K;(t) = t¥ log(t), t
L,...,T, and hy; = [T77], where 0 < z; < 1 and 0 < v; < 2, and the [MCSP runs

D’
Algorithm [5.3, the regret E [Ryi(T)] is bounded by
<2quax +2ZLD2T1 o
iew N 2 iew
2
+ qmaXW%. (A.56)

Proof of Lemma[A.3 Let t € 7r, i.e., the enters an exploitation phase. By
design of HCL, in this case, W; > m,; holds, i.e., m; = min{m,, W;}. Additionally,
since in exploitation phases, the set of under-explored workers is empty (i.e., Wi = 0),
Niq,,(t) > K;(t) = t* log(t) holds for all available workers i € W;.

Now, let V/(t) be the event that at the arrival of task ¢, each available worker i’s esti-
mated performance éiqu (t) in the current hypercube ¢, is “close” to its true expected
value E[éi7qt’i(t)], ie.,

V() = {[01g0. (1) = Elfiq,, (1)]] < Hi(t) for all i € W} (A.57)

for arbitrary H;(t) > 0, i € W;. Next, we distinguish between exploitation phases in
which V() or its complementary event, denoted by V¢(t), hold. Let Iy denote the

indicator function. Then, we can write

Roi(T)

= (I{V <Z 0y (%0ss 1) — B, <xt,3t,j,ct))>)

teETT

+Z<[{VC }<Z s, (Xesz o€ —Hsaj(xt,st’j,ct)))), (A.58)

teTT
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Using that the expected performance of a worker is bounded in [0, ¢ay], this term can
further be bounded as

Ri(T)
2 <I{V(t)} (Zw% (Xuwt€0) — O, (Xem ct>>>>
teTT
-+ Z mtqmaxf{vc(t)}. (A59)
teTT

First, we bound the first term in (A.59)). We start by noting that in an exploitation

—1,. , instead of {stj}] 1

.....

we have

me

Z 5740 qs . Z St,55 l]et] t (A60)

j=1

We also know that when V(¢) holds, we have

~

{‘0i7Qt,i(t) - E[Az qtz( )| < Hi(t) for all i € W} (A.61)

almost surely. Finally, note that by the Holder continuity from Assumption
since (x;,,¢;) € q; and for calculating émm.(t), only contexts from hypercube ¢ ;
are used, for each ¢ € W, it follows that

~

|0% (Xt,i) Ct) - E[9i7Qt,i (t)”

!
=|® e 0; (X, ¢) —
‘lgi’q” ®) pe€§. (t)( € p)] |

1
= |E E{m > (Oi(xuie) = p)

pegi’qt,i ()

ol

1
-l 2 (Mo -Eblsa.0)
[ ()] pelom(®)
1 1 a
et Sl
’g’i,%,i (t)l pess, ws () hT@ hT,i D;
< LD;%h;$, (A.62)

where we used the definition of éiqu,i (t) and the linearity of expectation in the first
line and the law of total expectation in the second line. In the third line, we used
the property of conditional expectation which allows to pull known factors out of the

conditional expectation [BW16]. In the fourth line, we used the triangle inequality and
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since the corresponding context of each of the observed performances p € &, ,(t) came
from hypercube qti, we used the Holder continuity from Assumption and exploited

h; . X —}l of the hypercubes. Hence, by first using , then
and then |D we have for the first term in (A.59) that

me
Ivay - (Z (9s;j (Xt,s7,5Ct) = Os, s (Xt ct)))

j=1

< Iy - (Z (E[és;j,qs;j ()] = E[bs, ; 4., , (1)]

J=1

+ L DSZJ Eh;g;‘,j + LDy, ;2 hii,;v))

me me
< Ivayy - (Z Osi a0 (1) = D Ost e, (1)

- o7 -
7=1 7j=1

+ LDy h;%. + LDy, 2hit J_) (A.63)

holds almost surely. Taking the expectation of (A.59) and exploiting that ({A.63) holds
almost surely for any t € 7 yields

]E[Rm(T)]
<Z<Z Stg +H5t1()

+ LD, %h;gzj + LD, 3h;§t’j)>

Z thmax]{VC(t)}] . (A64)

tetr

Finally, adding non-negative summands and using hp§ = [T7]7* < T7%%, we further
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have
E[Roi(T)]
T
< 2(22H 2D>
t=1 iEW €W
thqmaxl{vc(t)}] . (A65)
teTT

Next, we take care of the term with the expected value in the last expression. We can

write

Z Mt Gmax] {Vc(t)}]

teTr

=E |E {Z My Gax L {ve ()}

tETT

=K Z M¢Gmax K |:]{Vc(t)}

LieTr

=E Z M Grmax Pr(VC(t)|%T)] : (A.66)

LteTr

where we used the law of total expectation and the property of conditional expectation
which allows to pull known factors out of the conditional expectation [BW16].

Next, we bound Pr(V¢(t)|7r) for t € 7p. The event V¢(¢) can be written as
VEt) = {3i € Wi st i, (8) — Elfiq,, (0] = Hi(1)}. (A.67)
Hence,

Pr(Ve(t)|7r)
= Pr(3i € W 8.t 0iq,,(t) — Elfig, . (D]] > Hi()|7r)
<> Pr(lfig, () = Elbigq,, (1)]] > Hi(1)|7r). (A.68)

1EW,
For t € 77, we get by the definition of W} that N;, .(t) > K;(t) = t* log(t) holds
for each i € W;, and hence, |&;, ()| > t*log(t). For i € W, and t € 7, applying
Hoeffding’s inequality [Hoe63] and using |&;q, ()] > t* log(t), we get

> . (A.69)
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Hence, the regret due to exploitation phases is bounded by

E[Rai(T)]
T

<y (2 SoH()+2) LDﬁT“”’L’)

t=1 EW iEW

+E Z My Gmax Z 2 exp (—QHi(t)%zi log(t)%>]

teTFr 1EW; max

<y (2 S Ht)+2) LDZ%T*O‘%)

t=1 ieEW ieW

a 1
+ Z M Gmax Z 2 exp <—2Hi(t)2tzi log(t)2—>. (A.70)
=1 W, max

So far, the analysis was performed with respect to arbitrary H;(t) > 0, ¢ € W. Set-
ting H;(t) := qmaxt’% for i € W, we get

E[Roi(T>]
<3 (2 S et 423 LD 5T‘°‘%>
t=1 iEW 1EW
T
—2¢2 . (72 )7 log(t
+thqmaX226Xp< Ginax ( 2) g())
t=1 1EW: Qmax
T .
2D Gmax Yyt 2 42 LDETI
iEW t=1 iEW
T
+ Guax WY me2t
t=1
<2> ¢ L +2) LDAT o
_— A max 1 _ ﬁ ‘ (]
iew 2 iew
2
+ QmaXW2§7 (A?l)
where, in the last step, we used the result from (A.74) in Appendix , the fact
that m; < W holds and the value of the Dirichlet series |[GR14]. O

Applying Lemmas A5 the overall regret in ((A.45]) can be bounded as given below.

Proof of Theorem[5.1 First, for i € W, let K;(t) = t*log(t) and hy, = [T7],
where 0 < 2z; < 1 and 0 < ; < ﬁ. Then, under Assumption , by combining
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the results of Lemmas the regret R(T") is bounded by

R(T) < gmaxWV Z 2P (log(T)T#+7iPi 4 T7iPr)

€W
123 g I S L s
' maXl o ﬁ : 1
iew 2 iew
7'('2
+ qmaXWQ? (A.72)

The summands contribute to the regret with leading orders O(>",,,, T% P log(T)),
O ;e T ) and O(X T'-%). We balance the leading orders by setting the

parameters z;,; according to z; := 3a2j:‘D, € (0,1), v =2 € (0, 3-) for i € W. Then,
the regret R(T') is bounded by
2a+D; D;
R(T) < uaxW Y 27 (log(T)T570: 4 T5507)
iew
2Qmax 204Dy
+ [ 3a+D;
z‘ezv:v (2a+ D;) /(3 + D;)
a 2a+D; 2
+23  LDETH0 4 g W2 (A.73)
, 3
€W
Setting  Diax = max;cyy D;, the leading order of the regret is
a+Dmax
hence O (TgaIDmax log(T )) O

A.8 Proof of Corollary

In this appendix, we prove Corollary [5.1] from Section [5.6.5] giving an upper bound on
the number of quality assessments per worker needed in the proposed algorithm [HCTI

Proof of Corollary[5.1. This follows directly from the proof of Lemma [A.4] given in
Appendix and the proof of Theorem [5.1] given in Appendix [A.7 A quality as-
sessment is only requested if a worker is selected for exploration purposes. From the
proof of Lemma [A.4], the number of times a worker can at most be selected for ex-
ploration purposes is upper-bounded by (hr ;)P [T log(T)] = [T7]P [T log(T)] <
(1+T7)Pi(14T=log(T)). Setting the parameters z;,7; as in the proof of Theorem
concludes the proof. O
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A.9 A Bound On Divergent Series

The following bound on divergent series is needed in the proof of Theorem given
in Appendix and in the proof of Theorem given in Appendix [A.7]

For p > 0, p # 1, the following formula holds:

T
1 Tlp—l
E <1+ (A.74)
il -p

Proof. See [Chl09). O
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CAC Context-Aware Proactive Caching Algorithm

CACao Context-Aware Proactive Caching with Area Overlap Algorithm
C-RAN Cloud Radio Access Network

CS Crowdsourcing

FDMA Frequency-Division Multiple Access

HCL Hierarchical Context-Aware Learning Algorithm

i.i.d. Independent Identically Distributed

ILP Integer Linear Programming

IoT Internet of Things

LC Local Controller

LFU Least Frequently Used Algorithm

LinUCB UCB-type Algorithm for Contextual Bandits with Linear Payoff

Functions from [LCLS10,|CLRS11]

LRU Least Recently Used Algorithm
M2M Machine to Machine

MAB Multi-Armed Bandit
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Server Assigned Tasks
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Q) 2-Notation
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Set of relay nodes

Route from node n to server

Binary variable describing node n’s action

Vector of optimization variables

Noise power at node n






195

List of Variables from Chapter

Ctj
o

C

C; (X, G1)
dg(x)

gfvp(t)
fi (X, Gr)

fjfpt,gt (t)
Fue,t

f
Fe
Gt,i
g
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j-th cached file in time slot ¢

Optimal cache content for sequence of time slots t =1, ..., T
Set of cached files in time slot ¢

Optimal cache content in time slot ¢
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z Parameter used in regret analysis

o Parameter in Holder continuity assumption

I5; Probability that a user reveals her /his rating

~y Parameter used in regret analysis

€ Parameter in e-Greedy algorithm

ACAC Factor for control function of Algorithm in simulations
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file f € F in one time slot
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in regret analysis

Th Set of time slots in which CAC enters an exploration phase, used
in regret analysis



197

List of Variables from Chapter

Ai(T)
by

C¢

i

my

Nivq(ﬂ
pi(x7 C)
pi(xt,ia Cy¢, t)
q; (X7 C)

qmax

Gmin

Number of quality assessments per worker up to task 7'
Budget of task ¢

Context of task ¢

Dimension of task context space

Task context space

Random variable for decision of worker ¢ € W with current personal
context x € X for a task with task context ¢ € C

Dimension of joint context space of worker 1 € W

Maximum of dimensions of joint context spaces

Maximum price to be paid to a worker for completing a task
Minimum price to be paid to a worker for completing a task
Price to be paid to each worker who completes task ¢

Set of observed performances of worker i before task ¢ when worker ¢
was selected for a task and the joint context was in hypercube ¢
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the reduced Gowalla-NY data set in simulations
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R(T) Regret of learning with respect to oracle after 7" rounds
Ran(T) Regret due to select-all-worker phases
R (T) Regret due to exploration phases
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5t Jj-th selected worker for task ¢
CHy j-th best worker for task ¢
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S, Set of selected workers for task ¢

S; Optimal subset of workers to select for task ¢

t Index for task

T Total number of tasks

V(t) Auxiliary event used in the regret analysis

w; (x?) Location-specific weighting factor in the hybrid performance model
in simulations

w Number of workers

W, Number of workers available at the arrival of task ¢

Wiet Number of under-explored workers at the arrival of task ¢

w Set of workers

W, Set of workers available at the arrival of task ¢

4% Set of under-explored workers at the arrival of task ¢

xgl) Worker ¢’s battery state in the hybrid performance model in simu-
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x§2) Worker i’s location in the hybrid performance model in simulations

Xt Personal context of worker ¢ € W, at the arrival of task ¢

(Xt.i,Ct) Joint (personal and task) context of worker ¢ € W, at the arrival of
task ¢

X; Dimension of personal context space of worker ¢ € W

X; Personal context space of worker ¢ € W

A, xC Joint (personal and task) context space of worker i € W

Yti Binary variable describing if worker ¢ € W, is selected to complete
task ¢

2 Parameter for worker ¢ used in regret analysis

« Parameter in Holder continuity assumption
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€ Parameter in e-Greedy algorithm

0; (c, xgl), x§2)> Expected performance of worker ¢ in the hybrid performance model
in simulations
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0 4(t) Estimated performance of worker i € VW for contexts in hypercube
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AHCL Factor for control function of Algorithm in simulations
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x € X, for a task with task context ¢ € C
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