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Abstract

In future wireless networks, an enormous number of heterogeneous devices will be

connected, leading to a dramatic increase in data traffic. At the same time, future

applications will have significantly higher requirements with respect to data rates, re-

liability, and latency. Conventional approaches, which aim at only improving the com-

munication capabilities of wireless networks, will not be sufficient to satisfy the more

demanding requirements arising in future. Hence, a paradigm shift is needed. While

conventionally perceived as pure communication networks, wireless networks can pro-

vide not only communication resources, but also computation, caching, data collection,

and even user resources. Such resources can be part of the network infrastructure and

of the wirelessly connected devices and their users. This radically different view on

wireless networks as networks of distributed connected resources calls for the develop-

ment of new techniques that jointly consider and leverage different types of resources

in order to improve the system performance.

In this thesis, we show that such new techniques that jointly consider and leverage

different types of resources require context-aware decision making. This is due to the

fact that first, resources need to be shared and secondly, trade-offs between different

types of resources exist. Thirdly, the optimal resource allocation may depend not only

on network conditions, but also on other node-related, user-related or externally given

conditions, the so-called context. We provide an overview of context-aware decision

making by discussing context awareness, architectures of decision making, and designs

of decision agents. Designing a context-aware decision-making framework requires to

formulate a context-aware system model. In particular, decision agents responsible for

resource allocation need to be identified. These agents may be part of a centralized,

decentralized or hierarchical architecture of decision making and a suitable architec-

ture needs to be selected. Finally, designing decision agents requires to model and

classify the problem to be solved and to develop an appropriate method according to

which decision agents take decisions. We emphasize two designs relevant for context-

aware decision making in wireless networks, namely, optimization-based approaches

and machine-learning-based approaches, in the latter case specifically the framework of

multi-armed bandits.

Moreover, in this thesis, we study three candidate techniques for wireless networks

that jointly consider and leverage different types of resources, namely, computation

offloading in multi-hop wireless networks, caching at the edge of wireless networks, and

mobile crowdsourcing. For each technique, we identify a fundamental problem requiring
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context-aware decision making, propose a novel framework for context-aware decision

making, and solve the problem using the proposed framework.

Computation offloading allows wirelessly connected devices to offload computation

tasks to resource-rich servers. This may reduce the devices’ task completion times and

their energy consumption. Computation offloading hence trades computation resources

off against communication resources. In this thesis, for the first time, we study com-

putation offloading in multi-hop wireless networks, where wirelessly connected devices

assist each other as relay nodes. We identify the fundamental problem of context-

aware computation offloading for energy minimization in multi-hop wireless networks.

We propose a novel model that takes into account channel conditions, computing capa-

bilities of the devices, task characteristics, and battery constraints at relay nodes since

the effect of computation offloading on the devices’ energy consumption depends on

these context factors. Based on this model, we take an optimization-based approach

and formulate the considered problem as a multi-dimensional knapsack problem, which

takes into account that offloading decisions in multi-hop networks are non-trivially cou-

pled as communication resources of relay nodes need to be shared. Finally, we propose

a novel context-aware greedy heuristic algorithm for computation offloading in multi-

hop networks. Based on its centralized architecture of decision making, this algorithm

enables a central entity to take offloading decisions using centrally collected context in-

formation. We show that despite its centralized architecture, the algorithm has a small

communication overhead. Numerical results demonstrate that the offloading solution

found by the proposed algorithm on average reduces the network energy consumption

by 13% compared to the case when no computation offloading is used. Moreover, the

proposed algorithm yields near-optimal results in the considered offloading scenarios,

with a maximal deviation of less than 6% from the global optimum.

Caching at the edge allows popular content to be cached close to mobile users in order

to serve user requests locally, thus reducing backhaul and cellular traffic as well as the

latency for the user. Hence, caching at the edge exploits caching resources in order

to save communication resources. In this thesis, we identify the fundamental prob-

lem of context-aware proactive caching for maximizing the number of cache hits under

missing knowledge about content popularity. We introduce a new model for context-

aware proactive caching that takes into account that different users may favor different

content and that the users’ preferences may depend on their contexts. Using a machine-

learning-based approach based on contextual multi-armed bandits (contextual MAB),

we propose a novel online learning algorithm for context-aware proactive caching. Based

on its decentralized architecture of decision making, this algorithm enables the con-

troller of a local cache to learn context-specific content popularity, which is typically
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not available a priori, online over time. The proposed algorithm takes the cache op-

erator’s objective into account by allowing for service differentiation. We analyze the

computational complexity as well as the memory and communication requirements of

the algorithm, and we show how the algorithm can be extended to practical require-

ments. Moreover, we derive a sublinear upper bound on the regret of the algorithm,

which characterizes the learning speed and proves that the algorithm converges to the

optimal cache content placement strategy. Simulations based on real data show that,

depending on the cache size, the proposed algorithm achieves up to 27% more cache

hits than the best algorithm taken from the literature.

Mobile crowdsourcing (MCS) allows task owners to outsource tasks via a mobile crowd-

sourcing platform (MCSP) to a set of workers. Hence, MCS exploits user resources

for task solving. In this thesis, we identify the fundamental problem of context-aware

worker selection for maximizing the worker performance in MCS under missing knowl-

edge about expected worker performance. We present a novel model for context-aware

worker selection in MCS that can cope with different task types and that explicitly

allows worker performance to be a non-linear function of both task and worker con-

text. Using a machine-learning-based approach based on contextual MABs, we pro-

pose a new context-aware hierarchical online learning algorithm for worker selection in

MCS. Based on the proposed hierarchical architecture of decision making, this algo-

rithm splits information collection and decision making among several entities. Local

controllers (LCs) in the workers’ mobile devices learn the workers’ context-specific per-

formances online over time. The MCSP centrally assigns workers to tasks based on

a regular information exchange with the LCs. This novel approach solves two critical

aspects. First, personal worker context is kept locally in the LCs, which reduces com-

munication overhead and preserves the privacy of the workers, who may not want to

share personal context with the MCSP. Secondly, the MCSP is enabled to select the

most capable workers for each task based on what the LCs learn about their workers’

context-specific performances, which are typically unknown a priori. We analyze the

computational complexity and derive upper bounds on the local memory requirements

of the algorithm and on the number of times the quality of each worker must be as-

sessed. Moreover, we show that the more access to worker context is granted to the

LCs, the lower are the communication requirements of the proposed algorithm com-

pared to an equivalent centralized approach. In addition, we derive a sublinear upper

regret bound, which characterizes the learning speed and proves that the algorithm con-

verges to the optimal worker selection strategy. Finally, we show in simulations based

on synthetic and real data that, depending on the availability of workers, the proposed

algorithm achieves an up to 49% higher cumulative worker performance than the best

algorithm from the literature.





VII

Kurzfassung

In zukünftigen drahtlosen Netzwerken wird eine extrem hohe Zahl an heterogenen

Geräten miteinander kommunizieren, sodass der Datenverkehr enorm ansteigen wird.

Zudem werden zukünftige Anwendungen signifikant höhere Anforderungen in Bezug

auf Datenraten, Zuverlässigkeit und Latenzzeiten aufweisen. Konventionelle Ansätze,

die lediglich darauf abzielen, die Kommunikationsfähigkeiten der drahtlosen Netzwer-

ke zu verbessern, reichen nicht aus, um zukünftigen Anforderungen gerecht zu wer-

den. Daher ist ein Paradigmenwechsel nötig. Konventionell werden drahtlose Netzwer-

ke als reine Kommunikationsnetzwerke verstanden. Zukünftig verfügen sie aber ne-

ben Kommunikationsressourcen in zunehmendem Maße auch über Rechen-, Speicher -,

Datenerfassungs- und sogar Nutzerressourcen. Solche Ressourcen sind sowohl Teil der

Netzwerkinfrastruktur als auch der drahtlos verbundenen Geräte und ihrer Nutzer. Die-

se fundamental andere Auffassung von drahtlosen Netzwerken als Netzwerke verteilter,

miteinander verbundener Ressourcen erfordert die Entwicklung neuer Verfahren, die

verschiedene Arten von Ressourcen gemeinsam betrachten und einsetzen, um die Per-

formanz drahtloser Netzwerke zu erhöhen.

In dieser Arbeit zeigen wir, dass Methoden zur kontextbezogenen Entscheidungsfindung

für neue Verfahren, die verschiedene Arten von Ressourcen in drahtlosen Netzwerken

gemeinsam betrachten und einsetzen, benötigt werden. Dies liegt daran, dass erstens

Ressourcen geteilt werden müssen und dass zweitens zwischen den verschiedenen Arten

von Ressourcen abgewogen werden muss. Drittens kann die optimale Ressourcenalloka-

tion nicht nur von Netzwerkbedingungen, sondern auch von weiteren Kontextfaktoren

abhängen, die zum Beispiel die Knoten, die Nutzer oder externe Gegebenheiten betref-

fen. Wir geben einen Überblick über kontextbezogene Entscheidungsfindung, indem

wir Kontextbewusstsein, Entscheidungsarchitekturen und Agentenentwürfe diskutieren.

Zunächst wird zur Erstellung eines Rahmenwerks für kontextbezogene Entscheidungs-

findung ein kontextbewusstes Modell des Systems benötigt. Zudem müssen Entschei-

dungsträger, sogenannte Agenten, bestimmt werden, die innerhalb des Rahmenwerks

für die Ressourcenallokation verantwortlich sind. Die Agenten können Teil einer zentra-

lisierten, dezentralisierten oder hierarchischen Entscheidungsarchitektur sein. Zuletzt

muss ein Entwurf der Agenten erstellt werden, indem das betrachtete Entscheidungs-

problem modelliert und klassifiziert wird, und eine passende Methode entwickelt wird,

anhand derer die Agenten Entscheidungen treffen. Relevante Methoden sind insbeson-

dere Optimierungsansätze und Ansätze des maschinellen Lernens, im letzteren Fall

insbesondere das Rahmenwerk des mehrarmigen Banditen.

Darüber hinaus untersuchen wir in dieser Arbeit drei Verfahren, die verschiedene Arten
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von Ressourcen in drahtlosen Netzwerken gemeinsam betrachten und einsetzen. Die-

se sind die Auslagerung von Rechenaufgaben (Computation Offloading) in drahtlosen

Multi-Hop-Netzwerken, das Speichern von Inhalten am Rand des drahtlosen Netzwerks

(Caching at the Edge) und das Auslagern von Aufgaben an eine große Anzahl von mo-

bilen Nutzern über das Internet (Mobile Crowdsourcing). Für jedes dieser drei Verfah-

ren identifizieren wir ein fundamentales kontextbezogenes Entscheidungsproblem und

schlagen ein neuartiges Rahmenwerk für kontextbezogene Entscheidungsfindung vor.

Computation Offloading erlaubt es drahtlos verbundenen Geräten, Rechenaufgaben

an ressourcenreiche Server auszulagern, was die Bearbeitungszeit der Rechenaufga-

ben und den Energieverbrauch der Geräte verringern kann. Somit wird mithilfe von

Computation Offloading zwischen Rechenressourcen und Kommunikationsressourcen

abgewogen. In dieser Arbeit untersuchen wir zum ersten Mal Computation Offloading

in drahtlosen Multi-Hop-Netzwerken, in welchen drahtlos verbundene Geräte die Da-

ten anderer Geräte im Sinne einer Relaisstation weiterleiten. Wir identifizieren das

fundamentale Problem des kontextbezogenen Computation Offloadings mit dem Ziel

der Energieminimierung in drahtlosen Multi-Hop-Netzwerken. Wir schlagen ein neu-

artiges Modell vor, welches die Kanalbedingungen, die Rechenfähigkeiten der Geräte,

die Eigenschaften der Rechenaufgaben und die Batteriebeschränkungen der Relais-

stationen berücksichtigt, da der durch Computation Offloading erzielte Nutzen von

diesen Kontextfaktoren abhängt. Basierend auf dem vorgeschlagenen Modell wählen

wir einen Optimierungsansatz und formulieren das betrachtete Problem als ein mehr-

dimensionales Rucksackproblem, welches die nichttrivialen Kopplungen bei der Aus-

lagerung von Rechenaufgaben einbezieht, die sich daraus ergeben, dass die Kommu-

nikationsressourcen der Relaisstationen geteilt werden müssen. Zuletzt schlagen wir

einen neuartigen kontextbezogenen, heuristischen Greedy-Algorithmus für Computation

Offloading in drahtlosen Multi-Hop-Netzwerken vor. Basierend auf einer zentralisier-

ten Entscheidungsarchitektur ermöglicht dieser Algorithmus einem zentralen Agenten,

Entscheidungen über die Auslagerung von Rechenaufgaben unter Zuhilfenahme von

zentral gesammelten Kontextinformationen zu treffen. Wir zeigen, dass der Algorith-

mus trotz seiner zentralisierten Architektur einen geringen Kommunikationsaufwand

aufweist. Numerische Ergebnisse legen dar, dass das Auslagern von Rechenaufgaben

auf Basis des vorgeschlagenen Algorithmus den Energieverbrauch des Netzwerks im

Mittel um 13% senkt, im Vergleich zu dem Fall, dass alle Rechenaufgaben lokal von

den Geräten berechnet werden. Zudem erzielt der vorgeschlagene Algorithmus, mit ei-

ner maximalen Abweichung von unter 6% vom globalen Optimum, nahezu optimale

Lösungen.

Mittels Caching at the Edge werden populäre Inhalte nah bei den mobilen Nutzern

gespeichert, um deren Anfragen lokal zu bedienen, wodurch die Menge an Mobilfunk-
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verkehr und die Latenzzeiten der Nutzer reduziert werden. Somit werden mithilfe von

Caching at the Edge Speicherressourcen ausgenutzt, um Kommunikationsressourcen zu

sparen. In dieser Arbeit identifizieren wir das grundlegende Problem des kontextbezoge-

nen Cachings at the Edge mit dem Ziel der Maximierung der Anzahl an Nutzeranfragen,

die durch die Inhalte im Cache-Speicher abgedeckt werden können (Cache Hits), unter

fehlender a priori Kenntnis der Popularität von Inhalten. Wir stellen ein neues Mo-

dell für kontextbezogenes proaktives Caching at the Edge vor, welches einbezieht, dass

verschiedene Nutzer verschiedene Inhalte bevorzugen können und dass die Präferenzen

der Nutzer von ihren Kontexten abhängen können. Unter Verwendung eines Ansat-

zes des maschinellen Lernens, basierend auf dem Rahmenwerk des kontextabhängigen

mehrarmigen Banditen, schlagen wir einen neuartigen Online-Lernalgorithmus für kon-

textbezogenes proaktives Caching at the Edge vor. Auf Basis einer dezentralisierten

Entscheidungsarchitektur ermöglicht dieser Algorithmus dem Controller eines lokalen

Cache-Speichers, die kontextspezifische Popularität von Inhalten, die typischerweise a

priori nicht bekannt ist, online im Laufe der Zeit zu erlernen. Der vorgeschlagene Al-

gorithmus berücksichtigt die Zielvorgaben des Betreibers eines Cache-Speichers, indem

die Differenzierung von Services ermöglicht wird. Wir analysieren die Komplexität,

den Speicher- und den Kommunikationsbedarf des Algorithmus und zeigen, wie der

Algorithmus an praktische Anforderungen angepasst werden kann. Außerdem leiten

wir eine sublineare obere Schranke für den sogenannten Regret des Algorithmus her,

welche die Lerngeschwindigkeit des Algorithmus charakterisiert und beweist, dass der

Algorithmus gegen die optimale Inhaltsplatzierungsstrategie konvergiert. Simulationen

auf Basis realer Daten zeigen, dass der vorgeschlagene Algorithmus, in Abhängigkeit

der Größe des Cache-Speichers, bis zu 27% mehr Cache Hits erzielt als der beste Al-

gorithmus aus der Literatur.

Mobile Crowdsourcing (MCS) erlaubt es Inhabern von Aufgaben, diese Aufgaben mit-

tels einer Mobile-Crowdsourcing-Plattform (MCSP) über das Internet an eine große

Anzahl von mobilen Nutzern auszulagern. Somit nutzen MCS-Anwendungen Nutzerres-

sourcen zur Aufgabenlösung aus. In dieser Arbeit identifizieren wir das fundamentale

Problem der kontextbezogenen Auswahl von mobilen Nutzern in MCS-Anwendungen

mit dem Ziel der Maximierung der Arbeitsleistung unter fehlender a priori Kennt-

nis der zu erwartenden Arbeitsleistungen individueller Nutzer. Wir stellen ein neu-

artiges Modell für die kontextbezogene Auswahl von Nutzern zur Aufgabenlösung in

MCS-Anwendungen vor, welches verschiedenartige Aufgabentypen zulässt, und wel-

ches zudem explizit berücksichtigt, dass die Arbeitsleistung eine nichtlineare Funktion

sowohl des Aufgabenkontextes als auch des Nutzerkontextes sein kann. Unter Verwen-

dung eines Ansatzes des maschinellen Lernens, basierend auf dem Rahmenwerk des

kontextabhängigen mehrarmigen Banditen, schlagen wir einen neuartigen kontextbezo-
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genen hierarchischen Online-Lernalgorithmus für die Auswahl von Nutzern zur Aufga-

benlösung in MCS-Anwendungen vor. Auf Basis einer hierarchischen Entscheidungs-

architektur teilt dieser Algorithmus die Datenerfassung und die Entscheidungsfindung

unter mehreren Agenten auf. Lokale Controller in den mobilen Endgeräten der Nutzer

erlernen die kontextspezifischen Arbeitsleistungen der Nutzer online im Laufe der Zeit.

Basierend auf einem regelmäßigen Informationsaustausch mit den lokalen Controllern

weist die zentrale MCSP den Nutzern Aufgaben zu. Dieser neuartige Ansatz löst zwei

kritische Punkte. Zum einen verbleibt der persönliche Kontext der Nutzer lokal, was

den Kommunikationsaufwand reduziert und die Privatsphäre der Nutzer schützt, da

letztere ihren persönlichen Kontext möglicherweise nicht mit der MCSP teilen möchten.

Zum anderen ermöglicht der Ansatz der MCSP, mithilfe der von den lokalen Control-

lern erlernten kontextspezifischen Arbeitsleistungen der Nutzer, die typischerweise a

priori unbekannt sind, für jede Aufgabe die am besten geeigneten Nutzer auszuwählen.

Wir analysieren die Komplexität des Algorithmus und leiten obere Schranken für sei-

nen Speicherbedarf und für die maximal benötigte Anzahl an Qualitätsüberprüfungen

eines einzelnen Nutzers her. Außerdem zeigen wir, dass je mehr Nutzerkontext die

lokalen Controller zur Verfügung gestellt bekommen, desto kleiner wird der Kommu-

nikationsbedarf des vorgeschlagenen Algorithmus im Vergleich zu einem äquivalenten

zentralisierten Ansatz. Zudem leiten wir eine sublineare obere Schranke für den Regret

des Algorithmus her, welche die Lerngeschwindigkeit des Algorithmus charakterisiert

und beweist, dass der Algorithmus gegen die optimale Nutzerauswahlstrategie kon-

vergiert. Zuletzt zeigen wir mittels Simulationen auf Basis synthetischer und realer

Daten, dass der vorgeschlagene Algorithmus, in Abhängigkeit der Nutzerverfügbarkeit,

eine bis zu 49% höhere kumulative Arbeitsleistung erzielt als der beste Algorithmus

aus der Literatur.
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Chapter 1

Introduction

1.1 Distributed Connected Resources in Wireless

Networks

Recent years have witnessed a tremendous increase in mobile data traffic [Cis17]. This

trend was fueled by an increasing number and extended capabilities of wirelessly con-

nected devices. Personal hand-held mobile devices, such as smartphones, laptops, and

tablets, have become more and more popular. Equipped with advanced multimedia

and computing capabilities and a plenitude of sensors, today’s mobile devices are ca-

pable of running resource-hungry mobile applications, such as mobile video, which has

become a key generator of mobile data traffic, accounting for half of today’s global

mobile data traffic [Cis17].

Compared to today’s networks, future wireless networks are expected to face even

larger demands. On the one hand, traditional mobile device usage will become even

more ubiquitous. The global number of mobile users is expected to reach 5.9 bil-

lion in 2025 [GSM18]. Aside from mobile video, which is expected to generate an

even higher percentage of mobile data traffic in the upcoming years [Cis17], new types

of computation-intensive and energy-consuming mobile applications are expected to

emerge, such as augmented reality and virtual reality applications. These applications

will require high data rates and low latency [Qua18]. On the other hand, applications

for the Internet of things (IoT) are expected to become much more important for cus-

tomer as well as industry purposes in future [PDG+16]. Examples of IoT applications

envisioned in next generation 5G wireless networks comprise smart cities, smart home,

smart factories, smart grids, e-health, and the connected car [GEE+16, PDG+16]. In

such IoT applications, heterogeneous devices, such as sensors, actuators, robots, vehi-

cles, smartphones, and other machines and objects embedded with sensors or actuators,

are wirelessly connected to the Internet, and are thereby enabled to communicate using

machine to machine (M2M) communications in order to perform application-specific

tasks [AFGM+15]. With the rise of IoT applications, vast numbers of heterogeneous

devices will communicate in future wireless networks [Eva11], and, depending on the

specific application, high data rates, high reliability, and low latency may be needed.

In view of the increasing amount of data traffic, the increasing number of wirelessly

connected devices, and the increasing application requirements, satisfying the demands
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in future wireless networks in general and allocating resources in particular will become

much more challenging. Conventional approaches typically aim at improving the com-

munication capabilities of the networks, i.e., reducing the delay and increasing data

rates and spectral efficiency [LCQ16], by adding more spectrum, more cells, and opti-

mizing the allocation of the available communication resources with respect to time,

frequency, and space. In particular, over the last years, especially spatial resource

usage based on network densification, but also advanced multiple access techniques

like orthogonal frequency-division multiple access (OFDMA), and multi-antenna tech-

niques like multiple-input and multiple-output (MIMO), have boosted the capacity and

average data rate of cellular networks [LCQ16,AZDG16]. However, these technological

advances are not sufficient to satisfy the much more demanding requirements arising

in future networks [WZZ+17, WCT+14, LCQ16, AZDG16], such that a paradigm shift

becomes mandatory.

The new paradigm moves from understanding wireless networks as pure communication

networks to understanding them as networks of distributed connected resources that

provide communication, computation, caching [LCQ16, WZZ+17, HYH+16, WHY+18,

CHH+18], data collection [HZL16], and even user resources [RZZS15]. Figure 1.1 shows

an example of a wireless network with heterogeneous wirelessly connected devices and

different types of resources distributed over the network.

On the one hand, such resources may be part of the network infrastructure. As pro-

posed in the mobile edge network architecture, caching and computational resources

may be installed at the edge of the network [HPS+15, WZZ+17, MYZ+17]. For exam-

ple, mobile edge computing (MEC) servers might be attached to macro base stations

(MBSs) and cloudlets [HRR+18], i.e., small scale data centers, may be attached to Wi-

Fi access points, in order to provide computing services closer to the devices [WZZ+17].

Moreover, storage space may be added to small base stations (SBSs), in order to provide

local caching services [WCT+14].

On the other hand, such resources are available in the wirelessly connected devices

themselves and their users, such as the communication and computation capabili-

ties, storage space and sensor equipment of the devices and the human intelligence

of the mobile users. Exploiting these resources, devices and users in a wireless net-

work can become service providers with respect to communication (e.g., data relay-

ing [MMAS+16, WDM+15]), computation (e.g., task processing [LAK17]), caching

(e.g., content storing and sharing [FMASK17]), sensing (e.g., data collection and shar-

ing [HZL16]), and human intelligence (e.g., human-based task completion [RZZS15]).

Starting from this radically different view on wireless networks, the question arises
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Figure 1.1. Wireless network with distributed, connected resources.

how the different resources available in wireless networks should be exploited and op-

timally allocated in order to improve the performance of the system with respect to

a suitable performance criterion that reflects the requirements of offered services and

applications.

1.2 Context-Aware Decision Making in Wireless

Networks

The new paradigm calls for the development of new techniques for wireless networks

that jointly consider and leverage different types of resources in order to improve the

system performance. The goal of introducing such techniques is to allocate the re-

sources available in the wireless network in such a way that the performance of the

system is improved with respect to a performance criterion, e.g., with respect to the

throughput, latency or energy efficiency. The performance criterion may, for example,
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be a global one, i.e., a network performance criterion, such as the network energy con-

sumption, or it may be a local one, i.e., a node performance criterion like individual

energy consumption. Resource allocation requires decision-making during run time.

This is due to the fact that resources are limited and have to be shared among sev-

eral devices, and moreover, since there may exist trade-offs between different types of

resources. More formally, one can think of the different choices (e.g., which resources

to use in which way) within a technique that jointly considers and leverages differ-

ent types of resources, as several available actions from which one or several have to

be selected. Which of the available actions are good choices in turn highly depends

on the pre-defined performance criterion. Moreover, whether a selected action is a

good choice given a pre-defined performance criterion, may not only depend on the

current network conditions, but also on other node-related, user-related or externally

given conditions [MSS13,FSK+18]. Conceptually, such conditions may be summarized

under the term context [DA99, Hen03, MSS13]. Due to the numerous data collection

resources available in wireless networks, such as the large numbers of sensors in mobile

devices, context information is often readily available and may be taken into account

for decision making [BWL18]. A detailed introduction to the concept of context will

be given in Section 2.2.2.

Clearly, decision making requires one or several entities to act as decision agents. In

particular, since the available resources and hence the actions within techniques for

wireless networks that jointly consider and leverage different types of resources, are

distributed over the network, different architectures of decision making are possible,

namely, centralized, decentralized, and hierarchical architectures [Lun92,KB97]. While

in centralized architectures, a central entity typically acts as global decision agent based

on centrally collected information, in a decentralized architecture, several local entities

act as local decision agents based on locally collected information. Finally, in hierarchi-

cal architectures, information collection and decision making may be split up between

decision agents at multiple hierarchically organized levels, enabled by an information

exchange between them. Each type of architecture has its own advantages and dis-

advantages, and which type of architecture is suitable highly depends on the specific

technique, the specific performance criterion, and the information required for decision

making, such as network conditions and other relevant context. The different types of

architectures and their characteristics will be discussed in detail in Section 2.2.3.

In any case, decision agents aim at selecting those actions that achieve the defined

goal by optimizing the performance criterion. Finding the optimal actions is, however,

typically not trivial. How exactly a decision agent selects actions is determined by its

design. The design of a decision agent essentially depends on how the designer models

the problem to be solved by the decision agent. Different approaches differ with respect
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to how much of the decision making process is specified a priori by the designer and

how the remaining problem is solved by the decision agent [KAC+15]. One possibility,

which is often suitable in wireless communications [SNHH15], is to model the problem

as an optimization problem. Such an optimization problem typically consists of a

utility function, a set of constraints, and a set of optimization variables [BV04]. The

utility function formalizes the performance criterion of decision making by describing

the performance as a function of the selected action. The decision agent may use the

utility function to evaluate the performance of selecting an action, while the constraints

give restrictions on the actions that may be selected, and the optimization variables

describe which actions are selected. Then, the decision agent runs an optimization

algorithm in order to search for a (near-) optimal action [BV04].

However, which action gives which performance under a given environment may not

be known a priori by the designer, for instance, since underlying parameters may de-

pend on a random process with unknown statistics or may not be easily measurable.

In this case, one approach is to use reinforcement learning (RL), a type of machine

learning [KAC+15]. Here, the designer specifies a set of actions, a set of constraints

on these actions, and a performance criterion. Then, the decision agent runs an on-

line learning algorithm that sequentially selects actions and observes their instanta-

neous performances under different situations in order to learn the performance of the

actions under different situations and thereby maximize the cumulative performance

over time [SB98, Alp14]. A special case of RL are multi-armed bandit (MAB) frame-

works [Rob52,ACBF02], which have become a useful tool to tackle problems in wireless

communications [MH16, JZR+17]. A detailed overview of the different approaches to

design decision agents will be given in Section 2.3.

1.3 Exploiting Distributed Connected Resources

1.3.1 Three Exemplary Techniques

In this thesis, we understand wireless networks as networks of distributed connected

resources and we consider how different available resources may be exploited in order

to improve the system performance of wireless networks. Specifically, we consider in

the sequel how to exploit the following types of resources:
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(i) Computation resources

(ii) Caching resources

(iii) User resources

For each type of resource, we take into account its specific interplay with the commu-

nication resources. In the sequel, for each of the three types of resources (i)-(iii), we

present a technique that exploits the particular resource with the help of context-aware

decision making. Since context-aware decision making requires access to context infor-

mation, the three techniques also rely on data collection resources that allow to collect

the required context information. The following techniques are considered:

(i) Computation offloading in multi-hop wireless networks

(ii) Caching at the edge of wireless networks

(iii) Mobile crowdsourcing

Each of the three techniques has been proposed as a promising candidate to tackle

one of the challenges of wireless networks. Below, we will show that each of the

three techniques requires context-aware decision making in order to best exploit the

resources. In the next sections, we will shortly introduce the three techniques, identify

corresponding problems requiring context-aware decision making, and give overviews

of the state of the art.

1.3.2 Computation Offloading in Multi-Hop Wireless Net-
works

Computation offloading allows wirelessly connected devices to offload computation

tasks to resource-rich servers for remote computation by transmitting the data re-

quired to remotely process the tasks at the servers [KLLB13]. Therefore, computation

offloading is a technique that trades communication resources off against computa-

tion resources. The servers enabling computation offloading may be part of different

types of infrastructures. For example, mobile cloud computing (MCC) allows devices

to offload computation tasks to centralized computing platforms in remote servers via

the Internet [DLNW13]. In constrast, mobile edge computing (MEC) offers computing

infrastructure in servers placed at the edge of the wireless networks, e.g., attached
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to base stations [HPS+15, WZZ+17, MYZ+17]. Since computing resources are placed

much closer to the mobile devices using MEC compared to MCC, employing MEC

rather than MCC helps to alleviate the backhaul traffic and to reduce the latency.

Computation offloading may improve the performance of wirelessly connected devices

by reducing task completion times, and it also may reduce the devices’ energy con-

sumption [KLLB13], thereby facilitating the usage of resource-hungry applications.

Indeed, while today’s mobile devices are smarter than ever, they still encounter limi-

tations with respect to their battery life and computation capabilities when executing

upcoming mobile applications [KLLB13, ASA+14]. This is an issue for mobile users

since their most desired feature in mobile devices is a longer battery life, according

to several studies [CNN05, You16, You18]. Moreover, many of the machine-type de-

vices communicating in emerging IoT applications dispose of limited processing ca-

pabilities [SRI+15, MYZ+17]. Therefore, such devices may profit from computation

offloading. Whether computation offloading is beneficial for an individual device in

terms of its battery life depends on whether less energy has to be spent for trans-

mitting the task to the server than for local processing. Deciding whether a device

should offload its task or not with the goal of energy minimization requires not only

to trade computation resources off against communication resources by taking into ac-

count channel conditions and computing capabilities of a device, but also requires to

consider the specific task characteristics [KL10,MN10]. Hence, context information is

relevant for decision making.

Table 1.1 presents a summary of the most relevant state of the art on decision making

for computation offloading. The organization of Table 1.1 and its content will be

explained in the sequel. Note that a more detailed review of the state of the art is

presented in Section 3.2.

In the past, research has mainly considered computation offloading in single-hop

networks where devices have a direct connection to a server to utilize its com-

putation resources. One line of literature designs mechanisms to decide whether

to offload and which parts of an application to offload, aiming at energy savings

or minimization of task completion times from a single mobile device’s point of

view [KL10, MN10, XLL07, WZL12, HWN12, RP03, LMZL16, KLLB13]. Newer works

also focus on the dynamics among several devices performing computation offloading

in single-hop networks, concerning, e.g., traffic induced by computation offloading or

competition for shared resources. These works aim at minimizing energy, time, or

both energy and time while taking into account the interdependencies between the

nodes [GZQL12,MBASK18,NMAS+18,Che15,CLD16].
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Table 1.1. Summary of selected related work on decision making for computation
offloading.

Network
type

Point of
view

Optimization
criterion

Reference

Single-hop

Device

Min. energy

[KL10]

[MN10]

[XLL07]

[WZL12]

[HWN12]

[RP03]

Min. time [LMZL16]

Min. energy
and time

[KLLB13]

Network

Min. energy
[GZQL12]

[MBASK18]

Min. time [NMAS+18]

Min. energy
and time

[Che15]

[CLD16]

Since coverage in single-hop networks is limited and transmission may require high

power [LH00], it is worthwhile to consider computation offloading in multi-hop wireless

networks. Multi-hop communication allows wirelessly connected devices to communi-

cate directly without the help of a base station, and it allows devices to assist each

other as relay nodes. Using multi-hop communication, messages can travel larger

distances without needing a base station, which extends the coverage of wireless net-

works and reduces the required transmission power [LH00, BKK+09]. In the related

work, a multi-hop scenario is only considered in a different context of “communica-

tion vs. computation,” namely in multi-media sensor networks, where data can be

compressed at sensor nodes before communicating it to a central entity in a multi-hop

fashion [MYM02,TF09].

Compared to single-hop networks, computation offloading in multi-hop networks poses

new major challenges. If a device offloads a computation task to the server, other

devices may have to serve as relay nodes. However, these relay nodes may have their

own computation tasks as well. Moreover, the relay nodes also dispose of limited

batteries and hence provide only limited communication resources for task relaying.

Finally, several devices may have relay nodes in common, such that they need to

share the communication resources provided by the relays nodes. Therefore, offloading

decisions are non-trivially coupled in multi-hop networks, which makes it challenging
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to decide which devices should offload their tasks.

1.3.3 Caching at the Edge of Wireless Networks

Caching at the edge allows popular content to be cached close to the mobile users in a

placement phase in order to locally serve the users’ requests for this content in a delivery

phase [BBD14b]. Therefore, caching at the edge exploits caching resources in order to

save communication resources. Local caches for caching at the edge could be attached

to MBSs and SBSs owned by the mobile network operator (MNO). Alternatively, local

caches could be part of wireless infostations that provide high bandwidth local data

communication [GBMY97,IR02,BG14c,BG14a]. Wireless infostations may be installed

in public or commercial areas and may use Wi-Fi for local data communication. Owners

of wireless infostations may either be content providers aiming at increasing their users’

quality of experience or third parties offering caching at infostations as a service to

content providers or to the users [BG14a].

Bringing content closer to the mobile users may reduce backhaul and cellular traffic, and

it may reduce the latency for the user [WCT+14]. Since a significant amount of mobile

traffic is generated by multimedia applications, such as mobile video [Cis17], while at

the same time typically only a small number of very popular contents account for the

majority of content traffic [BCF+99], caching at the edge may hence enable wireless

networks to cope with larger traffic volumes and it may help to satisfy application-

specific requirements, e.g., with respect to latency.

Due to the vast amount of content available in multimedia platforms and the limited

storage space in local caches at the edge, typically, not all content can be cached locally

and a crucial question is hence which content to cache [BG14b]. In order to reduce

the load on the macro cellular network as much as possible, the goal is to find a cache

content placement that maximizes the number of cache hits. This requires to use the

limited caching resources to cache the most popular content. Which is the most popular

content depends on the content popularity distribution [BBD14a].

Table 1.2 presents a summary of the most relevant state of the art on decision making

for cache content placement in wireless networks. The organization of Table 1.2 and

its content will be explained in the sequel. Note that a more detailed review of the

state of the art is presented in Section 4.2.

One line of related work investigates the problem of cache content placement in various

caching scenarios in wireless networks under the assumption that the content popularity



10 Chapter 1: Introduction

Table 1.2. Summary of selected related work on decision making for cache content
placement in wireless networks.

Content
popularity

distribution

Type of
learning

Diversity in
content

popularity
Reference

Known
N/A

No

[GMDC13]

[SGD+13]

[BBD14a]

Yes
[PT13]

[PIST16]

N/A No [MAN14]

Unknown

Offline No
[BBD14b]

[BBZ+15]

Online
No

[BG14b]

[BG14c]

[BG14a]

[SAT+14]

Yes [EBSLa14]

distribution is known a priori [GMDC13, SGD+13, BBD14a, PT13, PIST16]. However,

in reality, when caching content at a particular point in time, it may be unclear which

content will be requested in future and not even an estimate of the content popularity

distribution may be at hand. Therefore, a second line of literature investigates cache

content placement under missing knowledge about content popularity. If the popularity

distribution is unknown a priori, the controller of a local cache may either apply a

worst-case approach by trying to optimize cache content with respect to worst-case

request arrivals [MAN14]. Alternatively, the controller of the local cache needs to learn

the content popularity distribution [BBD14b,BBZ+15,BG14b,BG14c,BG14a,SAT+14,

EBSLa14]. In this case, methods from machine learning are leveraged to learn content

popularity, using either offline or online methods. Using offline learning approaches,

content popularity is learned during a training phase. Using online learning approaches,

content popularity is learned during run time, such that adaptation to varying content

popularities is possible.

Related work may further be divided into two groups regarding whether diversity in

content popularity across the user population is taken into account. Some related works

assume that there exists one global popularity distribution and that all user requests

follow this distribution. However, it has been shown that the local content popularity

at a local cache is not necessarily the same as the global content popularity monitored
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by the global multimedia platform [GALM07,ZSGK09,BSW12]. This is due to the fact

that there is diversity in content popularity across the user population, i.e., different

users may favor different content. Hence, the controller of a local cache should learn the

local content popularity for a proactive cache content placement. However, since the set

of mobile users connected to a local cache at the edge of the wireless network changes

over time, also the local content popularity may vary according to the preferences of the

mobile users connecting to the local cache over time. Therefore, for a truly proactive

cache content placement, the controller of a local cache needs to take into account the

diversity in content popularity across the local user population when learning content

popularity. However, only few related works take such diversity in content popularity

across the local user population into account for cache content placement.

Among the related works, none takes into account that the users’ content preferences

may depend on their contexts, such as their location [BSW12], personal characteristics

(e.g., age [MS10], gender [HL05], personality [RGZ11], mood [Zil88]), or their devices’

characteristics [ZGC+14]. However, acknowledging that content popularity depends

on the users’ contexts, cache content placement needs to be context-aware, in order to

adapt to the preferences of mobile users with different contexts.

Moreover, none of the literature takes into account that cache content placement should

reflect the cache operator’s specific objective. Since an operator may want to offer

service differentiation to its customers (e.g., by optimizing cache content according to

different prioritization levels [KLAC03, LAS04]), cache content placement should not

only allow for cache hit maximization, but also incorporate the operator’s perspective

by allowing for service differentiation.

1.3.4 Mobile Crowdsourcing

Mobile crowdsourcing (MCS) allows task owners to outsource their tasks via an in-

termediary mobile crowdsourcing platform (MCSP) to a set of mobile users, so-called

workers, who may complete assigned tasks [RZZS15]. Hence, MCS is a technique that

exploits user resources by leveraging human intelligence for task solving.

While earlier crowdsourcing (CS) systems (e.g., Amazon Mechanical Turk1) were

mainly web-based [DRH11], today, MCS platforms have become increasingly popu-

lar, probably due to the large and ever increasing number of mobile devices [Cis17] and

the growing intensity of mobile device usage [eMa18]. Tasks in MCS systems may, for

1https://www.mturk.com
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example, require the mobile users to use their mobile devices in the physical world (e.g.,

photography tasks), possibly even with respect to certain spatial constraints, the latter

being called spatial CS [ZH16]. Other tasks are virtual tasks (e.g., image annotation,

sentiment analysis), possibly intractable for machine computation, that require human

intelligence for their solution. Such virtual tasks are often non-spatial, i.e., they do not

require the workers to be at a certain location in order to complete the task. While

non-spatial tasks could as well be completed by users of static devices as in web-based

CS, emerging MCS applications for non-spatial tasks (e.g., MapSwipe2, the GalaxyZoo

app3, or commercial ones as Spare54 or Crowdee5) exploit that online mobile users

complete such tasks anytime and anywhere on the go. MCS is hence a technique that

may enable different stakeholders, e.g., network operators, e-commerce companies, or

even the mobile users themselves, to leverage resources of (other) mobile users.

Since different mobile users may have different interests and capabilities, not all mobile

users may be equally suitable to complete a given task [GS14]. Hence, MCS requires

an appropriate assignment of workers to tasks. In order to achieve the best possible

outcome for a task owner, the limited budget of the task owner should be used wisely,

by selecting those workers that maximize the performance on the given task [TTSRJ14].

Table 1.3 presents a summary of the most relevant state of the art on decision making

for CS systems. The organization of Table 1.3 and its content will be explained in

the sequel. Note that a more detailed review of the state of the art is presented in

Section 5.2.

Literature on CS considers two modes of assigning tasks to workers [KS12]. In the

worker selected tasks (WST) mode, workers autonomously select tasks from a list.

This simple mode, which is often used in practice (e.g., on Amazon Mechanical Turk),

has the advantage that workers automatically select tasks they are interested in. How-

ever, the WST mode can lead to suboptimal task assignments since it may be difficult

for workers to find interesting tasks [CHMA10] and, moreover, unpopular tasks might

remain unassigned. Literature on WST mode [GWG+16, AVC11] combines the mode

with personalized task recommendation (TR) [GS14] to ensure that workers find ap-

propriate tasks.

In the server assigned tasks (SAT) mode, the MCSP aims at centrally matching workers

and tasks in an optimal way, e.g., to maximize the number of task assignments, taking

2https://mapswipe.org/
3https://www.galaxyzoo.org/
4https://app.spare5.com/fives
5https://www.crowdee.de/
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Table 1.3. Summary of selected related work on decision making for crowdsourcing
systems.

Task as-
signment

mode

Worker
perfor-
mance

Type of
learning

Context-
specific
perfor-
mance

Worker
context

protected
Reference

Worker

selected

tasks

(WST)

Unknown

Offline Yes Yes [GWG+16]

Online No N/A [AVC11]

Server

assigned

tasks

(SAT)

Known N/A
No No

[KS12]

[TSK15]

Yes Yes [TGFS17]

Unknown

Offline No N/A
[SC17]

[ZC17]

Online
No N/A

[HV12]

[TTSRJ14]

[HZL16]

Yes No [uHC14]

possible task budgets into account. The assignment of workers to tasks is typically

based on task and worker information gathered regularly at the MCSP. Related work

using the SAT mode often either assumes that workers always accept assigned tasks or

that the workers’ performances are known in advance (e.g., in terms of acceptance rates

and quality) [KS12,TSK15,TGFS17]. However, in reality, acceptance rates and quality

are typically not known beforehand and therefore have to be learned by the MCSP.

A second line of related work therefore considers the matching of workers and tasks

in various CS scenarios under missing knowledge about worker performance in terms

of acceptance rates or quality and proposes machine-learning-based approaches, some

of them using offline [SC17,ZC17] and others online [HV12,TTSRJ14,HZL16,uHC14]

learning.

A worker’s performance in terms of acceptance rate and the quality of completed tasks

may depend not only on the specific task, but also on the worker’s current context, such

as the worker’s location or the time of day [GS14]. A worker’s context may change

quickly, which is especially relevant for MCS applications with non-spatial tasks since

workers may complete such tasks anytime and anywhere. Among the discussed related

work, only few incorporate such context-specific worker performance.

Moreover, in the SAT mode as well as in the WST mode with personalized TR, the
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workers are typically required to regularly share their current contexts (e.g., their

positions) with the MCSP. This may, on the one hand, require a large communication

overhead and, on the other hand, it may be a privacy concern for workers [TGFS17,

GWG+16]. Protecting personal worker context due to overhead or privacy reasons (i.e.,

keeping it completely locally, or sharing only generalized context information with the

MCSP) has only been taken into account by few previous works.

1.4 Open Issues

In this section, open issues with respect to the three decision-making problems discussed

in Sections 1.3.2 – 1.3.4 are summarized.

Computation Offloading Computation offloading has so far not been considered

in multi-hop networks, which, compared to single-hop networks, may extend coverage

and reduce required transmission power. Since communication resources of relay nodes

need to be used and shared for task offloading, offloading decisions are non-trivially

coupled in multi-hop networks. In this regard, the following questions arise:

1. How to formulate a general model for context-aware computation offloading in

wireless multi-hop networks?

2. How to decide in a wireless multi-hop network which devices should offload their

tasks such that the sum energy spent in the overall network for communication

and computation is minimized while taking into account the energy constraint in

each device? How can information about task context be exploited for decision

making?

The underlying optimization problem needs to be analyzed for complexity, and con-

ditions may be derived under which computation offloading in multi-hop networks is

beneficial.

3. What is the computational complexity of the optimization problem?

4. Under which conditions is computation offloading beneficial in multi-hop net-

works?
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Finally, the performance of the proposed algorithm should be tested and its computa-

tional complexity and overhead need to be studied.

5. How well can the proposed algorithm approximate the optimal solution?

6. What is the complexity and what is the overhead of the proposed algorithm?

Caching at the Edge of Wireless Networks A cache content placement algorithm

has not been proposed so far that jointly (i) learns which content to store proactively

in a local cache at the edge of the wireless network online under missing a priori

knowledge about local content popularity such that the average number of local cache

hits is maximized over time, while (ii) allowing for diversity in content popularity across

the user population, (iii) taking into account the dependence of the users’ preferences

on their contexts, and (iv) including the operator’s specific objective by supporting

service differentiation. Hence, this creates the following questions:

7. How to formulate a model for context-aware proactive caching in a local cache at

the edge of the wireless network that (i) takes into account that content popularity

may vary across the user population, (ii) considers that the users’ preferences

depend on their contexts, and (iii) includes the operator’s requirements in terms

of service differentiation?

8. How to decide online without a priori knowledge about content popularity which

content from a large file library to store proactively in a local cache at the edge of

the wireless network such that the average number of local cache hits is maximized

while taking into account the limited cache size and exploiting local information

about user context? How to ensure that cache content placement meets the

operator’s requirements for service differentiation?

The complexity and overhead of the proposed algorithm need to be investigated and

its adaptability to additional practical requirements needs to be proven.

9. What is the complexity and what is the overhead of the proposed algorithm?

10. How well is the proposed algorithm adaptable to practical requirements?

Moreover, the performance of the proposed algorithm should be studied analytically

and numerically.
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11. How well does the proposed algorithm approximate an orcale-based optimal so-

lution, which would require a priori knowledge about content popularity?

12. How well does the proposed algorithm perform compared to conventional algo-

rithms which either do not learn or which do not exploit context information?

Mobile Crowdsourcing (MCS) A worker selection algorithm for MCS with non-

spatial tasks has not been proposed so far that jointly (i) learns online which workers

to select for each task under missing a priori knowledge about worker performance

in terms of acceptance rate and quality such that the average worker performance

is maximized over time, while (ii) allowing for different task types, (iii) taking into

account that the worker performance may depend in a possibly non-linear fashion on

both task and worker context, and (iv) protecting personal worker context locally in

order to keep the communication overhead small and to ensure the workers’ privacy.

Therefore, the following questions arise:

13. How to formulate a model for context-aware worker selection in an MCS appli-

cation that allows for different task types and takes into account that worker

performance may vary and depend in a possibly non-linear fashion on both task

and worker context?

14. How to decide online in an MCS application with non-spatial tasks without a

priori knowledge about worker performance which workers from a large set to

select such that the average worker performance is maximized over time, while

taking into account limited task budgets, task and worker context information

and the possibly non-linear relationship between worker performance and context,

without giving the central MCS platform access to the worker context?

The computational complexity and the overhead of the proposed algorithm need to be

investigated.

15. What is the complexity and what is the overhead of the proposed algorithm?

In order to demonstrate the performance of the proposed algorithm, analytical guar-

antees and numerical tests are needed.
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16. How well can the proposed algorithm approximate an orcale-based optimal solu-

tion that would require a priori knowledge about worker performance?

17. How well does the proposed algorithm perform compared to conventional algo-

rithms which either do not learn or which learn in a simpler fashion?

1.5 Contributions and Thesis Overview

This section gives an overview of the thesis and summarizes the main contributions

addressing the open issues discussed in Section 1.4. In the following, the contents of

each chapter are briefly described, along with the main contributions presented in each

of them.

Chapter 2 provides an overview of context-aware decision making in wireless networks.

First, an overview of the components of a context-aware system model is given. Then,

the context model is discussed by giving a short introduction to context awareness.

Moreover, different architectures of decision making and their characteristics are dis-

cussed. Finally, different designs of decision agents and corresponding methods for

decision making are discussed, with an emphasis on optimization-based approaches

and machine-learning-based approaches using multi-armed bandit (MAB) models, two

specific types of approaches relevant for this thesis.

In Chapter 3, the problem of context-aware computation offloading for energy mini-

mization in multi-hop wireless networks is studied, giving answers to the Questions 1-6

by the following contributions:

1. We propose a general model for context-aware computation offloading in multi-

hop wireless networks. The model is applicable to any topology of a multi-hop

network in which a resource-rich server may be reached via an access point (AP).

The model is compatible with different types of infrastructures for computation

offloading, such as mobile cloud computing (MCC) and mobile edge computing

(MEC).

2. We use a centralized architecture of decision making and take an optimization-

based approach. Specifically, we formulate the network energy minimization

problem as an integer linear programming (ILP) problem and propose a context-

aware greedy heuristic algorithm for computation offloading in multi-hop net-

works. Using this algorithm, a central entity may take offloading decisions based

on centrally collected information about network conditions and task context.
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3. We prove the equivalence of the energy minimization problem to a multi-

dimensional knapsack problem and thereby derive the complexity of the opti-

mization problem.

4. Based on analytical and numerical evaluation, we derive conditions with respect

to the topology, system parameters, and task context under which computation

offloading in multi-hop networks is beneficial.

5. We find in numerical simulations that the proposed context-aware greedy heuris-

tic algorithm yields near-optimal results under various network settings and task

contexts.

6. We study the computational complexity of the proposed context-aware greedy

heuristic algorithm and the overhead of the proposed centralized architecture of

decision making with respect to its communication requirements.

Chapter 4 addresses the problem of context-aware caching at the edge for cache hit

maximization, and answers Questions 7-12 by the following contributions:

7. We propose a model for context-aware proactive caching in a local cache at the

edge of the wireless network. The model explicitly allows different content to be

favored by different users and includes that content popularity depends on the

user’s context.

8. We use a decentralized architecture of decision making and take a machine-

learning-based approach. Based on a contextual MAB framework, we present

an online learning algorithm for context-aware proactive caching that incorpo-

rates diversity in content popularity across the user population, takes into account

the dependence of the users’ preferences on their contexts, and supports service

differentiation. Using this algorithm, the controller of a local cache can learn

context-specific content popularity online by regularly observing context infor-

mation of connected users, updating the cache content, and observing cache hits

subsequently.

9. We study the computational complexity of the proposed context-aware proac-

tive caching algorithm and its overhead in terms of memory and communication

requirements.

10. We show possible extensions of the proposed context-aware proactive caching

algorithm. Specifically, we consider its combination with multicast transmissions,

the incorporation of caching decisions based on user ratings, the inclusion of

asynchronous user arrivals, and the extension to multiple local caches.
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11. We analytically bound the loss of the proposed context-aware proactive caching

algorithm compared to an oracle that has a priori knowledge about content pop-

ularity. We derive a sublinear upper regret bound, which characterizes the learn-

ing speed and proves that the proposed algorithm converges to the optimal cache

content placement strategy that maximizes the expected number of cache hits.

12. We numerically evaluate the performance of the proposed context-aware proactive

caching algorithm based on a real world data set. A comparison shows that by

exploiting context information in order to proactively cache content for currently

connected users, the proposed algorithm outperforms reference algorithms.

Chapter 5 investigates the problem of context-aware worker selection for performance

maximization in mobile crowdsourcing (MCS) with non-spatial tasks, and answers

Questions 13-17 by the following contributions:

13. We propose a model for context-aware worker selection in an MCS application.

The model allows different task types by using the concept of task context to

describe the features of a task. The model describes worker performance as a

possibly non-linear function of the task context and of the worker context.

14. We use a hierarchical architecture of decision making and take a machine-

learning-based approach based on a contextual MAB framework. We propose

a context-aware hierarchical online learning algorithm for worker selection in

MCS applications with non-spatial tasks. The algorithm learns online without

requiring a training phase. By adapting and improving the worker selection over

time, the algorithm can hence achieve good results already during run time. The

proposed algorithm is split into two parts, one part executed by the MCSP, the

other part by local controllers (LCs) located in each of the workers’ mobile de-

vices. An LC learns its worker’s performance online over time, by observing

the worker’s personal contexts and her/his performance. The LC learns from

its worker’s contexts only locally, and personal context is not shared with the

MCSP. Each LC regularly sends performance estimates to the MCSP. Based on

these estimates, the MCSP takes care of the worker selection. This hierarchical

coordination approach enables the MCSP to select suitable workers for each task

based on what the LCs have previously learned.

15. We study the computational complexity of the proposed context-aware hierar-

chical online learning algorithm and its overhead in terms of local memory and

communication requirements. Moreover, we analyze how many times the perfor-

mance of each worker has to be observed. Keeping this number low is crucial
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since observing worker performance requires quality assessments, which may be

costly.

16. By establishing an analytical upper regret bound, we provide performance guar-

antees for the learned worker selection strategy and prove that the proposed

context-aware hierarchical online learning algorithm converges to the optimal

worker selection strategy.

17. We numerically evaluate the performance of the proposed context-aware hier-

archical online learning algorithm based on synthetic as well as real data using

different worker performance models. A comparison shows that by exploiting

context information for worker selection, the proposed algorithm outperforms

reference algorithms.

Finally, the main conclusions of this thesis and a brief outlook on future research

directions are presented in Chapter 6.
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Chapter 2

Context-Aware Decision Making in
Wireless Networks

2.1 Introduction

Along with the new paradigm of understanding wireless networks as networks of dis-

tributed connected resources, new techniques are envisioned that jointly consider and

leverage different types of resources in order to improve the system performance. In

order to optimize resource usage, these techniques require context-aware decision mak-

ing [BWL18, MSS13], as motivated in Section 1.2. A context-aware decision-making

framework for such a technique essentially consists of the following two parts:

(i) A system model needs to be formulated, consisting of five components, of which

an overview will be given in Section 2.2.1. In particular, to allow for context-

aware decision making, the designer needs to define a context model, specifying

which context is needed for decision making and which sources should acquire

the context by using their data collection resources [Hen03, PZCG14, MSS13].

Moreover, one or several adequate decision agents need to be identified and an

appropriate architecture of decision making needs to be designed within which

the decision agents are responsible for decision making [Lun92,KB97,FCGS02].

(ii) The decision agents need to be properly designed, which requires to model

and classify the problem to be solved by the decision agents and to de-

velop an appropriate method according to which the decision agents take de-

cisions [KAC+15,SNHH15,JZR+17,MH16].

Context-aware decision making for new techniques that jointly consider and exploit

different resources in wireless networks can be understood as an interaction between de-

cision agents and the environment [KAC+15,SB98]. By designing (i) the system model

and (ii) the decision agents, the specific properties of this agent-environment interac-

tion are determined. Figure 2.1 shows an illustration of a general agent-environment

interaction and connects the components of a context-aware decision making framework

with this general agent-environment interaction. More specifically, Figure 2.1 shows

a set of decision agents interacting with the environment by taking actions based on
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Figure 2.1. General agent-environment interaction and overview of context-aware de-
cision making. Five components of system model for context-aware decision making
shown in brown and design of decision agents shown in yellow.

observations [KAC+15] and interacting with each other via communication. Moreover,

Figure 2.1 depicts how the five components of the system model for context-aware de-

cision making in wireless networks, shown in brown, and the design of decision agents,

shown in yellow, relate to the general agent-environment interaction. These relations

will be explained in the following sections.

In Section 2.2, we introduce the considered system model for context-aware decision

making in wireless networks, by first giving a brief overview of its five components in

Section 2.2.1, and then discussing in more detail two of the components, the context

model in Section 2.2.2 and the architecture of decision making in Section 2.2.3. Finally,

in Section 2.3, we discuss the design a decision agents by pointing out different methods

for decision making. In this regard, we also give a short introduction to two specific

types of decision-making methods which are relevant for the remainder of this thesis,

namely, optimization-based approaches and machine-learning-based approaches using

multi-armed bandit frameworks.
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2.2 System Model

2.2.1 Overview of Components

Modeling a context-aware decision-making framework for a new technique that jointly

considers and leverages different types of resources in wireless networks, requires to

formulate a system model, which typically consists of the following five components:

(i) A model of the underlying wireless network, including its different available re-

sources and their constraints, is needed. Since the wireless network is part of

the environment with which the decision agents in wireless networks interact, in

Figure 2.1, the network model is hence related to the environment of the decision

agents.

(ii) A context model is required that represents available side information that may

be taken into account for decision making [Hen03, PZCG14, MSS13]. Such side

information is observed by the decision agents, and in Figure 2.1 hence relates to

the observation of the environment.

(iii) A performance criterion needs to be selected, with respect to which the perfor-

mance of the system should be optimized. Moreover, it needs to be determined

how a decision agent may evaluate the performance of its actions under a given

situation with respect to the performance criterion, e.g., by evaluating a utility

function or by receiving a reward from its environment [KAC+15]. Hence, the

performance criterion and its evaluation also relates to the observation of the

environment in Figure 2.1.

(iv) One or several adequate decision agents responsible for decision making need

to be identified and an appropriate architecture of decision making needs to be

designed within which the decision agents interact with each other and with the

environment [Lun92, KB97, FCGS02]. Hence, in Figure 2.1, the architecture of

decision making relates to the set of decision agents and their interactions.

(v) An action model needs to be defined, determining the different options that the

decision agents may select within the technique (e.g., which resources to use in

which way, or to allocate them to whom in which way). In Figure 2.1, the action

model is hence related to the action taken by a decision agent.
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Components (i), (iii) and (v) are common features of system models for resource

allocation problems in wireless networks. In the following, we focus on compo-

nents (ii) and (iv), by discussing in detail the context model and the architecture

of decision making.

2.2.2 Context Model

The concept of context awareness, today perceived as important property of techniques

for next generation wireless networks [BWL18], was first introduced in computer science

in the area of pervasive computing, where it refers to computing systems which are

able to acquire information about their environment and react based on changes in the

environment [Sch95]. Since then, context awareness and context-aware computing have

become important features in areas such as context-aware communication [SHT02],

wireless mobile autonomic computing and communications [CFLP16] and mobile and

wireless networking [MSS13] and are expected to also play an important role for the

upcoming IoT paradigm [PZCG14].

Many definitions of context and context awareness have emerged over the years. An

early comprehensive definition of context for context-aware applications was given

in [DA99] according to which “Context is any information that can be used to char-

acterize the situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including the

user and applications themselves.” Moreover, in [DA99], location, identity, activity,

and time are characterized to be the four primary types of context. The term context

awareness has been defined in [DA99] as follows: “A system is context-aware if it uses

context to provide relevant information and/or services to the user, where relevancy

depends on the user’s task.” While we follow here [DA99], it should be noted that

over the years, several other definitions of context and context awareness have been

proposed [Hen03,MSS13,PZCG14].

Making use of context requires to formulate a context model. We follow here [Hen03],

according to which “A context model identifies a concrete subset of the context that is

realistically attainable from sensors, applications and users and able to be exploited in

the execution of the task. The context model that is employed by a given context-aware

application is usually explicitly specified by the application developer, but may evolve

over time.” Using this definition from [Hen03], it becomes obvious that it is the duty

of the designer to specify the required context. Moreover, this definition of a context

model also reflects another requirement to achieve context-awareness, namely, that in
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order to exploit context, such context first needs to be acquired. Hence, the designer

needs to plan from which sources context should be acquired and what are feasible

amounts of context to be acquired.

Given the above definitions, the side information which may affect the outcome of de-

cision making for resource allocation in wireless networks, such as current network con-

ditions and node-related, user-related or externally given conditions [BWL18,FSK+18],

may conceptually be summarized under the term context. Hence, decision agents

should take available context information into account for decision making. In wire-

less networks, context may be collected using data collection resources from several

sources [MSS13], for instance, using the monitoring capabilities of base stations or of

sensor-rich mobile devices. After context collection, data processing may be needed in

order to aggregate and interpret the collected context and to produce context informa-

tion which can be used by the decision agents [MSS13, BWL18]. Taking into account

context, decision making becomes context-aware. In wireless communications, context-

aware decision making has been studied before, for instance, for vertical handover

decisions [ZJZ10, AKL06, FSM+15, FMS+17] and protocol reconfiguration in mobile

devices [PAM10], see also [MSS13] for an overview.

2.2.3 Architecture of Decision Making

When designing a context-aware decision-making framework for a new technique that

jointly considers and exploits different resources, the designer needs to select an appro-

priate architecture of decision making and to identify one or several adequate decision

agents responsible for decision making. In this thesis, following [Lun92,KB97,FCGS02],

we distinguish between the following architectures of decision making:

(i) Centralized architecture

(ii) Decentralized architecture

(iii) Hierarchical architecture

Which type of architecture is suitable highly depends on the specific technique, the

specific performance criterion and the information required for decision making, such

as network conditions and other relevant context. The properties of the three types of

architectures are summarized in Table 2.1 and will be discussed in the sequel.
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Table 2.1. Different types of architectures of decision making.

Type of
architecture

Decision agent(s) Information collection

Centralized Central entity At central entity

Decentralized Local entities At local entities

Hierarchical Entities at multiple levels At entities at multiple levels

First, in a centralized architecture, a central entity acts as global decision agent based

on centrally collected information [Lun92]. This architecture may, for example, be use-

ful if a network wide quantity needs to be optimized, i.e., a global performance criterion

exists, and if it is feasible (e.g., in terms of communication overhead or privacy) that

all needed information is collected at a central entity that selects suitable actions for

individual nodes and informs the nodes about its decisions. While using centralized ar-

chitectures facilitates solving global optimization problems up to optimality [FCGS02],

they suffer from the following drawbacks. One disadvantage is that the central entity

is a single point of failure, i.e., in the worst case, the operation of the whole network

may break down if the central entity fails [KB97]. Moreover, a centralized architecture

does not scale easily with increasing network size [KB97]. Classical examples of a cen-

tralized architecture of decision making are cellular networks, in which a base station

acts as global decision agent, for example, taking care of user scheduling so as to avoid

interference [Gol05].

Secondly, in a decentralized architecture, there are several local entities, each of them

acting as local decision agents based on locally collected information [Lun92]. A de-

centralized architecture is, for instance, useful if either the nodes in the network have

their own local performance criteria and a centralized architecture is not needed (e.g.,

since decisions of local entities do not affect each other) or if there exists a global

performance criterion, but it is not desired or even feasible (e.g., in terms of com-

munication overhead) to implement a centralized architecture [Lun92]. Decentralized

architectures increase the reliability and robustness since no single point of failure ex-

ists and moreover, they are scalable [KB97]. However, in decentralized architectures,

it is often difficult to reach globally optimal performance for global optimization prob-

lems [FCGS02]. In computing, decentralized architectures for decision making can,

for example, be found in resource allocation for virtual machines in cloud comput-

ing [MF14,MMF17]. In wireless networking, they can, for instance, often be found in

mobile ad-hoc networks [RT99,JHF03] and wireless sensor networks [SWKC12], where

the wireless nodes themselves take local decisions.

Thirdly, it is possible to design the architecture hierarchically, i.e., in such a way that



2.3 Design of Decision Agents 27

information collection and decision making is split up between different decision agents

at multiple hierarchically organized levels, enabled by an information exchange between

them [KB97,FCGS02]. For instance, a set of local entities may be responsible for col-

lecting the information required for decision making, while a central entity may be

responsible for global decision making. By designing a suitable information processing

at the local entities and a suitable information exchange between the local entities and

the central entity, it is in certain cases possible to reduce the amount of data (com-

pared to a centralized architecture) which needs to be transmitted to the central entity

in order to enable the central entity to take globally optimal decisions [KTvK18]. As

another example, decision making may be split up between multiple levels of decision

agents, e.g., the decision agents at the higher levels take decisions which are used to

coordinate the decision agents at the lower levels, while the decision agents at the lower

levels take local decisions [Lun92]. Hierarchical architectures are, for example, useful

if a network wide quantity needs to be optimized, i.e., a global performance criterion

exists, but it is not feasible to share all needed information with a central entity. Hi-

erarchical architectures try to combine the advantages of centralized and decentralized

approaches, by being scalable [KB97], reliable [Lun92] and at the same time by fa-

cilitating to solve global optimization problems [FCGS02]. Nevertheless, it should be

noted that using such a hierarchical architecture for solving a global optimization prob-

lem typically requires to decompose the global optimization problem into a hierarchical

structure, which can be challenging [FCGS02]. Hierarchical architectures for decision

making, for instance, can be found in resource allocation for virtual machines in cloud

computing [MF11], they are also part of fog computing [BMZA12] and they are cur-

rently discussed in connection with fronthaul-constrained cloud radio access network

(C-RAN) architectures [PWLP15,BASK18].

2.3 Design of Decision Agents

2.3.1 Methods for Decision Making

There are many different approaches how to design the decision agents for a new

technique that jointly considers and exploits different resources in wireless networks.

The design essentially depends on how the designer models the problem to be solved

by the decision agent. Specifically, different approaches differ regarding how much of

the decision making process is specified a priori by the designer and how the remaining

problem is solved by the decision agent [KAC+15]. As outlined in [KAC+15], some

important approaches to design decision agents are the following:
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(i) Explicit programming

(ii) Supervised learning

(iii) Optimization

(iv) Reinforcement learning (RL)

In explicit programming, the designer explicitly programs the decisions to be taken

by the decision agent for all possible situations it might face [KAC+15]. Since this

approach may be infeasible for complex problems and for new techniques for wireless

networks, we do not consider it for context-aware decision making in wireless networks.

Using supervised learning, a type of machine learning, the designer gives a set of training

examples to the decision agent and the task of the decision agent is to learn the mapping

from the input to the output [Alp14]. The decision agent runs a supervised learning

algorithm in order to generalize from the training set. This approach requires expert

knowledge from the designer who must build the training set of exemplary situations

and the corresponding best actions [KAC+15]. Since such expert knowledge may not

be available for new techniques for wireless networks, we do not consider it for context-

aware decision making in wireless networks.

In optimization, the decision agent is given a set of actions, a set of constraints on these

actions and a utility function to be maximized [BV04]. The utility function formalizes

the performance criterion selected by the designer as a function of taking an action

under a given situation. The decision agent may evaluate the performance of selecting

an action by inserting it into the utility function. In order to search for optimal actions,

the decision agent runs an optimization algorithm [KAC+15]. Hence, a designer may

use such an optimization-based approach if the problem at hand can be modeled as an

optimization problem whose parameters are known by the decision agent. Specifically,

the designer needs to be able to define a utility function that formalizes the desired

performance criterion as a function of taking an action under a given situation. Many

problems in wireless communications can be modeled as mathematical optimization

problems [SNHH15].

Using reinforcement learning (RL), a type of machine learning, the decision agent is

given a set of actions, a set of constraints on these actions, and a performance crite-

rion. The task of the decision agent is to find an action sequence which maximizes the

performance criterion, but the performance of different actions in different situations

is not known a priori [Alp14]. The agent has to test the different actions in order to
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discover which performance, or in RL language, reward, each action yields [SB98]. For

this purpose, the decision agent runs an online learning algorithm that sequentially

selects actions in order to learn the performances of different actions under different

situations and thereby maximize the cumulative performance over time. Hence, ap-

plying a machine-learning-based approach using RL makes sense if the designer can

(or would like to) only provide a performance criterion to the decision agent and

wants the decision agent to learn how to take actions by interacting with an uncer-

tain environment [SB98]. Special cases of RL are multi-armed bandit (MAB) frame-

works [Rob52, ACBF02]. Here, the choice of action only impacts the immediate out-

come, but not the outcomes of future action selections. MAB frameworks have become

a useful tool to tackle problems in wireless communications [MH16,JZR+17].

In the sequel, we will give a short overview of optimization and MABs since these types

of problems and the corresponding solution methods are highly relevant for context-

aware decision making in wireless networks and will be used in the remainder of this

thesis.

2.3.2 Optimization

2.3.2.1 General Problem Formulation

Many problems appearing in wireless communications and, in particular, many resource

allocation problems can be modeled as mathematical optimization problems [SNHH15].

A (mathematical) optimization problem can be formulated as

min g0(y) (2.1)

s.t. gj(y) ≤ 0, j = 1, ..., J,

y ∈ Rk,

where y ∈ Rk is the vector of optimization variables, the function g0 : Rk → R is

the objective function and the functions gj : Rk → R, j = 1, ..., J , are the constraint

functions [BV04]. Moreover, the abbreviations “min” and “s.t.” stand for minimize

and subject to, respectively.

2.3.2.2 Classes of Optimization Problems

Different classes of optimization problems are distinguished according to the type of

objective and constraint functions. If the objective function g0 and the constraint
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functions gj, j = 1, ..., J , are linear functions of the optimization variables y, then

Problem (2.1) is called a linear programming problem. In this case, any locally optimal

point is also globally optimal [BV04]. While no analytical formula for the solution of

the general linear programming problem exists, effective methods exist that can find

the optimal solution reliably and efficiently [BV04]. More precisely, linear programming

is solvable in polynomial time [Kar84].

If the objective function or the constraint functions are nonlinear, Problem (2.1) is

called a nonlinear programming problem. Nonlinear programming problems may, in

general, have several local optima [SNHH15] and there are no effective methods for

finding the optimal solution of the general nonlinear programming problem [BV04].

A special case of a nonlinear programming problem is a convex optimization problem, in

which the objective and constraint functions are convex. One characteristic of convex

optimization problems is that any locally optimal point is also globally optimal [BV04].

While no analytical formula for the solution of the general convex optimization problem

exists, effective methods exist that can solve even large instances of convex problems

reliably and efficiently [BV04]. In particular, many classes of convex optimization

problems can be solved in polynomial time [NN94].

If the objective and constraint functions in Problem (2.1) are linear and the opti-

mization variables are restricted to be integers, Problem (2.1) is called integer linear

programming (ILP) problem. The general ILP problem belongs to the complexity class

of non-deterministic polynomial-time (NP-hard) optimization problems [Sch86]. There

exists no polynomial-time algorithm for the solution of NP-hard optimization problems

– unless P=NP, where P is the class of problems which can be solved in polynomial

time, which would imply that all NP-hard optimization problems could be solved by

a polynomial-time algorithm [CLRS09]. It is widely believed that P 6= NP and that

hence NP-hard optimization problems are not solvable by any algorithm whose run-

ning time is polynomially bounded in the size of the input for the algorithm [CLRS09].

Therefore, the general ILP problem is believed not to be solvable efficiently to opti-

mality [Sch86]. Indeed, while the optimal solution could be found by enumerating all

feasible solutions, such an approach in general results in an exponential-time algorithm,

i.e., an algorithm which can only be exponentially bounded in the size of the input for

the algorithm [Sch86]. A special case of an ILP problem is the knapsack problem, which

will be discussed next since it is needed in the remainder of this thesis.
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2.3.2.3 The Knapsack Problem

The knapsack problem is a well-known optimization problem and a special case of

integer programming [KPP04]. Formally, it may be described as follows. A set I =

{1, ..., I} of items is given. Each item i ∈ I is associated with a profit pi and a weight wi.

Moreover, there is a capacity value c. The goal is to select a subset of items which

maximizes the sum profit of the selected items, while the sum weight of the selected

items may not exceed the capacity value c. The knapsack problem can be formulated

as an ILP problem with binary variables as follows:

max
I∑
i=1

piyi (2.2)

s.t.
I∑
i=1

wiyi ≤ c

yi ∈ {0, 1} for i = 1, ..., I.

Without loss of generality, the parameters appearing in Problem (2.2) may be assumed

to satisfy pi > 0, wi > 0 for all i ∈ I and c > 0. This is because variables corresponding

to non-positive parameters could immediately be fixed to their optimal values as a pre-

processing step, whereby the overall problem is transformed into an equivalent problem

which then satisfies the above assumptions [KPP04].

The knapsack problem is known to belong to the class of NP-hard optimization prob-

lems [KPP04]. Among the approaches to solve the knapsack problem are methods

known more generally from integer programming, such as dynamic programming and

branch-and-bound, which may be used to solve the knapsack problem up to optimality,

but can be extremely time and memory consuming [KPP04]. Other approaches for the

knapsack problem are so-called approximation algorithms and approximation schemes

that may find “good enough” solutions in a “reasonable” amount of time [KPP04].

Finally, many heuristics exist, one of them being the so-called greedy algorithm for the

knapsack problem [KPP04]. The idea of this greedy algorithm is as follows. For each

item i, the profit to weight ratio, or efficiency, defined by effi := pi
wi

is computed. Then,

items are sorted in decreasing order with respect to their efficiency. Finally, as long as

sufficient capacity is left, items are added to the knapsack one after the other according

to the ranking by starting with the items of highest efficiency. While the solution of

the greedy algorithm may, in general, be arbitrarily bad on certain instances of the

knapsack problem, it is possible to extend the algorithm in a simple fashion to yield

an approximation algorithm for the knapsack problem, whose profit is guaranteed to

be at least half of that of the optimal solution [KPP04].
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The knapsack problem is important since it may be seen as the simplest ILP prob-

lem, which itself appears as a sub-problem in many more complex optimization prob-

lems [SNHH15]. Moreover, the knapsack problem and its many variants have a large

number of applications [KPP04]. In wireless communications, different variants of

knapsack problems have, for instance, occurred in opportunistic scheduling [LK03],

coded caching for wireless content delivery [PT13] and resource allocation in OFDM

wireless networks [KNY09]. A particular variant of the knapsack problem relevant for

the remainder of this thesis is the multi-dimensional knapsack problem, which will be

discussed next.

2.3.2.4 The Multi-Dimensional Knapsack Problem

The multi-dimensional knapsack problem is a generalization of the basic knapsack prob-

lem, where instead of one capacity constraint, d different capacity constraints occur,

for an integer d ≥ 2 [KPP04, Fré04]. Formally, again a set I = {1, ..., I} of items

is given. Each item i ∈ I is associated with a profit pi and with a weight wi,j with

respect to d different attributes j = 1, ..., d. Moreover, there is a capacity value cj for

each attribute j = 1, ..., d. The goal is to select a subset of items which maximizes

the sum profit of the selected items, while the sum weight of the selected items with

respect to any of the attributes may not exceed the corresponding capacity value. The

multi-dimensional knapsack problem can be formulated as an ILP problem with binary

variables as follows:

max
I∑
i=1

piyi (2.3)

s.t.
I∑
i=1

wi,jyi ≤ cj for j = 1, ..., d.

yi ∈ {0, 1} for i = 1, ..., I.

The parameters appearing in Problem (2.3) may be assumed to satisfy pi > 0, wi,j ≥ 0

for all i ∈ I, j = 1, ..., d, and cj > 0 for all j = 1, ..., d. Like for the basic knapsack prob-

lem, this is because variables corresponding to parameters which do not satisfy these

assumptions could immediately be fixed to their optimal values as a pre-processing

step [KPP04, Fré04]. Thereby, the overall problem is transformed into an equivalent

problem which then satisfies the above assumptions.

Like the knapsack problem, the multi-dimensional knapsack problem belongs to the

class of NP-hard optimization problems [KPP04, Fré04]. Approaches to solve the
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multi-dimensional knapsack problem up to optimality include branch-and-bound algo-

rithms [GP85] and dynamic programming [HGI18]. In general, such exact approaches

are often extremely time and memory consuming for large problem instances [KPP04].

Moreover, it has been shown that the multiple constraints make the multi-dimensional

knapsack problem much more difficult compared to the basic one-dimensional knap-

sack problem. Specifically, there exists no fully polynomial time approximation scheme

for the multi-dimensional knapsack problem, unless P=NP, meaning that no efficient

approximation of this problem is believed to be possible [KPP04, Fré04]. Due to the

difficulty of the multi-dimensional knapsack problem, many heuristics exist, which usu-

ally cannot give performance guarantees, such as, greedy-type heuristics inspired by

the greedy algorithm for the one-dimensional knapsack problem [Dob82]. In the de-

sign of greedy-type heuristics for the multi-dimensional knapsack problem, there exist

different approaches how to define the efficiency of an item [KPP04].

2.3.3 Multi-Armed Bandits

2.3.3.1 Balancing Exploration and Exploitation

Multi-armed bandit (MAB) problems are problems of sequential decision making under

uncertainty and constitute a special case of RL [SB98]. The term multi-armed bandit is

referring to the sequential allocation problem faced by a gambler in a casino who faces

several slot machines (i.e., bandits) and needs to sequentially select one slot machine

to play (i.e., the gambler needs to sequentially decide which arm to pull) [BC12]. In

the most basic MAB formulation, given a set of actions (also called arms), an agent

selects one action per round and receives a reward which depends on the selected

action [Rob52, ACBF02]. The goal of the agent is to maximize its cumulative reward

over a sequence of rounds up to the time horizon. However, the agent does not know

the reward distributions of the actions. Instead, it may only observe instantaneous

rewards of selected actions. Selecting a suboptimal action may lead to a loss in terms

of reward. This loss is called the regret of learning and the agent hence tries to minimize

the total regret over the time horizon [ACBF02].

In order to learn about the rewards of the actions, the agent needs to try out the

different actions over time. On the one hand, the agent needs to explore actions,

about which it has little information available. Exploration may lead to low rewards

in the short run, but it is needed in order to learn about the rewards of all actions and

thereby receive higher rewards in the long run [SB98]. On the other hand, the agent

needs to exploit knowledge obtained so far, by selecting those actions which it already
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discovered to yield high rewards. Exploitation helps the agent to immediately receive

high rewards [SB98]. Finding a good trade-off between exploration and exploitation is

crucial in order to yield high cumulative rewards over the time horizon [SB98].

A solution to a MAB problem is a policy or allocation strategy according to which

the actions should be selected throughout the sequence of rounds [ACBF02]. Such a

policy is given by a learning algorithm, which maps the history of action selections

and the associated obtained rewards to the next action selection. The performance

of a learning algorithm may be evaluated in terms of its regret, i.e., the difference in

reward which could have been achieved had the agent selected the best action and the

reward that the agent actually achieved [ACBF02]. If the total expected regret R(T )

of a learning algorithm after T rounds satisfies limT→∞
R(T )
T

= 0, then the learning

algorithm converges to the optimal allocation strategy when the number T of rounds

goes to infinity. Specifically, this is the case if R(T ) is a sublinear function in T ,

i.e., if there exists γ < 1, such that R(T ) = O(T γ) [TvdS15a]. Here, O(·) denotes

the O-notation, which can be used to characterize the limiting behavior of a function

by giving an asymptotic upper bound on its growth rate, see [CLRS09] for a formal

definition.

Various problems in wireless communications have been posed as MAB prob-

lems [MH16], such as cognitive jamming [ATvdSB16] or mobility management [STv16].

Modeling problems occurring in wireless communication networks via MABs is appeal-

ing since MAB models naturally comprise missing a priori knowledge and limited feed-

back, both of which are typical challenges in wireless communication networks where

information exchange may be costly [MH16]. Moreover, many features of wireless net-

works may actually be covered using MAB models since, apart from the most basic

MAB problem discussed above, a large variety of further MAB models exist, which will

be briefly discussed next.

2.3.3.2 Types of Multi-Armed Bandit Models

Among the variety of MAB models, for instance, the following features are covered.

Different MAB models make different assumptions on the nature of the reward process.

While the reward processes are assumed to be stochastic in the basic model described

above, i.e., the model is stateless and the rewards are generated according to a specific

state-independent probability distribution, other MAB models assume that the reward

processes are adversarial, and again other MAB models assume that the reward pro-

cesses are Markovian, i.e., each action has a state that changes over time according to

a Markov process [BC12,MH16].
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In MAB models with dependent arms, dependencies between the rewards of different

actions are taken into account [PCA07]. In combinatorial MAB models, several ac-

tions may be taken per round and the reward may depend on the subset of selected

actions [CWY13]. In contextual MAB models, in each round, the agent receives side

information that may affect the rewards of the actions [BC12]. In sleeping MAB mod-

els, the set of actions may vary over time and the availability of actions may evolve in a

stochastic, Markovian or adversarial manner [KNMS10]. In multi-agent MAB models,

several agents exist, each one of them aiming at maximizing its reward over its own set

of actions, where the reward received by an agent may depend on the selected actions

of the other agents [MH16].

Next, since it is relevant for this thesis, we will formally introduce the most basic MAB

problem and discuss learning algorithms proposed for this problem.

2.3.3.3 The Stochastic Multi-Armed Bandit Problem

Formally, the most basic MAB problem, called stochastic multi-armed bandit problem,

is given as follows [Rob52, ACBF02]. Consider a set A of A := |A| actions and a

time horizon T . Over a sequence of rounds t = 1, ..., T , an agent may select one

action per round. Playing an action a ∈ A yields a reward sampled from an unknown

reward distribution with expected value denoted by µa. Rewards are independent

across different actions. Moreover, rewards for the same action are independent and

identically distributed across different rounds.

Let a∗ denote the optimal action in expectation, i.e., a∗ = argmaxa∈A µa. An oracle

with a priori knowledge about the expected values {µa}a∈A would select a∗ in each of

the T rounds, yielding an expected cumulative reward of T ·µa∗ [ACBF02]. In contrast,

a learning algorithm that selects action at ∈ A in round t for t = 1, ..., T , yields an

expected cumulative reward of E[
∑T

t=1 µat ] =
∑

a∈A µa E[Na(T )], where Na(T ) denotes

the number of times action a ∈ A has been played over the rounds t = 1, ..., T , and

where the expectation is taken with respect to the action selections by the learning

algorithm and the randomness of the reward distributions [ACBF02]. The regret R(T )

of the learning algorithm with respect to the oracle after T rounds is defined as

R(T ) := T · µa∗ −
∑
a∈A

µa E[Na(T )]. (2.4)

A simple heuristic policy for the stochastic multi-armed bandit problem is the ε-greedy

algorithm [SB98], which works as follows. First, a parameter ε ∈ (0, 1) is selected.
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Then, in each round t = 1, ..., T , with a probability of (1 − ε), the ε-greedy algorithm

selects the action with the highest empirical mean reward based on the history of

previous selections and obtained rewards. With a probability of ε, the ε-greedy al-

gorithm selects a random action. For a constant ε, the regret R(T ) of the ε-greedy

algorithm can only be bounded linearly in the horizon T [KP00]. Therefore, the algo-

rithm does in general not converge to the optimal allocation strategy. If the algorithm

is adapted by decreasing ε in a certain fashion over time, logarithmic regret bounds

may be achieved [ACBF02]. However, as in [KP00], in our numerical simulations, we

only consider the standard ε-greedy algorithm with constant ε since its variants were

not found to be beneficial in practice [VM05].

A well-known learning algorithm for the stochastic multi-armed bandit problem is the

UCB1 algorithm [ACBF02]. UCB1 is based on the following idea. For each action,

an upper confidence bound (UCB) of the expected reward of each action is estimated.

Then, in each round, the action with the highest estimated upper confidence bound is

selected. The UCB1 policy achieves logarithmic regret uniformly over T for any reward

distributions of known bounded support [ACBF02]. Hence, R(T ) = O(log(T )) holds.

Moreover, it has been shown that the regret of the stochastic multi-armed bandit prob-

lem for any policy is growing at least logarithmically, i.e., R(T ) = Ω(log(T )) [LR85].

Here, Ω(·) denotes the Ω-notation, which can be used to characterize the limiting behav-

ior of a function by giving an asymptotic lower bound on its growth rate, see [CLRS09]

for a formal definition. Hence, UCB1 achieves the optimal regret up to a multiplicative

constant. Different variants of UCB-type policies have been proposed over time also for

other variants of the MAB problem. For example, the awake upper estimated reward

(AUER) algorithm proposed in [KNMS10] is an extension of UCB1 to the sleeping arm

case, where the set of available actions is assumed to vary over time according to the se-

lections made by an adversary. Moreover, the LinUCB algorithm in [LCLS10,CLRS11]

uses a UCB-type approach for a contextual MAB problem with linear payoff functions.

Since contextual MAB problems are important in the remainder of this thesis, they

will be discussed next.

2.3.3.4 Contextual Multi-Armed Bandit Problems

In contextual MAB problems, also called bandits with side information [BC12], in each

round, the agent first observes a side information, called context, before choosing among

a set of actions with unknown rewards. The reward received from playing an action may

depend on the observed context. The agent hence needs to learn which action has the
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highest reward in which context, i.e., the best mapping from contexts to actions [BC12],

in order to maximize its expected reward over time.

While there exist various models for contextual MABs, we next present a specific

contextual MAB model which is based on the models presented in [TZvdS14,TvdS15a].

The model presented next will be useful in the remainder of this thesis. Consider a

set A of A := |A| actions, a bounded context space X := [0, 1]D of D dimensions,

and a finite time horizon T . In each round t = 1, ..., T , the following events happen

sequentially:

(i) A context xt ∈ X is revealed to the agent.

(ii) The agent selects an action at ∈ A.

(iii) The agent receives a reward rt,at .

The reward rt,at is sampled from an unknown reward distribution which depends on the

selected action at and on the context xt. The expected value of this reward distribution

of action at under context xt is denoted by µat(xt). Hence, E[rt,at ] = µat(xt) holds.

Rewards are independent across different actions, and rewards for the same action are

independent across different rounds. Moreover, the sequence {xt}t=1,...,T of context

arrivals is generated before the first round, i.e., the actions selected by the agent do

not influence the context arrivals. Finally, it is assumed that a similarity metric over

the context space holds. Specifically, the similarity metric is given by the following

Hölder continuity assumption. There exist L > 0 and 0 < α ≤ 1 such that

|µa(x)− µa(x̃)| ≤ L||x− x̃||αD (2.5)

holds for all a ∈ A and for all x, x̃ ∈ X , where || · ||D denotes the Euclidean norm

in RD. The Hölder continuity assumption reflects that the expected reward of an

action is similar in similar contexts.

Let a∗(xt) denote the optimal action with respect to context xt in expectation,

i.e., a∗(xt) = argmaxa∈A µa(xt). An oracle with a priori knowledge about the ex-

pected values {µa(x)}a∈A,x∈X would select a∗(xt) in round t, t = 1, ..., T , yielding an

expected cumulative reward of E
[∑T

t=1 rt,a∗(xt)

]
=
∑T

t=1 µa∗(xt) [TvdS15a]. In con-

trast, a learning algorithm that selects action at ∈ A in round t for t = 1, ..., T , yields

an expected cumulative reward of E
[∑T

t=1 rt,at

]
, where the expectation is taken with

respect to the action selections by the learning algorithm and the randomness of the

reward distributions [TvdS15a]. Given an arbitrary sequence {xt}t=1,...,T of context
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arrivals, the regret R(T ) of the learning algorithm with respect to the oracle after T

rounds is defined as

R(T ) :=
T∑
t=1

µa∗(xt) − E

[
T∑
t=1

rt,at

]
. (2.6)

Various other models for contextual MABs exist. While all of them have in com-

mon that side information is revealed to the agent, these models differ regarding their

assumptions on how context is generated and on how rewards are formed. Context ar-

rivals may be assumed to be stochastic, e.g., independent identically distributed (i.i.d.)

or non-stationary, or of adversarial nature [BC12]. Moreover, more or less strong as-

sumptions on how rewards are formed may be made. For example, a linear dependency

between reward and context [LCLS10] or a known similarity metric over the context

space [Sli14] may be assumed. Depending on the specific underlying contextual MAB

model, algorithms are proposed tailored to these models and then typically shown to

achieve sublinear upper regret bounds.

Some algorithms are based on contextual MAB models like the one presented above,

which assumes a known similarity metric over the contexts. Algorithms for this type

of contextual MAB model typically group contexts into sets of similar contexts by

partitioning the context space. Then, they estimate the reward of an action under

a given context based on previous rewards for that action in the set of similar con-

texts. For example, based on the model presented above, the algorithms proposed

in [TvdS15a,TZvdS14] use uniform and non-uniform adaptive partitions of the context

space. Moreover, for a model where a Lipschitz similarity metric between context-

action pairs is assumed, [LPP10] proposes a uniform partition of the context space,

and the contextual zooming algorithm [Sli14] proposes a non-uniform adaptive parti-

tion of the context space. The algorithms in [LPP10, Sli14, TvdS15a, TZvdS14] not

only work for finite, but also for an infinite set of actions.

In contrast, other algorithms are based on models with stronger assumptions regarding

how rewards are formed. For example, the LinUCB algorithm in [LCLS10, CLRS11]

assumes that the expected reward is linear in the context. A linearity assumption is

also used in the algorithm based on Thompson-sampling in [AG13], and in [GLZ14],

where a clustering is performed on top of a contextual MAB setting.

Again other algorithms are based on models with fewer assumptions regarding how

rewards are formed. For instance, the epoch-greedy algorithm relies on a general con-

textual MAB model with no further assumptions on how rewards are formed [LZ07].
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Also the algorithm in [BLS14] for contextual MABs with resource constraints and pol-

icy sets makes no further assumptions on how rewards are formed, except that it is

assumed that the marginal distribution over the contexts is known. However, com-

pared to [Sli14, TvdS15a, TZvdS14], the algorithms in [LZ07, BLS14] work only for a

finite set of actions and are based on the assumption that in each time step, the tuples

(context, rewards) are sampled from a fixed, but unknown distribution, i.e., contexts

are generated in an i.i.d. fashion. Therefore, while the algorithms in [LZ07,BLS14] are

more general regarding how rewards are formed, they are more restrictive regarding

the context arrivals since they require context arrivals to be i.i.d. over time.

Algorithms for contextual MAB problems may also be distinguished based on their ap-

proach to balance the exploration vs. exploitation trade-off. While the epoch-greedy

algorithm [LZ07] and the algorithms in [TvdS15a, TZvdS14] explicitly distinguish be-

tween exploration and exploitation steps, the LinUCB algorithm [LCLS10, CLRS11],

the contextual zooming algorithm [Sli14], and the algorithms in [GLZ14,LPP10] follow

an index-based approach, in which in each round, the action with the highest index is

selected. Other algorithms, like the one for contextual MABs with resource constraints

in [BLS14], draw samples from a distribution to find a policy which is then used to

select the action. Finally, the algorithm based on Thompson-sampling in [AG13] draws

samples from a distribution to build a belief, and selects the action which maximizes

the reward based on this belief.
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Chapter 3

Computation Offloading in Wireless
Multi-Hop Networks

3.1 Introduction

In this chapter, we consider computation offloading in multi-hop wireless networks,

a technique that trades communication resources off against computation resources.

Using computation offloading, wirelessly connected mobile devices may offload compu-

tation tasks to resource-rich servers for remote computation by transmitting the data

required to remotely process the tasks to the servers [KLLB13]. Such servers may,

for instance, be part of centralized computing platforms accessible via the Internet

as in mobile cloud computing (MCC) [DLNW13] or they may be part of computing

infrastructure placed at the edge of the wireless networks as in mobile edge computing

(MEC) [HPS+15,WZZ+17,MYZ+17]. Computation offloading may improve the perfor-

mance of wirelessly connected mobile devices by reducing task completion times, and

it also may reduce the devices’ energy consumption [KLLB13]. Thereby, the usage of

resource-hungry applications in future mobile and IoT devices may be facilitated. The

benefit of computation offloading for an individual device in terms of its battery life

depends on whether less energy has to be spent for transmitting the task to the server

than for local processing. Whether the latter is the case, in turn, depends not only

on channel conditions and computing capabilities of the device, but also on task char-

acteristics [KL10, MN10]. Therefore, when deciding whether or not to offload a task,

context information should be taken into account. Computation offloading has so far

not been considered in multi-hop networks, where network coverage may be extended

and required transmission power reduced. As motivated in Section 1.3.2, in multi-hop

networks, offloading decisions are non-trivially coupled since communication resources

of relay nodes need to be used and shared for task offloading.

Hence, we here investigate the problem of context-aware computation offloading for

energy minimization in multi-hop wireless networks. In this chapter, we propose an

optimization-based approach and a centralized architecture of decision making. We

use an optimization-based approach since the parameters appearing in the problem

may be assumed to be known. Moreover, we use a centralized architecture of decision

making, cf. Section 2.2.3, since the offloading decisions of the nodes are non-trivially
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coupled and hence need to be jointly optimized. Specifically, we propose a context-

aware greedy heuristic algorithm for computation offloading in multi-hop networks.

Using this algorithm, a central entity may take offloading decisions based on centrally

collected information about network conditions and task context. This chapter presents

work originally published by the author in [MASW+15]. Compared to [MASW+15],

in this thesis, we additionally study the computational complexity of the proposed

algorithm and its overhead by analyzing the communication requirements under the

proposed centralized architecture of decision making. In addition, in this thesis, we

additionally highlight the ideas of the mathematical proofs in the main body of text,

while the full mathematical proofs are given in the appendices. Moreover, in this thesis,

the numerical simulations are extended.

The remainder of this chapter is organized as follows. In Section 3.2, we give a de-

tailed review of the state of the art on decision making for computation offloading.

In Section 3.3, the system model for context-aware computation offloading in multi-

hop networks is introduced. Section 3.4 provides a formal problem formulation of

context-aware computation offloading for energy minimization in multi-hop wireless

networks using an optimization-based approach and a centralized architecture of de-

cision making. In Section 3.5, the optimization problem is analyzed. In Section 3.6,

a context-aware greedy heuristic algorithm for computation offloading in multi-hop

networks is proposed. Section 3.7 discusses properties of the proposed algorithm. In

Section 3.8, the performance of the proposed algorithm is numerically evaluated. Sec-

tion 3.9 concludes this chapter.

3.2 State of the Art

In this section, a review of the state of the art on decision making for computation

offloading is presented. This review complements the short review presented in Sec-

tion 1.3.2 by discussing in detail the works introduced in Table 1.1.

Previous works have mainly considered computation offloading in single-hop networks

where devices have a direct connection to a server whose computation resources they

may utilize. One line of work considers computation offloading from the point of view

of one single mobile device. These works aim at energy or completion time mini-

mization by designing mechanisms to decide whether to offload and which parts of

an application to offload. In [KL10] and [MN10], conditions are derived under which

a mobile device may save energy by using computation offloading. The calculations
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in [KL10] and [MN10] show that energy savings depend on the ratio of “communica-

tion vs. computation”. This ratio not only depends on the communication conditions

(e.g., allocated bandwidth) and computation capabilities of the mobile device (e.g.,

processor speed), but also on the specific characteristics of the tasks to be offloaded.

Computation offloading is especially beneficial for applications with high computa-

tional requirements, but low amount of data to be transmitted. In [XLL07], a timeout

scheme is presented which allows a mobile device to save energy by offloading parts

of its computation. Their proposed approach is proven to be 2-competitive, i.e., the

ratio between the performance of the proposed approach and the performance of an

optimal offline algorithm can be bounded by a factor of 2. In [WZL12], an analytical

solution is given for minimizing the consumed energy by optimal selection of both the

clock-frequency in case of local computation and the data rate over time in case of

computation offloading. In [HWN12], a dynamic offloading algorithm based on Lya-

punov optimization is presented, which achieves energy savings for a mobile device by

deciding which components of a software should be executed remotely under the cur-

rent network conditions. In [RP03], a policy for energy-optimal remote processing in a

client-server system based on Markov models is proposed which optimizes the energy

consumption at the client. In [LMZL16], policies for task scheduling in a single device

are derived based on a Markov decision process. The proposed algorithm minimizes

the average delay of each task under a power constraint. In the survey on computa-

tion offloading for mobile systems in [KLLB13], conditions are derived, under which

offloading is beneficial with respect to both the task completion time and the device’s

energy consumption.

Newer works consider the dynamics among several mobile devices using computation

offloading in single-hop networks, e.g., concerning the traffic induced by computation

offloading or the competition for shared resources. In [GZQL12], energy minimization

of computation offloading in a single-hop network is investigated, where mobile devices

may choose between several servers. Here, interdependencies between the devices’ de-

cisions arise from congestion at popular servers and a game-theoretic model is used

to analyze the decentralized dynamics. In [MBASK18], a distributed game-theoretic

algorithm for energy minimization in multi-stage computation offloading is proposed,

where mobile devices in a single-hop network may either compute their tasks locally

or offload it to either the AP or to a cloud server. The proposed algorithm itera-

tively takes care of both resource allocation and offloading decisions. In [NMAS+18], a

game-theoretic framework is proposed for computation offloading in a single-hop net-

work, where mobile users may offload fractions of their tasks. The proposed algorithm

minimizes the completion time of the tasks in the network and is shown to reach the

globally optimal solution. In [Che15], a decentralized game-theoretic framework for
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computation offloading in a single-hop network is introduced which models both en-

ergy and time costs of each single device based on the offloading decisions of others.

Using their mechanism, mobile devices take local offloading decisions that are benefi-

cial for the overall system performance. In [CLD16], the offloading decisions and the

resource allocation for multiple users in a single-hop network are jointly optimized with

the goal to minimize both the energy and time costs in the network. The proposed

heuristic algorithm based on separable semidefinite relaxation centrally computes both

the offloading decisions as well as the resource allocation.

A multi-hop scenario has been considered in a different context of “communication vs.

computation”. In [MYM02] and [TF09], multi-media sensor networks are investigated,

in which data may be compressed at sensor nodes before communicating it to a central

entity in a multi-hop fashion.

However, to the best of our knowledge, computation offloading has not yet been con-

sidered in multi-hop networks, which may extend network coverage and reduce re-

quired transmission power. Decision-making for computation offloading is challenging

in multi-hop networks as offloading decisions are interdependent due to the need to

use and share communication resources of relay nodes, which may even have their own

computation tasks.

3.3 System Model

3.3.1 Introduction

In this section, we propose a general model for context-aware computation offloading

in multi-hop wireless networks. In accordance with Section 2.2.1, the proposed general

model consists of the following five components:

(i) A network model is formulated to specify the assumptions on the multi-hop com-

munication in the underlying multi-hop wireless network.

(ii) A context model is defined, which is used to characterize the devices’ computation

tasks.

(iii) As performance criterion to be minimized, the network energy consumption is

considered and an energy consumption model for communication and computation
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is formulated, which can be used to compute for each task the required energy

for computing the task locally and the required energy for transmitting the task

to the server.

(iv) A centralized architecture of decision making is proposed, where a central entity

takes offloading decisions.

(v) An action model is determined, which determines the different choices of the

central entity, namely, which tasks should be offloaded and which should not.

The proposed general model for context-aware computation offloading in multi-hop

wireless networks is applicable to multi-hop networks of any topology in which an AP

gives access to a resource-rich server. Moreover, the model is compatible with different

types of infrastructures for computation offloading, such as in MCC and MEC.

3.3.2 Network Model

We consider an ad-hoc wireless multi-hop network consisting of a set N = {1, ..., N}
of N := |N | ≥ 2 mobile devices, called nodes 1 to N . We assume there exists a server

connected to a stable energy supply, which is capable of parallel task processing and

which offers computing resources to the mobile devices as a service for computation

offloading [SHP+14]. More specifically, mobile devices may rent virtual machines in the

server with guaranteed properties (e.g., certain number of cores and clock rate) in order

to offload their tasks [SHP+14]. Since we focus on the problem of which devices should

offload their tasks due to the scarcity of communication and computation resources

within the wireless multi-hop network, we assume here that the computation resources

in the server are sufficient for all devices to offload their tasks. How to manage the

computation resources in a cloud server with limited computation is, for instance,

discussed in [MF11, MF14, MMF17]. Moreover, how to select among different types

of virtual machines offered by a cloud server from mobile device perspective is, for

example, discussed in [SHP+14].

We further assume that there exists an AP via which the server may be reached. Our

model is generic with respect to the infrastructure of computation offloading, i.e., the

server may either be directly attached to the AP, as in MEC [MYZ+17], or the server

may be located in a distant cloud and reached via the AP over the Internet, as in

MCC [DLNW13]. An illustration of the considered network model is depicted in Fig-

ure 3.1, where a multi-hop wireless network with an AP giving access to a server is
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Figure 3.1. Network model.

shown. The nodes in the network dispose of communication, computation and data

collection resources. The data collection resources are shown here since for taking

meaningful offloading decisions, information about channel conditions, computing ca-

pabilities of the devices, and task characteristics needs to be collected, as will be

explained in the next sections.

We consider a computation offloading session during which the location of the nodes

– which may change in between different sessions – is assumed to be fixed. Such

an assumption is reasonable for scenarios in which nodes move slowly compared to

the duration of a computation offloading session. For instance, considering users in a

stadium, a conference center or a lecture hall, their positions can be assumed to be

static for the duration of a computation offloading session. Moreover, we assume here

that the network is connected, i.e., for each node, there exists at least one route to the

AP. This is because if the network were not connected during a given computation

offloading session, the nodes without connection to the server could not take part

in the computation offloading session anyhow and could therefore be neglected when

taking offloading decisions. Finally, we assume that the computation offloading session

is associated with an a priori given routing table, i.e., we assume that some existing

routing protocol for wireless ad-hoc networks [RT99] is used to fix a unique route from

each node in the network to the AP, depending on the current positions of the nodes

and the current channel conditions. We make this assumption since we want our model

and approach to work on top of any routing protocol, which has as output a routing
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Figure 3.2. An exemplary multi-hop network in graph representation.

table with unique routes from the nodes in the multi-hop network to the AP. According

to the routes stored in the routing table, nodes close to the server may have a direct

one-hop connection to the AP, while other nodes may have to access the AP via a

unique multi-hop route.

Based on the given routing table, the current state of a multi-hop network may be

represented as a graph, by setting the AP and nodes 1 to N as vertices of the graph

and by including an edge between two vertices if and only if a link exists between the

corresponding nodes in the routing table. Since each node has a unique route to the

AP, the resulting graph is a rooted tree, where the root represents the AP. We refer

to the internal nodes of this tree as relay nodes and denote the set of all relay nodes

by R. Using basic tree properties [Fou10], it follows that the number R := |R| of

relay nodes satisfies R ≤ N − 1. We refer to the leaf nodes of the tree as non-relay

nodes. Moreover, for a node n ∈ {1, ..., N}, we denote the set of relay nodes on the

multi-hop route from node n to the AP by Rn. The nodes on route Rn from node n

to the AP are called node n’s predecessors. The direct predecessor of node n is called

node n’s parent. Those nodes of which node n is a predecessor, are called node n’s

successors. Figure 3.2 shows an exemplary multi-hop network in graph representation

with an AP giving server access and with 7 nodes. Nodes 1, 2 and 3 are relay nodes,

i.e., R = {1, 2, 3}. Nodes 4, 5, 6 and 7 are non-relay nodes. The route from node 6 to

the AP is R6 = {2, 1}, i.e., nodes 2 and 1 are predecessors of node 6. Node 2 is the

parent of nodes 6 and 7. Since node 3 does not have any predecessor node, the route

from node 3 to the AP is R3 = ∅. The successors of node 3 are nodes 4 and 5.
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3.3.3 Context Model

We define a context model to characterize the devices’ computation tasks. In a com-

putation offloading session, each node n, n = 1, ..., N , is assumed to have a non-

splittable task suitable for computation offloading [KL10, KLLB13]. A task is de-

scribed based on two properties, which characterize its data requirements. On the

one hand, computing the task of node n requires processing a specific number Ln of

CPU cycles [KL10, KLLB13]. On the other hand, the task is characterized by the

number Bn of bits that need to be transmitted when offloading the task for remote

processing [KL10, KLLB13]. The ratio Bn
Ln

between the number Bn of bits needed for

transmission and the number Ln of CPU cycles needed for computation is application-

specific [MN10]. We refer to the number Bn of bits needed for transmission and the

number Ln of CPU cycles as task context. As will be discussed in the sequel, the en-

ergy consumption for local computing as well as computation offloading depends on the

task context. Therefore, the task context needs to be taken into account for offloading

decisions.

3.3.4 Model of Energy Consumption for Task Processing and
Transmission

We consider network energy minimization as performance criterion. The goal is hence

to select the best subset of nodes for computation offloading, such that the overall

energy spent in the system is minimized. Hence, an energy consumption model for

communication and computation is needed, which can be used to compute for each

task the required energy for computing the task locally and the required energy for

transmitting the task to the server. Next, we formulate such a model based on existing

tractable models for energy consumption in mobile devices and for wireless communi-

cation. Note that we aim at minimizing the energy consumption of the mobile devices,

and hence do not consider the energy consumed by the resource-rich server for task

processing.

On the one hand, depending on the processor speedMn (in cycles / s) and the processing

power PC,n (in W) of node n, the energy per CPU cycle eC,n (in J / cycle) for local

computing at node n is according to [KL10] given by

eC,n =
PC,n

Mn

. (3.1)
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Therefore, depending on the number Ln of CPU cycles, if node n computes its task

locally, the amount EC,n of energy consumed by node n is according to [KL10] given

by

EC,n = eC,nLn. (3.2)

On the other hand, depending on the transmit power PT,n (in W) of node n, the

bandwidth bn of node n, the complex channel coefficient hn from node n to its parent,

and the noise power σ2
n at node n, the energy per bit eT,n (in J / bit) node n consumes

for data transmission can be approximated using Shannon’s formula [TV05] as

eT,n =
PT,n

bn log2

(
1 +

PT,n·|hn|2
σ2
n

) . (3.3)

Hence, depending on the number Bn of bits, if node n uses computation offloading, the

amount En
T,n of energy node n consumes is according to [KL10] given by

En
T,n = eT,nBn (3.4)

when transmitting its own task to its parent. In addition, node n’s predecessors on

route Rn to the AP consume energy when relaying node n’s task. Depending on the

number Bn of bits, the energy Er
T,n consumed by a predecessor node r ∈ Rn is given

by

Er
T,n = eT,rBn, (3.5)

where eT,r is the corresponding energy per bit consumed by node r for data transmis-

sion, given analogously as in (3.3), by replacing in (3.3) each n with an r. In sum,

if node n uses computation offloading, the total amount ET,n of energy spent in the

network is hence given by

ET,n = En
T,n +

∑
r∈Rn

Er
T,n. (3.6)

As in [KL10, HWN12, Che15], we neglect the energy consumed on the feedback link

from server to node, as the amount of feedback information for transmission of the

result is small in many applications. However, our model may be extended to include

the energy consumption of the feedback link as well. In this case, the structure of the

problem would remain the same.

Since the nodes in the network dispose of limited energy resources, for a computation

offloading session, the amount Eprov,n (in J) of energy which node n provides for this
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session needs to be taken into account. While the values EC,n and ET,n depend on

the network topology and the characteristics of the task, the amount Eprov,n of energy

provided by node n may in general be chosen arbitrarily. In the sequel, we assume

that each node n provides at least enough energy such that both options for its own

task are feasible, i.e., the provided energy of node n is sufficient for computing task n

locally or for submitting task n to node n’s predecessor in the route Rn to the AP.

Formally, this holds if

Eprov,n ≥ max(EC,n, E
n
T,n) for all n = 1, ..., N. (3.7)

By assuming that each node is capable of computing its task locally and transmitting

its task to its parent, we discard trivial cases, in which a node could not choose from

the two options offloading and local computing due to its own battery constraints.

3.3.5 Architecture of Decision Making

We propose a centralized architecture of decision making, cf. Section 2.2.3, where the

offloading decisions are taken by a central entity, for example, by a controller in the

AP. We use a centralized architecture since the goal of minimizing the energy spent

in the overall network requires to jointly optimize the non-trivially coupled offloading

decisions of the nodes in the network. Clearly, when designing the corresponding

algorithm for centralized decision making, it needs to be ensured that the amount of

information to be collected centrally is kept low.

3.3.6 Action Model

The central entity should decide for each node n, n = 1, ..., N , whether the node should

compute its task locally or, if enough resources are available at relay nodes, whether

node n should use computation offloading by transmitting the task to the server for

remote processing. In this case, the corresponding number Bn of bits needs to be

transmitted to the AP via multi-hop route Rn. The action with respect to node n is

formalized by the binary variable yn, where

yn :=

{
1, if node n transmits its task to the server

0, if node n computes its task locally.
(3.8)

The vector of actions with respect to all nodes in the network is given by y :=

[y1, ..., yN ]. We denote the set of nodes transmitting their tasks to the server
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by NT := {n ∈ {1, ..., N} : yn = 1} and the set of nodes computing their tasks

locally by NC := {n ∈ {1, ..., N} : yn = 0}. In a computation offloading session, after

the central entity has selected the action of each node and informed the nodes about

its decisions, the nodes from set NT transmit their tasks to the server, where we as-

sume that a scheduling scheme is used, which allows the nodes to transmit their tasks

in an interference-free fashion. Such interference-free transmissions may be achieved

by giving nodes orthogonal resources, such as individual sub-carriers using frequency-

division multiple access (FDMA) or fractions of time using time-division multiple access

(TDMA) [Gol05]. The server then processes the received tasks in parallel and sends

the results back to the corresponding nodes.

3.4 Problem Formulation

In this section, using the models from Sections 3.3.2 - 3.3.6, we take an optimization-

based approach by formulating the problem of context-aware computation offloading

for energy minimization in multi-hop wireless networks as a network-wide optimization

problem to be solved by a central entity, for example, by a controller in the AP. We

use an optimization-based approach, cf. Section 2.3.2, since based on the existing

tractable task and energy models for mobile devices [MN10], as given in Section 3.3.4,

the parameters appearing in the problem may be assumed to be known.

Aiming at the global goal of minimizing the total energy spent in the network, a

network cost function needs to be formulated, which computes the total energy spent

in the network for local computing and transmission to the server as a function of the

nodes’ actions. Based on the energies EC,n and ET,n computed in (3.2) and (3.6), the

total energy Enet(y) spent in the network for local computing and transmission to the

server as a function of the actions y of all nodes is given by

Enet(y) =
N∑
n=1

(ynET,n + (1− yn)EC,n)

=
N∑
n=1

yn(ET,n − EC,n) +
N∑
n=1

EC,n. (3.9)

The network cost function in (3.9) is a linear function in the action vector y. Moreover,

since the second term
∑N

n=1EC,n is independent of y, it can be neglected when solving

an optimization problem with objective function Enet(y).

The nodes’ limited energy resources may impose constraints on possible actions. On

the one hand, the limited energy resources of a non-relay node n /∈ R only need to be
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sufficient for locally processing its own task or transmitting its own task to its parent,

which by the assumption in (3.7) is always the case. On the other hand, assuming that a

relay node r ∈ R provides a total amount Eprov,r of energy for a computation offloading

session and assuming that the node should at least ensure that its own standard action

of local computing is always possible, regardless of the actions of other nodes in the

network, node r should reserve an amount of EC,r for itself. Therefore, if node r reserves

an amount of EC,r for itself, it may spend an additional amount Eprov,r − EC,r ≥ 0 of

energy for relaying tasks of successor nodes. Hence, the energy Eprov,r − EC,r ≥ 0

provided by any relay node r ∈ R for a computation offloading session restricts the

offloading decisions at successor nodes. This can be formalized as follows:∑
{n:r∈Rn}

ynE
r
T,n ≤ Eprov,r − EC,r. (3.10)

The constraint in (3.10) is linear in the action vector y.

Employing the network cost function in (3.9) as objective function and taking into

account the energy constraints at relay nodes in (3.10), the optimal actions minimizing

the network cost may be obtained by solving the following ILP problem with binary

variables:

min
N∑
n=1

yn(ET,n − EC,n) (3.11)

s.t.
∑

{n:r∈Rn}

ynE
r
T,n ≤ Eprov,r − EC,r for r ∈ R

yn ∈ {0, 1} for n = 1, ..., N.

Here, the number of constraints corresponds to the number R = |R| of relay nodes and

is hence topology-dependent. Moreover, based on (3.2), (3.4) and (3.5), Problem (3.11)

depends on the task context.

3.5 Problem Analysis

3.5.1 Equivalence to Multi-Dimensional Knapsack Problem

In this section, Problem (3.11) is analyzed. As we show below, Problem (3.11) corre-

sponds to a specific type of ILP problem with binary variables, namely, to the multi-

dimensional knapsack problem, which was introduced in Section 2.3.2.4.
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Proposition 3.1. Problem (3.11) corresponds to a multi-dimensional knapsack prob-

lem.

The proof of Proposition 3.1 can be found in Appendix A.1. The proof works straight-

forward by rewriting Problem (3.11) into the format of a multi-dimensional knapsack

problem as given in (2.3) in Section 2.3.2.4.

From Proposition 3.1 it follows by the discussion in Section 2.3.2.4 that Problem (3.11)

belongs to the complexity class of NP-hard optimization problems, such that it is widely

believed that there exists no polynomial-time algorithm for its solution. Moreover,

by Section 2.3.2.4, it is even believed that no fully polynomial time approximation

scheme exists for Problem (3.11). Therefore, we propose a heuristic algorithm for

Problem (3.11) in Section 3.6.

3.5.2 Feasibility

Next, we investigate the feasibility of Problem (3.11). Problem (3.11) is always feasible

since it is always possible that all nodes compute their tasks locally. This can be easily

checked by inserting the corresponding action y = [0, ..., 0] into Problem (3.11), which

yields a feasible solution.

3.5.3 Variable Reduction

Here, we discuss a possible pre-processing step which can be used in certain cases to

reduce the problem size. This is due to the fact that under certain conditions, the

optimal action of a node may immediately be found, without solving the overall Prob-

lem (3.11). In detail, this is the case when the parameters corresponding to the node

in Problem (3.11) do not satisfy the nonnegativity assumptions, which hold without

loss of generality for multi-dimensional knapsack problems as stated in Section 2.3.2.4.

For such cases, one may apply rules of how to fix decision variables corresponding

to negative parameters to their optimal values in multi-dimensional knapsack prob-

lems [KPP04]. Applying these rules in a pre-processing step reduces the number of

variables appearing in Problem (3.11) and hence the problem size. In the sequel, we

give two rules of variable reduction in Problem (3.11), which we derived from the rules

of variable reduction in multi-dimensional knapsack problems [KPP04]. The following

rules may be used as pre-processing steps before solving Problem (3.11).
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• Rule 1: If for any node n, ET,n ≥ EC,n holds, i.e., less energy is consumed when

computing node n’s task locally compared to the overall energy consumed when

transmitting node n’s task to the server via the multi-hop route, then node n

should compute locally. This is because transmitting to the server would not

decrease the consumed energy in the network and possibly consumes energy at

relay nodes, which could otherwise be used for other task transmissions. Thus,

the optimal action for node n is y∗n = 0.

• Rule 2: If for any relay node r ∈ R, Eprov,r = EC,r holds, i.e., node r reserves

its provided energy resources for computing locally, then each successor node of

relay node r has to compute locally. Thus, for each node n with r ∈ Rn the only

possible (and therefore optimal) action is y∗n = 0.

3.5.4 Decomposition

Depending on the network topology, Problem (3.11) may be decomposed into several

smaller problems. For this purpose, consider a multi-hop network in its graph represen-

tation. As described in Section 3.3.2, the resulting graph is a rooted tree, whose root

represents the AP giving access to the server. In order to decompose Problem (3.11),

this tree is partitioned into subtrees, where each subtree consists of one child node of

the AP and all its successor nodes. Then, Problem (3.11) can be decomposed into one

sub-problem per subtree since only decisions of nodes on the same subtree are cou-

pled by energy constraints of common relay nodes. As an example, Figure 3.3 shows

how the exemplary multi-hop network from Figure 3.2 is partitioned into two subtrees,

as indicated by the dashed and the dotted line. In this example, the corresponding

Problem (3.11) can be decomposed into two smaller problems, one for each of the two

subtrees.

3.5.5 Analytical Results for Special Topologies

In the following, we prove analytical results for Problem (3.11) in case of special topolo-

gies. We start with a star topology, cf. Figure 3.4, which establishes the connection of

Problem (3.11) to computation offloading in single-hop networks. Next, by considering

a line topology, cf. Figure 3.5, the impact of a non-decomposable topology with maxi-

mum number of relay nodes on the benefit of computation offloading is investigated. In

this way, we derive conditions with respect to the topology, under which computation

offloading is beneficial in multi-hop networks.
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Figure 3.3. Partition of an exemplary multi-hop network in graph representation into
subtrees.

Figure 3.4. An exemplary network in star topology.

Consider a network of N nodes in star topology, i.e., a single-hop network with a root

and N leaves. Figure 3.4 shows an example of a network in star topology. Since there is

no relay node in a star topology, the corresponding energy minimization Problem (3.11)

does not contain any energy constraints. Thus, in this case, Problem (3.11) may

be optimally solved node-wise (i.e., decomposed into one sub-problem per node, cf.

Section 3.5.4) by determining for each node n individually which is the less energy

consuming action based on the values of ET,n and EC,n. Hence, the following statement

holds.

Proposition 3.2. Consider Problem (3.11) in the case of a star topology. The globally

optimal actions y∗n, n = 1, ..., N , are given by

y∗n =

{
1, if ET,n < EC,n

0, if ET,n ≥ EC,n.
(3.12)

Next, consider a network of N nodes in line topology, i.e., a network consisting of one

single rooted branch whose nodes can be labeled according to their hop distance to



56 Chapter 3: Computation Offloading in Wireless Multi-Hop Networks

Figure 3.5. An exemplary network in line topology.

the AP from 1 to N . An example of a network in line topology is given in Figure 3.5.

In this case, the number R of relay nodes satisfies R = N − 1. Therefore, the corre-

sponding Problem (3.11) contains the highest possible number of energy constraints.

However, since the tree consists of one single branch, the energy constraints have a

special structure, which allows to give an analytical result of Problem (3.11) in case of

a homogeneous network, where the energies per node are equal.

Proposition 3.3. Consider Problem (3.11) in the case of a line topology in a homo-

geneous network, where there exist constants EC ≥ 0, Elink ≥ 0, Eprov ≥ 0 with

EC,n = EC for all n = 1, ..., N (3.13)

Er
T,n = Elink for all n, r = 1, ..., N with n ≥ r (3.14)

Eprov,n = Eprov for all n = 1, ..., N − 1. (3.15)

Then, the optimal actions y∗n, n = 1, ..., N , are given by

y∗n =

{
1, if n < EC

Elink
and n ≤ Eprov−EC

Elink
+ 1

0, else.
(3.16)

The proof of Proposition 3.3 can be found in Appendix A.2. The idea of the proof is

as follows. Two cases are distinguished and for each case, it is shown that the optimal

actions are given by (3.16). First, the case of Eprov = EC is considered. This is a special

case in which it is easy to show that the optimal actions are given by (3.16). Then,

the case of Eprov > EC is considered. Due to the special structure of the line topology,

it is possible to simplify the formula for the total amount ET,n of energy spent in the

network when node n uses computation offloading, as given in (3.6). Together with the

pre-processing Rule 1 from Section 3.5.3, this yields that n < EC

Elink
has to be satisfied

for any node n whose optimal action it is to use computation offloading. Moreover, due

to the special structure of the line topology, where the set of successor nodes of a relay

node is given by all nodes which have higher hop distance to the AP, the constraints

in Problem (3.11) can be simplified. Using this fact in combination with a concept

for knapsack problems called dominance [KPP04], one can prove that computation

offloading is the optimal action for any node n which has n ≤ Eprov−EC

Elink
+ 1. Combining

these results, it follows that the optimal actions are given by (3.16).



3.6 Proposed Algorithm 57

Proposition 3.3 illustrates that in a homogeneous line topology, computation offloading

is optimal for any node n, whose hop distance n to the AP satisfies the two condi-

tions n < EC

Elink
and n ≤ Eprov−EC

Elink
+ 1. Hence, combining the two conditions yields a

threshold. All nodes whose hop distance to the AP is smaller than the threshold will

use computation offloading. All nodes whose hop distance to the AP is larger than the

threshold will compute locally.

Note that for topologies consisting of several parallel homogeneous lines to the AP,

Problem (3.11) is decomposable to each of these lines based on the result from Sec-

tion 3.5.4. Hence, in this case, Proposition 3.3 may be applied to each of these indi-

vidual lines.

3.6 Proposed Algorithm

In this section, using an optimization-based approach and a centralized architecture of

decision making, we propose a context-aware greedy heuristic algorithm for computation

offloading in multi-hop networks to tackle the energy minimization Problem (3.11).

Using the proposed algorithm, a central entity, e.g., a controller in the AP, may take

offloading decisions based on centrally collected information about network conditions

and task context.

Since Problem (3.11) corresponds to a multi-dimensional knapsack problem by Propo-

sition 3.1, we propose to use the primal greedy heuristic for multi-dimensional knapsack

problems [KPP04] for tackling Problem (3.11). The primal greedy heuristic is a central-

ized polynomial-time algorithm. In the context of computation offloading in multi-hop

networks, the main idea of this algorithm is as follows.

After pre-processing based on Rules 1 and 2 from Section 3.5.3, the nodes are sorted in

decreasing order of a carefully chosen efficiency measure, which will be detailed below.

Then, starting from the node with the highest efficiency, the algorithm adds one node

at a time to the set of nodes which offload their tasks, but only, if this does not violate

any of the energy constraints at relay nodes. If an energy constraint is violated, the

node is added to the set of nodes which locally compute their tasks. The critical

point of the algorithm is the choice of efficiency measure. Here, we select an efficiency

measure [Dob82, KPP04] that takes into account (i) how much energy is saved when

node n is chosen for computation offloading compared to when node n computes its
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task locally and (ii) which portions of energy provided by relay nodes it requires:

effn :=
EC,n − ET,n∑
r∈Rn

ErT,n
Eprov,r−EC,r

. (3.17)

The pseudocode of the context-aware greedy heuristic algorithm for Problem (3.11) is

given in Algorithm 3.1. Since Problem (3.11) is decomposable to subtrees, as described

in Section 3.5.4, Algorithm 3.1 may be applied separately to each of the individual

subtrees.

Algorithm 3.1 Context-Aware Greedy Heuristic Algorithm

1: Input: Problem (3.11)
2: Pre-process Problem (3.11) according to Rules 1 and 2 from Section 3.5.3
3: Let y1, ..., yÑ be the variables not fixed in pre-processing
4: for n = 1, ..., Ñ do
5: Initialize yn := 0
6: effn :=

EC,n−ET,n∑
r∈Rn

Er
T,n

Eprov,r−EC,r

7: end for
8: Sort efficiencies effn into decreasing order and save

into vector ord := indices of ordered efficiencies
9: for j = 1, ..., Ñ do

10: yord(j) := 1
11: if decision vector y not feasible then
12: yord(j) := 0
13: end if
14: end for

3.7 Properties of Proposed Algorithm

3.7.1 Performance Guarantees for Special Topologies

Here, we give performance guarantees of the proposed algorithm in case of certain

special topologies. Specifically, we show that the proposed algorithm automatically

selects the globally optimal actions for networks in star and line topology.

We start with networks in star topology, as introduced in Section 3.5.5.

Proposition 3.4. Consider Problem (3.11) in the case of a star topology. Then, the

context-aware greedy heuristic algorithm in Algorithm 3.1 always selects the globally

optimal actions according to (3.12).
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The proof of Proposition 3.4 can be found in Appendix A.3. The proof is straightfor-

ward by checking the steps of Algorithm 3.1 in case of a star topology, which yields

that exactly the globally optimal actions according to (3.12) are selected.

Next, we consider networks with homogeneous line topologies, as introduced in Sec-

tion 3.5.5.

Proposition 3.5. Consider Problem (3.11) in the case of a line topology in a ho-

mogeneous network as introduced in Proposition 3.3. Then, the context-aware greedy

heuristic algorithm in Algorithm 3.1 always selects the globally optimal actions accord-

ing to (3.16).

The proof of Proposition 3.5 can be found in Appendix A.4. The idea of the proof is

as follows. Like in the proof of Proposition 3.3, two cases are distinguished. First, the

case of Eprov = EC is considered, which is a special case in which it is easy to show that

Algorithm 3.1 selects exactly the optimal actions in (3.16) from Proposition 3.3. Then,

the case of Eprov > EC is considered. Due to the special structure of the line topology,

it is possible to simplify the formula for the total amount ET,n of energy spent in the

network when node n uses computation offloading, as given in (3.6). Together with

the fact that Algorithm 3.1 uses Rule 1 from Section 3.5.3 during pre-processing, this

yields that n < EC

Elink
has to be satisfied for any node n which Algorithm 3.1 considers

as candidates for computation offloading. Moreover, due to the special structure of

the line topology, one can show that Algorithm 3.1 sorts the nodes according to their

hop distance to the AP. Then, Algorithm 3.1 selects nodes for computation offloading

according to their hop distance, starting with node 1, as long as this does not violate

any of the energy constraints. Specifically, one can show that Algorithm 3.1 selects

nodes with hop distance n ≤ Eprov−EC

Elink
+ 1 for computation offloading. This shows that

Algorithm 3.1 selects exactly the globally optimal actions according to (3.16).

3.7.2 Computational Complexity

Here, we analyze the computational complexity of the proposed algorithm as a func-

tion of the number N of nodes and the number R of relay nodes in the network. For

this purpose, we identify the most computationally expensive procedures in the algo-

rithm. Note that the computational complexity is described based on the O-notation,

which can be used to characterize the limiting behavior of a function by giving an

asymptotic upper bound on its growth rate [CLRS09]. In Line 2 of Algorithm 3.1,

the pre-processing according to Rules 1 and 2 has a computational complexity that
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grows as O(R+N) since at most every node n ∈ N and every relay node r ∈ R need

to be considered once. Computing the efficiency measure of N nodes in lines 4-7 has

a computational complexity that grows as O(NR). This is because for each node n,

each of its relay nodes on the route to the AP needs to be considered once, and there

are at most R relay nodes on this route. Sorting at most N values in line 8 has a

computational complexity that grows as O(N logN) [CLRS09]. Finally, in lines 9-

14, checking for at most each node n ∈ N , and for at most each relay node r ∈ R,

whether the remaining battery of the relay node r is sufficient to add node n to the

set of nodes using computation offloading has a complexity that grows as O(NR).

This is because each of the N nodes has to be considered once in combination with

each of the R relay nodes. Overall, the computational complexity of Algorithm 3.1 is

hence O(NR +N logN)). Therefore, the proposed algorithm is a polynomial-time al-

gorithm with a computational complexity that grows, depending on the ratio between

relay and non-relay nodes, at most quadratically as a function of the number N of

nodes in the network.

3.7.3 Communication Requirements

The context-aware greedy heuristic algorithm is based on a centralized architecture of

decision making, where a central entity takes offloading decisions based on centrally col-

lected information. Here, we investigate the communication overhead of the proposed

algorithm due to its centralized approach. In detail, we compute the communication

requirements for collecting the information required for decision making under the as-

sumptions that the central entity is a controller located in the AP and that the central

controller knows the routing table, which contains the multi-hop route Rn from each

node n to the AP. In order to take the offloading decisions based on the context-aware

greedy heuristic algorithm, the controller needs to compute the efficiency measure effn

in (3.17) for each node n = 1, ..., N . Therefore, for a node n, the controller needs to

know the values EC,n, ET,n, Er
T,n, Eprov,r and EC,r for each of node n’s relay node r ∈ Rn.

The following procedure is proposed in order to minimize the required communica-

tion exchange between the nodes and the controller: Each node n (i) determines its

parameters eC,n and eT,n according to (3.1) and (3.3), (ii) determines its provided en-

ergy Eprov,n, (iii) retrieves task context information Bn and Ln and (iv) computes EC,n

based on (3.2). Then, node n sends the values eT,n,Bn, EC,n, Eprov,n to the controller, by

transmitting them via the multi-hop route Rn to the AP. Based on the received values,

the controller may then compute the missing values Er
T,n for any r ∈ Rn, n = 1, ..., N ,

and ET,n, n = 1, ..., N , using (3.4), (3.5) and (3.6). Subsequently, the controller applies

the context-aware greedy heuristic algorithm and thereby takes the offloading decisions.
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In the above procedure, each node n needs to transmit four scalar variables to the

AP via its multi-hop route Rn. Compared to the typical sizes of candidate tasks for

computation offloading (e.g., 420 kbyte for a face recognition application in [SMF+12]),

the signalling overhead due to centralized decision making is hence small.

3.8 Numerical Results

3.8.1 Simulation Setup

We evaluate the proposed algorithm and we analyze the benefit of computation off-

loading in multi-hop networks with respect to different topologies, system parameters

and task contexts based on simulations. We simulate networks of N = 20 nodes with

star, line as well as random topologies. The results for random topologies are obtained

by simulating 100 random trees and averaging the results. We fix the following param-

eters homogeneously for each node n. For task sizes, the number of CPU cycles is set

to Ln = 1000 Mcycles [Che15] and the number Bn of bits is kept variable so that we can

investigate different ratios of Bn
Ln

. For the energy characteristics of the devices, i.e., the

energy eC,n per bit and the energy eT,n per CPU cycle, we take for both parameters the

respective best (i.e., lowest) value which was obtained in experiments with real devices

in [MN10]. This is because we want the simulations to be based on a fair ratio between

the devices’ energy characteristics with respect to computation and communication.

In detail, for local computing, we set eC,n = 1
730

J
Mcycle

[MN10] and for transmission, we

set eT,n = 1
860

J
kbyte

[MN10]. Note that based on the selected values of eC,n eT,n, this

yields an energy ratio of
eC,n
eT,n
≈ 0.0094 bits

cycle
in our simulations. Concerning the energy

resources spent by nodes for relaying, unless otherwise stated, we assume that each

node spends an additional 100% of its own required computing energy for relaying,

i.e., Eprov,n = 2EC,n (default value).

3.8.2 Reference Algorithms

We evaluate the proposed algorithm by comparing it with the following reference al-

gorithms.

• The global optimum of Problem (3.11) gives a lower bound on the network energy

consumption that the proposed algorithm can achieve. Therefore, the global
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optimum may be used as benchmark. Since Problem (3.11) is an ILP problem,

we use the integer programming solver Gurobi [Gur15] to find a globally optimal

solution.

• In addition, we consider pure local computing, i.e., that all nodes in the network

compute their tasks locally. Comparing the solution of pure local computing

with the offloading solutions obtained by the global optimum and by the context-

aware greedy heuristic algorithm allows to assess the benefit of using computation

offloading in multi-hop networks.

3.8.3 Evaluation Metrics

We use the following metrics to assess the benefit of using computation offloading in

multi-hop networks and to evaluate the proposed algorithm.

• We compute the total energy spent in the network and the corresponding fraction

of nodes transmitting their task to the server when the offloading decisions are

taken according to the algorithm. Formally, let yA denote the vector of actions

of all nodes selected by an algorithm A. Then, the energy spent in the network

is computed as Enet(y
A) using (3.9).

• Moreover, the fraction of nodes transmitting their tasks to the server is computed

as

|{n ∈ {1, ..., N} : yAn = 1}|
N

, (3.18)

where | · | denotes the cardinality of a set.

3.8.4 Results

In our simulations, we analyze the benefit of computation offloading in multi-hop net-

works with respect to different topologies, system parameters and task contexts and

we evaluate the context-aware greedy heuristic algorithm by comparing its solutions

to the global optimum. Note that each figure shown in the sequel displays results of

(i) the context-aware greedy heuristic algorithm, (ii) the global optimum and (iii) pure

local computing, and for each algorithm, each figure displays results under (a) ran-

dom, (b) star and (c) homogeneous line topologies. Note, however, that the figures
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only display one curve for (i) the context-aware greedy heuristic algorithm, namely,

with respect to (a) random topologies. We do not display a separate curve for (i) the

context-aware greedy heuristic algorithm under the (b) star and (c) homogeneous line

topologies since the context-aware greedy heuristic algorithm produces the same re-

sults as the global optimum under these topologies, such that the curves for the global

optimum under these topologies actually correspond to the results of the context-aware

greedy heuristic. Moreover, note that each figure only displays one curve for (iii) pure

local computing. This is because pure local computing is not affected by the topology

and hence produces identical results under (a) random, (b) star and (c) homogeneous

line topologies.

Figure 3.6 shows the results of (i) the context-aware greedy heuristic algorithm, (ii) the

global optimum and (iii) pure local computing under (a) random, (b) star and (c) ho-

mogeneous line topologies, for varying ratios Bn
Ln

between the number Bn of bits needed

for transmission and the number Ln of CPU cycles needed for computation. Fig-

ure 3.6(a) gives the total energy spent in the network under varying ratios Bn
Ln

. As can

be seen in Figure 3.6(a), under all three types of topology and all three approaches,

the energy spent in the system is a non-decreasing function of the ratio Bn
Ln

. In detail,

the result of pure local computing does not depend on the ratio Bn
Ln

(since Ln is fixed

in our simulations) and hence stays constant for increasing Bn
Ln

, and the corresponding

energy spent in the system gives an upper bound for the offloading solutions obtained

by the context-aware greedy heuristic algorithm and by the global optimum. When

the ratio Bn
Ln

increases, i.e., transmitting a task to the server becomes more expensive

in comparison to local computation, the energy spent in the system increases and con-

verges to the same value under the offloading solutions obtained by the context-aware

greedy heuristic algorithm and by the global optimum and with respect to all topolo-

gies. Convergence is reached when Bn
Ln
≈ 0.0094 bits

cycle
. Once convergence is reached,

i.e., for Bn
Ln

' 0.0094 bits
cycle

, the energy spent in the system under the offloading solu-

tions obtained by both the context-aware greedy heuristic algorithm and by the global

optimum corresponds exactly to the energy spent in the system under pure local com-

puting. The reason for this is that based on the assumed energy characteristics of the

devices, cf. Section 3.8.1, we have an energy ratio of
eC,n
eT,n
≈ 0.0094 bits

cycle
in our simu-

lations. Hence, when the ratio Bn
Ln

' 0.0094 bits
cycle

, we have Bn
Ln

' eC,n
eT,n

, or equivalently,

En
T,n = eT,nBn ' eC,nLn = EC,n, where we used (3.2) and (3.4). This means that

for any task in the network, the network’s energy cost for transmitting that task to

the server are as at least as high as the energy cost for local computing. Therefore,

whenever Bn
Ln

' 0.0094 bits
cycle

, all nodes compute their tasks locally.

Next, we compare the results obtained by the different approaches under the random

topology. In Figure 3.6(a), under the random topology, using the greedy offloading so-
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Figure 3.6. Results for Eprov,n = 2EC,n for homogeneous line, random and star topolo-
gies.
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lution instead of pure local computing reduces the network energy consumption by 13%

when averaging over the whole range of Bn
Ln

. Moreover, under the random topology,

the results obtained by the context-aware greedy heuristic algorithm lie very close to

the global optimum, with a maximal deviation of less than 5% from the optimal re-

sults over the whole range of Bn
Ln

. In general, as Figure 3.6(a) shows, the smaller the

ratio of Bn
Ln

, the more energy can be saved when using computation offloading instead

of pure local computing, no matter whether the offloading solution obtained by the

context-aware greedy heuristic algorithm or the global optimum is used.

Finally, we study how the underlying topology affects the benefit of computation off-

loading in multi-hop networks. Comparing the results of the global optimum for the

different topologies in Figure 3.6(a), one can see that averaged over the whole range

of Bn
Ln

, the energy consumption of the star topology (i.e., a single hop network) is much

smaller than that of a random topology, which itself is slightly smaller than that of

the line topology. Moreover, Figure 3.6(a) shows, comparable to what has been shown

in [KL10,MN10], that computation offloading noticeably pays off in single-hop networks

for any ratio of Bn
Ln

as long as Bn
Ln

<
eC,n
eT,n

holds. This is because in single-hop networks,

each node for whom transmission to the server is cheaper, uses computation offloading,

as was also shown analytically in Section 3.5.5. In contrast, for multi-hop networks,

Figure 3.6(a) shows that the effect of computation offloading becomes particularly ap-

parent for very small ratios of Bn
Ln

, for which Bn
Ln
� eC,n

eT,n
, or equivalently, En

T,n � EC,n

holds, where we used (3.2) and (3.4). This means that computation offloading in multi-

hop networks is beneficial (i) for applications with very high computation effort and

very small amounts of data to be transmitted (i.e., large Ln and small Bn) and/or (ii) if

the devices’ energy capabilities in terms of computation are much worse than in terms

of communication (i.e., large eC,n and small eT,n). In addition, the benefit of computa-

tion offloading is more prominent in topologies with on average smaller hop distances

to the AP. If many hops are involved, such as in a line topology, having Bn
Ln
� eC,n

eT,n
is

even more important in order to benefit from computation offloading, as can also be

seen from the results in Section 3.5.5.

Figure 3.6(b) shows the fraction of nodes transmitting their task to the server under

varying ratio Bn
Ln

between the number Bn of bits needed for transmission and the num-

ber Ln of CPU cycles needed for computation. As shown in Figure 3.6(b), under all

three types of topology and all three approaches, the fraction of nodes transmitting

their task to the server is a non-increasing function of the ratio Bn
Ln

. For pure local

computing, the fraction of nodes transmitting their task to the server is obviously zero

for any value of the ratio Bn
Ln

. Moreover, when the ratio Bn
Ln

increases, i.e., transmitting

a task to the server becomes more expensive in comparison to local computation, the

fraction of nodes transmitting their task to the server decreases under the offloading
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solutions obtained by the context-aware greedy heuristic algorithm and by the global

optimum and with respect to all topologies. This results from the fact that when data

transmission gets more expensive, more and more nodes instead compute locally. In

addition, when the ratio Bn
Ln

increases, the fraction of nodes transmitting their task to

the server converges to zero under the offloading solutions obtained by the context-

aware greedy heuristic algorithm and by the global optimum and with respect to all

topologies. In analogy to the results discussed above for Figure 3.6(a), convergence

is reached when Bn
Ln
≈ 0.0094 bits

cycle
since then, as discussed above, for any task in the

network, the network’s energy cost for transmitting that task to the server are at least

as high as the energy cost for local computing and therefore, all nodes compute their

tasks locally. It can be observed in Figure 3.6(b), that the curves of the context-aware

greedy heuristic and the global optimum under random and line topologies coincide and

that they are step functions. The lines coinciding shows how close the context-aware

greedy heuristic approaches the result of the global optimum. While we have seen in

Figure 3.6(a), that the context-aware greedy heuristic deviates at most 5% from the

global optimum in terms of the energy consumption, it actually always selects the same

number of nodes to transmit their tasks to the server. The steps in the graphs reflect

the impact of the energy Eprov,n which the nodes provide per computation offloading

session. If there is not enough energy left for a node at one of its relay nodes to further

perform computation offloading, the node is forced to compute locally, leading to an

abrupt increase of the energy spent.

Next, in order to evaluate the effect of the provided energy Eprov,n, we fix the task

size to Bn = 124 kbyte and run simulations for varying parameter Eprov,n. With Bn =

124 kbyte, the energy ratio satisfies Bn
Ln
≈ 0.001 bits

cycle
, i.e., tasks are computationally

expensive, but very cheap in terms of data transmission. Specifically, due to the energy

ratio of
eC,n
eT,n
≈ 0.0094 bits

cycle
in our simulations, using (3.2) and (3.4), this yields En

T,n ≈
1
10
EC,n, i.e., local computation of a task is roughly 10 times as expensive as one-hop

transmission of the task. We use such a small number Bn of bits since we do not want

the offloading decisions to be constrained by the task size in this particular simulation

in order to see the pure effect of the provided energy Eprov,n. Figure 3.7 shows the

results of (i) the context-aware greedy heuristic algorithm, (ii) the global optimum

and (iii) pure local computing under (a) random, (b) star and (c) homogeneous line

topologies for varying Eprov,n. Figure 3.7(a) gives the total energy spent in the network

and Figure 3.7(b) shows the corresponding fraction of nodes transmitting their task to

the server. Clearly, pure local computing and the offloading solution for star topologies

is not affected by a change of Eprov,n. However, Figure 3.7 shows that for random and

line topologies, with increasing value of Eprov,n, the energy consumption is decreasing

when optimal or greedy offloading solutions are applied since more and more nodes
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(a) Minimum total energy Enet spent in network vs. provided energy Eprov,n.
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(b) Fraction of nodes transmitting task to server vs. provided energy Eprov,n.

Figure 3.7. Results for Bn = 124 kbyte for homogeneous line, random and star topolo-
gies.
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offload their tasks to the server. The context-aware greedy heuristic algorithm again

yields similar results as the global optimum, with a maximum deviation of less than 6%

from the optimal result. Moreover, for both random and line topologies, the network

energy consumption converges for large values of Eprov,n, but to two different values. At

the same time, for both random and line topologies, the fraction of nodes transmitting

their tasks to the server converges for large values of Eprov,n, but also to two different

values. This is due to the fact that if EC,n < ET,n holds for a node, this node will

never use computation offloading, no matter how large the provided energy Eprov,n is.

Hence, there exists a point after which a further increase of Eprov,n does not lead to

more nodes offloading their tasks. Since the energy costs ET,n are especially high in a

line topology due to the large number of hops, in this case, the fraction of offloading

nodes is lower than in a random topology.

From our simulations, we may conclude the following. First, computation offloading

in multi-hop networks is beneficial for highly computation-intensive applications with

small amounts of data to be transmitted. Secondly, the effect of computation offloading

strongly depends on the provided energy Eprov,n. With higher amounts of provided

energy, computation offloading may save more energy in the overall network, but the

energy savings do not grow arbitrarily for larger values of provided energy since for some

tasks, it is always cheaper to compute them locally even if more energy is provided by

relay nodes. Thirdly, even though the context-aware greedy heuristic algorithm has no

performance guarantee for general multi-dimensional knapsack problems, it yields very

good overall results in the considered offloading scenarios, with a maximal deviation

of less than 6% from the optimal results for the considered set of parameters.

3.9 Conclusions

In this chapter, we have investigated how to trade computation resources off against

communication resources in wireless networks. Specifically, we have studied the prob-

lem of context-aware computation offloading for energy minimization in multi-hop wire-

less networks. We have proposed a general model for context-aware computation off-

loading, which takes into account the challenges of multi-hop networks, i.e., the need to

use and share communication resources of relay nodes. Moreover, we have modeled the

problem as an optimization problem and shown its equivalence to a multi-dimensional

knapsack problem. We have proposed a context-aware greedy heuristic algorithm for

computation offloading in multi-hop networks using a centralized architecture of deci-

sion making. Using this algorithm, a controller in the AP may take offloading decisions

based on centrally collected information about network conditions and task context.
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The computational complexity of the proposed algorithm has been shown to grow at

most quadratically as a function of the number of nodes in the network. Moreover, the

communication overhead of the proposed centralized architecture of decision making

has been shown to be small. In addition, the proposed algorithm has shown very good

performance in simulations under various network settings and task contexts, with a

maximal deviation of less than 6% from the optimal results. On average, the offloading

solution found by the proposed algorithm reduces the network energy consumption

by 13% compared to the case when no computation offloading is used. Our numerical

as well as analytical results have revealed that devices in multi-hop networks benefit

noticeably from computation offloading for highly computation-intensive applications

with small amount of data to transmit. Additionally, the outcome is strongly affected

by the amount of energy provided by relay nodes, but the energy savings do not grow

arbitrarily when the provided energy is increased.
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Chapter 4

Caching at the Edge of Wireless Networks

4.1 Introduction

In this chapter, we study caching at the edge of wireless networks. Caching at

the edge exploits caching resources at the edge of the wireless network in order

to serve users locally with popular contents [BBD14b]. Such caching resources

could be attached to macro base stations (MBSs) and small base stations (SBSs)

owned by the mobile network operator (MNO) or they could be part of wireless

infostations installed in public or commercial areas by either a content provider

or a third party [GBMY97, IR02, BG14c, BG14a]. Caching popular content in lo-

cal caches in a placement phase and locally serve the users in a delivery phase

may reduce backhaul and cellular traffic and it may reduce the latency for the

user [WCT+14]. In order to reduce the load on the macro cellular network as

much as possible, the most popular content should be cached locally such that the

number of cache hits is maximized. As described in Section 1.3.3, this requires

knowledge about the popularity distribution, which is typically not available a pri-

ori [BBD14b,BBZ+15,BG14b,BG14c,BG14a,SAT+14,EBSLa14]. Moreover, local con-

tent popularity may vary according to the preferences of the mobile users connecting

to a local cache over time [GALM07, ZSGK09, BSW12]. The users’ preferences, in

turn, may depend on their contexts [BSW12,MS10,HL05,RGZ11,Zil88,ZGC+14]. Fi-

nally, cache content placement needs to take into account the cache operator’s specific

objective, which may include the need for service differentiation [KLAC03,LAS04].

We hence consider the problem of maximizing the number of cache hits in a local cache

at the edge of the wireless network, taking into account the following aspects:

(i) A priori, there is no knowledge available about local content popularity.

(ii) Content popularity can vary across the user population.

(iii) Content popularity can depend on the users’ contexts.

(iv) The cache operator’s specific objective with respect to service differentiation

needs to be taken into account.
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In the sequel, we propose a machine-learning-based approach and a decentralized archi-

tecture of decision making. We use a machine-learning-based approach since the content

popularity is not known in advance and needs to be learned. Moreover, we use a decen-

tralized architecture of decision making and let the controller of a local cache take local

caching decisions since the content popularity at a local cache is not necessarily the

same as the global content popularity and since the set of mobile users with potentially

different interests in the vicinity of a local cache changes over time. In detail, we propose

an online learning algorithm for context-aware proactive caching based on a contextual

multi-armed bandit (contextual MAB) model. Using this algorithm, the controller of

a local cache at the edge of the wireless network is enabled to learn context-specific

content popularity online over time. This chapter presents work originally published

by the author in [MAvK16,MAvK17]. Compared to [MAvK16,MAvK17], in this the-

sis, the regret bound is improved in its constant factors due to a new proof technique.

Furthermore, in this thesis, an analysis of the computational complexity and of the

communication requirements of the proposed algorithm is added. Also, in this thesis,

the ideas of the mathematical proofs are additionally summarized and discussed within

the main body of text, while the full mathematical proofs are given in the appendices.

In addition, in this thesis, the numerical results are revised to show a better comparison

of the proposed algorithm with the oracle solution, which assumes a priori knowledge

about local content popularity.

The remainder of this chapter is organized as follows. Section 4.2 provides a detailed

review of the state of the art on decision making for caching at the edge. In Sec-

tion 4.3, we introduce the system model for context-aware proactive caching at the

edge. A formal problem formulation of context-aware proactive caching for maximiz-

ing the number of cache hits under missing knowledge about content popularity is

presented in Section 4.4 and it is shown that the formulated problem can be under-

stood as a contextual MAB problem. In Section 4.5, we propose an online learning

algorithm for context-aware proactive caching. In Section 4.6, properties of the pro-

posed algorithm are discussed. In particular, an analytical upper bound on the regret

of the proposed algorithm is derived, which proves that the algorithm converges to the

optimal cache content placement strategy. Extensions of the proposed algorithm to

practical requirements are presented in Section 4.7. The performance of the proposed

algorithm is evaluated numerically in Section 4.8. Section 4.9 concludes this chapter.
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4.2 State of the Art

In this section, a review of the state of the art on decision making for caching at

the edge is presented. We start by shortly discussing algorithms that continuously

update the cache during the delivery phase. Then, since it corresponds to the type of

problem considered in this thesis, we discuss in detail the related work on cache content

placement problems with a separate placement phase and a separate delivery phase.

Many practical caching systems apply caching algorithms which update the cache con-

tinuously during the delivery phase, such as the well-known Least Recently Used (LRU)

or Least Frequently Used (LFU) algorithms [CI97]. While many of these algorithms

are rather simple and typically do not consider future content popularity, recently,

advanced algorithms updating the cache continuously during the delivery phase were

proposed which also learn content popularity trends [LXvdSL16b,LXvdSL16a].

In contrast to approaches which update the cache continuously during the delivery

phase, in the related work, cache content placement is also often studied for wireless

caching problems with a separate placement phase and a separate delivery phase. Also

the problem of cache content placement considered in this thesis is based on a placement

phase and a delivery phase. Therefore, in the remainder of this section, we review and

discuss related works on cache content placement for wireless caching problems with

a placement phase and a delivery phase. This review complements the short review

presented in Section 1.3.3 by discussing in detail the works introduced in Table 1.2.

One line of literature considers cache content placement under the assumption that

knowledge about content popularity is available in advance. The efficiency of content

delivery is increased in [GMDC13] by combining content caching at user devices and

collaborative device-to-device communication. In [SGD+13], the problem of minimiz-

ing the average delay experienced by users that can be connected simultaneously to

several cache-enabled SBSs is considered and an approximation algorithm for uncoded

caching among SBSs is proposed. In [BBD14a], analytical expressions for the outage

probability and average content delivery rate in a network of SBSs equipped with caches

are derived. Ref. [PT13] proposes an approximation algorithm for distributed coded

caching, where the goal is to minimize the probability that mobile users get parts of

content delivered from the MBS instead of the SBSs. A small cell network in which the

MBS and the SBSs can perform multicast transmissions is considered in [PIST16] and

a multicast-aware caching scheme is presented for minimizing the energy consumption.

However, in reality, prior knowledge about content popularity may not be available at

a local cache. Therefore, a second line of literature investigates cache content place-
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ment under missing knowledge about content popularity. In this case, the controller

of a local cache may apply a worst-case approach by trying to optimize cache content

with respect to a worst-case request scenario. For instance, Ref. [MAN14] combines

caching at user devices with a coded multicast transmission in the delivery phase and

derives information-theoretic gains of caching under a worst-case approach since con-

tent popularity is assumed to be unknown. The proposed coded caching approach is

optimal up to a constant factor.

As an alternative to such a worst-case approach, the controller of the local cache may

take a machine-learning-based approach and learn the content popularity distribution.

Refs. [BBD14b,BBZ+15] declare a proactive caching paradigm and propose a proactive

caching algorithm for small cell networks. Using collaborative filtering, a fixed global

content popularity distribution is estimated in a training phase based on a given train-

ing set of content popularities. The learned content popularity distribution is then used

for selecting the cache content to maximize the average user request satisfaction ratio

based on the users’ required delivery rates. A MAB framework is used in [BG14b],

where an SBS learns a fixed content popularity distribution online by regularly up-

dating its cache content and observing the numbers of requests for the cached files.

Over time, the SBS thus optimizes its cache content placement to maximize the traffic

served locally. The proposed framework is extended in [BG14c, BG14a] for a wireless

infostation by additionally taking into account the costs for adding files to the cache

and by deriving theoretical sublinear upper regret bounds for the proposed algorithms.

Ref. [SAT+14] proposes another extension of the above MAB framework, which in-

corporates coded caching and hence exploits the topology of users’ connections to the

SBSs. In [EBSLa14], using a spectral clustering algorithm, users are clustered into

groups of similar interests based on their requests in a training phase. Then, each user

group is assigned to one SBS. Each SBS then learns the content popularity of its fixed

user group over time. Therefore, the approach in [EBSLa14] relies on a stable user

population.

The above discussed related work on learning-based cache content placement can

be categorized as follows. Learning approaches are either tailored to a specific

type of content popularity distribution [SAT+14], such that the approach is lim-

ited to cases where the type of distribution is known a priori, or they are model-

free [BBD14b, BBZ+15, BG14b, BG14c, BG14a, SAT+14, EBSLa14] in the sense that

they work for any type of content popularity distribution. Moreover, learning ap-

proaches are either based on offline learning [BBD14b, BBZ+15], or on online learn-

ing [BG14b, BG14c, BG14a, SAT+14, EBSLa14], the latter ones being able to better

adapt to varying content popularities. Some learning approaches require a training

phase [BBD14b, BBZ+15, EBSLa14], while others manage to only learn during run
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Table 4.1. Related work on learning-based cache content placement with placement
and delivery phase and detailed comparison with proposed algorithm.

Reference
[BBD14b],

[BBZ+15]

[BG14b],

[BG14c],

[BG14a]

[SAT+14] [EBSLa14] This work

Model-free Yes Yes No Yes Yes

Type of
learning

Offline Online Online Online Online

Free of
training
phase

No Yes Yes No Yes

Regret
bounds

No Yes No No Yes

Diversity in
content

popularity
No No No Yes Yes

User
context-
aware

No No No No Yes

Service dif-
ferentiation

No No No No Yes

time [BG14b, BG14c, BG14a, SAT+14]. While some algorithms are only numerically

evaluated [BBD14b, BBZ+15, SAT+14, EBSLa14], other related works are able to give

performance guarantees by providing analytical regret bounds for their learning algo-

rithms [BG14b, BG14c, BG14a]. Additionally, while most related works assume that

there exists one global popularity distribution and that all user requests follow this

distribution [BBD14b, BBZ+15, BG14b, BG14c, BG14a, SAT+14], only few works take

into account that there can be diversity in content popularity across the user population

since different users may favor different content [EBSLa14]. Among the related works,

none takes into account that the users’ content preferences may depend on their con-

texts, which is needed for proactive cache content placement in order to adapt to the

preferences of mobile users with different contexts. Moreover, none of the literature

takes into account that cache content placement should reflect the cache operator’s

specific objective who may want to offer service differentiation to its customers.

Table 4.1 gives an overview of the discussed related work on learning-based cache

content placement with a placement and a delivery phase and provides a detailed

comparison of the related work with the proposed algorithm. In contrast to the related

work, cf. Table 4.1, we propose a context-aware proactive caching algorithm, which for
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the first time jointly considers the following aspects:

(i) The proposed algorithm does not assume a priori knowledge about content popu-

larity, which might be externally given or estimated in a separate training phase.

Instead, without requiring a training phase and model-free, the proposed algo-

rithm learns content popularity online by regularly updating the cache content

and observing the users’ requests for cache content. Based on an analytical

bound, we give performance guarantees of the proposed algorithm, and prove

that the learned cache content placement strategy converges to the optimal cache

content placement strategy which maximizes the expected number of cache hits.

(ii) The proposed algorithm explicitly allows different content to be favored by dif-

ferent users. Incorporating such diversity in content popularity across the user

population makes the proposed algorithm suitable for mobile scenarios, where

users with different preferences connect to the wireless caching entity over time.

(iii) The underlying model explicitly incorporates that content popularity depends on

a user’s context, such as her/his personal characteristics, equipment, or external

factors, and the proposed context-aware caching algorithm learns this context-

specific content popularity. Using the proposed algorithm, the controller of a

local cache may proactively cache content specifically tailored to the preferences

of currently connected users based on what it has previously learned in similar

situations, instead of simply caching those files that are popular on average, across

the entire population of users.

(iv) The proposed algorithm takes into account the operator’s specific objective by

allowing for service differentiation.

4.3 System Model

4.3.1 Introduction

In this section, we propose a model for context-aware proactive caching in a local cache

at the edge of the wireless network. In accordance with Section 2.2.1, the proposed

overall model consists of the following five components:

(i) A network model is formulated specifying the assumptions on the wireless network

and introducing the wireless local caching entity that performs caching at the
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edge. The network model is applicable to different types of caching entities, such

as SBSs equipped with caches, or wireless infostations.

(ii) A context model is defined, which includes side information that may impact a

user’s content preferences and hence the content popularity in a local cache.

(iii) As general performance criterion to be maximized, the number of cache hits is

considered. However, if the cache operator wishes to offer service differentiation,

the performance criterion to be maximized is the number of weighted cache hits,

where different cache hits may have different weights. Hence, two submodels with

respect to the performance criterion are formulated.

(a) Since the number of cache hits depends on the content popularity, which in

turn depends on the users’ preferences and hence on the users’ contexts, a

model of context-specific content popularity is formulated, which explicitly

allows different content to be favored by different users and that content

popularity depends on a user’s context.

(b) A model of service differentiation is formulated, which allows the cache

operator to provide differentiated services to its customers.

(iv) A decentralized architecture of decision making is proposed, where caching deci-

sions are taken by the wireless local caching entity.

(v) An action model is formulated, which determines the different choices of the

wireless local caching entity, namely, which content should and which should not

be cached.

Based on the above, we also design an internal system architecture of the wireless local

caching entity for context-aware proactive caching.

4.3.2 Network Model

We consider a wireless local caching entity which may, for example, be an SBS equipped

with a cache in a small cell network or a wireless infostation [GBMY97, IR02, BG14c,

BG14a]. The caching entity has a limited storage capacity and a reliable backhaul

link to the core network. In its cache memory, the caching entity may store up to m

files from a finite file library F , which consists of |F| ∈ N files, where we assume that

all files are of the same size. This assumption can be made without loss of generality

since otherwise, a finer packetization could be used and files could be divided into
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Figure 4.1. Network model.

smaller blocks of the same size [SGD+13,LXvdSL16b]. An illustration of the considered

network model is depicted in Figure 4.1 and will be discussed in detail further below.

We assume that the caching system operates in discrete time slots t = 1, 2, ..., T ,

where T denotes the finite time horizon. Users located in the coverage area may

connect to the caching entity in order to request locally cached files. Due to the users’

mobility, the set of connected users may change dynamically over time. We assume

that at most Umax ∈ N users may be simultaneously connected to the caching entity.

The number of users connected to the caching entity in time slot t is denoted by Ut,

with 1 ≤ Ut ≤ Umax, where we assume that the set of users does not change within a

time slot. However, the model explicitly allows that the set of connected users changes

from one time slot to another, and hence takes user mobility into account. We do not

make any assumptions on the nature of the arrival process of the number of users other

than that the sequence {Ut}t=1,...,T is not influenced by caching decisions taken by the

caching entity.

In each time slot, the caching entity broadcasts the information about the current

cache content in order to inform the connected users about it [BG14b,BG14c,BG14a].
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Whenever a user is interested in a file that is currently stored in the cache of the caching

entity, the user’s device requests the file directly from the caching entity. Upon receiving

a request for one of its cached contents, the caching entity serves the corresponding user

via local communication. In this case, there is no additional traffic induced on neither

the macro cellular network nor the backhaul network. Whenever a user requests a file

that is not cached in the caching entity, the user’s device does not request the file from

the caching entity, but instead, it connects to an MBS to receive the file via the macro

cellular network. The MBS then downloads the file from the core network or from a

content distribution network via its backhaul connection. Hence, in this case, traffic

occurs on both the macro cellular as well as the backhaul network.

To sum up, the caching entity may only observe cache hits, i.e., requests for cached files,

but it cannot observe cache misses, i.e., requests for non-cached files, since the latter

are directly handled via the macro cellular network. While this restriction is usually not

used in wired caching scenarios, it is reasonable for wireless caching since it prevents

the caching entity from being congested by cache misses [BG14b,BG14c,BG14a]. On

the contrary, learning content popularity is more difficult under this restriction. In the

illustration of the considered network model in Figure 4.1, device 1 connects to the

MBS to request a file since the desired file is not locally cached in the caching entity.

This corresponds to a cache miss from the point of view of the caching entity. Device 2

requests a cached file from the caching entity. This corresponds to a cache hit at the

caching entity.

4.3.3 Context Model

Cache content placement requires knowledge about content popularity. Since differ-

ent users may favor different content, content popularity may vary across the user

population. Moreover, various factors may impact a user’s content preferences. Such

factors may be summarized under the term context. Some examples of context di-

mensions are presented in Table 4.2. Among relevant context dimensions are personal

characteristics, such as demographic factors (e.g., age [MS10], gender [HL05]), per-

sonality [RGZ11], or mood [Zil88]. Other context dimensions that may influence a

user’s content preferences are the characteristics of her/his user equipment [ZGC+14],

such as the type of device used to access and consume the content (e.g., smart phone,

tablet), its capabilities, or its battery status. Moreover, external factors may affect a

user’s content preferences, such as the user’s location, the time of day, the day of the

week, and the taking place of events (e.g., soccer match, concert). This categorization

only gives examples of possible context dimensions, but obviously the categorization
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Table 4.2. Examples of context dimensions of different types.

Type Examples

Personal characteristics

Demographic factors,

personality,

mood

User equipment

Type of device,

device capabilities,

battery status

External factors

Location,

time of day,

day of the week,

events

is neither exhaustive nor is knowledge about the impact of the context dimensions

on content popularity available. Moreover, while a caching entity may have access to

user context by exploiting the data collection resources of mobile devices, as indicated

in Figure 4.1, or information from external sources (e.g., social media platforms), this

access may be restricted to only certain context dimensions due to reasons of privacy

or communication overhead. However, the proposed model and algorithm do not rely

on specific context dimensions to be available. Instead, the model and algorithm can

use the information that is collected from the user. Hence, if context information may

be accessed by the caching entity, the proposed algorithm may exploit this available

context information.

Formally, the context information which may be accessed by the caching entity is mod-

eled as follows. We denote the number of monitored context dimensions per user by D

and we denote the D-dimensional context space by X . The context space X is assumed

to be bounded and can hence be set to X := [0, 1]D without loss of generality. Hence,

we assume that the context of a user is described in terms of D context dimensions,

and that in each of the D context dimensions, the user context is described by a value

from [0, 1], such that the overall context of a user is hence a vector in [0, 1]D. Clearly,

in practice, a pre-processing might be needed here which maps the actual monitored

user context information to a vector in X = [0, 1]D.

In time slot t, the context vector of a currently connected user i ∈ {1, ..., Ut} is denoted

by xt,i ∈ X . Moreover, the set of context vectors of all connected users in time slot t

is denoted by Xt := {xt,i}i=1,...,Ut . We do not make any assumptions on the nature of

the context arrival process other than that the sequence {Xt}t=1,...,T is not influenced

by caching decisions taken by the caching entity.
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4.3.4 Model of Context-Specific Content Popularity

Next, a model of content popularity in dependence of a user’s context is given. As

stated before, we assume that the caching system operates in discrete time slots. A

user may request several files within one time slot. The number of times a user with

context vector x ∈ X requests a file f ∈ F within one time slot is a random variable

with unknown distribution. This random demand is denoted by df (x) and its expected

value is denoted by µf (x) := E [df (x)]. The random demand df (x) is assumed to take

values in [0, Rmax], where Rmax ∈ N is the maximum possible number of requests for

the same file a user may submit within one time slot. Hence, if Rmax > 1, it is possible

for a user to request the same file repeatedly within one time slot.

Based on this notation, in time slot t, given the context vector xt,i of a connected

user i ∈ {1, ..., Ut}, the random variable describing the demand for a file f ∈ F of

that user is given by df (xt,i) and its expected value is given by µf (xt,i). We assume

that in time slot t, the random variables {df (xt,i)}i=1,..,Ut,f∈F are independent of each

other and each random variable df (xt,i) is independent of past caching decisions and

previous demands. Moreover, by df (xt,i, t), we denote the actual instantaneous demand

of user i ∈ {1, ..., Ut} in time slot t, i.e., the realization of the random variable df (xt,i)

in time slot t.

4.3.5 Model of Service Differentiation

The general goal of the caching entity is to minimize the load on the macro cellular

network and the backhaul network by selecting the cache content in such a way that the

traffic it can serve locally is maximized, which corresponds to maximizing the number

of local cache hits.

However, the caching entity may additionally need to take into account the cache

operator’s specific objective since in certain cases, a cache operator may want to offer

service differentiation to its customers. Service differentiation might not be adequate

for an MNO operating an SBS since due to net neutrality restrictions, the MNO should

actually purely maximize the number of cache hits. However, service differentiation

may be interesting for the operator of an infostation, e.g., a content provider or a third

party operator, whose customers may be both users and content providers.

As an example, the operator of an infostation may prioritize certain users by caching

content favored by these users. Hence, a cache hit produced by a prioritized user corre-

sponds to a higher value for the operator, as compared to a cache hit by a regular user.
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To formalize such requirements for service differentiation among users, we consider that

different service groups exist and that each user is member of one service group. For-

mally, we consider a finite set G of service groups. For service group g ∈ G, let vg ≥ 1

denote a fixed and known weight associated with receiving one cache hit from a user of

service group g. Let vmax := maxg∈G vg. There are different approaches how the opera-

tor may choose the weights associated with the different service groups. For example,

the weights may be chosen based on payments, e.g., users may buy higher weights. As

another example, the weights may be chosen based on subscription, e.g., subscribers

may obtain priority compared to one-time users. Also, the weights may be chosen

based on the importance of users for the operator, e.g., in case the operator wants to

prioritize certain target groups due to advertisement or reputation. Alternatively, the

weights may even be chosen by the users themselves based on their interests, e.g., users

may indicate their degree of openness in exploring other than their most preferred con-

tent. In any case, cache content placement that takes into account such service weights

should aim at maximizing the number of weighted cache hits. If content popularity

is heterogeneous across the user population, by maximizing the number of weighted

cache hits, service differentiation affects the selection of cache content.

The case discussed above is not the only type of service differentiation that may be

interesting for the operator of an infostation. Especially if the operator is a third party

whose customers are different content providers, the operator may want to provide

differentiated services to content providers. For example, the operator may prioritize

certain content providers by preferably caching their content. To formalize such re-

quirements for service differentiation among different content providers, we consider

that each content is associated with a weight. Formally, for file f ∈ F , we consider a

fixed and known prioritization weight wf ≥ 1 associated with receiving one cache hit

for file f . Let wmax := maxf∈F wf . The prioritization weights may either be chosen

individually for each file or per content provider.

The case that no service differentiation is needed and hence the goal remains to max-

imize the number of (non-weighted) cache hits, may formally be modeled as the case

where there is only one service group g with weight vg = 1 and the prioritization weights

satisfy wf = 1 for all f ∈ F . Therefore, the case without service differentiation is a

special case of the proposed model and while this special case is not treated explicitly

in the sequel, it is implicitly contained in the remainder of this chapter.

In time slot t, the service group to which a currently connected user i ∈ {1, ..., Ut}
belongs is denoted by gt,i ∈ G and its corresponding weight is given by vgt,i . Moreover,

the set of service groups to which the set of users in time slot t belongs is denoted

by Gt := {gt,i}i=1,...,Ut . We do not make any assumptions on the nature of the arrival
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process of the service groups other than that the sequence {Gt}t=1,...,T is not influenced

by caching decisions taken by the caching entity.

4.3.6 Architecture of Decision Making

We propose to use a decentralized architecture of decision making, cf. Section 2.2.3,

in which the wireless local caching entity takes local caching decisions. We use a

decentralized architecture since the unknown local content popularity is not necessarily

the same as the global content popularity [GALM07, ZSGK09, BSW12] and since the

set of mobile users with potentially different interests in the vicinity of a caching entity

changes over time.

4.3.7 Action Model

The caching entity’s actions are formalized as follows. We introduce a binary vari-

able yt,f for each file f ∈ F and each time slot t ∈ {1, ..., T}, where

yt,f :=

{
1, if file f is available in the cache in time slot t,

0, otherwise.
(4.1)

Since the caching entity may store up to m files from the finite library F in its local

cache, the following capacity constraints∑
f∈F

yt,f ≤ m, t = 1, ..., T, (4.2)

have to hold. We denote the set of cached files in time slot t by

Ct := {f ∈ F : yt,f = 1}. (4.3)

4.3.8 Internal Architecture of Wireless Local Caching Entity

The internal system architecture of the wireless local caching entity for context-aware

proactive caching is designed similarly as the architecture presented in [LXvdSL16b,

LXvdSL16a]. Figure 4.2 shows an illustration of the context-aware proactive caching

architecture. The main building blocks are a Local Cache, a Cache Management entity,

a Learning Module, a Storage Interface, a User Interface, and a Context Monitor. The
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Figure 4.2. Context-aware proactive caching architecture.

Cache Management contains a Cache Controller and a Request Handler. The Learning

Module consists of a Decision Engine, a Learning Database, and a Context Database.

The workflow comprises several phases as enumerated in Figure 4.2 and is described

in the sequel.

• Initialization

(1) The cache operator informs the Learning Module about the goal of caching

(including details about weights in case of service differentiation) and about the

time horizon. Thereupon, the Learning Module fixes the appropriate periodicity

of context monitoring and cache refreshment. Then, the Cache Management and

the Context Monitor are informed about the periodicity.

• Periodic Context Monitoring and Cache Refreshment

(2) The Context Monitor periodically retrieves context information about cur-

rently connected users from the User Interface and optionally collects additional

context information from external sources (e.g., social media platforms). In case

of service differentiation, if different service groups exist, the Context Monitor

also retrieves the service groups of the connected users. (3) The collected infor-

mation is delivered from the Context Monitor to the Context Database in the

Learning Module. (4) The Decision Engine periodically extracts the new context
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information from the Context Database. (5) Based on a comparison with results

stored in the Learning Database in previous time slots, (6) the Decision Engine

decides which files to cache in the upcoming time slot. (7) The Cache Controller

is instructed by the Decision Engine to refresh the cache content accordingly.

(8) The Cache Controller compares the current and the required cache content

and then removes non-required content from the cache. If required content is

missing, the Cache Controller requests the Storage Interface to fetch the content

from storage servers and to store it into the local cache. (9) Then, the User Inter-

face is informed about the new cache content by the Cache Controller. (10) The

User Interface informs currently connected users about the new cache content.

• User Requests

(11) If a user requests a cached file, the User Interface forwards the request to the

Request Handler. The Request Handler stores the request information, retrieves

the file from the local cache and serves the user.

• Periodic Learning

(12) Upon completion of a time slot, the Request Handler hands the information

about all requests that have arrived in this time slot to the Learning Module. The

Learning Module updates the Learning Database with the context information

collected in the beginning of the time slot and with the number of requests for

cached files that have arrived in the time slot according to the information from

the Request Handler.

4.4 Problem Formulation

4.4.1 Formal Problem Statement

In this section, using the models from Section 4.3, we formulate the problem of context-

aware proactive caching at the edge for maximizing the number of cache hits under

missing knowledge about content popularity to be locally solved by a wireless local

caching entity. As stated before, the caching system operates in discrete time slots t =

1, 2, ..., T , where T denotes the finite time horizon. As depicted in Figure 4.3, the

following sequence of operations is executed in each time slot t:

(i) The caching entity monitors the contexts Xt = {xt,i}i=1,...,Ut of the Ut currently

connected users as well as the service groups Gt = {gt,i}i=1,...,Ut to which the users

belong.
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Figure 4.3. Sequence of operations of context-aware proactive caching in time slot t.

(ii) The caching entity updates the cache content based on the contexts Xt, the

service groups Gt and their corresponding service weights, the file prioritiza-

tion weights wf , f ∈ F , and knowledge from previous time slots. Then,

the caching entity informs the connected users about the current cache con-

tent Ct = {ct,1, ..., ct,m}.

(iii) Until the end of time slot t, users may request the currently cached files as given

in Ct. The caching entity serves the users’ requests for cached files. Moreover, the

caching entity observes the demand dct,j(xt,i, t) of each user i = 1, ..., Ut for each

cached file ct,j ∈ Ct, j = 1, ...,m, during this time slot, i.e., the caching entity

monitors the number of cache hits for each cached file.

Consider a sequence of T time slots with arbitrary user arrivals, i.e., consider a se-

quence t = 1, ..., T with an arbitrary sequence of user numbers {Ut}t=1,...,T and

with arbitrary sequences of user contexts {Xt = {xt,i}i=1,...,Ut}t=1,...,T and service

groups {Gt = {gt,i}i=1,...,Ut}t=1,...,T . The goal of the caching entity is to select the cache

content in such a way that the expected cumulative number of weighted cache hits up

to the finite time horizon T is maximized. Based on the action model in Section 4.3.7

and the capacity constraints in (4.2), the problem of cache content placement can be

formally written as

max
T∑
t=1

∑
f∈F

yt,fwf

Ut∑
i=1

vgt,iµf (xt,i) (4.4)

s.t.
∑
f∈F

yt,f ≤ m, t = 1, ..., T,

yt,f ∈ {0, 1}, f ∈ F , t = 1, ..., T,

with yt,f of (4.1), wf and vgt,i as defined in Section 4.3.5, µf (xt,i) as defined in Sec-

tion 4.3.4 and the constraints from (4.2).

Problem (4.4) depends on the context-specific content popularity, i.e., the expected

demands of connected users as a function of their contexts.



4.4 Problem Formulation 87

4.4.2 Oracle Solution

First, we classify Problem (4.4) under the assumption that the caching entity had a

priori knowledge about context-specific content popularity. Hence, only in this section,

suppose that the caching entity had a priori knowledge about context-specific content

popularity like an omniscient oracle, i.e., assume that the caching entity would know

the expected demand µf (x) = E [df (x)] for any pair consisting of a context vector x ∈
X and a file f ∈ F . Under this assumption, Problem (4.4) corresponds to an ILP

problem, cf. Section 2.3.2.2. Since the sub-problems for the different time slots are not

coupled, Problem (4.4) can be decoupled into T independent sub-problems.

The sub-problem associated to any time slot t corresponds to a knapsack prob-

lem, see Section 2.3.2.3, with a knapsack of capacity m and with |F| items, where

item f ∈ F has a unit weight and a non-negative profit wf
∑Ut

i=1 vgt,iµf (xt,i). Due

to the unit weights, each sub-problem is actually a special case of the knapsack

problem which may be solved efficiently. In detail, the optimal solution of the sub-

problem in time slot t can be easily computed in a running time of O(|F| log(|F|))
as follows. Given the contexts Xt and the service groups Gt, the optimal solution is

given by ranking the files in F according to their expected weighted demands and

by caching the m highest ranked files. We denote these top-m files for pair (Xt, Gt)
by f ∗1 (Xt,Gt), f ∗2 (Xt,Gt), ..., f ∗m(Xt,Gt) ∈ F . Formally, for j = 1, ...,m, they satisfy

f ∗j (Xt,Gt) ∈ argmax
f∈F\(

⋃j−1
k=1{f

∗
k (Xt,Gt)})

wf

Ut∑
i=1

vgt,iµf (xt,i), (4.5)

where
⋃0
k=1{f ∗k (Xt,Gt)} := ∅. Note that several files may have the same expected

demands, i.e., the optimal set of files may not be unique, which is also captured here.

Moreover, by C∗t (Xt,Gt) :=
⋃m
k=1{f ∗k (Xt,Gt)}, we denote an optimal choice of files to

cache in time slot t. Then, an optimal overall solution to Problem (4.4) is given by the

collection

C∗ := {C∗t (Xt,Gt)}t=1,...,T . (4.6)

We call the optimal collection in (4.6) the oracle solution since it may be calculated

by an omniscient oracle based on a priori knowledge about context-specific content

popularity.

4.4.3 Contextual Multi-Armed Bandit Formulation

Now, we characterize Problem (4.4) under missing knowledge about content popularity

since typically, the caching entity does not have a priori knowledge about content pop-
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ularity. In this case, the caching entity cannot simply solve Problem (4.4) as described

in Section 4.4.2 since it does not know the expected demands µf (x) = E [df (x)]. Hence,

a machine-learning-based approach for designing the decision agent, cf. Section 2.3.1,

is required since the caching entity can only learn the content popularity by caching

different files over time and subsequently observing their cache hits. Considering the

problem formulation in Section 4.4.1, Problem (4.4) can be understood as a contextual

MAB problem, cf. Section 2.3.3.4, as follows. The caching entity corresponds to an

agent which needs to sequentially select from a set of actions. In our case, the set of

actions is given by the set F of files. There is a sequence of time slots t = 1, ..., T ,

or, rounds, in the wording of Section 2.3.3.4, each of them consisting of three events

happening sequentially. In each time slot, the caching entity first observes user con-

texts Xt = {xt,i}i=1,...,Ut and service groups Gt = {gt,i}i=1,...,Ut . This corresponds to a

set of contexts revealed to an agent in the beginning of a round. Then, the caching

entity selects a subset of m files from set F . This corresponds to an agent selecting a

subset of actions. Then, the caching entity observes the demands for each cached file.

This corresponds to an agent receiving a reward for each selected action. Taking into

account the assumptions about the arrival processes of the number of users, their con-

texts and service groups in Sections 4.3.2 – 4.3.4, Problem (4.4) hence corresponds to a

contextual MAB problem with a similar model as the one presented in Section 2.3.3.4.

The main difference between Problem (4.4) and the model in Section 2.3.3.4 is that in

Problem (4.4), the agent may select several (in detail, m) actions per round instead

of only one as in the model in Section 2.3.3.4. Hence, Problem (4.4) may formally be

called a contextual combinatorial MAB problem, cf. Section 2.3.3.2. However, neither

the objective function nor the constraint in Problem (4.4) is combinatorial, in contrast

to “real” combinatorial MAB problems, where the reward may depend on the subset

of selected actions and constraints may be combinatorial. Therefore, Problem (4.4)

is therefore more accurately a contextual MAB problem with several action selections

per round, but not of combinatorial nature.

Having formulated Problem (4.4) as a contextual MAB problem, the task of the caching

entity is as follows. The caching entity needs to learn the unknown expected de-

mands µf (x) = E [df (x)] over time by regularly updating the cache content and ob-

serving the users’ contexts and their demands for the cache content. Since the caching

entity needs both to learn expected demands and to maximize the number of weighted

cache hits online over time, the caching entity has to find a suitable trade-off between

caching files about which little information is available (exploration) and files of which

it believes that they will yield a high number of cache hits (exploitation). Which files

to cache in a time slot depends on the history of cached files in the past and the corre-

sponding observed demands. An algorithm which maps the history to the selections of



4.5 Proposed Algorithm 89

files to be cached is called a learning algorithm. The loss of learning can be evaluated

by comparing the learning algorithm and the oracle solution given in (4.6) in terms of

their respective achieved cumulative weighted numbers of cache hits. Formally, for a

sequence of T time slots with arbitrary user arrivals, the regret of learning with respect

to the oracle solution is given by

R(T ) =
T∑
t=1

m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt) E

[
df∗j (Xt,Gt)(xt,i, t)

]
− E

[
wct,jdct,j(xt,i, t)

])
, (4.7)

where dct,j(xt,i, t) denotes the instantaneous demand for the cached file ct,j ∈ Ct of

user i with context vector xt,i at time t. Here, the expectation is taken with respect to

the selections made by the learning algorithm and the distributions of the demands.

4.5 Proposed Algorithm

Using the formulation as contextual MAB problem in Section 4.4.3, we propose an

online learning algorithm for context-aware proactive caching that is based on the

contextual MAB algorithms in [LPP10, Sli14, TvdS15a, TZvdS14], cf. Section 2.3.3.4

for a discussion of these works within the context of the MAB literature. The closest

contextual MAB algorithm to our proposed algorithm is presented in [TZvdS14]. In

their considered contextual MAB problem, there are several learners, each of which

observes a single context arrival in each time slot. Then, each learner needs to select

a subset of actions with the goal to maximize the sum of expected rewards. While

multiple learners are present in [TZvdS14], only one learner is present in the caching

problem considered in this chapter. Specifically, this learner corresponds to the caching

entity which needs to select a subset of files to cache in each time slot. Moreover, the

algorithm proposed below extends the algorithm from [TZvdS14] as follows:

• The proposed algorithm allows multiple contexts to arrive in each time slot, and

the algorithm then selects a subset of actions with the goal to maximize the sum

of expected rewards given the set of context arrivals. In the considered caching

problem, where each user has her/his own context, this allows the caching entity

to observe the set of contexts of the set of currently connected users and then to

cache a subset of files with the goal to maximize the sum of expected numbers

of cache hits given the users’ contexts.

• Moreover, the proposed algorithm allows each arriving context to be annotated

with a weight, so that when different contexts arrive within the same time slot,



90 Chapter 4: Caching at the Edge of Wireless Networks

differentiated services may be provided per context, by selecting a subset of ac-

tions with the goal to maximize the sum of expected weighted rewards. In the

considered caching problem, this allows the caching entity to prioritize certain

users when selecting the cache content, by placing more weight on expected cache

hits of prioritized users.

• Finally, the proposed algorithm allows each action to be annotated with a weight,

such that certain actions may be prioritized. In the considered caching problem,

this allows the caching entity to prioritize certain files when selecting the cache

content, by placing more weight on these files.

Here, we give a short overview of the proposed algorithm. The proposed algorithm is

based on the assumption that users with similar context on average have similar content

preferences. Under this natural assumption, the algorithm can exploit observations of

the users’ context information together with the users’ requests for cached files for

improving future caching decisions. During initialization, the algorithm uniformly

partitions the context space, i.e., it splits the context space uniformly into smaller sets

of similar contexts. This partition of the context space is later used at run time, where

the algorithm learns content popularity independently in each of these sets of similar

contexts. At run time, the algorithm operates in discrete time slots. In the beginning

of a time slot, the algorithm observes the contexts of currently connected users. Then,

the algorithm selects the files to cache in this time slot. For this purpose, the algorithm

first checks based on a control function, which will be defined below, if there are files

that have not been cached sufficiently often before. On the one hand, if this is the

case, the algorithm enters an exploration phase and caches a random set of files from

the set of files that have not been cached sufficiently often before. Exploration phases

enable the algorithm to learn the popularity of files that have not been cached often

before. On the other hand, if this is not the case, the algorithm enters an exploitation

phase and caches files that on average were requested most when cached in previous

time slots with similar user contexts. After the selected files have been cached, the

algorithm observes the users’ requests for these files until the end of the time slot. In

this way, the algorithm learns context-specific content popularity over time.

We call the proposed algorithm the context-aware proactive caching (CAC) algorithm.

The pseudocode of CAC is given in Algorithm 4.1. In detail, CAC proceeds as follows.

During initialization, CAC creates a uniform partition PT of the context space X =

[0, 1]D into (hT )D D-dimensional hypercubes of identical size 1
hT
× . . . × 1

hT
. The

parameter hT is an input to the algorithm which determines the number of sets in the

partition. An adequate choice of the parameter hT will be proposed in Section 4.6.1.
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Algorithm 4.1 CAC: Context-Aware Proactive Caching Algorithm

1: Input: T , hT , K : {1, ..., T} → R+

2: Initialize context partition: Create partition PT of context space [0, 1]D into (hT )D

hypercubes of identical size
3: Initialize counters: For all f ∈ F and all p ∈ PT , set Nf,p = 0
4: Initialize estimated demands: For all f ∈ F and all p ∈ PT , set µ̂f,p = 0
5: for each t = 1, ..., T do
6: Observe number Ut of currently connected users
7: Observe user contexts Xt = {xt,i}i=1,...,Ut and service groups Gt = {gt,i}i=1,...,Ut

8: Find Pt = {pt,i}i=1,...,Ut such that xt,i ∈ pt,i ∈ PT , i = 1, ..., Ut
9: Compute the set of under-explored files Fue

t in (4.8)
10: if Fue

t 6= ∅ then . Exploration
11: Fue,t = size(Fue

t )
12: if Fue,t ≥ m then
13: Select ct,1, ..., ct,m randomly from Fue

t

14: else
15: Select ct,1, ..., ct,Fue,t as the Fue,t files from Fue

t

16: Select ct,Fue,t+1, ..., ct,m as the (m−Fue,t) files f̂1,Pt,Gt(t), ..., f̂m−Fue,t,Pt,Gt(t)
from (4.9)

17: end if
18: else . Exploitation
19: Select ct,1, ..., ct,m as the m files f̂1,Pt,Gt(t), ..., f̂m,Pt,Gt(t) from (4.10)
20: end if
21: Broadcast information about cache content Ct
22: Observe demand dj,i of each user i = 1, ..., Ut for each file ct,j, j = 1, ...,m
23: for i = 1, ..., Ut do
24: for j = 1, ...,m do

25: µ̂ct,j ,pt,i =
µ̂ct,j ,pt,iNct,j ,pt,i+dj,i

Nct,j ,pt,i+1
and Nct,j ,pt,i = Nct,j ,pt,i + 1

26: end for
27: end for
28: end for
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Moreover, CAC initializes a counter Nf,p(t) for each pair consisting of a file f ∈ F
and a set p ∈ PT . The counter Nf,p(t) corresponds to the number of times in which

file f ∈ F was cached while a user with context from set p was connected to the

caching entity before time slot t (i.e., if 2 users with context from set p were connected

in one time slot and file f was cached, the counter is increased by 2). Additionally,

CAC initializes the estimate µ̂f,p(t) of each pair consisting of a file f ∈ F and a

set p ∈ PT . The estimate µ̂f,p(t) corresponds to the estimated demand for file f ∈ F
under contexts from hypercube p ∈ PT in time slot t. The estimated demand is

calculated as the sample mean of previously observed demands: Let Ef,p(t) be the set

of observed demands of users with context from set p when file f was cached before time

slot t. If before time slot t, file f was never cached when users with context from set p

appeared, we have Ef,p(t) = ∅ and µ̂f,p(t) := 0. Otherwise, the estimated demand of

file f in set p is given by the sample mean µ̂f,p(t) := 1
|Ef,p(t)|

∑
d∈Ef,p(t) d. The set Ef,p(t)

itself does not appear in Algorithm 4.1 since the estimated demand µ̂f,p(t) may be

updated based on µ̂f,p(t− 1), Nf,p(t− 1) and based on the observed demands in time

slot t−1. Moreover, in Algorithm 4.1, the argument t is dropped from counters Nf,p(t)

and µ̂f,p(t) since previous values of these counters do not have to be stored.

In the beginning of each time slot t, CAC first observes the number Ut of currently

connected users, the users’ contexts Xt = {xt,i}i=1,...,Ut , and the service groups Gt =

{gt,i}i=1,...,Ut to which the users belong. Then, CAC determines for each of the context

vectors xt,i ∈ Xt the set pt,i ∈ PT , to which the context vector belongs. Hence,

for xt,i ∈ Xt, CAC finds pt,i ∈ PT such that xt,i ∈ pt,i holds. The collection of these sets

is denoted by Pt := {pt,i}i=1,...,Ut . Then, the algorithm determines whether to enter an

exploration phase or an exploitation phase. In order to determine which phase to enter,

the algorithm checks whether there are files that have not been explored sufficiently

often. For this purpose, the algorithm calculates the set of under-explored files Fue
t

based on

Fue
t := ∪Uti=1{f ∈ F : Nf,pt,i(t) ≤ K(t)}, (4.8)

whereK : {1, ..., T} → R+ is a deterministic, monotonically increasing control function,

which is an input to the algorithm. The choice of the control function is crucial since

it determines the trade-off between exploration and exploitation. An adequate choice

of the control function, which guarantees a good balance in terms of this trade-off, will

be proposed in Section 4.6.1.

Let Fue,t := |Fue
t | be the size of set Fue

t . If the set Fue
t is non-empty, i.e., Fue,t > 0,

CAC enters an exploration phase. In case the set Fue
t contains at least m elements, i.e.,

Fue,t ≥ m, the algorithm randomly selects m files from Fue
t to cache. In case the set Fue

t
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contains less than m elements, i.e., Fue,t < m, it selects all Fue,t files from Fue
t to cache.

Since the cache is not fully filled by Fue,t < m files, (m− Fue,t) additional files may be

cached. In order to exploit knowledge obtained so far, CAC selects (m−Fue,t) additional

files from F\Fue
t as follows. CAC ranks the files in F\Fue

t according to their estimated

weighted demands, and selects those (m − Fue,t) files f̂1,Pt,Gt(t), ..., f̂m−Fue,t,Pt,Gt(t) ∈
F \ Fue

t which satisfy for j = 1, ...,m− Fue,t:

f̂j,Pt,Gt(t) ∈ argmax

f∈F\(Fue
t ∪

j−1⋃
k=1
{f̂k,Pt,Gt (t)})

wf

Ut∑
i=1

vgt,iµ̂f,pt,i(t). (4.9)

If the set of files defined by (4.9) is not unique, ties are broken arbitrarily. Note

that by this procedure, even in exploration phases, the algorithm additionally exploits,

whenever the number of under-explored files is smaller than the cache size.

If the set Fue
t is empty, CAC enters an exploitation phase and selects m files from F as

follows. CAC ranks the files in F according to the estimated weighted demands, and

selects those m files f̂1,Pt,Gt(t), ..., f̂m,Pt,Gt(t) ∈ F which satisfy for j = 1, ...,m:

f̂j,Pt,Gt(t) ∈ argmax
f∈F\(

⋃j−1
k=1{f̂k,Pt,Gt (t)})

wf

Ut∑
i=1

vgt,iµ̂f,pt,i(t). (4.10)

If the set of files defined by (4.10) is not unique, ties are again broken arbitrarily.

After caching the selected files, the algorithm broadcasts the information about cache

content Ct. Then, the algorithm observes the users’ requests for these files until the end

of the time slot. Upon completion of the time slot, it updates the estimated demands

and the counters of cached files.

4.6 Properties of Proposed Algorithm

4.6.1 Upper Bound on Regret

In this section, the performance of CAC is analyzed by determining its regret with re-

spect to the oracle solution, as defined in (4.7). Specifically, the theorem presented be-

low shows that the regret of CAC is sublinear in the time horizon T , i.e., it is shown that

there exists γ < 1 for which R(T ) = O(T γ) holds. This bound on the regret guarantees

that CAC converges to the oracle solution for T → ∞, since then limT→∞
R(T )
T

= 0
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holds. The regret bound bases upon the assumption that the expected demand for a

file is similar in similar contexts, meaning that users with similar contexts are likely

to consume similar content. This assumption is natural since when the users’ content

preferences differ based on the users’ contexts, one may divide the user population into

segments of users with similar context and similar preferences. The similarity assump-

tion is captured by the following Hölder continuity assumption, cf. Section 2.3.3.4.

Assumption 4.1 (Hölder continuity assumption). There exist L > 0 and 0 < α ≤ 1

such that

|µf (x)− µf (x̃)| ≤ L||x− x̃||αD (4.11)

holds for all f ∈ F and for all x, x̃ ∈ X , where || · ||D denotes the Euclidean norm

in RD.

While Assumption 4.1 is needed for the analysis of the regret, it is important to note

that CAC may also be applied to data which does not satisfy this assumption. However,

a regret bound may not be guaranteed in this case.

The following theorem shows that the regret of CAC is sublinear in the time horizon T .

Theorem 4.1 (Bound for R(T )). Let K(t) = t
2α

3α+D log(t), t = 1, ..., T , and hT =

dT
1

3α+D e. If CAC is run with these parameters and Assumption 4.1 holds true, the

regret R(T ) is bounded by

R(T ) ≤ mUmaxvmaxwmax

(
Rmax2

D|F| · (log(T )T
2α+D
3α+D + T

D
3α+D )

+
2Rmax

(2α +D)/(3α +D)
T

2α+D
3α+D + 2LD

α
2 T

2α+D
3α+D + UmaxRmax|F|

π2

3

)
. (4.12)

The leading order of the regret is hence O
(

log(T )T
2α+D
3α+D

)
.

The proof can be found in Appendix A.5. The idea of the proof is as follows. First,

the regret is decomposed into two terms, one term representing the regret due to

exploration phases and one term representing the regret due to exploitation phases.

Each of the two terms is then bounded separately. Bounding the first term works

as follows. The loss due to selecting suboptimal files in exploration phases may be

upper-bounded by a constant. Moreover, it is shown that the number of exploration

phases is limited and can be bounded sublinearly in T , given an appropriate choice of

the input parameters. Overall, this leads to a sublinear upper bound on the regret due
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to exploration phases. The idea for bounding the second term is as follows. First, one

distinguishes between two different types of exploitation phases, depending on whether

the estimated demand µ̂f,pt,i(t) of each file f ∈ F in each current hypercube pt,i, i =

1, ..., Ut, is “close” to its expected value E[µ̂f,pt,i(t)]. Then, for exploitation phases in

which the latter holds true, one can show that even if a suboptimal set of files is selected,

the loss cannot be very large, but can in fact be bounded sublinearly in T , given an

appropriate choice of input parameters. For the second type of exploitation phases, the

loss due to selecting suboptimal files is upper-bounded by a constant. Moreover, one

can show that the number of this type of exploitation phases is limited by a sublinear

bound in T given an appropriate choice of the input parameters. Overall, this leads to

a sublinear upper bound on the regret due to exploitation phases. Then, the overall

regret bound follows by setting the appropriate input parameters.

Note that the proof technique used in this thesis is inspired by [KTvK18] and it is

different from the one used in our original publications on context-aware proactive

caching [MAvK16, MAvK17]. Using the new proof technique, the regret bound pre-

sented in Theorem 4.1 improves the regret bounds derived in [MAvK16, MAvK17] in

some of the constant factors (while the order of the regret remains the same). The

regret bound given in Theorem 4.1 is sublinear in the time horizon T . Hence, when T

goes to infinity, CAC converges to the optimal cache content placement strategy that

maximizes the expected number of weighted cache hits. Moreover, since Theorem 4.1 is

applicable for any finite time horizon T , it characterizes CAC’s speed of convergence.

Finally, Theorem 4.1 shows that the regret bound for the general case with service

differentiation is a constant multiple of the regret bound in the special case without

service differentiation, in which vmax = 1 and wmax = 1 holds. Therefore, also in the

case without service differentiation, the order of the regret is of orderO
(
T

2α+D
3α+D log(T )

)
.

4.6.2 Computational Complexity

Here, we analyze the computational complexity of the proposed algorithm within one

time slot t as a function of the dimension D of the context space and of the library

size |F|. For this purpose, we identify the most computationally expensive procedures

in the algorithm.

The complexity of line 6 in Algorithm 4.1 does neither grow with D nor |F|, and hence

the computational complexity of this line is O(1). The observation of the user contexts

grows as O(D) since user contexts are vectors of length D, and each entry needs to be

considered once. In Line 8, finding the hypercube in the partition of the context space
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to which a user context vector belongs, has a complexity that grows as O(D). This is

because, one can give a separate index to each hypercube in each context dimension and

then compute the index of the hypercube to which a context vector belongs in each of

the D context dimension once and independently of the other dimensions. Computing

the set of under-explored files in Line 9 has a complexity that grows as O(|F|) since each

file has to be considered once. Lines 10 and 11 have a computational complexity that

grows at most as O(|F|) by considering each file at most once. Line 12 neither grows

with D nor |F|, and hence its computational complexity is O(1). Selecting m files in

lines 13, 15-16 or 19 neither grows with D nor |F| and is hence of order O(1). Ranking

the files in lines 16 or line 19 has a complexity that grows as O(|F| log |F|) since at most

|F| files need to be sorted [CLRS09]. Finally, the remaining lines neither grow with D

nor |F|, and hence their computational complexity is O(1). Overall, the computational

complexity of the proposed CAC algorithm grows hence as O(D + |F| log |F|), i.e.,

CAC has a computational complexity that grows linearly as a function of the number

of context dimensions and log-linearly as a function of the file library size.

4.6.3 Memory Requirements

Here, we study the memory requirements needed for running the proposed context-

aware proactive caching algorithm. The memory requirements of CAC mostly consist

of the counters and estimates kept by the algorithm during its runtime, cf. [TvdS15a].

The algorithm keeps the counter Nf,p and the estimate µ̂f,p for each pair consisting

of a set p ∈ PT and a file f ∈ F . The number of files in F is |F|. Moreover, if

the input parameters from Theorem 4.1 are used, the number of sets in PT is upper-

bounded by (hT )D = dT
1

3α+D eD ≤ (1 + T
1

3α+D )D. Therefore, the required memory

is upper-bounded by 2|F|(1 + T
1

3α+D )D. This shows that the required memory is

sublinear in the time horizon T . This means that when T goes to infinity, the algorithm

approaches infinite memory requirements. However, since in practice, only the counter

and estimate of those sets p ∈ PT have to be kept to which at least one of the already

arrived user contexts belonged, the actual number of kept counters and estimates may

be much smaller than given by the upper bound.

4.6.4 Communication Requirements

Here, we study the communication requirements of CAC in one time slot t. In time

slot t, the caching entity observes the contexts of the Ut currently connected users. If

all context information is collected from the mobile devices (instead of from external
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sources, see Section 4.3.3), the mobile device of each user needs to submit a vector of

length D to the caching entity. Moreover, in time slot t, the caching entity informs the

users about the current cache content by sending a broadcast, consisting of identifiers

of the m currently cached files. This broadcast would also have to be sent using a

proactive caching algorithm for caching at the edge which does not exploit context

information [BG14b, BG14c, BG14a]. Hence, the only additional data transmission in

CAC resulting from context awareness is the transmission of the Ut context vectors,

and the amount of data that each mobile device needs to transmit is only linear in the

dimension D of the context space. Moreover, even less data needs to be transmitted by

the mobile devices if a part or all of the context information is collected from external

sources (e.g., social media platforms).

4.7 Extensions

4.7.1 Multicast Transmissions

Multicasting has been shown to be beneficial in combination with caching [MAN14,

PIST16]. CAC may be extended to include multicast transmissions in the following

way. Instead of serving each request for a cached file by a unicast transmission, CAC

may wait for several incoming requests and then serve requests for the same file by

a multicast transmission. In detail, CAC could be extended as follows. Each time

slot t is divided into a fixed number of intervals. During each of the intervals, the

incoming requests for cached files are first monitored and accumulated. At the end of

an interval, requests for the same file are served by a multicast transmission. Since

there may be files which are only requested once within an interval and since knowledge

about such low content popularity may already be available based on what has been

previously learned, a request for a file with low estimated demand could, however, still

be immediately served by a unicast transmission. In this way, unnecessary delays for

the users are prevented in cases in which another request is unlikely and thus a multicast

transmission may not be needed anyway. Finally, service differentiation could be taken

into account when incorporating multicast transmissions into CAC. For example, CAC

may always serve high-priority users via unicast transmissions such that their delay is

not increased due to waiting times for multicast transmissions.
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4.7.2 User Ratings

A content provider operating an infostation may want to cache content which is not

only requested often, but which also receives high ratings from the users. Instead of

selecting the cache content with respect to the expected demands df (x) in order to

maximize the number of (weighted) cache hits, CAC may be adapted to additionally

take user ratings into account for cache content placement in the following way. Assume

that a user may rate a content after she/he has requested and consumed the content.

Further assume that the rating lies in a range [rmin, rmax] ⊂ R+. For a context x,

let rf (x) be the random variable describing the rating of a user with context x in case

she/he requests file f and makes a rating thereafter. Then, we define the random

variable

d̃f (x) := rf (x)df (x), (4.13)

which reflects both the demand and the rating of a user with context x for file f .

By carefully designing the range of ratings, the content provider forms the trade-off

between ratings and cache hits. When applying CAC with respect to d̃f (x) instead

of df (x), the algorithm additionally needs to observe the user ratings in order to learn

content popularity in terms of ratings. If user ratings are always available, Theorem 4.1

applies and provides a regret bound of O
(
T

2α+D
3α+D log(T )

)
.

However, users may not always submit a rating after consuming a content. When a

user’s rating for a file is missing, we assume that CAC does not update the counter

and estimate of the corresponding file based on this user’s content request. However,

as a result, CAC may require a higher number of exploration phases. Hence, the regret

of CAC is influenced by the willingness of the user population to submit ratings of

requested content. Let β ∈ (0, 1) be the probability that a user submits a rating after

requesting a file. Then, the regret of CAC is bounded as follows.

Theorem 4.2 (Bound for R(T ) for rating-based caching with missing ratings).

Let K(t) = t
2α

3α+D log(t), t = 1, ..., T , and hT = dT
1

3α+D e. If CAC is run with

these parameters with respect to d̃f (x), Assumption 4.1 from Section 4.6.1 holds true

for E[d̃f (x)] and a user submits a rating with probability β after requesting a file, the

regret R(T ) is bounded by

R(T ) ≤ mUmaxvmaxwmax

(
1

β
Rmax2

D|F| · (log(T )T
2α+D
3α+D + T

D
3α+D )

+
2Rmax

(2α +D)/(3α +D)
T

2α+D
3α+D + 2LD

α
2 T

2α+D
3α+D + UmaxRmax|F|

π2

3

)
. (4.14)

The leading order of the regret is hence O
(

1
β
T

2α+D
3α+D log(T )

)
.
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The proof can be found in Appendix A.6. The proof of Theorem 4.2 works analogously

to the proof of Theorem 4.1 applied to d̃f (x) instead of df (x), by first dividing the regret

into two terms representing the regret due to exploration and exploitation phases, and

then bounding each of the terms separately. The regret due to exploitation phases then

remains exactly the same. However, the regret due to exploration phases changes, since

in case of rating-based caching with missing ratings, CAC does not update the counter

and estimate when no rating is given for a requested file. Hence, the required number

of exploration phases may increase. It can be shown that the expected number of

exploration phases can be upper-bounded by 1
β

times the number of exploration phases

of the original case considered in Theorem 4.1. The rest of the proof works analogously

to the proof of Theorem 4.1.

Note that the proof technique used in this thesis is inspired by [KTvK18] and it is

different from the one used in our original publication on context-aware proactive

caching [MAvK17]. Using the new proof technique, the regret bound presented in

Theorem 4.2 improves the regret bound derived in [MAvK17] in some of the constant

factors (while the order of the regret remains the same). Comparing Theorem 4.2 with

Theorem 4.1, in case of rating-based caching with missing ratings, the regret of CAC is

scaled up by a factor 1
β
> 1 in one summand. This factor corresponds to the expected

number of content requests received by a user until the user submits one rating. Note

that, however, the time order of the regret remains the same. Hence, CAC is robust

under missing ratings in the sense that if a few users refuse to rate requested content,

CAC still converges to the optimal cache content placement strategy when T goes to

infinity.

4.7.3 Asynchronous User Arrival

Our model in Section 4.3.2 assumed that the set of connected users may change from

one time slot to another, but that it remains static within each time slot. This means,

that only those users may request files within a time slot that were connected to the

caching entity in the beginning of that time slot. However, it is possible to extend CAC

such that it takes into account that users connect to the caching entity asynchronously,

i.e., within the time slots of CAC. If, after the context monitoring in the beginning of

a time slot, a user immediately disconnects from the caching entity without requesting

any file, that user should be excluded from learning. Hence, in CAC, the counters

and estimates are not updated for immediately disconnecting users. If, after cache

content placement within a time slot, a user connects to the caching entity, her/his

content requests may be used for learning, even though her/his context has not been
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considered in the caching decision of that time slot. Therefore, in CAC, the counters

and estimates are updated based on this user’s content requests.

4.7.4 Multiple Wireless Local Caching Entities

Practical caching systems contain multiple caching entities and each of the caching

entities needs to learn its local content popularity. In such a network consisting of

multiple caching entities, CAC, which was designed for cache content placement in a

single caching entity, could be applied separately and independently by each caching

entity. However, CAC may also be extended to the case that coverage areas of caching

entities overlap. We call this extension the context-aware proactive caching with area

overlap (CACao) algorithm. The main idea of CACao is that caching entities may

learn content popularity faster by not only learning from their own cache hits, but also

by learning from cache hits occurring at neighboring caching entities with overlapping

coverage area. For this purpose, caching entities overhear cache hits from users in the

intersection to neighboring coverage areas.

Specifically, CACao extends CAC as follows: CACao monitors user context and selects

cache content in the same way as CAC does. However, using CACao, a caching en-

tity not only observes its own cache hits (line 22 in Algorithm 4.1), but it overhears

cache hits occurring at neighboring caching entities from users in the intersection to

neighboring coverage areas. Subsequently, using CACao, the caching entity not only

updates the counters and estimates of its own currently cached files (lines 23-27 in

Algorithm 4.1), but it additionally updates the counters and estimates of files of which

it overheard cache hits at neighboring caches. In this way, the caching entity may learn

faster.

4.8 Numerical Results

4.8.1 Simulation Setup

We evaluate CAC by comparing its performance to several reference algorithms in

simulations based on a real world data set from MovieLens [HK15]. MovieLens is an

online movie recommendation system operated by the research group GroupLens at the

University of Minnesota. The MovieLens 1M DataSet [Gro03] contains 1 000 209 ratings

of 3952 movies made by 6040 MovieLens users within the years 2000 to 2003. Each
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entry of the data set consists of an anonymous user ID, a movie ID, a rating (integer

between 1 and 5) and a time stamp. Moreover, demographic information is available

about the users’ gender, age (in 7 categories), occupation (in 20 categories) and Zip-

code.

In our simulations, we assume that the movie rating process from the MovieLens data

set corresponds to a content request process of users connected to a wireless local

caching entity (see [LXvdSL16b, LXvdSL16a] for a similar approach). Hence, when

a user rates a movie at a certain point in time in the MovieLens data set, in our

simulations, at the same point in time, this specific user requests this specific movie

from either the caching entity (in case the movie is locally cached in the caching entity)

or from the macro cellular network (in case the movie is not locally cached in the

caching entity). Since users typically rate movies after watching them, this approach of

translating a movie rating process to a content request process is reasonable. Moreover,

for our simulations, we only use the data collected within the first year of the MovieLens

data set, since around 94% of the ratings were provided within this time frame. Then,

assuming that the caching entity updates its cache content on an hourly basis, we divide

a year’s time into 8760 time slots of one hour each (thereby setting T = 8760). Finally,

we assign the content requests and corresponding user contexts to the 8760 time slots

according to their time stamps, where we interpret each request as if it was coming

from a separate user. Figure 4.4 depicts the content request process resulting from

the described approach based on the MovieLens data set. Clearly, the content request

process is bursty and flattens out towards the end.

Regarding the user context, we assume that at the beginning of a time slot, the caching

entity has access to the context of all users responsible for the requests in the coming

time slot. The context dimensions used in our simulations are gender and age. Note

that we do not use occupation as context dimension in our simulations since by mapping

occupations to a [0, 1] variable, we would have to classify which occupations are more

and which are less similar to each other.

In our simulations, each algorithm is run over the sequence of time slots t = 1, ..., T .

All simulation results are obtained by averaging over 100 runs of the algorithms. Con-

cerning the choice of input parameters, in ε-Greedy, we set ε = 0.09 which is the value

at which heuristically the algorithm on average performed best. Moreover, in CAC, we

set the control function to K(t) = λCAC ·t
2α

3α+D log(t) with λCAC = 1/(|F|D). Compared

to the control function in Theorem 4.1, the additional factor reduces the number of

exploration phases which allows for better performance.
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Figure 4.4. Number of content requests in used data set as a function of time slots.
Time slots at an hourly basis.

4.8.2 Reference Algorithms

We evaluate CAC by comparing it with the following five reference algorithms.

• The Oracle has perfect a priori knowledge about the expected demand of each

file in each context. In each time slot, the Oracle selects the top-m files as derived

in (4.5).

• The UCB algorithm is based on an upper confidence bound (UCB) and consists

of a variant of the UCB1 algorithm. UCB1 is a classical learning algorithm

for the stochastic MAB problem with logarithmic regret order [ACBF02], cf.

Section 2.3.3.3. However, it does not take context information into account, i.e.,

the logarithmic regret is with respect to the average expected demand over the

whole context space. While the classical UCB1 takes one action per time slot, our

modified UCB takes m actions per time slot, which corresponds to selecting m

files.

• The ε-Greedy algorithm is a simple algorithm for the stochastic MAB problem, cf.

Section 2.3.3.3, which learns from the history of reward observations [ACBF02],
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but without taking into account context. While the ε-Greedy usually takes one

action per time slot, we modified ε-Greedy to take m actions per time slot, which

corresponds to selecting m files. In detail, in the considered caching scenario,

the ε-Greedy caches a random set of m files with probability ε ∈ (0, 1) and the

algorithm caches the m files with highest to m-th highest estimated demands

with probability (1− ε). The estimated demands are calculated as sample means

of previous demands for cached files.

• Myopic is an algorithm taken from [BG14b], which is investigated since it is

comparable to the well-known caching algorithm LRU, cf. Section 4.2. Myopic

only learns from one time slot in the past. Starting with a random set of files,

in each of the following time slots, Myopic discards the files which have not

been requested in the previous time slot. The discarded files are then randomly

replaced by other files.

• The Random algorithm caches a random set of files in each time slot.

4.8.3 Evaluation Metrics

The following metrics are used for evaluation purposes.

• The absolute performance of the algorithms is assessed based on the evolution of

the number of cache hits per time slot and the cumulative number of cache hits.

• A relative performance measure is given by the cache efficiency, which describes

the percentage of requests which can be served by cached files. Formally, the

cache efficiency is defined as the ratio of cache hits compared to the overall

demand, i.e.,

cache efficiency in % =
cache hits

cache hits + cache misses
· 100. (4.15)

4.8.4 Results

First, we consider the case without service differentiation and we investigate the long-

term behavior of CAC based on the following scenario. We assume that the caching

entity may store up to m = 200 movies out of the |F| = 3952 available movies so that

the cache size corresponds to about 5% of the file library size [BG14b]. We run all



104 Chapter 4: Caching at the Edge of Wireless Networks

algorithms 100 times on the data set and average the results. Then, we study their

performance as a function of time, i.e., over the time slots t = 1, ..., T . Figure 4.5(a)

shows the number of cache hits per time slot achieved by the different algorithms as a

function of time. As can be seen in Figure 4.5(a), the number of cache hits per time slot

achieved by the different algorithms is bursty over time. This is due to the fact that

the content request process itself is bursty (cf. Figure 4.4). Figure 4.5(a) shows that

all algorithms roughly follow this bursty content request process. Since it is difficult

to compare the results achieved by the different algorithms based on Figure 4.5(a), we

plot the same data again, but this time based on the cumulative numbers of cache hits.

Figure 4.5(b) shows the cumulative number of cache hits up to time slot t achieved by

the different algorithms as a function of time. As shown in Figure 4.5(b), the cumulative

numbers of cache hits achieved by the different algorithms all follow the same trend,

but on different levels. Random and Myopic achieve much smaller cumulative numbers

of cache hits than the remaining algorithms. This is because Random does not learn at

all and Myopic only learns from one time slot in the past. ε-Greedy and UCB show a

better performance than Random and Myopic since they learn from the whole history

of observed demands. Interestingly, it can be observed that ε-Greedy outperforms

UCB, even though it uses a simpler learning strategy. The proposed algorithm CAC

outperforms Random, Myopic, ε-Greedy and UCB since it not only learns from the

whole history of observed demands, but additionally learns from context information.

At the time horizon, the cumulative number of cache hits achieved by CAC corresponds

to 1.14, 1.37, 3.98 and 5.50 times the cumulative numbers of cache hits achieved by

ε-Greedy, UCB, Myopic and Random, respectively. Moreover, CAC yields a result

close to the Oracle, which gives an upper bound to the other algorithms. In detail,

the cumulative number of cache hits achieved by CAC corresponds to 0.91 times the

cumulative number of cache hits achieved by the Oracle.

Next, we investigate the impact of the cache size m by varying it between 50 and 400

files. This corresponds to between about 1% and 10% of the file library size. The re-

maining parameters are kept as before and the results are again averaged over 100 runs

of the algorithms. Figure 4.6 shows the overall cache efficiency achieved at the time

horizon T , i.e., the cumulative number of cache hits up to T is normalized by the

cumulative number of requests up to T , as a function of the cache size m. The overall

cache efficiency of all algorithms is increasing with increasing cache size. Moreover,

the results indicate that Random and Myopic perform by far worse compared to the

other algorithms. Again, ε-Greedy and UCB are outperformed by the proposed CAC.

In detail, averaged over the considered range of cache sizes, the average cache effi-

ciency of CAC is 28%, compared to average cache efficiencies of 25%, 21%, 8% and 6%
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Figure 4.5. Time evolution of algorithms for m = 200.
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Figure 4.6. Overall cache efficiency at T as a function of cache size m.

achieved by ε-Greedy, UCB, Myopic and Random, respectively. Moreover, regarding

the achieved cumulative numbers of cache hits, based on which the cache efficiencies

in Figure 4.6 were computed, CAC achieves up to 27% more cache hits than the next

best algorithm ε-Greedy in the considered range of cache sizes. Finally, with its average

cache efficiency of 28%, CAC lies not far away from the average cache efficiency of 32%

achieved by the Oracle.

Now, we consider a case of service differentiation, in which two different service

groups 1 and 2 with weights v1 = 5 and v2 = 1 exist. Since service group 1 rep-

resents a higher value, users of this service group should be prioritized in caching

decisions. In our simulations, we randomly assign 20% of the users to service group 1

and classify all remaining users as service group 2. Then, we adjust each algorithm to

take service differentiation into account by incorporating the weights corresponding to

the service groups into the algorithms. The results are again averaged over 100 runs

of the algorithms. Figure 4.7 shows the cumulative number of weighted cache hits up

to time slot t for a cache size of m = 200 as a function of time. A comparison with

Figure 4.5(b) shows that the general behavior is similar to the case without service

differentiation. The cumulative numbers of weighted cache hits achieved by the dif-

ferent algorithms all follow the same trend, but on different levels. Again, Random

and Myopic achieve much lower performance compared to the remaining algorithms.
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ε-Greedy and UCB show a better performance than Random and Myopic. However,

all of them are outperformed by the proposed CAC. At the time horizon, the cumu-

lative number of weighted cache hits achieved by CAC corresponds to 1.15, 1.21, 3.91

and 5.36 times the cumulative numbers of weighted cache hits achieved by ε-Greedy,

UCB, Myopic and Random, respectively. In addition, CAC achieves results still close

to the upper bound provided by the Oracle. The cumulative number of weighted cache

hits achieved by CAC corresponds to 0.89 times the cumulative number of cache hits

achieved by the Oracle.

Finally, we investigate a scenario of multiple caching entities and compare the perfor-

mance of the two proposed algorithms CAC and CACao. We consider two caching

entities and divide the used data set as follows. We assume that a fraction o ∈ [0, 0.3]

of randomly selected requests is made in the intersection of the two coverage areas,

whereas the remaining requests are randomly assigned to either the one or the other

caching entity since they are considered to be made by users solely connected to one

caching entity. The parameter o hence can be seen as a measure of the overlap between

the caching entities. Now, on the one hand, we run CAC separately on each caching en-

tity and, on the other hand, we run CACao on both caching entities. Figure 4.8 shows

the cumulative number of cache hits achieved in sum by the two caching entities at the
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time horizon T as a function of the overlap parameter o. As expected, CAC and CACao

perform identically for non-overlapping coverage areas (i.e., when o = 0). Moreover,

the numbers of cache hits achieved by both CAC and CACao increase with increasing

overlap. This is because it is more likely that users in the intersection of the coverage

areas can be served since these users have access to both caches. Hence, even though

the caching entities do not coordinate their decisions on cache content, more cache hits

occur. Comparing CACao with CAC, it can be seen that for up to 25% of overlap

(o ≤ 0.25), CACao outperforms CAC. The reason is that by overhearing cache hits

at the neighboring caching entity, both caching entities learn content popularity faster

using CACao. However, CAC yields higher numbers of cache hits for very large over-

lap (o > 0.25). This is because when applying CACao in case of a very large overlap,

neighboring caching entities overhear such a large number of cache hits, that they learn

very similar content popularity distributions. Therefore, it is likely that their caches

contain the same files after some time. In contrast, a higher diversity in cache content

is maintained over time when CAC is applied. In general, further gains in the number

of cache hits could be achieved by jointly optimizing the cache content of all caching

entities. However, this would either require coordination among the caching entities or

a central decision agent selecting the cache content of all caching entities, which would

result in a high communication overhead. In contrast, the heuristic approach used by

CACao neither requires coordination nor communication between caching entities and

yields good results for reasonably sized overlaps.

4.9 Conclusions

In this chapter, we have studied how to exploit caching resources in order to save

communication resources in wireless networks. In detail, we have investigated the

problem of context-aware proactive caching at the edge for maximizing the number

of cache hits under missing knowledge about content popularity. We have proposed a

model for context-aware proactive caching that allows different content to be favored

by different users and that takes into account that the content popularity depends on

the user’s context. Moreover, we have taken a machine-learning-based approach by

modeling the problem as a contextual MAB problem. We have proposed an online

learning algorithm for context-aware proactive caching using a decentralized architec-

ture of decision making. Using this algorithm, the controller of a local cache at the

edge of the wireless network may learn context-specific content popularity online by

regularly observing context information of connected users, updating the cache content

and observing cache hits subsequently.



4.9 Conclusions 109

overlap parameter o
0 0.05 0.1 0.15 0.2 0.25 0.3

cu
m
u
la
ti
v
e
n
u
m
b
er

o
f
ca
ch
e
h
it
s
a
t
T

×10
5

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

CACao

CAC

Figure 4.8. Cumulative number of cache hits at T as a function of the overlap param-
eter o.

The computational complexity of the proposed algorithm has been shown to grow

linearly as a function of the number of context dimensions and log-linearly as a function

of the file library size. Moreover, the memory and communication requirements of the

proposed algorithm have been analyzed and extensions to practical requirements have

been made. Moreover, we have derived a sublinear upper bound on the regret, which

analytically bounds the loss of the proposed algorithm with respect to an oracle that

executes the optimal cache content placement strategy given a priori knowledge on

content popularity. The regret bound characterizes the learning speed and proves that

the proposed algorithm converges to the optimal cache content placement strategy.

Simulations based on real data have shown that, depending on the cache size, the

proposed algorithm achieves up to 27% more cache hits than the best algorithm taken

from the literature by exploiting contextual information for proactive cache content

placement.
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Chapter 5

Mobile Crowdsourcing

5.1 Introduction

In this chapter, we consider mobile crowdsourcing (MCS), a technique that exploits

user resources for task completion. Specifically, task owners may outsource tasks via

an intermediary mobile crowdsourcing platform (MCSP) to a set of mobile users, or

workers, who are free to decide whether or not to complete assigned tasks [RZZS15].

Recently emerging MCS applications exploit that online mobile users may complete

tasks anytime and anywhere on the go by considering non-spatial tasks, i.e., tasks

that do not require the workers to be at a certain location for task completion. MCS is

hence a technique that may enable different stakeholders to leverage human intelligence

for task completion [RZZS15]. Clearly, different workers may have different interests

and capabilities, and therefore not all of them may perform equally well on a given

task [GS14]. In order to achieve the best possible outcome on a given task under a

possibly limited budget by the task owner, the most suitable workers should hence be

assigned to a task [TTSRJ14]. As described in Section 1.3.4, selecting the best workers

for each task in an MCS application requires knowledge about the performance of

each worker in terms of her/his acceptance rate and quality, but such knowledge is

typically not available a priori and hence needs to be learned [SC17, ZC17, HV12,

TTSRJ14,HZL16,uHC14]. Moreover, a worker’s performance may depend not only on

the specific task, but also on the worker’s current context [GS14], and this dependency

may be of non-linear nature. Finally, due to communication overhead and privacy

concerns of workers, it may be required to protect personal worker context locally

instead of sharing it with the central MCSP [TGFS17,GWG+16], which makes it even

more difficult for the MCSP to select the most suitable workers.

Hence, we investigate the problem of maximizing the worker performance in an MCS

application with non-spatial tasks, taking into account the following aspects:

(i) A priori, there is no knowledge available about each worker’s individual perfor-

mance in terms of her/his acceptance rate and quality.

(ii) Tasks of different types may arrive to the MCSP.
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(iii) A worker’s performance may depend in a possibly non-linear fashion on both the

task and the current worker context.

(iv) A worker’s personal context should be kept locally in order to keep the commu-

nication overhead small and to ensure the worker’s privacy.

In this chapter, we propose a machine-learning-based approach and a hierarchical ar-

chitecture of decision making. We take a machine-learning-based approach since the

expected performance of a worker is not known in advance and hence needs to be

learned. Moreover, we take a hierarchical architecture of decision making since the

workers’ personal contexts should be kept locally in order to keep the communication

overhead small and to protect the workers’ privacy. In detail, we propose a context-

aware hierarchical online learning algorithm for worker selection in MCS applications

based on a contextual MAB model. The algorithm is split into two parts. On the

one hand, a local controller (LC) in each of the workers’ mobile devices is respon-

sible for learning its corresponding worker’s context-specific performance in terms of

acceptance rate and quality online over time, by regularly observing the worker’s con-

text, her/his decisions to accept or decline tasks and the quality in completing tasks.

Based on these observations, the LC regularly estimates the worker’s context-specific

performance and sends this estimate to the MCSP. On the other hand, the MCSP

is responsible for the worker selection, which it does based on performance estimates

received from the LCs. This hierarchical coordination approach enables the LCs to

learn context-specific worker performances and it enables the MCSP to select suitable

workers without having access to the workers’ personal contexts, which stay locally

with the LCs. Moreover, workers receive personalized task requests based on their

interests and skills, while at the same time the number of quality assessments, which

are needed to observe worker performances, but may be costly, is kept low.

This chapter presents work originally published by the author in [KTvK18]. Compared

to [KTvK18], in this thesis, the ideas of the mathematical proofs are additionally sum-

marized and discussed within the main body of text, while the full mathematical proofs

are given in the appendices. Furthermore, in this thesis, the computational complexity

of the proposed algorithm is analyzed. The remainder of this chapter is organized as

follows. Section 5.2 provides a detailed review of the state of the art on decision making

for crowdsourcing systems. The system model for context-aware worker selection in an

MCS application is introduced in Section 5.3. In Section 5.4, we give a formal problem

formulation of context-aware worker selection for maximizing the worker performance

in MCS under missing knowledge about expected worker performance and show that

the problem can be understood as a contextual MAB problem. In Section 5.5, we
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propose a context-aware hierarchical online learning algorithm for worker selection in

MCS. Properties of the proposed algorithm are discussed in Section 5.6. Specifically,

by deriving an analytical upper bound on the regret of the proposed algorithm, it

is shown that the algorithm converges to the optimal worker selection strategy. In

Section 5.7, the performance of the proposed algorithm is demonstrated numerically.

Section 5.8 concludes this chapter.

5.2 State of the Art

In this section, we give a detailed review of the state of the art on decision making

for crowdsourcing (CS) systems. We start by shortly discussing strategic behavior in

CS and quality estimation in CS in case of missing ground truth. Then, we discuss

in detail the related work on CS without strategic behavior and with available ground

truth since the problem considered in this thesis is of this type.

One line of work on CS systems deals with strategic behavior of workers and task

owners in CS systems. Such strategic behavoir could concern pricing and the effort

spent in task completion [AvdS16]. Another line of work on CS deals with how to

estimate the quality of a completed task in case of missing ground truth, for instance,

using online learning for quality estimation [LL17].

In contrast, many related works consider task assignment and worker selection problems

in CS systems without taking into account strategic behavior and under the assumption

that it is possible to assess the quality of a completed task. Also the problem considered

in this thesis belongs to this type. Therefore, in the remainder of this section, we

review and discuss this type of related work on worker selection in CS. This review

complements the short review presented in Section 1.3.4 by discussing in detail the

works introduced in Table 1.3.

In this thesis, worker selection in MCS for non-spatial tasks is considered. Note

that the related work discussed below not only covers decision making in MCS sys-

tems [RZZS15], but also in general web-based CS systems [DRH11] as well as in spa-

tial CS systems [ZH16], since these works are also relevant for comparison with our

approach. Also note that in general, task assignment and worker selection problems

in CS systems are often modeled as problems of online decision making due to the

dynamic nature of tasks and/or workers typically arriving over time [SV13].

We start by discussing related work on general CS systems. Ref. [HV12] proposes a

competitive online task assignment algorithm in the server assigned tasks (SAT) mode
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that learns the skills of sequentially appearing workers in order to maximize the utility

of a task owner on a given set of task types, with finite number of tasks per type.

In [TTSRJ14], an online task assignment algorithm in SAT mode with sublinear regret

is proposed for expert CS. Based on a bounded MAB model, the algorithm aims at

maximizing the utility of a budget-constrained task owner under uncertainty about the

skills of a finite set of expert workers with known different prices and limited working

time. The algorithm hence learns the average skill of a worker. Ref. [SC17] proposes a

real-time algorithm in SAT mode for finding the top-k workers for sequentially arriving

tasks. In a first step, tasks are categorized offline into different types and the similarity

between a worker’s profile and each task type is computed. Then, in real time, the

top-k workers are selected for a task based on a matching score that takes the similarity

scores and historic worker performance into account. The performance estimates are

proposed to be updated offline in batches. Ref. [AVC11] proposes methods for learning

a worker preference model that can be used for personalized task recommendation (TR)

in the worker selected tasks (WST) mode. The proposed methods use the history of

worker preferences on different tasks.

Among the related work on MCS systems, Ref. [GWG+16] proposes algorithms for

optimal TR in WST mode that take into account trade-offs between the privacy of

worker context, the utility to recommend the best tasks and the efficiency in terms

of communication and computation overhead. In their approach, a server performs

TR based on a generalized context shared by the worker. The statistics used for

TR are collected offline via a proxy which ensures differential privacy guarantees. This

approach allows to flexibly adjust the shared generalized context and makes TRs based

on offline statistics and generalized, instead of individual, worker context. In [HZL16],

an online learning algorithm for mobile crowdsensing in SAT mode is proposed to

maximize the revenue of a budget-constrained task owner by learning the sensing values

of workers with known prices.

A taxonomy for spatial CS was first introduced in [KS12], where a location-entropy

based algorithm for SAT mode is proposed to maximize the number of task assignments

under uncertainty about task and worker arrival processes. The server decides about

task assignment based on centrally collected knowledge about the workers’ current loca-

tions. In [TSK15], the above framework is extended to maximize the quality of assign-

ments under varying worker skills for different task types. In both [KS12] and [TSK15],

worker context is collected centrally. Moreover, it is assumed that workers always ac-

cept assigned tasks within certain known bounds and that worker skills are known a

priori. In [uHC14], an online task assignment algorithm is proposed for spatial CS

with SAT mode for maximizing the expected number of accepted tasks by selecting
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appropriate workers for sequentially arriving tasks. The problem is modeled as a con-

textual MAB problem. Then, the LinUCB algorithm, cf. Section 2.3.3.4, is adapted to

the problem by assuming that the acceptance rate of a worker is a linear function of the

worker’s distance to the task location and of the task type. However, such a linearity

assumption is restrictive and it especially may not hold in MCS with non-spatial tasks.

Ref. [TGFS17] proposes an algorithm for privacy-preserving spatial CS in SAT mode.

Using differential privacy and geocasting, the algorithm preserves worker context in

terms of their locations while optimizing the expected number of accepted tasks. The

algorithm is based on the assumption that the workers’ acceptance rates are identical

and known. Ref. [ZC17] proposes exact solutions and approximation algorithms for

acceptance maximization in spatial CS with SAT mode. The algorithms are performed

offline for given sets of available workers and tasks based on a probability of interest for

each pair of worker and task. The probabilities of interest are computed beforehand

using maximum likelihood estimation.

The above discussed related work on decision making for CS systems can be cat-

egorized as follows. As seen above, different works consider different types of

CS, such as general CS [HV12, TTSRJ14, SC17, AVC11], MCS [GWG+16, HZL16]

or spatial CS [KS12, TSK15, uHC14, TGFS17, ZC17]. Moreover, the works differ

regarding the considered task assignment mode, some works considering the SAT

mode [HV12, TTSRJ14, SC17, HZL16, KS12, TSK15, uHC14, TGFS17, ZC17], others

considering the WST mode [AVC11, GWG+16], where each mode has its specific

advantages and disadvantages, as discussed in Section 1.3.4. Some related works

assume that the workers’ performances are known in advance (e.g., in terms of

acceptance rates and quality) [KS12, TSK15, TGFS17], while others consider the

more realistic case of task assignment under missing knowledge about worker per-

formance [HV12, TTSRJ14, SC17, AVC11, GWG+16, HZL16, uHC14, ZC17]. In the

latter case, different types of machine-learning-based approaches are applied, us-

ing, for instance, offline learning [GWG+16, ZC17], batch learning [SC17] or on-

line learning [HV12, TTSRJ14, AVC11, HZL16, uHC14], the last approach being able

to better adapt to varying worker performances. While some of the learning al-

gorithms are only numerically evaluated [SC17, AVC11, GWG+16, ZC17], other re-

lated works additionally provide analytical regret bounds for their learning algo-

rithms [HV12, TTSRJ14, HZL16, uHC14]. While some works consider only one

type of tasks [TTSRJ14, HZL16, TGFS17], others take into account that different

types of tasks may occur in MCS applications [HV12, SC17, AVC11, GWG+16, KS12,

TSK15, uHC14, ZC17]. Moreover, while some works are unaware of worker con-

text [HV12, TTSRJ14, SC17, AVC11, HZL16, ZC17], others take worker context into

account [GWG+16,KS12,TSK15,uHC14,TGFS17], which is important since at least in
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the MCS applications considered in this thesis, worker context may affect worker perfor-

mance. However, even among the works which take worker context into account, only

few consider such context-specific worker performance [GWG+16,uHC14,TGFS17]. Fi-

nally, among the works which take worker context into account, only some consider

that personal worker context needs to be protected due to overhead and privacy reasons

(i.e., keeping it completely locally, or sharing only generalized context information with

the MCSP) [GWG+16,TGFS17].

Table 5.1 gives an overview of the discussed related work on worker selection in CS

systems and provides a detailed comparison of the related work with the proposed

algorithm. Compared to the related work, cf. Table 5.1, we propose a context-aware

hierarchical online learning algorithm for worker selection in MCS for non-spatial tasks

that for the first time jointly considers the following aspects:

(i) The proposed algorithm does not assume a priori knowledge about worker per-

formance, but learns worker performance in terms of acceptance rate and quality

online to maximize the average worker performance over time without requiring a

training phase. Since the algorithm learns in an online fashion, it adapts and im-

proves the worker selection over time and can hence achieve good results already

during run time. By deriving an upper bound on the regret of the algorithm, we

provide performance guarantees and prove that the algorithm converges to the

optimal worker selection strategy.

(ii) The proposed algorithm allows different task types to occur. The concept of task

context is used to describe the features of a task, such as its required skills or

equipment.

(iii) The proposed algorithm allows that a worker’s performance depends (in a possibly

non-linear fashion) on both the task context and on the worker context, such as

the worker’s current location, activity, or device status. The proposed algorithm

learns this context-specific worker performance.

(iv) The proposed algorithm is split into two parts, one part executed by the MCSP,

the other part by LCs located in each of the workers’ mobile devices. Based

on this new hierarchical coordination approach between the MCS and LCs, the

proposed approach combines the advantages of the SAT and the WST mode for

task assignment. In particular, suitable workers can be selected for each task

while at the same time, the workers’ personal contexts are protected by keeping

them locally, which keeps the communication overhead small and ensures the

workers’ privacy. Moreover, workers receive personalized task requests based on
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their interests and skills, while the number of possibly costly quality assessments

is kept low.

5.3 System Model

5.3.1 Introduction

In this section, we propose a model for context-aware worker selection in an MCS

application for non-spatial tasks. In accordance with Section 2.2.1, the proposed overall

model consists of the following five components:

(i) The network model contains a model of an MCS application and introduces the

MCSP that serves as intermediary between task owners and workers.

(ii) A context model is defined, which describes the side information about the worker

and the task that may impact a worker’s performance in terms of her/his accep-

tance rate and quality when completing a task.

(iii) As performance criterion to be maximized, the cumulative worker performance

is considered. Since the worker performance depends on the worker and task

context, a model of context-specific worker performance is formulated, which ex-

plicitly allows worker performance to be a (possibly non-linear) function of the

task context and of the worker context.

(iv) A hierarchical architecture of decision making is proposed. Responsible for infor-

mation collection and decision making are a set of LCs and the MCSP, respec-

tively. Hence, a model of an LC is proposed.

(v) An action model is formulated, which determines the different choices of the

MCSP, namely, which workers should be requested to complete a task.

5.3.2 Network Model

We consider an MCS application for non-spatial tasks. The MCS application is coor-

dinated by an MCSP. By W , we denote the set of W := |W| workers. A worker is a

mobile user who has set up the MCS application in her/his mobile device. A worker can
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be in the following two modes. A worker is called available if the MCS application on

her/his device is running. In this case, the MCSP may request the worker to complete

a task, which the worker may then accept or decline. A worker is called unavailable if

the MCS application on her/his device is turned off.

Task owners may place non-spatial tasks of different types into the MCSP. We assume

that tasks arrive at the MCSP sequentially and we denote the sequentially arriving

tasks by t = 1, ..., T , where T denotes the total number of tasks. The submission of a

task t is accompanied by a tuple (bt, ct), where bt > 0 denotes the budget that the task

owner is willing to pay for this task and ct denotes the task context. The task context

is a vector containing information about the task, and will be formally introduced in

Section 5.3.3. The task owner is charged by the MCSP for each worker that completes

the task after being requested by the MCSP. Specifically, we assume that the MCSP

charges the task owner a fixed price et ∈ [emin, emax] per worker that completes task t,

where emin > 0 and emax ≥ emin correspond to lower and upper price limits, respectively.

The price et may depend on the task context ct and is determined based on a fixed

and transparent context-specific price list held by the MCSP. We assume that for each

task t, the budget bt satisfies bt ∈ [et,Wet], i.e., the budget is sufficient to pay at least

one and at most W workers for completing the task. Moreover, we assume that the

sequence {bt}t=1,...,T is not influenced by decisions about worker selection taken by the

MCSP. Based on the budget bt and the price et, the MCSP computes the maximum

number mt := b bt
et
c ∈ {1, ...,W} of workers who should complete the task.

Following [HV12,TTSRJ14,HZL16], we assume that each task has the following prop-

erties:

• Depending on the budget and price of a task, the task owner would like to receive

replies from possibly several workers who completed the task.

• It is possible to assess the quality of a single worker’s reply.

• The qualities of different workers’ replies are independent.

• The qualities of different workers’ replies are additive, i.e., if two workers complete

the task and their respective qualities are A and B, the task owner receives a

total quality of A+B.

Such tasks belong to the class of crowd solving tasks [GS14], examples being translation

and retrieval tasks [HV12]. Note that we assume that there exists a type of quality

assessment which can be used to evaluate how well a worker performed in completing a
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task. Among possible types of quality assessment are manual quality ratings from task

owners, or an automatic quality assessment using either local software in the mobile

devices or using the resources of a cloud. The proposed model and algorithm are

agnostic to the specific type of used quality assessment. In general, however, quality

assessments may be costly. Therefore, the number of worker performance observations

may have to be kept low in order to keep the cost for quality assessment low.

At the arrival of a task, not all workers may be currently available since workers may

arbitrarily turn on and off their MCS application in their mobile device over time.

Therefore, the set of available workers may change dynamically over time. We denote

the set of workers available at the arrival of task t by Wt ⊆ W , as defined by Wt :=

{i : worker i is available at arrival time of t}, where Wt := |Wt| ∈ {1, ...,W} denotes

the number of available workers at the arrival of task t. Our only assumptions on the

nature of the arrival process of the availability of workers are that (i) for each arriving

task, at least one worker is available and that (ii) the sequence {Wt}t=1,...,T is not

influenced by decisions about worker selection taken by the MCSP.

If sufficiently many workers are currently available at the arrival of task t, the MCSP

requests mt workers to complete the task. Note that each task is only processed once

by the MCSP, even if not all mt requested workers complete the task. Therefore, if not

all of the mt requested workers complete task t, the MCSP charges the task owner only

for the actual number of workers that completed the task since only these workers are

compensated. Moreover, it may also happen that fewer than mt workers are currently

available at the arrival of task t. In this case, the MCSP requests all available workers

to complete the task. To sum up, the MCSP aims at selecting a subset of min{mt,Wt}
workers which maximizes the worker performance for the task. Figure 5.1 shows an

illustration of the considered model, where a task arrives at an MCSP, which in turn

needs to select an appropriate subset of currently available workers for the task.

5.3.3 Context Model

Appropriate worker selection requires knowledge about worker performance. Since

a worker can have certain preferences regarding the types of tasks she/he likes, the

worker may hence have different acceptance rates on different tasks. Moreover, since

a worker has a certain set of skills, she/he may hence provide different quality when

completing different tasks. Therefore, a worker’s performance in terms of acceptance

rate and quality may depend on the features of the task. The features of a task may

be summarized under the term context. Possible features of a task could be the skills
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Figure 5.1. Network model.

needed (e.g., the required levels of creativity or analytical skills) or the equipment

required (e.g., a camera or a specific application) to complete the task.

Formally, we model task context as follows. We denote the number of task context

dimensions by C and we denote the C-dimensional task context space by C. The

context space C is assumed to be bounded and can hence be set to C := [0, 1]C without

loss of generality. Hence, we assume that the feature information about a task is

described in terms of C context dimensions. In each of the C context dimensions, a

task is classified via a value between [0, 1], such that the overall task context is hence

a vector in [0, 1]C . In practice, a pre-processing may be needed to bring the feature

information into the correct format (e.g., the required levels of creativity or analytical

skills may be translated to continuous values between 0 and 1; whether a camera or a

specific application is needed may be encoded as binary 0 or 1).

The performance of a worker in terms of acceptance rate and quality may not only

depend on the characteristics of the specific task to be completed, but also on the

worker’s personal current situation and environment. Possible relevant personal context

dimensions could be the worker’s current location (in terms of geographic coordinates)

or the time of day [GS14], the type of location (e.g., at home, in a coffee shop), the

worker’s current activity (e.g., commuting, working) or the current device status (e.g.,
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battery state, type of wireless connection). The worker’s current context may change

quickly, which is especially relevant for MCS applications with non-spatial tasks since

workers may complete such tasks anytime and anywhere. We summarize such factors

again under the term context.

Formally, a worker’s current context is modeled as follows. We denote the number of

personal context dimensions of a worker i ∈ W by Xi and we denote the Xi-dimensional

personal context space by Xi. The context space Xi is assumed to be bounded and

can hence be set to Xi := [0, 1]Xi without loss of generality. Here, we allow each

worker i ∈ W to have an individual personal context space Xi since each worker may

allow the MCS application access to an individual set of context dimensions (e.g., the

worker allows access to a certain set of sensors of the mobile device that are used to

derive her/his context). In each of the Xi context dimensions, the context corresponds

to a value between [0, 1] such that the overall personal worker context is hence a vector

in [0, 1]Xi . In practice, the context information may be derived using data collection

resources from the mobile devices as indicated in Figure 5.1, e.g., based on sensor

readings. Moreover, a pre-processing of the collected data may be needed in order to

bring the feature information into the correct format.

We further call Xi×C = [0, 1]Xi× [0, 1]C ≡ [0, 1]Di the joint (personal and task) context

space of worker i ∈ W , where Di := Xi + C is the dimension of this joint context

space. The joint (personal and task) context of worker i is hence a vector in [0, 1]Di .

The reason for considering the joint context is that the performance of a worker on

a specific task at a specific point in time may depend jointly on the current personal

context and on the task context.

Based on the above notation, for a task t, the task context is denoted by ct ∈ [0, 1]C ,

the personal context of a worker i ∈ Wt at the arrival time of task t is denoted

by xt,i ∈ Xi and the joint (personal and task) context of worker i ∈ Wt is given by the

concatenation (xt,i, ct) ∈ Xi×C. We do not make any assumptions on the nature of the

task context arrival process other than that the sequence {ct}t=1,...,T is not influenced

by decisions about worker selection taken by the MCSP. Moreover, we do not make any

assumptions on the nature of the personal context arrival process of any worker i ∈ W
other than that the sequence {xt,i}{t:i∈Wt} is not influenced by decisions about worker

selection taken by the MCSP.
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5.3.4 Model of Context-Specific Worker Performance

Next, a model of worker performance in dependence of the joint personal and task

context is proposed. The performance of a worker is a function of both (i) the worker’s

willingness to accept a task and (ii) the worker’s quality in completing a task. We

assume that a worker’s quality can take values in a range [qmin, qmax] ⊆ R0,+. Both

the willingness to accept a task and the quality may depend on the worker’s current

personal context and on the task context. Let pi(x, c) denote the performance of

worker i ∈ W with current personal context x ∈ Xi for a task with task context c ∈ C.
The performance can be decomposed into (i) worker i’s decision di(x, c) to accept

(di(x, c) = 1) or reject (di(x, c) = 0) the task and, in case the worker accepts the task,

also on (ii) worker i’s quality qi(x, c) when completing the task. Hence, we can write

pi(x, c) := qi(x, c)di(x, c). (5.1)

The performance pi(x, c) is a random variable whose distribution depends on the dis-

tributions of the random variables di(x, c) and qi(x, c). Since the decision di(x, c) is bi-

nary, it is drawn from a Bernoulli distribution with unknown parameter πi(x, c) ∈ [0, 1].

Here, πi(x, c) = E[di(x, c)] represents worker i’s acceptance rate given the joint con-

text (x, c). The quality qi(x, c) is a random variable with unknown distribution

and we denote its expected value conditioned on di(x, c) = 1 (i.e., task acceptance)

by νi(x, c) := E[qi(x, c)|di(x, c) = 1]. Hence, νi(x, c) represents the average quality of

worker i with personal context x when completing a task of context c after accepting

it. Therefore, the performance pi(x, c) of worker i ∈ W given the joint context (x, c)

has unknown distribution, takes values in [0, qmax] and its expected value satisfies

E[pi(x, c)] = θi(x, c), (5.2)

where θi(x, c) := πi(x, c)νi(x, c).

Based on the above notation, for a task t, given the joint personal and task con-

text (xt,i, ct) ∈ Xi × C of a worker i ∈ Wt, the random variable describing the

performance of this worker on this task is given by pi(xt,i, ct) and its expected

value is given by θi(xt,i, ct). We assume that for any task t ∈ {1, ..., T}, the ran-

dom variables {pi(xt,i, ct)}i∈Wt are independent of each other and each random vari-

able pi(xt,i, ct) is independent of past decisions about worker selection taken by the

MCSP and of previous worker performances. Moreover, by pi(xt,i, ct, t), we denote

the actual instantaneous performance of a worker i ∈ Wt that has been requested to

complete task t, i.e., the realization of the random variable pi(xt,i, ct) for task t.
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5.3.5 Architecture of Decision Making

We propose to use a hierarchical architecture of decision making, cf. Section 2.2.3,

by splitting the decision making on the one hand, and the information collection and

learning, on the other hand, between several entities. We use a hierarchical architec-

ture since the workers’ personal contexts should be kept locally in order to keep the

communication overhead small and to protect the workers’ privacy, but at the same

time, the worker selection should be centrally coordinated in order to ensure that the

best workers are selected. In the proposed model, the MCSP is responsible for worker

selection. For selecting suitable workers, context-specific worker performance needs to

be taken into account, however, personal worker context should not be shared with

the MCSP. Therefore, we propose that in the mobile device of each worker, a soft-

ware called local controller (LC) is installed. We denote by LC i the LC of worker i.

Depending on the requirements of the specific MCS application concerning communi-

cation overhead and the requirements of the workers concerning privacy, the LCs may

be owned by different parties. Either the MCSP may own the LCs and in this case,

the LCs could be part of the software of the MCS application. Alternatively, the LCs

may also be included in a separate software that could be owned by either the workers

or by a trusted third party [GWG+16, TGFS17]. The proposed model and algorithm

are agnostic to the specific owners of the LCs, as long as each LC has access to its

corresponding worker’s personal context. Moreover, we propose that an LC has the

following functionality:

• The LC can reach its worker via the user interface of the MCS application.

• The LC can communicate with the MCSP and, if needed, also with task owners.

• The LC can perform low complexity processing, such as storing, comparing and

updating variables and performing simple arithmetic operations on them.

Using this functionality, in the algorithm proposed in this chapter, the LC of a worker

is responsible for regularly executing the following tasks sequentially:

(i) Observe the worker’s context

(ii) Estimate the worker’s context-specific performance and send it to the MCSP

(iii) Observe the worker’s instantaneous performance when the worker was requested

by the MCSP to complete a task
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In this way, over time, the LC learns its worker’s context-specific expected performance

based on observations and the MCSP is enabled to select an appropriate subset of

workers for each task.

5.3.6 Action Model

In the proposed model, the MCSP selects workers for each task. This is formalized in

terms of actions taken by the MCSP as follows. We introduce a binary variable yt,i for

each task t ∈ {1, ..., T} and each worker i ∈ Wt, where

yt,i :=

{
1, if worker i is requested to complete task t,

0, otherwise.
(5.3)

As described in Section 5.3.2, for task t, based on the budget bt and the price et per

worker, the MCSP may select mt := b bt
et
c ∈ {1, ...,W} workers. Therefore, the following

constraints have to hold: ∑
i∈Wt

yt,i ≤ mt ∀t = 1, ..., T. (5.4)

We denote the set of workers that the MCSP selects and requests to complete task t

by

St := {i ∈ Wt : yt,i = 1}. (5.5)

5.4 Problem Formulation

5.4.1 Formal Problem Statement

In this section, based on the models presented in Section 5.3, we formulate the prob-

lem of context-aware worker selection for maximizing the worker performance in MCS

applications with non-spatial tasks to be solved in hierarchical fashion by the MCSP

and the LCs. As stated above, we assume that tasks t = 1, ..., T arrive sequentially.

Consider now an arbitrary sequence of T task and worker arrivals, i.e., consider a

sequence of tasks t = 1, ..., T with arbitrary task budgets {bt}t=1,...,T , arbitrary task

contexts {ct}t=1,...,T , arbitrary worker availability {Wt}t=1,...,T and arbitrary worker

contexts {xt,i}i∈Wt,t=1,...,T . The goal of the system of MCSP and LCs is to select work-

ers for each task in such a way that the expected cumulative worker performance up
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to task T is maximized. Based on the action model in Section 5.3.6, the problem

of selecting, for each task, a subset of workers which maximizes the sum of expected

performances given the task budget is given by

max
T∑
t=1

∑
i∈Wt

θi(xt,i, ct)yt,i (5.6)

s.t.
∑
i∈Wt

yt,i ≤ mt ∀t = 1, ..., T

yt,i ∈ {0, 1} ∀i ∈ Wt, ∀t = 1, ..., T.

with yt,i of (5.3), θi(xt,i, ct) as defined in Section 5.3.4 and the constraints from (5.4).

Problem (5.6) includes the expected context-specific worker performances θi(xt,i, ct),

i.e., the expected performances of available workers as functions of their joint personal

and task contexts.

5.4.2 Oracle Solution

First, we analyze Problem (5.6) under the assumption that there would be an entity

that had a priori knowledge about context-specific worker performances and access to

the current personal worker contexts. Hence, only in this section, suppose that there

exists an entity which (i) is an omniscient oracle, knowing the expected performance

of each worker under each joint personal and task context a priori, and that this entity

(ii) is centrally informed about the current personal contexts of all available workers

for each arriving task.

For such an entity, Problem (5.6) corresponds to an ILP problem, cf. Section 2.3.2.2. As

the sub-problems in Problem (5.6) for the different tasks are not coupled, Problem (5.6)

can be decoupled into T independent sub-problems, one for each arriving task. For a

task t, if fewer workers are available than required, i.e., Wt ≤ mt, the trivial optimal

solution of the sub-problem associated to task t is to request all available workers

to complete the task. In contrast, if for a task t, Wt > mt holds, the sub-problem

associated to task t corresponds to a knapsack problem, cf. Section 2.3.2.3, with a

knapsack of capacity mt and with Wt = |Wt| items, where item i ∈ Wt has a unit

weight and a non-negative profit θi(xt,i, ct). Due to the unit weights, the sub-problem

in this case actually is a special case of the knapsack problem that may be solved

efficiently. Indeed, the optimal solution of the sub-problem can be easily computed

in a running time of at most O(W log(W )) as follows. The optimal solution is given

by ranking the available workers in Wt according to their context-specific expected

performances and by selecting the mt highest ranked workers.
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For a task t ∈ {1, ..., T}, we denote an optimal subset of workers to select for the task

by S∗t := {s∗t,1, ..., s∗t,min{mt,Wt}}. Formally, these workers satisfy

s∗t,j ∈ argmax
i∈Wt\

⋃j−1
k=1{s

∗
t,k}
θi(xt,i, ct) for j = 1, ...,min{mt,Wt}, (5.7)

where
⋃0
k=1{s∗t,k} := ∅. Note that several workers may have the same expected perfor-

mance and hence the optimal set of workers may not be unique, which is also captured

here. Moreover, note that an optimal set S∗t of workers for task t depends on the task

budget bt, task context ct, price et, the set Wt of available workers and their personal

contexts {xt,i}i∈Wt , but we write S∗t instead of S∗t (bt, ct, et,Wt, {xt,i}i∈Wt) for brevity.

Let

S∗ := {S∗t }t=1,...,T (5.8)

be the collection of optimal subsets of workers for the collection {1, ..., T} of tasks.

We call this collection the centralized oracle solution, since it requires an entity with a

priori knowledge about expected context-specific worker performances and with access

to personal worker contexts to make optimal decisions.

5.4.3 Contextual Multi-Armed Bandit Formulation

Now, we characterize Problem (5.6) under the conditions actually faced by the MCSP

and LCs. Namely, the set of MCSP and LC do not have a priori knowledge about

expected performances, and the workers’ personal contexts are only locally available

in each mobile device, but may not be shared with the MCSP.

If for an arriving task t, fewer workers are available than required, i.e., Wt ≤ mt, by

simply requesting all available workers (i.e., St =Wt) to complete the task, the MCSP

automatically selects the optimal subset of workers. Otherwise, if Wt > mt holds for an

arriving task t, the MCSP cannot simply solve the sub-problem for task t appearing in

Problem (5.6) like the centralized oracle. This is because on the one hand, it does not

know the expected performances θi(xt,i, ct) and on the other hand, the MCSP cannot

access the workers’ personal contexts. Hence, in this case, a machine-learning-based

approach, cf. Section 2.3.1, is needed since the system of MCSP and LCs can only

learn the workers’ performances by selecting different workers over time and observing

their instantaneous performances.

Considering the problem statement in Section 5.4.1, under the conditions actually faced

by the MCSP and LCs, Problem (5.6) can be understood as a contextual MAB problem
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as follows, cf. Section 2.3.3.4. The MCSP and LC can be understood as a set of agents,

where one of them (the MCSP) needs to sequentially select from a set of actions. In the

considered MCS problem, the set of actions is given by the set W of workers. There is

a sequence of tasks t = 1, ..., T that corresponds to a sequence of rounds faced by the

agents. At the arrival of a task t, only a subset Wt ⊆ W of workers may be available

and hence the set of actions may be different in each round. For each arriving task, the

following events happen sequentially. First, the MCSP receives the task and especially

observes the task context ct. Moreover, the LC of each available worker i ∈ Wt observes

its worker’s personal context xt,i. This corresponds to several contexts revealed to the

agents in the beginning of a round. Secondly, the MCSP selects a subset of min{mt,Wt}
workers from set Wt and requests them to complete the task. This corresponds to an

agent selecting a subset of available actions. Thirdly, each LC of a requested worker

observes the instantaneous performance of the worker. This corresponds to the agents

receiving a reward for each selected action. Taking into account the assumptions about

the arrival processes of the tasks, workers and their performances in Sections 5.3.2 –

5.3.4, Problem (5.6) corresponds to a contextual MAB problem with a similar model

as the one presented in Section 2.3.3.4. The main differences between these two models

are as follows:

• In Problem (5.6), the agent may select several actions per round instead of only

one and the number of actions to be selected may be different in each round.

Therefore, formally, Problem (5.6) is a contextual combinatorial MAB problem,

cf. Section 2.3.3.2. However, since neither the objective function nor the con-

straints in Problem (5.6) are combinatorial, Problem (4.4) is more accurately a

contextual MAB problem with several action selections per round, but not of

combinatorial nature.

• In Problem (5.6), actions may be unavailable in arbitrary rounds, whereas in the

model in Section 2.3.3.4, actions are always available. Therefore, Problem (5.6)

is a contextual MAB problem with sleeping arms, cf. Section 2.3.3.2.

• Instead of one agent as in the model in Section 2.3.3.4, Problem (5.6) has to be

solved cooperatively by several agents, where one coordinating agent (i.e., the

MCSP) selects a subset of actions in each round based on the estimates of a set

of learning agents (i.e., the LCs), where each learning agent observes the context

of one particular action and learns the rewards of this action.

Consequently, a coordination mechanism between the MCSP and LCs needs to be de-

signed in order to enable the LCs to learn their workers’ context-specific performances
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over time and to enable the MCSP to select suitable workers for each task to maximize

the worker performance on this task given its task budget. Specifically, over time, the

system of MCSP and LCs has to use a suitable trade-off between exploration and ex-

ploitation, by, on the one hand, selecting workers about whose performance only little

information is available and, on the other hand, selecting workers who are likely to

have high performance. For each arriving task, the selection of workers depends on the

history of previously selected workers and the corresponding observed performances.

Since observing worker performance requires quality assessments that may be costly,

the number of performance observations should be limited in order to keep the cost for

quality assessment low. An algorithm which maps the history of previously selected

workers and observed performances to the next selections of workers is called a learning

algorithm. The performance of such a learning algorithm can be evaluated by com-

paring its loss with respect to the centralized oracle solution given in (5.8) in terms of

the achieved cumulative worker performance. Formally, for an arbitrary sequence of T

task and worker arrivals, the regret of learning with respect to the centralized oracle

solution is given by

R(T ) = E

 T∑
t=1

min{mt,Wt}∑
j=1

(
ps∗t,j(xt,s∗t,j , ct, t)− pst,j(xt,st,j , ct, t)

). (5.9)

where pst,j(xt,st,j , ct, t) denotes the instantaneous performance of the selected

worker st,j ∈ St, j ∈ {1, ...,min{mt,Wt}}, with personal worker context vector xt,i

for task t with task context ct. Here, the expectation is taken with respect to the se-

lections {St}t=1,...,T made by the learning algorithm and the randomness of the workers’

performances.

Equivalently, one can write the regret R(T ) as

R(T ) =
T∑
t=1

min{mt,Wt}∑
j=1

(
θs∗t,j(xt,s∗t,j , ct)− E[θst,j(xt,st,j , ct)]

)
. (5.10)

5.5 Proposed Algorithm

Based on the formulation as a contextual MAB problem given in Section 5.4.3, we

propose a context-aware hierarchical online learning algorithm for worker selection in

MCS. The algorithm is based on the assumption that a worker’s expected performance

is similar in similar joint personal and task contexts. Therefore, by observing the

task context, a worker’s personal context and her/his performance when requested to
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complete a task, the worker’s context-specific expected performances can be learned

and exploited for future worker selection.

The proposed algorithm is based on the contextual MAB algorithms in [TvdS15a,

TZvdS14,MAvK16,MAvK17] and extends these works as follows:

• While in [TvdS15a,TZvdS14,MAvK16,MAvK17], a learning agent observes a set

of contexts and selects a subset of actions based on these contexts, the proposed

algorithm is decoupled to several learning agents, each observing the context of

one particular action and learning the rewards of this action, and a coordinating

agent, which selects a subset of actions based on the learning agents’ estimates.

In the considered MCS problem, an action corresponds to a worker, the learning

agents correspond to the LCs which learn the performances of their workers, and

the coordinating agent corresponds to the MCSP, which selects workers based on

the performance estimates from the LC.

• While in [TvdS15a,TZvdS14,MAvK16,MAvK17], the same number of actions is

selected per round, the proposed algorithm allows different numbers of actions

to be selected per round. In the considered MCS problem, this corresponds

to allowing different required numbers of workers for different tasks. Hence, in

contrast to [TvdS15a, TZvdS14, MAvK16, MAvK17], the learning speed of the

proposed algorithm is affected by the arrival process of the numbers of actions

to be selected.

• While in [TvdS15a,TZvdS14,MAvK16,MAvK17], each action has the same con-

text space, the proposed algorithm allows each action to have an individual con-

text space of an individual dimension. In the considered MCS problem, this

corresponds to allowing workers to give access to individual sets of context di-

mensions. Therefore, in contrast to [TvdS15a,TZvdS14,MAvK16,MAvK17], the

granularity of learning may be different for different actions.

• Finally, while in [TvdS15a,TZvdS14,MAvK16,MAvK17], all actions are available

in any round, the proposed algorithm allows actions to be unavailable in arbi-

trary rounds. In the considered MCS problem, this corresponds to allowing that

workers may be unavailable. Hence, in contrast to [TvdS15a,TZvdS14,MAvK16,

MAvK17], the best subset of actions in a certain round depends on the specific

set of available actions in this round.

We call the proposed algorithm the hierarchical context-aware learning (HCL) algo-

rithm. Fig. 5.2 shows an overview of the main steps of HCL for a task t ∈ {1, ..., T}
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Figure 5.2. Overview of operation of HCL algorithm for task t.

in an exemplary MCS application with W = 6 workers. A short summary of HCL is

given next. When a task arrives at the MCSP, the MCSP broadcasts the correspond-

ing task context to the LCs. Upon receiving information about a task, the LC of an

available worker first observes its worker’s personal context. Then, on the one hand, if

its worker’s performance has been observed sufficiently often before, given the current

joint personal and task context, the LC relies on previous performance observations

to estimate its worker’s performance and sends a performance estimate to the MCSP.

On the other hand, if its worker’s performance has not been observed sufficiently often

before, the LC informs the MCSP that its worker has to be explored. Subsequently,

based on the messages received from the LCs of available workers, the MCSP selects a

subset of workers. The LC of a worker selected by the MCSP then requests its worker

to complete the task and observes whether or not the worker accepts the task. In

case the worker was selected for exploration purposes and then accepts the task, the

LC additionally observes the quality of the completed task. How exactly the quality

of the task is observed, depends on the type of quality assessment used by the MCS

application. For example, the LC may get a quality rating from the task owner or

the LC may generate an automatic quality assessment using either local software or

the resources of a cloud. The reason for only making a quality assessment when a

worker was selected for exploration purposes is that quality assessment may be costly

and therefore, HCL keeps the number of quality assessments low. Clearly, if quality

assessment in the MCS application is cheap, HCL can be adapted to always observe

worker quality, which may increase the learning speed.

In HCL, a worker’s personal contexts and performance observations in terms of task

acceptance and quality are only locally stored by the LC. Thereby, (i) personal context

is kept locally, (ii) the space required for storing worker information at the MCSP is kept

low, (iii) if necessary, task completion and result transmission may be directly handled
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between the LC and the task owner, (iv) workers are assigned to tasks which they are

interested in and at which they are good, but without the need to share their context

information, and (v) even though an LC has to keep track of its worker’s personal

contexts and performance observations, the computation and memory overhead for

each LC is small.

Next, HCL is discussed in more detail, starting with the operation of the LCs. The

pseudocode of HCL for LC i is given in Algorithm 5.1. First, for synchronization

purposes, LC i receives the finite number T of tasks to be considered, the task context

space C and its dimension C from the MCSP. In addition, LC i checks to which

context dimensions of worker i it has access in order to define the personal context

space Xi and its dimension Xi. Thereafter, LC i sets the joint context space to Xi ×C
with size Di = Xi + C. Moreover, LC i needs to set a parameter hT,i ∈ N and a

control function Ki : {1, ..., T} → R+ during initialization, which are both described

below. Then, LC i initializes a uniform partition QT,i of worker i’s joint context

space [0, 1]Di . The partition consists of (hT,i)
Di Di-dimensional hypercubes of equal

size 1
hT,i
× . . . × 1

hT,i
. Hence, the granularity of the partition of the context space is

determined by the parameter hT,i. Additionally, LC i initializes a counter Ni,q(t) for

each hypercube q ∈ QT,i. The counter Ni,q(t) represents the number of times before

(i.e., up to, but not including) task t, in which worker i was selected to complete a task

for exploration purposes when her/his joint context belonged to hypercube q. Finally,

for each hypercube q ∈ QT,i, LC i initializes the estimate θ̂i,q(t), which represents the

estimated performance of worker i for contexts in hypercube q at the arrival of task t.

For each of the arriving tasks t = 1, ..., T , LC i executes the following steps. LC i

only takes actions for an arriving task t, if its worker i is currently available, i.e.,

if i ∈ Wt holds. This is because if a worker is unavailable, it may mean that she/he is

offline. Therefore, we consider the LC to only take actions if its worker is available. If

this is the case, LC i first receives the task context ct from the MCSP. Additionally,

LC i observes worker i’s current personal context xt,i and determines the hypercube

from QT,i to which the joint context (xt,i, ct) belongs. If there are multiple such hy-

percubes, one of them is randomly selected. We denote this hypercube by qt,i ∈ QT,i.
It satisfies (xt,i, ct) ∈ qt,i. Subsequently, LC i checks if worker i has not been selected

sufficiently often before when worker i’s joint personal and task context belonged to

hypercube qt,i. For this purpose, LC i compares the counter Ni,qt,i(t) with Ki(t),

where Ki : {1, ..., T} → R+ is a deterministic, monotonically increasing control func-

tion, set in the beginning of the algorithm. On the one hand, if worker i has been

selected sufficiently often before (Ni,qt,i(t) > Ki(t)), LC i relies on the estimated per-

formance θ̂i,qt,i(t), and sends it to the MCSP. On the other hand, if worker i has

not been selected sufficiently often before (Ni,qt,i(t) ≤ Ki(t)), LC i sends an “explore”
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Algorithm 5.1 HCL@LC: Local Controller i of Worker i.

1: Receive input from MCSP: T , C, C
2: Receive input from worker i: Xi, Xi

3: Set joint context space Xi × C, set Di = Xi + C
4: Set parameter hT,i ∈ N and control function Ki : {1, ..., T} → R+

5: Initialize context partition: Create partitionQT,i of [0, 1]Di into (hT,i)
Di hypercubes

of identical size
6: Initialize counters: For all q ∈ QT,i, set Ni,q = 0

7: Initialize estimated performance: For all q ∈ QT,i, set θ̂i,q = 0
8: for each t = 1, ..., T do
9: if i ∈ Wt then

10: Receive task context ct
11: Observe worker i’s personal context xt,i
12: Find the set qt,i ∈ QT,i such that (xt,i, ct) ∈ qt,i
13: if Ni,qt,i > Ki(t) then

14: Send messagei := θ̂i,qt,i to MCSP
15: else
16: Send messagei := “explore” to MCSP
17: end if
18: Wait for MCSP’s worker selection
19: if MCSP selects worker i then
20: Give task context ct to worker i
21: Request worker i to complete task t
22: Observe worker i’s decision d
23: if messagei == “explore” then
24: if d == 1 then
25: Observe worker i’s quality q, set p := q
26: else
27: Set p := 0
28: end if

29: θ̂i,qt,i =
θ̂i,qt,iNi,qt,i+p

Ni,qt,i+1

30: Ni,qt,i = Ni,qt,i + 1
31: end if
32: end if
33: end if
34: end for
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message to the MCSP. The control function Ki(t) is hence used to decide whether a

worker should be selected for exploration purposes (to achieve reliable estimates) or

whether the worker’s performance estimates are already reliable and can be exploited.

Since the trade-off between exploration and exploitation is hence determined by the

control function, the choice of the control function is crucial to ensure a good result of

the learning algorithm. A suitable choice of the control function will be proposed in

Section 5.6.1.

Thereafter, LC i waits for the MCSP to take care of the worker selection. On the one

hand, if the MCSP does not select worker i, LC i does not take further actions. On the

other hand, if the MCSP selects worker i, LC i hands the task context information ct to

worker i via the user interface of the MCS application and requests worker i to complete

the task. Then, LC i observes whether or not worker i accepts the task. If worker i was

selected for exploration purposes, LC i makes an additional update of a counter and of

an estimate. For this purpose, if worker i accepted the task, LC i additionally observes

worker i’s quality in completing the task (e.g., by requesting a quality rating from the

task owner or by generating an automatic quality assessment) and sets the observed

performance to the observed quality. If worker i declined the task, LC i sets the

observed performance to 0. Then, based on the observed performance, LC i computes

the estimated performance θ̂i,qt,i(t + 1) for hypercube qt,i and the counter Ni,qt,i(t +

1). Note that in Algorithm 5.1, the argument t is omitted from counters Ni,q(t) and

estimates θ̂i,q(t) since it is not necessary to store their respective previous values.

By definition of HCL, the estimated performance θ̂i,q(t) corresponds to the product of

(i) the relative frequency with which worker i accepted tasks when the joint context be-

longed to hypercube q and (ii) the average quality in completing these tasks. Formally,

the estimate θ̂i,q(t) is computed as follows. Let Ei,q(t) be the set of observed perfor-

mances of worker i before task t when worker i was selected for a task and the joint

context was in hypercube q. If before task t, worker i’s performance has never been

observed before for a joint context in hypercube q, we have Ei,q(t) = ∅ and θ̂i,q(t) := 0.

Otherwise, the estimated performance is given by θ̂i,q(t) := 1
|Ei,q(t)|

∑
p∈Ei,q(t) p. Note

that the set Ei,q(t) does not appear in HCL since the estimated performance θ̂i,q(t) can

be computed based on θ̂i,q(t− 1), Ni,q(t− 1) and on the performance for task t− 1.

Next, we discuss the operation of the MCSP. The pseudocode of HCL for the MCSP

is given in Algorithm 5.2. First, for synchronization purposes, the MCSP informs the

LCs about the finite number T of tasks to be considered, the task context space C
and its dimension C. Then, for an arriving task t with budget and task context given

by (bt, ct), the MCSP computes the maximum required number mt of workers, based
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Algorithm 5.2 HCL@MCSP: Worker Selection at MCSP.

1: Send input to LCs: T , C, C
2: for each t = 1, ..., T do
3: Receive task t with budget and task context (bt, ct)
4: Compute mt = b bt

et
c

5: Set Wt = ∅
6: Set Wue

t = ∅
7: Broadcast task context ct
8: for each i = 1, ...,W do
9: if Receive messagei from LC i then

10: Wt =Wt ∪ {i}
11: if messagei == “explore” then
12: Wue

t =Wue
t ∪ {i}

13: end if
14: end if
15: end for
16: Compute Wt = |Wt|
17: if Wt ≤ mt then . SELECT ALL
18: Select all Wt workers from Wt

19: else
20: Compute Wue,t = |Wue

t |
21: if Wue,t == 0 then . EXPLOITATION
22: Rank workers in Wt according to estimates from (messagei)i∈Wt

23: Select the mt highest ranked workers
24: else . EXPLORATION
25: if Wue,t ≥ mt then
26: Select mt workers randomly from Wue

t

27: else
28: Select the Wue,t workers from Wue

t

29: Rank workers in Wt \ Wue
t according to estimates from

(messagei)i∈Wt\Wue
t

30: Select the (mt −Wue,t) highest ranked workers
31: end if
32: end if
33: end if
34: Inform LCs of selected workers
35: end for
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on the budget bt and the corresponding price et per worker. Moreover, the MCSP ini-

tializes two sets. First, the set Wt represents the set of available workers when task t

arrives. Secondly, the set Wue
t is the so-called set of under-explored workers, contain-

ing all available workers which have not been selected sufficiently often before given

their respective current joint personal and task context. After broadcasting the task

context ct, the MCSP waits for messages from the LCs. When the MCSP receives a

message from an LC, it adds the corresponding worker to the setWt of available work-

ers. In addition, the MCSP checks whether a received message is an “explore” message.

If this is the case, the MCSP additionally adds the corresponding worker to the setWue
t

of under-explored workers. Note that by the definitions of Algorithms 5.1 and 5.2, the

set of under-explored workers is hence given by

Wue
t = {i ∈ Wt : Ni,qt,i(t) ≤ Ki(t)}. (5.11)

Next, the MCSP computes the number Wt of available workers. If Wt ≤ mt holds,

i.e., at most the required number of workers is available, the MCSP enters a select-all-

workers phase and selects all available workers to complete the task. Otherwise, the

MCSP continues by calculating the number Wue,t := |Wue
t | of under-explored workers.

In case there is no under-explored worker, the MCSP enters an exploitation phase. It

ranks the available workers in Wt according to their estimated performances, which it

received from the respective LCs, and then selects the mt highest ranked workers. This

approach enables the MCSP to make use of context-specific estimated performances

without actually observing the workers’ personal contexts. In case there are under-

explored workers, the MCSP enters an exploration phase. These phases are needed

such that all LCs are able to update their estimated performances sufficiently often.

Depending on the number Wue,t of under-explored workers, two different cases may

occur. Either the number Wue,t of under-explored workers is at least mt, in which case

the MCSP selects mt under-explored workers at random. Or the number Wue,t of under-

explored workers is smaller than mt, in which case the MCSP selects all Wue,t under-

explored workers. Since the MCSP may select mt −Wue,t additional workers, it ranks

the available sufficiently-explored workers according to their estimated performances

received from the respective LCs, and then additionally selects the (mt−Wue,t) highest

ranked workers. Hence, when the number of under-explored workers is small, additional

exploitation is carried out in exploration phases.

After worker selection, the MCSP informs the LCs of selected workers that their workers

should be requested to complete the task. Note that since the MCSP does not have

to keep track of the workers’ decisions, the LCs may handle the contact with the task

owner directly (e.g., the task owner may send detailed task instructions directly to an
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LC of a selected worker; after task completion, the LC may send the result directly to

the task owner).

5.6 Properties of Proposed Algorithm

5.6.1 Upper Bound on Regret

The performance of HCL is evaluated by analyzing its regret with respect to the cen-

tralized oracle solution, as defined in (5.10). The theorem given below proves that

the regret of HCL is sublinear in T , i.e., there exists γ < 1 for which R(T ) =

O(T γ) holds. Hence, HCL converges to the centralized oracle solution for T → ∞,

since limT→∞
R(T )
T

= 0 holds. The regret bound is derived based on the assumption

that under a similar joint personal and task context, a worker’s expected performance is

also similar. This similarity assumption can be formalized as follows, cf. Section 2.3.3.4.

Assumption 5.1 (Hölder continuity assumption). There exist L > 0, 0 < α ≤ 1 such

that

|θi(x, c)− θi(x̃, c̃)| ≤ L||(x, c)− (x̃, c̃)||αDi (5.12)

holds for all joint contexts (x, c), (x̃, c̃) ∈ Xi × C ≡ [0, 1]Di of all workers i ∈ W,

where || · ||Di denotes the Euclidean norm in RDi.

Note that Assumption 5.1 is required to derive the upper bound on the regret. In

contrast, HCL may also be applied to data which does not satisfy this similarity as-

sumption. In this case, the regret bound may, however, not hold.

The theorem given below shows that the regret of HCL is sublinear in T .

Theorem 5.1 (Bound for R(T )). Given that Assumption 5.1 holds, when LC i, i ∈ W,

runs Algorithm 5.1 with parameters Ki(t) = t
2α

3α+Di log(t), t = 1, ..., T , and hT,i =

dT
1

3α+Di e, and the MCSP runs Algorithm 5.2, the regret R(T ) is bounded by

R(T ) ≤ qmaxW
∑
i∈W

2Di
(

log(T )T
2α+Di
3α+Di + T

Di
3α+Di

)
(5.13)

+
∑
i∈W

2qmax

(2α +Di)/(3α +Di)
T

2α+Di
3α+Di + qmaxW

2π
2

3
+ 2

∑
i∈W

LD
α
2
i T

2α+Di
3α+Di .

Hence, the leading order of the regret is O
(
T

2α+Dmax
3α+Dmax log(T )

)
, where Dmax :=

maxi∈W Di.
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The proof of Theorem 5.1 is given in Appendix A.7. The idea of the proof is as follows.

First, the regret is decomposed into three terms. The three terms represent the regret

due to select-all-workers phases, exploration phases and exploitation phases. Each of

the three terms is then bounded separately. First, it is shown that the regret due to

select-all-workers phases is actually always zero, since the MCSP always selects the

optimal set of workers in these phases. Bounding the regret due to exploration phases

works as follows. The loss due to selecting suboptimal workers in exploration phases

may be upper-bounded by a constant. Moreover, it can be shown that the number of

exploration phases is limited and can be bounded sublinearly in T , given an appropriate

choice of the input parameters of the algorithms. Overall, this leads to a sublinear

upper bound on the regret due to exploration phases. The idea for bounding the regret

due to exploitation phases is as follows. First, one distinguishes between two different

types of exploitation phases, depending on whether the estimated performance θ̂i,qt,i(t)

of each available worker i ∈ Wt in the current hypercube qt,i is “close” to its expected

value E[θ̂i,qt,i(t)]. Then, for exploitation phases in which the latter holds true, one

can show that even if a suboptimal set of workers is selected, the loss cannot be very

large, but can in fact be bounded sublinearly in T , given an appropriate choice of

input parameters. For the second type of exploitation phases, the loss due to selecting

suboptimal workers is upper-bounded by a constant. Moreover, one can show that the

number of this type of exploitation phases is limited by a sublinear bound in T given

an appropriate choice of input parameters. Overall, this leads to a sublinear upper

bound on the regret due to exploitation phases. Then, the overall regret bound follows

by setting the appropriate input parameters in the algorithms.

The regret bound given in Theorem 5.1 is sublinear in T , i.e., HCL converges to the

optimal worker selection strategy in the sense that when the number T of tasks goes to

infinity, the averaged regret R(T )
T

diminishes. Moreover, since Theorem 5.1 is applicable

for any finite number T of tasks, it characterizes how fast HCL is learning.

5.6.2 Computational Complexity

Here, we analyze the computational complexity of the proposed algorithm for handling

one task t. First, the computational complexity of Algorithm 5.1, executed by the

LC of a worker i ∈ W is analyzed as a function of the dimension Di of worker i’s

joint context space. For this purpose, we identify the most computationally expensive

procedures in the algorithm. The complexity of line 10 in Algorithm 5.1 does not

grow with Di, and hence the computational complexity of this line is O(1). Observing

worker i’s personal context has a computational complexity that grows as O(Di) since
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each entry of the context vector has to be accessed once. Finding the hypercube in

the partition of the context space to which the joint context belongs, has a complexity

that grows as O(Di). This is because one can give a separate index to each hypercube

in each context dimension and then compute the index of the hypercube to which a

context vector belongs in each of the Di context dimension once and independently of

the other dimensions. The procedures in the remaining lines of Algorithm 5.1 do not

grow with Di and are hence of order O(1). Overall, the computational complexity of

the proposed HCL algorithm for the LC of worker i grows hence as O(Di), i.e., it grows

only linearly with the dimension of the context space.

Next, the computational complexity of Algorithm 5.2 is analyzed as a function of the

number W of workers. The complexity of lines 3-7 in Algorithm 5.1 does not grow

with W , and hence the computational complexity of these lines is O(1). Determining

the set Wt of available workers and the set Wue
t of under-explored workers in lines 8-

15 has a complexity that grows as O(W ). This is because each worker needs to be

considered at most once for each of the two sets. Lines 16 and 20 have a computational

complexity that grows at most as O(W ) by considering each worker at most once.

Lines 17, 21 and 25 do not grow with W and their complexity hence grows as O(1).

Selecting workers in either line 18, 23, 26 or 28 and 30 has a computational complexity

of O(W ) by considering at most each worker once. Ranking the workers in line 22 or

line 29 has a computational complexity that grows as O(W logW ) since at most W

workers need to be sorted [CLRS09]. Hence, the computational complexity of the

proposed HCL algorithm for the MCSP is hence of order O(W logW ), i.e., it has a

log-linear complexity with respect to the number of workers.

5.6.3 Local Memory Requirements

We study the required local memory size in the mobile device of a worker when the

LC executes Algorithm 5.1. In Algorithm 5.1, LC i stores the counters Ni,q and es-

timates θ̂i,q for each q ∈ QT,i. Using the parameters from Theorem 5.1, the number

of hypercubes in the partition QT,i is (hT,i)
Di = dT

1
3α+Di eDi ≤ (1 + T

1
3α+Di )Di . Hence,

the number of variables to store in the mobile device of worker i is upper-bounded

by 2 · (1 + T
1

3α+Di )Di . Therefore, the required memory size depends on the num-

ber Di = Xi +C of context dimensions. If a worker allows access to a high number Xi

of personal context dimensions and/or the number C of task context dimensions is

large, HCL learns the worker’s context-specific performance with finer granularity and

therefore the assigned tasks are more personalized, but also the required local memory

size increases.
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5.6.4 Communication Requirements

Next, we deduce the communication requirements of HCL from its main operation

steps. First, for a task t, the MCSP broadcasts the task context to the LCs, which

is one vector of dimension C (i.e., C scalars), assuming that the broadcast reaches all

workers in a single transmission. Subsequently, the LCs of available workers send their

workers’ estimated performances to the MCSP. This corresponds to Wt scalars to be

transmitted, i.e., one scalar sent by each LC of an available worker. Finally, the MCSP

informs selected workers about its decision, which corresponds to mt scalars sent by

the MCSP. Therefore, in total, a number C + Wt + mt of scalars are transmitted for

task t. Among these, C + mt scalars are transmitted by the MCSP and one scalar is

transmitted by each mobile device of an available worker.

In order to evaluate whether the hierarchical approach of HCL for decision making

induces communication overhead compared to a centralized approach, we now derive

the communication requirements of a corresponding centralized approach for context-

aware worker selection. In such a centralized approach, for each task, the personal

contexts of available workers would be collected in the MCSP, which would then select

workers based on the task and personal contexts and finally inform selected workers

about its decision. The communication requirements of this centralized approach are

hence as follows. First, for a task t, the LC of each available worker i sends the current

worker context to the MCSP, which is a vector of dimension Di (i.e., Di scalars). In this

step, in sum, a number
∑

i∈Wt
Di of scalars are hence transmitted. Then, after worker

selection, the MCSP requests selected workers to complete the task, which corresponds

to mt scalars sent by the MCSP. Finally, the MCSP broadcasts the task context to

the selected workers, which is one vector of dimension C (i.e., C scalars), assuming

that the broadcast reaches all addressed workers in a single transmission. Therefore,

in total, a number
∑

i∈Wt
Di + mt + C of scalars are transmitted for task t. Among

these, C +mt scalars are transmitted by the MCSP and Di scalars are transmitted by

the mobile device of each available worker i ∈ Wt.

Comparing now HCL with the centralized approach, the mobile device of any worker i ∈
W with Di > 1 has to transmit less data using HCL than using the centralized ap-

proach. Moreover, under the assumption that any broadcast reaches all addressed

workers using one single transmission, using HCL instead of the centralized approach

reduces the sum communication requirements (for all mobile devices and for the MCSP

in sum) by an amount of
∑T

t=1

(∑
i∈Wt

Di −Wt

)
≥ 0 scalars since Di ≥ 1 for all i ∈ W .

This shows that (i) the sum communication requirements of using HCL are at most as

high as that of the centralized approach, and (ii) the more context dimensions the LCs
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are allowed to access, the lower are the communication requirements of HCL compared

to an equivalent centralized approach.

5.6.5 Worker Quality Assessment Requirements

HCL explicitly takes into account that quality assessments may be costly by only

requesting a quality assessment if a worker is selected for exploration purposes. In the

sequel, we give an upper bound on the number Ai(T ) of quality assessments per worker

up to task T .

Corollary 5.1 (Bound for number of quality assessments up to task T ). Given that

Assumption 5.1 from Section 5.6.1 holds, when LC i, i ∈ W, runs Algorithm 5.1

with the parameters given in Theorem 5.1, and the MCSP runs Algorithm 5.2, the

number Ai(T ) of quality assessments of each worker i up to task T is upper-bounded by

Ai(T ) ≤
(

1 + T
1

3α+Di

)Di (
1 + log(T )T

2α
3α+Di

)
. (5.14)

The proof of Corollary 5.1 is given in Appendix A.8. The proof of Corollary 5.1 is based

on the proof of Theorem 5.1 as follows. Since a quality assessment is only requested

in HCL if a worker is selected for exploration purposes, it is sufficient to derive an

upper bound on the number of times a worker can at most be selected for exploration

purposes. In the proof of Theorem 5.1, it is shown how the number of exploration

phases per worker can be upper-bounded sublinearly in T . This upper bound is then

used to prove Corollary 5.1. From Corollary 5.1, we see that the number of quality

assessments per worker is sublinear in T . Hence, limT→∞
Ai(T )
T

= 0 holds, so that

for T →∞, the average rate of required quality assessments approaches zero.

5.7 Numerical Results

5.7.1 Simulation Setup

5.7.1.1 Synthetic and Real Data

We evaluate HCL by comparing its performance to several reference algorithms in

simulations based on both synthetic as well as real data. The difference between
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the two approaches lies in the arrival processes of workers and their contexts. To

produce synthetic data, we generate workers and their contexts based on predefined

distributions described below. In case of real data, similar to the approaches in [KS12,

uHC14, ZC17], we use a data set from Gowalla [CML11]. Gowalla was a location-

based social network where users shared their locations by checking in at “spots”,

i.e., certain places in their vicinity. We use the check-ins from the Gowalla data set

to simulate the arrival process of workers and their contexts. The Gowalla data set

used here consists of 6 442 892 check-ins of 107 092 distinct users over the period of

February 2009 to October 2010. Each entry of the data set consists of the form (User

ID, Check-in Time, Latitude, Longitude, Location ID). Similar to [ZC17], we first

extract the check-ins in New York City, which leaves a subset of 138 954 check-ins

of 7115 distinct users at 21 509 distinct locations. This resulting Gowalla-NY data set

is used for the simulations below. Figures 5.3(a) and 5.3(b) show the distributions of

the total number of check-ins per user and the number of distinct locations visited per

user in the Gowalla-NY data set, respectively.

For both synthetic and real data, we simulate an MCSP, to which a set of W = 100

workers belongs. For synthetic data, 100 workers are created in the beginning. For

real data, we randomly select 100 users from the Gowalla-NY data set, which represent

the 100 workers of the MCS application. Then, we use this reduced Gowalla-NY data

set containing the check-ins of 100 users.

5.7.1.2 Task Properties

The task context is assumed to be uniformly distributed in C = [0, 1] (i.e., C = 1).

Task owners have to pay a fixed price et of either 0.75 or 1 monetary units per re-

quested worker that completes a task t, depending on whether the task context ct lies

in either [0, 0.5] or (0.5, 1]. The quality of a completed task lies in the range qmin = 0

and qmax = 5. The task budget is sampled from a normal distribution with expected

value 20 and standard deviation of 5, truncated between 1 and 100.

5.7.1.3 Worker Availability

For synthetic data, we let each worker be available with a probability of ρ = 0.7 (default

value) for each arriving task. For the real data, we use a Binomial distribution with

parameters W = 100 and ρ = 0.7 (default value) to sample the number of available

workers Wt for an arriving task. In this way, the number of available workers in our
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(a) Distribution of total number of check-ins of users in the data set.
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(b) Distribution of number of distinct locations visited by users in the data set.

Figure 5.3. Statistics of Gowalla-NY data set.
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experiments using the real and the synthetic data are distributed in the same way.

For the real data, having sampled Wt, we randomly draw samples from the reduced

Gowalla-NY data set (consisting of the check-ins of 100 users) until these samples

contain Wt distinct users. These Wt sampled users correspond to the available workers

at the arrival of task t. Hence, users with higher number of check-ins in the reduced

Gowalla-NY data set translate to workers that are more often available for the MCSP.

5.7.1.4 Worker Context

The personal context space of worker i is set to Xi = [0, 1]2 (i.e., Xi = 2). The first

personal context dimension refers to the worker’s battery state, which is sampled from

a uniform distribution in [0, 1]. The second personal context dimension refers to the

worker’s location, which is sampled differently in case of synthetic and real data. For

synthetic data, the worker’s location is sampled from 5 different (personal) locations,

using a weighted discrete distribution with probabilities {1
2
, 1
3
, 1
12
, 1
24
, 1
24
} to represent

the fact that workers may spend more or less time using the MCS application in

different places (e.g., at home more often than at work). For real data, we set the

worker’s location to be the check-in location of the respective user from the sample. If

a user was sampled several times until we sampled Wt distinct users, we choose her/his

first sampled check-in location.

5.7.1.5 Expected Worker Performance

We use two different models to generate expected worker performance.

Discrete Performance Model The joint personal and task context space Xi × C
(of dimension Di = 3) is split into a uniform grid. For synthetic data, the space is

split into 5 identical parts along each of the 3 dimensions, i.e., 5 · 5 · 5 = 125 subsets

of Xi × C are created. For real data, along the dimensions of task context and battery

state, the context space is split into 5 identical parts each, but along the dimension of

location context, the context space of worker i is split into li identical parts, where li

corresponds to the number of distinct locations visited by the corresponding user from

the reduced Gowalla-NY data set. Hence, 5 · 5 · li subsets are created. Then, for both

synthetic and real data, in each of the subsets, the expected performance of a worker

is a priori sampled uniformly at random from [0, 5]. Note that for the real data, since

the expected performance differs per visited location, workers with higher number of

visited locations have a higher number of different context-specific performances.
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Hybrid Performance Model We assume a continuous dependency of the expected

performance on two of the context dimensions. Let x
(1)
i and x

(2)
i be worker i’s battery

state and location, respectively, and let c be the task context. We assume that the

expected performance θi of worker i is given by

θi

(
c, x

(1)
i , x

(2)
i

)
= qmax · wi

(
x
(2)
i

)
· f̄µi,σ2

i
(c) ·

√
x
(1)
i , (5.15)

where wi

(
x
(2)
i

)
is a (discrete) location-specific weighting factor that is a priori sam-

pled uniformly between [0.5, 1] for each of worker i’s (finitely many) locations. More-

over, f̄µi,σ2
i

is a truncated Gaussian probability density function with mean µi and stan-

dard deviation σi, which has been normalized such that its maximum value equals 1.

For worker i, the mean µi is a priori sampled uniformly from [0.1, 0.9] and the standard

deviation is set to σi = 0.1 ·µi. Hence, the expected performance is a continuous func-

tion of task context and battery state. The hybrid model has the following intuition.

The expected performance of a worker is location-specific. Along the task context, the

expected performance varies according to a worker-specific Gaussian distribution, i.e.,

each worker performs well at a specific type of tasks. Finally, the expected performance

grows monotonically with the battery state, i.e., with more battery available, workers

are more likely to perform well at tasks.

5.7.1.6 Instantaneous Worker Performance

For each occurring joint worker and task context, the instantaneous performance of

a worker on an assigned task is sampled by adding noise uniformly sampled from

[−1, 1] to the expected performance in the given context. Note that the noise interval

is truncated to a smaller interval if the expected performance lies close to either 0

or qmax.

5.7.2 Reference Algorithms

The following algorithms are used for comparison.

• The (centralized) Oracle has perfect a priori knowledge about context-specific

expected worker performances and knows the current contexts of all available

workers. For each task t, the Oracle selects the best subset of workers according

to (5.7).
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• LinUCB is an algorithm for contextual MABs, cf. Section 2.3.3.4, that

assumes that the expected performance of a worker is linear in its con-

text [LCLS10], [CLRS11]. In the considered MCS problem, based on a linear

reward function over contexts and previously observed context-specific worker

performances, for each task, LinUCB chooses the mt available workers with high-

est estimated upper confidence bounds on their expected performance. LinUCB

has an input parameter λLinUCB, controlling the influence of the confidence bound.

LinUCB is used in [uHC14] for task assignment in spatial CS.

• AUER is an extension of the well-known UCB1 algorithm, cf. Section 2.3.3.3,

to the sleeping arm case [KNMS10]. It learns from previous observations of

worker performances, but without taking into account context information. In the

considered MCS problem, based on the history of previous observations of worker

performances, AUER selects the mt available workers with highest estimated

upper confidence bounds on their expected performance. AUER has an input

parameter λAUER, which controls the influence of the confidence bound.

• ε-Greedy is an algorithm for the stochastic MAB problem, cf. Section 2.3.3.3,

that learns from the history of reward observations [ACBF02], but without taking

context into account. In the considered MCS problem, ε-Greedy works as follows.

ε-Greedy selects a random subset of available workers with a probability of ε ∈
(0, 1). With a probability of (1 − ε), ε-Greedy selects the mt available workers

with highest estimated performances. The estimated performance of a worker is

computed as the sample mean of her/his previous performances.

• Myopic is a heuristic algorithm that learns only from the last interaction with

each worker. For task 1, it selects a random subset of m1 workers. For each

of the following tasks, it checks which of the available workers have previously

accepted a task. If more than mt of the available workers have accepted a task

when requested the last time, Myopic selects out of these workers the mt workers

with the highest performance in their last completed task. Otherwise, Myopic

selects all of these workers and an additional subset of random workers so that

in total mt workers are selected.

• Random selects a random subset of mt available workers for each task t.

Note that we have adapted the MAB algorithms LinUCB, AUER and ε-Greedy as

these algorithms would have originally selected only one worker per task, while we

required them to instead select mt workers per task. Moreover, in the list above, we

described the behavior of the five reference algorithms for the case mt < Wt. In the

case of mt ≥ Wt, we have adapted each of the five algorithms such that it selects all
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Table 5.2. Choice of parameters for different algorithms.

Algorithm Parameter Selected value

HCL λHCL 0.003

LinUCB λLinUCB 1.5

AUER λAUER 0.5

ε-Greedy ε 0.01

available workers. Finally, while we used standard centralized implementations of the

five reference algorithms, they could also be decoupled to a hierarchical setting like the

one used by HCL.

5.7.3 Parameter Selection

The reference algorithms LinUCB, AUER and ε-Greedy each require an input param-

eter that affects the performance of the respective algorithm. Moreover, also in HCL,

where we set α = 1, choose hT,i = dT
1

3+Di e, i ∈ W , as in Theorem 5.1, and set the

control function to Ki(t) = λHCL · t
2α

3α+Di log(t), t = 1, ..., T , i ∈ W , we have included

the factor λHCL ∈ (0, 1] into the control function as an additional input parameter to

reduce the number of exploration phases. In order to find an appropriate input param-

eter for each of the four algorithms, we first generate 20 synthetic instances using the

discrete performance model, where each instance consists of a sequence of T = 10 000

task and worker arrivals sampled according to Section 5.7.1. Then, for each algorithm,

we make a parameter sweeping, by running the algorithm for a range of different in-

put parameters, each time averaging the results over the 20 instances, in order to find

the parameter at which the algorithm on average performs best. Table 5.2 shows the

parameters at which each of the algorithms on average performed best, respectively.

These parameters are used in all of the following simulations.

5.7.4 Evaluation Metrics

Each algorithm is run over a sequence of tasks t = 1, ..., T and its result is evaluated

using the following metrics.

• We compute the cumulative worker performance at T achieved by an algorithm,

which is the cumulative sum of performances by all selected workers up to (and
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including) task T . Formally, if the set of selected workers of an algorithm A

for task t is {sAt,j}j=1,...,min{mt,Wt} and psAt,j(t) is the observed performance of

worker sAt,j, the cumulative worker performance at T achieved by algorithm A

is

ΓT (A) :=
T∑
t=1

min{mt,Wt}∑
j=1

psAt,j(t). (5.16)

• As a function of the arriving tasks, we compute the average worker performance

up to t achieved by an algorithm, which is the average performance of all selected

workers up to task t. Formally, it is defined by

1∑t
t̃=1 min{mt̃,Wt̃}

t∑
t̃=1

min{mt̃,Wt̃}∑
j=1

psA
t̃,j

(t̃). (5.17)

5.7.5 Results

5.7.5.1 Results under the Discrete Performance Model

First, we generate 100 synthetic and 100 real instances, in both cases using an availabil-

ity probability of ρ = 0.7 and the discrete performance model. Each instance consists

of a sequence of T = 10 000 task and worker arrivals sampled according to Section 5.7.1.

Then, we run the algorithms on these instances and average the results.

For both synthetic and real data, Table 5.3 compares the cumulative worker perfor-

mance at T of an algorithm A with the one of HCL, by displaying ΓT (A)/ΓT (HCL).

As expected, Random gives a lower bound on the achievable cumulative performance.

Moreover, the results of LinUCB, AUER, ε-Greedy and Myopic lie close to the result

of Random. This shows that algorithms which either do not take context into account

(i.e., AUER, ε-Greedy and Myopic) or have a linearity assumption between context and

performance (i.e., LinUCB), cannot cope with the non-linear dependency of expected

worker performance on context. In contrast, HCL clearly outperforms LinUCB, AUER,

ε-Greedy and Myopic, even though HCL observes worker performance only when re-

questing a worker for exploration purposes, while the other algorithms have access to

worker performance whenever a worker is requested. This is due to the fact that HCL

smartly exploits context. Moreover, HCL reaches a result close to the Oracle, which

is an upper bound to the other algorithms due to its a priori knowledge. Comparing

synthetic and real data, HCL has a better performance on the synthetic data, but it
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Table 5.3. Comparison of cumulative worker performance at T for ρ = 0.7 under the
discrete performance model. For an algorithm A, the table shows ΓT (A)/ΓT (HCL).

Algorithm Synthetic data Real data

Oracle 1.04 1.20

HCL 1.00 1.00

LinUCB 0.69 0.78

AUER 0.68 0.77

ε-Greedy 0.68 0.76

Myopic 0.64 0.74

Random 0.64 0.73

still reaches a good result on the real data, even though using real data, each worker

has her/his own diversity in context arrival and hence in expected performance (since

users in the Gowalla-NY data set have different numbers of visited check-in locations),

i.e., for some workers, the context partition used by HCL may be more coarse than

given by the worker’s real context arrival process, while for others, it may be more fine

granular.

Figures 5.4(a) and 5.4(b) show the average worker performance up to task t as a func-

tion of the sequentially arriving tasks t = 1, ..., T in case of synthetic and real data,

respectively. We see that over the sequence of tasks, the average worker performance

achieved by Random and Oracle stay nearly constant at around 2.5 and 4.1, respec-

tively, for both synthetic and real data. LinUCB, AUER, ε-Greedy and Myopic increase

the average worker performance slightly, starting between 2.4 and 2.5 at t = 1 and end-

ing with average performance of between 2.5 and 2.7 at t = T . On the contrary, HCL

is able to increase the average worker performance from 2.5 at t = 1 up to 3.9 at t = T

for the synthetic data, and from 2.5 at t = 1 up to 3.4 at t = T for the real data. Hence,

HCL learns context-specific worker performances and selects better workers over time.

Finally, we evaluate the impact of worker availability by varying the parameter ρ. For

each value of ρ, we average the results over 100 synthetic instances and over 100 real

instances for T = 10 000, respectively. Figures 5.5(a) and 5.5(b) show the cumulative

worker performance at T achieved by the algorithms for different ρ in case of synthetic

and real data, respectively. For small ρ = 0.1, all algorithms yield approximately the

same performance. This is as expected since given our modeling of task budget, for

small ρ, the number of available workers is often smaller than the required number of

workers. Since each of the algorithms enters a select-all-workers phase in this case, each

algorithm performs optimally. For increasing worker availability ρ, the cumulative per-

formance at T achieved by each of the algorithms increases. However, the gap between
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(a) Experiments with synthetic data.
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(b) Experiments with real data.

Figure 5.4. Average worker performance up to task t for sequence t = 1, ..., T for ρ = 0.7
under the discrete performance model.
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(a) Experiments with synthetic data.
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(b) Experiments with real data.

Figure 5.5. Impact of worker availability on cumulative worker performance at T for
T = 10 000 tasks under the discrete performance model.
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Oracle and HCL on the one hand, and the remaining algorithms on the other hand,

is increasing for increasing ρ. For example, for the synthetic data, at ρ ∈ {0.3, 0.7, 1},
the cumulative performance achieved by HCL corresponds to {1.16, 1.46, 1.49} times

the one achieved by the respective next best algorithm {AUER, LinUCB, LinUCB}.
Moreover, for the real data, at ρ ∈ {0.3, 0.7, 1}, the cumulative performance achieved

by HCL corresponds to {1.07, 1.29, 1.34} times the one achieved by the respective next

best algorithm {ε-Greedy, LinUCB, LinUCB}. Hence, the more workers are available,

the more severe is the effect of not selecting the best workers and only HCL is able to

cope with the more difficult worker selection.

5.7.5.2 Results under the Hybrid Performance Model

Next, we evaluate the different algorithms under the hybrid performance model. Note

that worker performance is differently distributed in the hybrid than in the discrete

performance model, so that the absolute values in the results presented next are not

comparable to those in Section 5.7.5.1.

First, we run the algorithms on 100 real instances for T = 10 000 and ρ = 0.7 using the

hybrid performance model. Figure 5.6 shows the average worker performance up to

task t as a function of the sequentially arriving tasks t = 1, ..., T . The average worker

performance achieved by Random and Oracle stay nearly constant at around 0.29

and 0.88 over the sequence of tasks. AUER, ε-Greedy and Myopic increase the average

worker performance only slightly, from between 0.28 and 0.31 at t = 1 to between 0.36

and 0.42 at t = T . LinUCB has a larger increase from 0.37 at t = 1 to 0.55 at t = T .

Compared to the discrete performance model, LinUCB performs better here due to the

monotonic dependency of expected performance on battery state. Still, HCL has the

largest increase from 0.31 at t = 1 up to 0.73 at t = T .

Finally, we evaluate the impact of worker availability ρ. For each value of ρ, we average

the results over 100 real instances for T = 10 000. Figure 5.7 shows the cumulative

worker performance at T achieved by the algorithms for different ρ. Again, for higher ρ,

the algorithms achieve higher cumulative performances at T . While LinUCB performs

better compared to the results under the discrete performance model, still, the gap in

cumulative performance between HCL and LinUCB is increasing for increasing ρ. For

example, at ρ ∈ {0.3, 0.7, 1}, the cumulative performance achieved by HCL corresponds

to {1.05, 1.32, 1.40} times the one achieved by LinUCB.
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Figure 5.6. Average worker performance up to task t for sequence t = 1, ..., T for ρ = 0.7
under the hybrid performance model using real data.
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Figure 5.7. Impact of worker availability on cumulative worker performance at T
for T = 10 000 tasks under the hybrid performance model using real data.



154 Chapter 5: Mobile Crowdsourcing

5.8 Conclusions

In this chapter, we have investigated how to exploit user resources in wireless networks.

Specifically, we have studied the problem of context-aware worker selection for max-

imizing the worker performance in an MCS application with non-spatial tasks under

missing knowledge about each worker’s individual performance. We have proposed a

model for context-aware worker selection in MCS applications, which allows different

task types to occur and which allows worker performance to be a possibly non-linear

function of the task context and of the worker context. Then, taking a machine-

learning-based approach, we have modeled the problem as a contextual MAB problem.

Moreover, we have proposed a context-aware hierarchical online learning algorithm for

worker selection in MCS applications based on a hierarchical architecture of decision

making. In the proposed algorithm, decision making and information collection is split

among different entities. On the one hand, LCs located in each of the workers’ mobile

devices learn their workers’ performances online over time, by regularly observing the

workers’ personal contexts and their instantaneous performances. On the other hand,

the centralized MCSP selects workers for tasks based on a regular information exchange

with the LCs. This hierarchical coordination approach ensures that the most suitable

workers are requested by the MCSP over time. Moreover, the learning in LCs ensures

that personal worker context can be kept locally and does not need to be shared with

the MCSP, but still workers are offered those tasks they are interested in the most.

The computational complexity of the algorithm has been shown to grow linearly with

the dimension of the context space for the LCs and log-linearly with respect to the

number of workers for the MCSP, respectively. Upper bounds on the local memory

requirements of the proposed algorithm in the mobile devices as well as on the number

of times the quality of each worker must be assessed have been derived. In addition,

it has been shown that the more context dimensions the LCs are allowed to access,

the lower are the communication requirements of the proposed hierarchical approach

compared to an equivalent centralized approach. Besides, we have derived a sublinear

upper bound on the regret, which analytically bounds the loss of the proposed algo-

rithm with respect to an oracle that selects workers optimally under a priori knowledge

about expected worker performance. The regret bound characterizes the learning speed

and proves that the algorithm converges to the optimal worker selection strategy. Fi-

nally, simulations based on synthetic and real data have shown that, depending on

the availability of workers, the proposed algorithm achieves an up to 49% higher cu-

mulative worker performance than the best algorithm from the literature by smartly

exploiting context information for worker selection.
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Chapter 6

Conclusions

6.1 Summary

The contributions of this thesis can be summarized as follows. In this thesis, we

understand wireless networks as networks of distributed connected resources – a recent

paradigm shift that is mandatory in view of the expected increases in the amount

of data traffic, the number of wirelessly connected devices and the requirements of

emerging mobile and IoT applications, all of which will pose heavy burdens on future

wireless networks. Following this new paradigm, new techniques are needed that jointly

consider and leverage different types of resources available in wireless networks, namely,

communication, computation, caching, data collection and user resources, in order to

improve the system performance. In this thesis, it is shown that such new techniques

require context-aware decision making in order to best exploit and allocate the different

available resources. An overview of context-aware decision making is provided, by

discussing context awareness, different types of architectures of decision making and

different designs of decision agents. Finally, three candidate techniques for wireless

networks are studied that jointly consider and leverage different types of resources,

namely, computation offloading in multi-hop wireless networks, caching at the edge of

wireless networks and MCS. For each technique, we identify a fundamental problem

requiring context-aware decision making and we propose a novel framework for context-

aware decision making that we use to solve the problem.

In Chapter 1, the need for the new paradigm of understanding wireless networks as

networks of distributed connected resources is motivated. Moreover, the concept of

context-aware decision making is introduced. Finally, three exemplary techniques are

highlighted that jointly consider and leverage different types of resources of wireless

networks. For each of the three techniques, a fundamental problem is identified and

it is shown that context-aware decision making is required in order to best exploit the

resources.

In Chapter 2, an overview of context-aware decision making in wireless networks is

given. It is briefly outlined of which components a context-aware system model con-

sists and the concept of context is introduced. Moreover, centralized, decentralized

and hierarchical architectures of decision making are introduced and it is discussed for
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which types of problems each of the architectures is suitable. Finally, different designs

of decision agents and corresponding decision-making methods are discussed, with an

emphasis on optimization and MAB frameworks, two specific types of approaches ap-

pearing in this thesis.

In Chapter 3, it is studied how to trade computation resources off against communica-

tion resources in wireless networks by considering computation offloading in multi-hop

wireless networks. Using computation offloading, wirelessly connected devices may off-

load computation tasks to resource-rich servers for remote computation and thereby

reduce their task completion times and their energy consumption. The effect of compu-

tation offloading on the energy consumption of an individual device depends not only

on channel conditions and computing capabilities of the device, but also on task char-

acteristics. Therefore, context information needs to be taken into account for deciding

whether or not to offload a task. In this thesis, for the first time, we consider compu-

tation offloading in multi-hop networks, where network coverage may be extended and

required transmission power reduced. Since communication resources of relay nodes

need to be used and shared for task offloading, offloading decisions are non-trivially

coupled in multi-hop networks. Therefore, in this chapter, the fundamental problem

of context-aware computation offloading for energy minimization in multi-hop wireless

networks is identified. First, a novel model for context-aware computation offloading

in multi-hop wireless networks is proposed that takes into account channel conditions,

computing capabilities of the devices, task characteristics, and battery constraints at

relay nodes. Based on this model, using an optimization-based approach, the prob-

lem is formulated as a multi-dimensional knapsack problem, which takes into account

the non-trivial coupling of offloading decisions. Then, using a centralized architecture

of decision making, a new context-aware greedy heuristic algorithm for computation

offloading in multi-hop networks is proposed. This algorithm enables a controller in

the access point to take offloading decisions based on centrally collected information

about network conditions and task context. The computational complexity of the pro-

posed algorithm is analyzed and it is shown that the communication overhead of the

proposed centralized architecture of decision making is small. Furthermore, numeri-

cal results demonstrate that the proposed algorithm on average reduces the network

energy consumption by 13% compared to the case when no computation offloading

is used. Moreover, the proposed algorithm yields near-optimal results in the consid-

ered offloading scenarios, with a maximal deviation of less than 6% from the global

optimum.

In Chapter 4, it is investigated how to exploit caching resources in order to save com-

munication resources in wireless networks by studying caching at the edge. Caching at

the edge uses caching resources close to the mobile users to cache popular content in
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a placement phase in order to locally serve user requests for this content in a delivery

phase. In this way, the backhaul and cellular traffic may be alleviated and the latency

for the user may be reduced. A crucial question is which content should be locally

cached such that the number of cache hits is maximized. Caching the most popular

content requires knowledge about the content popularity distribution, which is typi-

cally not available a priori. Moreover, local content popularity may vary according to

the preferences of the mobile users connecting to the local cache over time. The users’

preferences, in turn, may depend on their contexts. Finally, cache content placement

needs to take into account the cache operator’s specific objective, which may include

the need for service differentiation. Hence, in this chapter, the fundamental problem of

context-aware proactive caching for cache hit maximization at the edge of the wireless

network under missing knowledge about content popularity is identified. First, a new

model for context-aware proactive caching is introduced, allowing different content to

be favored by different users and including that the content popularity depends on

the user’s context. Then, a machine-learning-based approach is pursued and the prob-

lem is modeled as a contextual MAB problem. Based on this model, a novel online

learning algorithm for context-aware proactive caching is proposed using a decentral-

ized architecture of decision making. This algorithm enables the controller of a local

cache to learn context-specific content popularity online over time and to take service

differentiation into account. The computational complexity and the memory and com-

munication requirements of the proposed algorithm are analyzed and it is shown how

the algorithm can be extended to practical requirements. Furthermore, a sublinear

upper bound on the regret of the algorithm is derived, which characterizes the learning

speed and proves that the proposed algorithm converges to the optimal cache content

placement strategy. Finally, simulations based on real data show that, depending on

the cache size, the proposed algorithm achieves up to 27% more cache hits than the

best algorithm taken from the literature.

In Chapter 5, it is studied how to make use of user resources in wireless networks by

considering MCS. Using MCS, task owners outsource their tasks via an intermedi-

ary MCSP to a set of workers, which allows different stakeholders to leverage human

intelligence for task solving. Since different workers may have different interests and

capabilities, not all of them may perform equally well on a given task. Hence, in order

to maximize the worker performance on a given task under the task budget, the most

suitable workers should be assigned to the task. Assigning the best workers to each task

requires knowledge about the expected performance of each worker, which is typically

not available a priori. Additionally, a worker’s performance may depend not only on

the specific task, but also on the worker’s current context, and this dependency may be

of non-linear nature. Furthermore, due to communication overhead and privacy con-
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cerns of workers, it may be required to keep personal worker context locally instead of

sharing it with the central MCSP, which makes it difficult for the MCSP to select the

most suitable workers. Therefore, in this chapter, the fundamental problem of context-

aware worker selection for maximizing the worker performance in an MCS application

with non-spatial tasks under missing knowledge about each worker’s individual perfor-

mance is identified. First, a novel model for context-aware worker selection in MCS is

proposed that allows different task types to occur and that allows worker performance

to be a possibly non-linear function of the task context and of the worker context.

Based on this model, a machine-learning-based approach is taken and the problem is

modeled as a contextual MAB problem. Using a hierarchical architecture of decision

making, a new context-aware hierarchical online learning algorithm for worker selec-

tion in MCS is proposed. In the proposed algorithm, decision making and information

collection is split among different entities. While a set of LCs located in the workers’

mobile devices learns the workers’ context-specific performances online over time, the

centralized MCSP assigns workers to tasks based on a regular information exchange

with the LCs. This novel hierarchical coordination approach ensures that the most

suitable workers are requested to complete the task by the MCSP over time, while

personal worker context is kept locally in the LCs, thus preserving the workers’ privacy

and reducing communication overhead. The computational complexity of the proposed

algorithm both for the LCs and the MCSP is analyzed. In addition, upper bounds on

the local memory requirements of the proposed algorithm in the mobile devices as well

as on the number of times the quality of each worker must be assessed are derived.

Moreover, it is shown that the more access to worker context is granted to the LCs,

the lower are the communication requirements of the proposed algorithm compared

to an equivalent centralized approach. Furthermore, a sublinear upper bound on the

regret is derived, which characterizes the learning speed and proves that the proposed

algorithm converges to the optimal worker selection strategy. Finally, numerical results

based on synthetic and real data show that, depending on the availability of workers,

the proposed algorithm achieves an up to 49% higher cumulative worker performance

than the best algorithm from the literature.

6.2 Outlook

We end this thesis with an outline of future research directions.

Computation Offloading In this thesis, we have proposed a context-aware greedy

heuristic algorithm for computation offloading in multi-hop wireless networks, aiming
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at minimizing the network energy consumption. The following extensions may be

pursued in future. First, one may consider that nodes may process tasks for each

other, i.e., considering a cooperative multi-hop network [FTH16]. In this case, for each

node, it not only has to be decided whether or not to offload its task, but also to which

other node to offload. Secondly, the approach may further be extended by changing the

architecture of decision making to a decentralized one, where the nodes of the network

take individual offloading decisions. In this case, a coordination mechanism is needed

to ensure that the offloading decisions are valid and are aligned with the overall network

goal. The author of this thesis has contributed to first steps in this direction in a follow-

up paper [ASMK16]. Finally, we have assumed that the parameters appearing in the

optimization problem are known. However, our approach could further be extended by

no longer assuming that the ratio between the number of bits needed for transmission

and the number of CPU cycles needed for computation are known a priori. Instead, this

ratio would first have to be predicted as a function of the type of task and application,

e.g., using machine-learning methods [KLLB13].

Caching at the Edge In this thesis, we have proposed an online learning algorithm

for context-aware proactive caching, aiming at maximizing the number of cache hits in

a local cache at the edge of the wireless network under missing knowledge about con-

tent popularity. Extensions in the following directions would be useful. First, we have

considered that each content corresponds to one file in the library. However, in adap-

tive video streaming, videos are encoded into different representations that correspond

to different qualities of the video [PIAT14]. How to assign different representations of

different videos to multiple caches at the edge under a quality of experience metric is

a challenging problem that has been studied in [LTZ+18] assuming a priori knowledge

about video popularity. However, since video popularity is typically unknown a pri-

ori and has to be learned, adaptive video streaming should be studied in combination

with context-aware proactive caching under missing knowledge about content popular-

ity. Secondly, we have considered that the goal of the caching entity is to maximize

the number of cache hits, but we did not consider the cost for placing content into

the cache. Such a cost may occur due to the bandwidth consumption on the backhaul

when the file to be cached is fetched from the distant file server. While a cache replace-

ment cost has been considered for proactive caching under missing knowledge about

content popularity in [BG14a, BG14c], these works did not take context into account

for learning content popularity. Combining context-aware proactive caching with cache

replacement costs is very challenging under arbitrary context arrivals since cache re-

placement costs require to keep the cache content static as often as possible, which is

difficult if contexts arrive in an arbitrary manner. Therefore, cache replacement costs

should be studied under suitable stochastic assumptions on the context arrival process
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such that future changes in context can be estimated and taken into account for cache

content replacement.

Mobile Crowdsourcing In this thesis, we have proposed a context-aware hierarchi-

cal online learning algorithm for worker selection in MCS applications with non-spatial

tasks, aiming at maximizing the worker performance under missing knowledge about

each worker’s individual performance. This work could be extended as follows. First,

in this thesis, we have considered that each worker is paid the same amount of compen-

sation for completing a particular task. This could be extended by allowing workers

to have a personal price as in [TTSRJ14] or even different personal prices for differ-

ent task types. In this case, the problem becomes a combinatorial contextual MAB

problem such that methods from combinatorial MABs [CWY13, QCZ14] need to be

investigated to handle this problem. Secondly, we have considered that an LC uses

available context information for learning worker performance. However, it may hap-

pen that not all of the available context dimensions are equally relevant for learning

a worker’s performance. Hence, in order to reduce the costs for monitoring and the

required memory space for keeping monitored context information in the mobile device

of its worker, an LC should additionally discover the most relevant context dimen-

sions. For this purpose, how to learn relevance within contextual MABs needs to be

studied [TvdS15b].

Context-Aware Decision Making in Wireless Networks In this thesis, we have

seen that many problems in wireless networks require context awareness since the

optimal decisions depend not only on the current network conditions, but also on

other node-related, user-related or externally given conditions. The contextual MAB

frameworks presented in this thesis are not restricted to the scenarios considered in

this thesis, but can also be used to model and solve further problems of context-aware

sequential decision making with limited feedback and missing a priori knowledge in

wireless networks. The author of this thesis has already started to work in this direction

and has contributed to publications that have adapted the contextual MAB framework

from Chapter 4 to beam selection in 5G mmWave Vehicular Communications [AMS+18,

SKA+18].

Distributed Connected Resources in Wireless Networks Overall, we have

studied in this thesis how to exploit different available resources in order to improve

the system performance of wireless networks. In detail, three techniques have been

considered, each of which exploits one type of resources (i.e., computation, caching,
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user resources) and considers its interplay with the communication resources, while

relying on data collection resources to collect context information for decision making.

Going, however, one step further, all the different types of resources, i.e., commu-

nication, computation, caching, data collection and user resources, should be consid-

ered jointly based on a joint modeling in order to understand their interrelationships

and interdependencies. Moreover, a joint optimization of the allocation of all the

different resources could possibly further improve the system performance. So far,

approaches in this direction have considered the trade-offs between and the joint op-

timization of subsets of the above resource types, for instance, by jointly optimizing

where to place and/or how to allocate computation, communication and caching re-

sources [HYH+16, LCQ16, WZZ+17, CHH+18, WHY+18]. This approach may be ex-

tended as follows.

First, we have seen in this thesis that for optimally allocating computation, communi-

cation or caching resources, context information needs to be taken into account, which

itself needs to be collected using data collection resources. Since the usage of data col-

lection resources has a cost (e.g., energy or delay cost for sensing), one cannot simply

continuously collect data in order to have all kinds of (possibly not needed) context

available for decision making. Instead, finding and only relying on those sources which

provide the relevant context is crucial [KLJ+10]. Moreover, computation resources

are required in order to process collected context such that decision agents may actu-

ally use it, and caching resources are needed to store the collected context [MSS13].

Additionally, trade-offs between data collection resources (e.g., in terms of sensing)

and communication resources exist [KASK19]. Overall, trade-offs between data col-

lection resources and the other types of resources exist and we therefore argue that

such trade-offs need to be included into the joint resource allocation of wireless net-

works. Since data collection has a cost, as in active sensing [YZvdS18], it needs to be

further investigated, how much data collection resources need to be sacrificed in order

to collect sufficient context information for taking well-informed decisions about the

joint allocation of all the other types of resources. To sum up, data collection resources

should be included into the joint optimization of resources in the same way as the more

“traditional” communication, computation and caching resources.

Secondly, we have seen in this thesis how human intelligence may be leveraged within

wireless networks. While users are already being perceived as service providers in

the context of MCS [RZZS15], user resources should be more broadly understood as

an essential type of resource available in wireless networks. For instance, users can

actively take part in solving intelligence tasks (e.g., image annotation) that may be

difficult for machines to solve or even intractable for machine computation [RZZS15].

In this way, human intelligence enhances the computing capabilities of the network.
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As another example, users can actively take part in sensing tasks (e.g., environmental

sensing) that might be solved very efficiently by a large set of users in the area of

interest taking sensor readings with their mobile phones [HZL16]. In this way, human

intelligence also enhances the data collection capabilities of the network. We argue,

however, that rather than understanding user resources as part of the computing or

data collection resources, user resources should be treated as a separate type of resource

since human behavior introduces additional uncertainties (due to the users’ preferences,

skills and strategic behavior) that need to be taken into account.
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Appendix

A.1 Proof of Proposition 3.1

In this appendix, we prove Proposition 3.1 from Section 3.5.1, proving that Prob-

lem (3.11) corresponds to a multi-dimensional knapsack problem.

Proof of Proposition 3.1. We turn the minimization Problem (3.11) into its equiva-

lent maximization problem and we rewrite the energy constraints of Problem (3.11)

to eliminate the index sets {n : r ∈ Rn}. For that purpose, we define trivial coeffi-

cients Er
T,n := 0 for all n, r with r /∈ Rn. Hence, Problem (3.11) is equivalent to the

following problem:

−max
N∑
n=1

yn(EC,n − ET,n) (A.1)

s.t.
N∑
n=1

ynE
r
T,n ≤ Eprov,r − EC,r for r = 1, ..., R

yn ∈ {0, 1} for n = 1, ..., N.

Setting the profits as pn := EC,n − ET,n for n = 1, ..., N , the weights as wn,r := Er
T,n

for n = 1, ..., N , r = 1, ..., R, and the capacity values as cr := Eprov,r − EC,r for r =

1, ..., R, Problem (A.1) corresponds to a multi-dimensional knapsack problem as in (2.3)

with R constraints.

A.2 Proof of Proposition 3.3

In this appendix, we prove Proposition 3.3 from Section 3.5.5, thereby deriving the

globally optimal actions of Problem (3.11) in the case of a line topology.

Proof of Proposition 3.3. First, assume that Eprov = EC holds. In this case, Rule 2

from Section 3.5.3 states that y∗n = 0 for nodes n = 2, ..., N . Moreover, by Rule 1 from

Section 3.5.3, y∗1 = 0 holds if Elink ≥ EC . Clearly, if Elink < EC , then y∗1 = 1. Hence,

it follows that

y∗n =

{
1, if n < EC

Elink
and n ≤ Eprov−EC

Elink
+ 1

0, else.
(A.2)
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Now, assume without loss of generality that Eprov > EC holds. In a line topology,

predecessors of node n are all nodes with smaller hop distance to the AP, i.e., nodes 1

to n − 1. Hence, in the homogeneous setting of Proposition 3.3, the energy ET,n for

transmission of node n’s task to the server in (3.6) reduces to

ET,n = En
T,n +

n−1∑
r=1

Er
T,n = Elink +

n−1∑
r=1

Elink = n · Elink. (A.3)

Using Equation (A.3) and the fact that the successor nodes of a relay node r, r =

1, ..., N − 1, are given by all nodes which have higher hop distance to the AP, i.e.,

nodes r + 1 to N , Problem (3.11) becomes

min
N∑
n=1

yn(nElink − EC) (A.4)

s.t.
N∑

n=r+1

ynElink ≤ Eprov − EC for r = 1, ..., N − 1

yn ∈ {0, 1} for n = 1, ..., N.

As discussed in pre-processing Rule 1 in Section 3.5.3, each node whose optimal action

it is to transmit its task to the server must have ET,n < EC. By Equation (A.3), this is

equivalent to n ·Elink < EC or n < EC

Elink
. The concept of dominance [KPP04] may now

be used to prove which variables yn are nonzero in the optimal solution, i.e., to find out

for which node the optimal action is to use computation offloading. Translated to the

computation offloading scenario, a node n dominates a node k if (i) node n provides

at least as much energy savings when using computation offloading as node k and if

(ii) node n needs at most as many energy resources from any relay node in the network

as node k when using computation offloading. Both conditions are satisfied if the nodes’

indices satisfy n ≤ k since (i) then the objective values satisfy nElink−EC ≤ kElink−EC

and since (ii) nodes n and k need the same amount of energy from common relay nodes

by homogeneity, but node n has lower hop distance to the AP than node k and thus

needs energy of fewer relay nodes. Hence, a node n dominates all nodes k with k ≥ n.

Therefore, a dominance ordering of the nodes arises according to their hop distance

to the AP. Hence, starting from node 1, which dominates all other nodes, one may

set yn = 1 for one node after the other, as long as this does not violate any of the

energy constraints. Node 1 has the tightest energy constraint since among the relay

nodes, which all have the same energy available, node 1 has the highest number of

successor nodes. Suppose nodes 1 to n− 1 were already chosen to offload their tasks,

i.e., yk = 1 for k = 1, ..., n−1. Then, enough energy is available for node n to transmit

if
n∑
k=2

1 · Elink ≤ Eprov − EC, (A.5)
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or, equivalently,

n− 1 ≤ Eprov − EC

Elink

. (A.6)

To sum up, the optimal action vector is hence given by

y∗n =

{
1, if n < EC

Elink
and n ≤ Eprov−EC

Elink
+ 1

0, else.
(A.7)

This concludes the proof.

A.3 Proof of Proposition 3.4

In this appendix, we prove Proposition 3.4 from Section 3.7.1, showing that the context-

aware greedy heuristic algorithm in Algorithm 3.1 always selects the globally optimal

actions in case of a star topology.

Proof of Proposition 3.4. During pre-processing, Algorithm 3.1 applies Rule 1 from

Section 3.5.3 by setting yn = 0 for any node n with ET,n ≥ EC,n. After pre-processing,

each remaining node n satisfies ET,n < EC,n. Algorithm 3.1 then sorts the remaining

nodes according to the efficiency measure and, one after another, a remaining node n

is added to the set of transmitting nodes by setting its variable to yn = 1. Since no

relay node exists in the star topology and hence, no energy constraints occur in the

corresponding Problem (3.11), all remaining nodes are added to the set of transmitting

nodes. Hence, Algorithm 3.1 sets yn = 1 for any node n with ET,n < EC,n. To sum up,

the output of Algorithm 3.1 is

yn =

{
1, if ET,n < EC,n

0, if ET,n ≥ EC,n,
(A.8)

which corresponds exactly to the optimal actions for a star topology according to (3.12)

in Proposition 3.2.

A.4 Proof of Proposition 3.5

In this appendix, we prove Proposition 3.5 from Section 3.7.1, showing that the context-

aware greedy heuristic algorithm in Algorithm 3.1 always selects the globally optimal

actions in case of a homogeneous line topology.
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Proof of Proposition 3.5. First, assume that Eprov = EC holds. In this case, Rule 2 ap-

plies during pre-processing. In the homogeneous line setting of Proposition 3.5, Rule 2

reduces to the following: If Eprov = EC, then yn = 0 for nodes n = 2, ..., N . Hence,

in this case, Algorithm 3.1 selects yn = 0 for nodes n = 2, ..., N and it selects y1 = 0

if Elink ≥ EC using pre-processing Rule 1 and y1 = 1 otherwise. Hence, formally in

this case, Algorithm 3.1 selects nodes according to

yn =

{
1, if n < EC

Elink
and n ≤ Eprov−EC

Elink
+ 1

0, else,
(A.9)

which corresponds exactly to the optimal actions for a homogeneous line topology

according to (3.16) in Proposition 3.3.

Now, assume without loss of generality that Eprov > EC holds. In a line topology,

predecessors of node n are all nodes with smaller hop distance to the AP, i.e., nodes 1

to n − 1. Hence, in the homogeneous setting of Proposition 3.5, the energy ET,n for

transmission of node n’s task to the server in (3.6) reduces to

ET,n = En
T,n +

n−1∑
r=1

Er
T,n = Elink +

n−1∑
r=1

Elink = n · Elink. (A.10)

During pre-processing, Algorithm 3.1 applies Rule 1 from Section 3.5.3 by setting yn =

0 for any node n with ET,n ≥ EC,n. Using (A.10), this is equivalent to n ≥ EC,n

Elink
. The

remaining nodes, for which n < EC

Elink
must hold, are sorted according to their efficiency

measure. Using (A.10) and using the fact that Rn = {1, ..., n − 1} in a line topology,

the efficiency measure for a node n is given by

effn =
EC,n − ET,n∑
r∈Rn

ErT,n
Eprov,r−EC,r

=
EC − n · Elink∑n−1
r=1

Elink

Eprov−EC

(A.11)

=
EC − n · Elink

(n− 1) · Elink

Eprov−EC

For any n < j, we have EC − n · Elink > EC − j · Elink and (n − 1) · Elink

Eprov−EC
<

(j − 1) · Elink

Eprov−EC
. Therefore, the efficiency measures effn and effj of any two nodes n

and j with n < j satisfy effn > effj. Hence, Algorithm 3.1 sorts the nodes with n < EC

Elink

according to their hop distance to the AP, where the node with the smallest hop

distance has the highest efficiency. Then, starting from the node with lowest hop

distance, Algorithm 3.1 sets yn = 1 for one node after the other, as long as this does

not violate any of the energy constraints. Node 1 has the tightest energy constraint
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since among the relay nodes, which all have the same energy available, node 1 has the

highest number of successor nodes. Suppose nodes 1 to n − 1 were already chosen to

offload their tasks, i.e., yk = 1 for k = 1, ..., n− 1. Then, enough energy is available for

node n to transmit if
n∑
k=2

1 · Elink ≤ Eprov − EC, (A.12)

or, equivalently,

n ≤ Eprov − EC

Elink

+ 1. (A.13)

To sum up, Algorithm 3.1 selects the actions as

yn =

{
1, if n < EC

Elink
and n ≤ Eprov−EC

Elink
+ 1

0, else,
(A.14)

which corresponds exactly to the optimal actions for a homogeneous line topology

according to (3.16) in Proposition 3.3.

A.5 Proof of Theorem 4.1

In this appendix, we prove Theorem 4.1 from Section 4.6.1, showing that the regret of

CAC is sublinear in the time horizon T , which guarantees that CAC converges to the

oracle solution for T → ∞. First, two lemmas are proved and then the results of the

two lemmas are combined to conclude the proof.

Given a sequence of T time slots with arbitrary user arrivals, let τ̃T ⊆ {1, ..., T} be the

set of time slots in which CAC enters an exploitation phase, and let τ̃ cT = {1, ..., T}\ τ̃T
be the set of time slots in which CAC enters an exploration phase. The sets τ̃T and τ̃ cT
are random sets that depend on the cache selections made by CAC and the randomness

of the observed demands. Let Ror(T ) and Roi(T ) represent the regret due to exploration

phases and due to exploitation phases, respectively. Using the expressions above, the

regret R(T ) in (4.7) can be decomposed as follows:

R(T ) = E [Ror(T ) +Roi(T )] , (A.15)

where

Ror(T ) :=
∑
t∈τ̃cT

m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

)
(A.16)

Roi(T ) :=
∑
t∈τ̃T

m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

)
. (A.17)
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The regret is computed by considering the loss due to caching a subset of

files {ct,j}j=1,...,m instead of the top-m files for pair (Xt,Gt) for each time slot. The

loss is given by substracting the sum of weighted expected demands of the top m-files

from the sum of weighted expected demands of the selected files.

Next, we will bound the expected values of the two summands above separately.

First, a bound for E [Ror(T )] is given.

Lemma A.1 (Bound for E[Ror(T )]). Let K(t) = tz log(t), t = 1, ..., T , and hT =

dT γe, where 0 < z < 1 and 0 < γ < 1
D

. If CAC is run with these parameters, the

regret E[Ror(T )] is bounded by

E[Ror(T )] ≤ mUmaxvmaxwmaxRmax2
D|F| · (log(T )T z+γD + T γD). (A.18)

Proof of Lemma A.1. Let t ∈ τ̃ cT be a time slot for which CAC enters an exploration

phase. Since the expected demand µf (x) for any f ∈ F , x ∈ [0, 1]D is bounded

in [0, Rmax] and the service weights are bounded by vmax for the different service groups

and by wmax for the prioritization weights, it follows that

Ror(T ) =
∑
t∈τ̃cT

m∑
j=1

Ut∑
i=1

vgt,i

(
(wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

)
≤
∑
t∈τ̃cT

mUmaxvmaxwmaxRmax. (A.19)

Hence, the regret can be bounded by

E[Ror(T )] ≤ E

∑
t∈τ̃cT

mUmaxvmaxwmaxRmax


= mUmaxvmaxwmaxRmax E

∑
t∈τ̃cT

1

 . (A.20)

For t ∈ τ̃ cT , the set of under-explored files Fue
t is non-empty, i.e., there exist a user i ∈

{1, ..., Ut} with corresponding set pt,i, and a file f ∈ F , for which Nf,pt,i(t) ≤ K(t) =

tz log(t) holds. By definition of Fue
t , up to time slot T , there can be at most dT z log(T )e

exploration phases in which file f is selected due to a context from set pt,i. Since

there are (hT )D hypercubes in the partition, there can be at most (hT )DdT z log(T )e
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exploration phases in which file f is selected due to its under-exploration. Hence, the

number of exploration phases is upper-bounded as follows:

E

∑
t∈τ̃cT

1

 ≤∑
f∈F

(hT )DdT z log(T )e. (A.21)

Note that this upper bound is rather loose because several files may be explored simul-

taneously, in which case they do not induce separate exploration phases. Further, we

conclude

E[Ror(T )] ≤ mUmaxvmaxwmaxRmax

∑
f∈F

(hT )DdT z log(T )e. (A.22)

Using (hT )D = dT γeD ≤ (2T γ)D = 2DT γD, we have

E[Ror(T )] ≤ mUmaxvmaxwmaxRmax2
D|F| · (log(T )T z+γD + T γD). (A.23)

Next, we give a bound for E [Roi(T )].

Lemma A.2 (Bound for E [Roi(T )]). Let K(t) = tz log(t), t = 1, ..., T , and hT =

dT γe, where 0 < z < 1 and 0 < γ < 1
D

. If CAC is run with these parameters and

Assumption 4.1 from Section 4.6.1 holds true, the regret E [Roi(T )] is bounded by

E[Roi(T )] ≤ 2mUmaxvmaxwmaxRmax
T 1− z

2

1− z
2

+ 2mUmaxvmaxwmaxLD
α
2 T 1−αγ

+mU2
maxvmaxwmaxRmax|F|

π2

3
. (A.24)

Proof of Lemma A.2. Let t ∈ τ̃T , i.e., CAC enters an exploitation phase. Since the

set of under-explored files is empty in exploitation phases (i.e., Fue
t = ∅), Nf,pt,i(t) >

K(t) = tz log(t) holds for all f ∈ F and all i = 1, ..., Ut.

Now, let V (t) be the event that in time slot t, the estimated demand µ̂f,pt,i(t) of each

file f ∈ F in each of the current hypercubes pt,i, i = 1, ..., Ut, is “close” to its true

expected value E[µ̂f,pt,i(t)], i.e.,

V (t) = {|µ̂f,pt,i(t)− E[µ̂f,pt,i(t)]| < H(t) for all f ∈ F , i = 1, ..., Ut} (A.25)

for an arbitrary H(t) > 0.
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Next, we distinguish between exploitation phases in which V (t) or its complementary

event, denoted by V c(t), hold. Let I{·} denote the indicator function. Then, we can

write

Roi(T )

=
∑
t∈τ̃T

(
I{V (t)}

( m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

))

+
∑
t∈τ̃T

(
I{V c(t)}

( m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

))
. (A.26)

Using that the expected demand µf (x) for any f ∈ F , x ∈ [0, 1]D is bounded in [0, Rmax]

and the service weights are bounded by vmax for the different service groups and by wmax

for the prioritization weights, this term can further be bounded as

Roi(T )

≤
∑
t∈τ̃T

(
I{V (t)} ·

( m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

))
+
∑
t∈τ̃T

mUmaxvmaxwmaxRmaxI{V c(t)}. (A.27)

First, we bound the first term in (A.27). We start by noting that in an exploitation

phase t ∈ τ̃T , since CAC selected files {ct,j}j=1,...,m instead of {f ∗j (Xt,Gt)}j=1,...,m, we

have

m∑
j=1

Ut∑
i=1

vgt,iwf∗j (Xt,Gt)µ̂f∗j (Xt,Gt),pt,i(t) ≤
m∑
j=1

Ut∑
i=1

vgt,iwct,j µ̂ct,j ,pt,i(t). (A.28)

We also know that when V (t) holds, we have

{|µ̂f,pt,i(t)− E[µ̂f,pt,i(t)]| < H(t) for all f ∈ F , i = 1, ..., Ut} (A.29)

almost surely. Finally, note that by the Hölder continuity from Assumption 4.1,

since xt,i ∈ pt,i and for calculating µ̂f,pt,i(t), only contexts from hypercube pt,i are
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used, for each f ∈ F , it follows that

|µf (xt,i)− E[µ̂f,pt,i(t)]|

=

∣∣∣∣∣E
[

1

|Ef,pt,i(t)|
∑

d∈Ef,pt,i (t)

(
µf (xt,i)− d

)]∣∣∣∣∣
=

∣∣∣∣∣E
[
E
[

1

|Ef,pt,i(t)|
∑

d∈Ef,pt,i (t)

(
µf (xt,i)− d

)∣∣∣∣Ef,pt,i(t)]
]∣∣∣∣∣

=

∣∣∣∣∣E
[

1

|Ef,pt,i(t)|
∑

d∈Ef,pt,i (t)

(
µf (xt,i)− E

[
d
∣∣Ef,pt,i(t)])

]∣∣∣∣∣
≤ E

[
1

|Ef,pt,i(t)|
∑

d∈Ef,pt,i (t)

L

∣∣∣∣∣∣∣∣[ 1

hT
, . . . ,

1

hT

]∣∣∣∣∣∣∣∣α
D

]
≤ LD

α
2 h−αT , (A.30)

where we used the definition of µ̂f,pt,i(t) and the linearity of expectation in the first line

and the law of total expectation in the second line [BW16]. In the third line, we used

the property of conditional expectation which allows to pull known factors out of the

conditional expectation [BW16]. In the fourth line, we used the triangle inequality and

since the corresponding context of each of the observed demands d ∈ Ef,pt,i(t) came

from hypercube pt,i, we used the Hölder continuity from Assumption 4.1 and exploited

the size 1
hT
× . . . × 1

hT
of the hypercubes. Hence, for the first term in (A.27), by first
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using (A.30), then (A.29) and then (A.28), it follows that

I{V (t)} ·

(
m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µf∗j (Xt,Gt)(xt,i)− wct,jµct,j(xt,i)

))

≤ I{V (t)} ·

(
m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt) E[µ̂f∗j (Xt,Gt),pt,i(t)]− wct,j E[µ̂ct,j ,pt,i(t)]

+ wf∗j (Xt,Gt)LD
α
2 h−αT + wct,jLD

α
2 h−αT

))

≤ I{V (t)} ·

(
m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)µ̂f∗j (Xt,Gt),pt,i(t)− wct,j µ̂ct,j ,pt,i(t)

+ wf∗j (Xt,Gt)H(t) + wct,jH(t)

+ wf∗j (Xt,Gt)LD
α
2 h−αT + wct,jLD

α
2 h−αT

))

≤
m∑
j=1

Ut∑
i=1

vgt,i

(
wf∗j (Xt,Gt)H(t) + wct,jH(t)

+ wf∗j (Xt,Gt)LD
α
2 h−αT + wct,jLD

α
2 h−αT

)
(A.31)

holds almost surely. Taking the expectation of (A.27) and exploiting that (A.31) holds

almost surely for any t ∈ τ̃T under V (t) yields

E[Roi(T )]

≤
T∑
t=1

m∑
j=1

Ut∑
i=1

vgt,i

(
(wf∗j (Xt,Gt) + wct,j)H(t) + (wf∗j (Xt,Gt) + wct,j)LD

α
2 h−αT

)

+ E

[∑
t∈τ̃T

mUmaxvmaxwmaxRmaxI{V c(t)}

]
. (A.32)

Finally, using that the service weights are bounded by vmax for the different service

groups and by wmax for the prioritization weights and using h−αT = dT γe−α ≤ T−αγ, we

further have

E[Roi(T )] ≤
T∑
t=1

2mUmaxvmaxwmax

(
H(t) + LD

α
2 T−αγ

)

+ E

[∑
t∈τ̃T

mUmaxvmaxwmaxRmaxI{V c(t)}

]
. (A.33)
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Next, we take care of the term with the expected value in (A.33). We can write

E

[∑
t∈τ̃T

mUmaxvmaxwmaxRmaxI{V c(t)}

]

= mUmaxvmaxwmaxRmax E

[
E
[∑
t∈τ̃T

I{V c(t)}

∣∣∣∣τ̃T]
]

= mUmaxvmaxwmaxRmax E

[∑
t∈τ̃T

E
[
I{V c(t)}

∣∣∣∣τ̃T]
]

= mUmaxvmaxwmaxRmax E

[∑
t∈τ̃T

Pr
(
V c(t)

∣∣τ̃T )] , (A.34)

where we used the law of total expectation and the property of conditional expectation

which allows to pull known factors out of the conditional expectation [BW16].

Next, we bound Pr(V c(t)|τ̃T ) for t ∈ τ̃T . The event V c(t) can be written as

V c(t) = {∃f ∈ F , i ∈ {1, ..., Ut} s.t. |µ̂f,pt,i(t)− E[µ̂f,pt,i(t)]| ≥ H(t)}. (A.35)

Hence,

Pr(V c(t)|τ̃T )

= Pr(∃f ∈ F , i ∈ {1, ..., Ut} s.t. |µ̂f,pt,i(t)− E[µ̂f,pt,i(t)]| ≥ H(t)|τ̃T )

≤
∑
f∈F

Ut∑
i=1

Pr(|µ̂f,pt,i(t)− E[µ̂f,pt,i(t)]| ≥ H(t)|τ̃T ). (A.36)

For t ∈ τ̃T , we get by the definition of Fue
t , that Nf,pt,i(t) > K(t) = tz log(t) holds

for each f ∈ F and each i = 1, ..., Ut, and hence, |Ef,pt,i(t)| > tz log(t). For f ∈ F ,

i = 1, ..., Ut, and t ∈ τ̃T , applying Hoeffding’s inequality [Hoe63] and using |Ef,pt,i(t)| >
tz log(t), we get

Pr
(
|µ̂f,pt,i(t)− E[µ̂f,pt,i(t)]| ≥ H(t)|τ̃T

)
≤ 2 exp

(
−2H(t)2tz log(t)

1

R2
max

)
. (A.37)
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Hence, the regret due to exploitation phases is bounded by

E[Roi(T )]

≤
T∑
t=1

2mUmaxvmaxwmax

(
H(t) + LD

α
2 T−αγ

)

+mUmaxvmaxwmaxRmax E

[∑
t∈τ̃T

∑
f∈F

Ut∑
i=1

2 exp

(
−2H(t)2tz log(t)

1

R2
max

)]

≤
T∑
t=1

2mUmaxvmaxwmax

(
H(t) + LD

α
2 T−αγ

)

+mUmaxvmaxwmaxRmax

T∑
t=1

∑
f∈F

Ut∑
i=1

2 exp

(
−2H(t)2tz log(t)

1

R2
max

)
. (A.38)

So far, the analysis was performed with respect to an arbitrary H(t) > 0. Set-

ting H(t) := Rmaxt
− z

2 , we get

E[Roi(T )]

≤
T∑
t=1

2mUmaxvmaxwmax

(
Rmaxt

− z
2 + LD

α
2 T−αγ

)

+mUmaxvmaxwmaxRmax

T∑
t=1

∑
f∈F

Ut∑
i=1

2 exp

(
−2R2

max(t
− z

2 )2tz log(t)

R2
max

)

≤ 2mUmaxvmaxwmaxRmax

T∑
t=1

t−
z
2 + 2mUmaxvmaxwmax

T∑
t=1

LD
α
2 T−αγ

+mU2
maxvmaxwmaxRmax|F|

T∑
t=1

2t−2

≤ 2mUmaxvmaxwmaxRmax
T 1− z

2

1− z
2

+ 2mUmaxvmaxwmaxLD
α
2 T 1−αγ

+mU2
maxvmaxwmaxRmax|F|

π2

3
, (A.39)

where, in the last step, we used the result from (A.74) in Appendix A.9 and the value

of the Dirichlet series [GR14].

The overall regret in (A.15) can now be bounded by applying Lemmas A.1 and A.2.

Proof of Theorem 4.1. First, let K(t) = tz log(t), t = 1, ..., T , and hT = dT γe,
where 0 < z < 1 and 0 < γ < 1

D
. Then, under Assumption 4.1, by combining



A.6 Proof of Theorem 4.2 175

the results of Lemmas A.1 and A.2, the regret R(T ) is bounded by

R(T ) ≤ mUmaxvmaxwmaxRmax2
D|F| · (log(T )T z+γD + T γD)

+ 2mUmaxvmaxwmaxRmax
T 1− z

2

1− z
2

+ 2mUmaxvmaxwmaxLD
α
2 T 1−αγ

+mU2
maxvmaxwmaxRmax|F|

π2

3
(A.40)

The summands contribute to the regret with leading orders O(T z+γD log(T )), O(T 1− z
2 )

and O(T 1−αγ). We balance the leading orders by setting the parameters z and γ

according to z := 2α
3α+D

∈ (0, 1), γ := z
2α
∈ (0, 1

D
). Then, the regret R(T ) is bounded

by

R(T ) ≤ mUmaxvmaxwmaxRmax2
D|F| · (log(T )T

2α+D
3α+D + T

D
3α+D )

+
2mUmaxvmaxwmaxRmax

(2α +D)/(3α +D)
T

2α+D
3α+D

+ 2mUmaxvmaxwmaxLD
α
2 T

2α+D
3α+D +mU2

maxvmaxwmaxRmax|F|
π2

3
. (A.41)

The leading order of the regret is hence O
(

log(T )T
2α+D
3α+D

)
.

A.6 Proof of Theorem 4.2

In this appendix, we prove Theorem 4.2 from Section 4.7.2, yielding an upper bound

on the regret of CAC for rating-based caching with missing ratings.

Proof of Theorem 4.2. The proof of Theorem 4.2 works analogously to the proof of

Theorem 4.1 (applied to d̃f (x) instead of df (x)), by first dividing the regret into two

summands and bounding each summand. The only difference in CAC is that the

counters are not updated if no ratings are given for requested files. Since the control

function remains the same, the regret due to exploitation phases is not influenced by

missing ratings. Therefore, the only difference occurs in the proof of the regret due to

exploration phases. In the proof of Lemma A.1, it is argued that for each file f ∈ F ,

the number of exploration phases, in which f is selected since it is under-explored

is bounded above by dT z log(T )e for each set in the partition of the context space.

However, in case no rating is given within one time slot in which a file was selected and

requested, the counters of CAC are not updated. Hence, in this case, the number of

required exploration phases increases. Due to the uncertainty of rating revealings, this
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number of exploration phases is also uncertain. Next, an upper bound on the expected

value of this number is given.

Consider a fixed file f ∈ F and a fixed time slot t. The number Ut of users in time

slot t lies between 1 and Umax. With probability β, a user reveals her/his rating after

requesting file f . Assume that among the Ut users, a number 1 ≤ lt ≤ Ut of them

requests file f in time slot t. (Note that in the case that no user requests file f , the

counters in CAC are updated and hence, this case does not increase the number of

exploration steps.) Then, the probability of not receiving any rating from these lt

users in time slot t is given by (1 − β)lt . Moreover, this probability is maximal in

case lt = 1, i.e., when only one user may potentially rate file f . In the following, we

consider this worst case, that exactly one user requests file f and may potentially rate

file f in any relevant time slot t. Consider a fixed hypercube p ∈ PT of the partition.

Let τf,p(T ) be the number of exploration phases until there are dT z log(T )e ratings for

file f revealed in hypercube p. Then, the expected number of exploration phases for

file f in hypercube p at the time horizon T is given by E[τf,p(T )]. Let Xf,p(y) be the

number of time slots, in which file f is cached, the context of the user requesting file f

comes from hypercube p, but the user does not give a rating for file f , until y ratings

have been given. Then,

E[τf,p(T )] = E [Xf,p(dT z log(T )e)] + dT z log(T )e (A.42)

holds. The random variable Xf,p(y) has negative binomial distribution [DS12] with a

probability of 1−β that no rating is revealed. Hence, its expected value at dT z log(T )e
is

E [Xf,p(dT z log(T )e)] =
(1− β)dT z log(T )e

β
. (A.43)

Therefore,

E [τf,p(T )] =
1

β
dT z log(T )e. (A.44)

Hence, going back to the general case (in which 0 ≤ lt ≤ Ut holds for the number lt of

users requesting file f in time slot t), an upper bound on the expected number of time

slots of exploration phases, in which a file f is selected for any of the (hT )D hypercubes

of the partition is given by 1
β
(hT )DdT z log(T )e. The remainder of the proof works as

in the proof of Lemma A.1 given in Appendix A.5.

A.7 Proof of Theorem 5.1

In this appendix, we prove Theorem 5.1 from Section 5.6.1, showing that the regret of

HCL is sublinear in T , which guarantees that HCL converges to the centralized oracle
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solution for T → ∞. First, we prove three lemmas and then, we combine the results

of the three lemmas to conclude the proof.

Given an arbitrary length T sequence of task and worker arrivals, let τT be the set of

tasks in {1, ..., T} for which Wt > mt, and τ cT = {1, ..., T} \ τT . τ cT is also called the set

of select-all-workers phases. Also let τ̃T ⊆ τT be the set of tasks in τT for which the

MCSP is in exploitation phase, and τ̃ cT = τT \ τ̃T be the set of tasks in τT for which the

MCSP is in exploration phase. τ̃T and τ̃ cT are random sets that depend on the selections

of the MCSP and the randomness of the observed performances. Let Rall(T ), Ror(T )

and Roi(T ) represent the regret due to select-all-workers phases, due to exploration

phases and due to exploitation phases, respectively. Using the expressions above, the

regret R(T ) in (5.10) can be decomposed as follows:

R(T ) = E [Rall(T ) +Ror(T ) +Roi(T )] , (A.45)

where

Rall(T ) :=
∑
t∈τcT

min{mt,Wt}∑
j=1

(
θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct)

)
(A.46)

Ror(T ) :=
∑
t∈τ̃cT

min{mt,Wt}∑
j=1

(
θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct)

)
(A.47)

Roi(T ) :=
∑
t∈τ̃T

min{mt,Wt}∑
j=1

(
θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct)

)
. (A.48)

The regret is computed by considering the loss due to selecting work-

ers {st,j}j=1,...,min{mt,Wt} instead of the optimal workers {s∗t,j}j=1,...,min{mt,Wt} for each

task. This loss is computed by subtracting the sum of expected performances of the

optimal workers from the sum of expected performances of the selected workers.

Next, we will bound the expected values of each of the three summands above sepa-

rately. First, we show that the regret due to select-all-workers phases is 0.

Lemma A.3 (Value of E[Rall(T )]). When LC i, i ∈ W, runs Algorithm 5.1 with an

arbitrary deterministic function Ki : {1, ..., T} → R+ and an arbitrary hT,i ∈ N as

input, and the MCSP runs Algorithm 5.2, the regret E [Rall(T )] satisfies

E[Rall(T )] = 0. (A.49)

Proof of Lemma A.3. For t ∈ τ cT , i.e., Wt ≤ mt, the MCSP enters a select-all-workers

phase. Moreover, for Wt ≤ mt, the trivial optimal solution is to request all available
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workers to complete task t. Hence, the MCSP’s selection of workers is optimal and

therefore, select-all-workers phases do not contribute to the regret, i.e., E[Rall(T )] =

0.

Next, a bound for E [Ror(T )] is given.

Lemma A.4 (Bound for E[Ror(T )]). When LC i, i ∈ W, runs Algorithm 5.1 with

input parameters Ki(t) = tzi log(t), t = 1, ..., T , and hT,i = dT γie, where 0 < zi < 1

and 0 < γi <
1
Di

, and the MCSP runs Algorithm 5.2, the regret E [Ror(T )] is bounded

by

E[Ror(T )] ≤ Wqmax

∑
i∈W

2Di(log(T )T zi+γiDi + T γiDi). (A.50)

Proof of Lemma A.4. Let t ∈ τ̃ cT be a task for which the MCSP enters an exploration

phase. By design of HCL, in this case, Wt > mt holds, i.e., mt = min{mt,Wt}. Since

the expected performance of a worker is bounded in [0, qmax], it follows that

Ror(T ) =
∑
t∈τ̃cT

mt∑
j=1

(
θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct)

)
≤
∑
t∈τ̃cT

mtqmax. (A.51)

Hence, the regret can be bounded by

E[Ror(T )] ≤ E

∑
t∈τ̃cT

mtqmax


≤ Wqmax E

∑
t∈τ̃cT

1

 , (A.52)

since mt ≤ W holds for all t = 1, ..., T .

For t ∈ τ̃ cT , the set Wue
t of under-explored workers is non-empty. Hence, there exists

an available worker i ∈ Wt with Ni,qt,i(t) ≤ Ki(t) = tzi log(t). By definition of Wue
t ,

up to task T , worker i can induce at most dT zi log(T )e exploration phases for each of

the (hT,i)
Di hypercubes of the partition QT,i. Hence, the number of exploration phases

is upper-bounded as follows:

E

∑
t∈τ̃cT

1

 ≤∑
i∈W

(hT,i)
DidT zi log(T )e. (A.53)
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This upper bound is rather loose as several workers might be explored simultaneously,

in which case they do not induce separate exploration phases. From (A.53), we conclude

E[Ror(T )] ≤ Wqmax

∑
i∈W

(hT,i)
DidT zi log(T )e. (A.54)

Using (hT,i)
Di = dT γieDi ≤ (2T γi)Di = 2DiT γiDi , we find

E[Ror(T )] ≤ Wqmax

∑
i∈W

2Di(log(T )T zi+γiDi + T γiDi). (A.55)

Next, we give a bound for E [Roi(T )].

Lemma A.5 (Bound for E [Roi(T )]). Given that Assumption 5.1 from Section 5.6.1

holds, when LC i, i ∈ W, runs Algorithm 5.1 with parameters Ki(t) = tzi log(t), t =

1, ..., T , and hT,i = dT γie, where 0 < zi < 1 and 0 < γi <
1
Di

, and the MCSP runs

Algorithm 5.2, the regret E [Roi(T )] is bounded by

E[Roi(T )] ≤ 2
∑
i∈W

qmax
T 1− zi

2

1− zi
2

+ 2
∑
i∈W

LDi

α
2 T 1−αγi

+ qmaxW
2π

2

3
. (A.56)

Proof of Lemma A.5. Let t ∈ τ̃T , i.e., the MCSP enters an exploitation phase. By

design of HCL, in this case, Wt > mt holds, i.e., mt = min{mt,Wt}. Additionally,

since in exploitation phases, the set of under-explored workers is empty (i.e.,Wue
t = ∅),

Ni,qt,i(t) > Ki(t) = tzi log(t) holds for all available workers i ∈ Wt.

Now, let V (t) be the event that at the arrival of task t, each available worker i’s esti-

mated performance θ̂i,qt,i(t) in the current hypercube qt,i is “close” to its true expected

value E[θ̂i,qt,i(t)], i.e.,

V (t) = {|θ̂i,qt,i(t)− E[θ̂i,qt,i(t)]| < Hi(t) for all i ∈ Wt} (A.57)

for arbitrary Hi(t) > 0, i ∈ Wt. Next, we distinguish between exploitation phases in

which V (t) or its complementary event, denoted by V c(t), hold. Let I{·} denote the

indicator function. Then, we can write

Roi(T )

=
∑
t∈τ̃T

(
I{V (t)}

( mt∑
j=1

(θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct))
))

+
∑
t∈τ̃T

(
I{V c(t)}

( mt∑
j=1

(θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct))
))

. (A.58)
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Using that the expected performance of a worker is bounded in [0, qmax], this term can

further be bounded as

Roi(T )

≤
∑
t∈τ̃T

(
I{V (t)} ·

( mt∑
j=1

(θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct))
))

+
∑
t∈τ̃T

mtqmaxI{V c(t)}. (A.59)

First, we bound the first term in (A.59). We start by noting that in an exploitation

phase t ∈ τ̃T , since the MCSP selected workers {st,j}j=1,...,mt instead of {s∗t,j}j=1,...,mt ,

we have

mt∑
j=1

θ̂s∗t,j ,qs∗t,j
(t) ≤

mt∑
j=1

θ̂st,j ,qst,j (t). (A.60)

We also know that when V (t) holds, we have

{|θ̂i,qt,i(t)− E[θ̂i,qt,i(t)]| < Hi(t) for all i ∈ Wt} (A.61)

almost surely. Finally, note that by the Hölder continuity from Assumption 5.1,

since (xt,i, ct) ∈ qt,i and for calculating θ̂i,qt,i(t), only contexts from hypercube qt,i

are used, for each i ∈ Wt, it follows that

|θi(xt,i, ct)− E[θ̂i,qt,i(t)]|

=

∣∣∣∣∣E
[

1

|Ei,qt,i(t)|
∑

p∈Ei,qt,i (t)

(
θi(xt,i, ct)− p

)]∣∣∣∣∣
=

∣∣∣∣∣E
[
E
[

1

|Ei,qt,i(t)|
∑

p∈Ei,qt,i (t)

(
θi(xt,i, ct)− p

)∣∣∣∣Ei,qt,i(t)]
]∣∣∣∣∣

=

∣∣∣∣∣E
[

1

|Ei,qt,i(t)|
∑

p∈Ei,qt,i (t)

(
θi(xt,i, ct)− E

[
p
∣∣Ei,qt,i(t)])

]∣∣∣∣∣
≤ E

[
1

|Ei,qt,i(t)|
∑

p∈Ei,qt,i (t)

L
∣∣∣∣∣∣( 1

hT,i
, . . . ,

1

hT,i

)∣∣∣∣∣∣α
Di

]
≤ LDi

α
2 h−αT,i , (A.62)

where we used the definition of θ̂i,qt,i(t) and the linearity of expectation in the first

line and the law of total expectation in the second line. In the third line, we used

the property of conditional expectation which allows to pull known factors out of the

conditional expectation [BW16]. In the fourth line, we used the triangle inequality and
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since the corresponding context of each of the observed performances p ∈ Ei,qt,i(t) came

from hypercube qt,i, we used the Hölder continuity from Assumption 5.1 and exploited

the size 1
hT,i
× . . . × 1

hT,i
of the hypercubes. Hence, by first using (A.62), then (A.61)

and then (A.60), we have for the first term in (A.59) that

I{V (t)} ·

(
mt∑
j=1

(
θs∗t,j(xt,s∗t,j , ct)− θst,j(xt,st,j , ct)

))

≤ I{V (t)} ·

(
mt∑
j=1

(
E[θ̂s∗t,j ,qs∗t,j

(t)]− E[θ̂st,j ,qst,j (t)]

+ LDs∗t,j

α
2 h−αT,s∗t,j + LDst,j

α
2 h−αT,st,j

))

≤ I{V (t)} ·

(
mt∑
j=1

θ̂s∗t,j ,qs∗t,j
(t)−

mt∑
j=1

θ̂st,j ,qst,j (t)

+
mt∑
j=1

(
Hs∗t,j

(t) +Hst,j(t)

+ LDs∗t,j

α
2 h−αT,s∗t,j + LDst,j

α
2 h−αT,st,j

))

≤
mt∑
j=1

(
Hs∗t,j

(t) +Hst,j(t)

+ LDs∗t,j

α
2 h−αT,s∗t,j + LDst,j

α
2 h−αT,st,j

)
(A.63)

holds almost surely. Taking the expectation of (A.59) and exploiting that (A.63) holds

almost surely for any t ∈ τ̃T yields

E[Roi(T )]

≤
T∑
t=1

(
mt∑
j=1

(Hs∗t,j
(t) +Hst,j(t)

+ LDs∗t,j

α
2 h−αT,s∗t,j + LDst,j

α
2 h−αT,st,j)

)

+ E

[∑
t∈τ̃T

mtqmaxI{V c(t)}

]
. (A.64)

Finally, adding non-negative summands and using h−αT,i = dT γie−α ≤ T−αγi , we further
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have

E[Roi(T )]

≤
T∑
t=1

(
2
∑
i∈W

Hi(t) + 2
∑
i∈W

LDi

α
2 T−αγi

)

+ E

[∑
t∈τ̃T

mtqmaxI{V c(t)}

]
. (A.65)

Next, we take care of the term with the expected value in the last expression. We can

write

E

[∑
t∈τ̃T

mtqmaxI{V c(t)}

]

= E

[
E
[∑
t∈τ̃T

mtqmaxI{V c(t)}

∣∣∣∣τ̃T]
]

= E

[∑
t∈τ̃T

mtqmax E
[
I{V c(t)}

∣∣∣∣τ̃T]
]

= E

[∑
t∈τ̃T

mtqmax Pr
(
V c(t)

∣∣τ̃T )] , (A.66)

where we used the law of total expectation and the property of conditional expectation

which allows to pull known factors out of the conditional expectation [BW16].

Next, we bound Pr(V c(t)|τ̃T ) for t ∈ τ̃T . The event V c(t) can be written as

V c(t) = {∃i ∈ Wt s.t. |θ̂i,qt,i(t)− E[θ̂i,qt,i(t)]| ≥ Hi(t)}. (A.67)

Hence,

Pr(V c(t)|τ̃T )

= Pr(∃i ∈ Wt s.t. |θ̂i,qt,i(t)− E[θ̂i,qt,i(t)]| ≥ Hi(t)|τ̃T )

≤
∑
i∈Wt

Pr(|θ̂i,qt,i(t)− E[θ̂i,qt,i(t)]| ≥ Hi(t)|τ̃T ). (A.68)

For t ∈ τ̃T , we get by the definition of Wue
t that Ni,qt,i(t) > Ki(t) = tzi log(t) holds

for each i ∈ Wt, and hence, |Ei,qt,i(t)| > tzi log(t). For i ∈ Wt and t ∈ τ̃T , applying

Hoeffding’s inequality [Hoe63] and using |Ei,qt,i(t)| > tzi log(t), we get

Pr
(
|θ̂i,qt,i(t)− E[θ̂i,qt,i(t)]| ≥ Hi(t)|τ̃T

)
≤ 2 exp

(
−2Hi(t)

2tzi log(t)
1

q2max

)
. (A.69)
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Hence, the regret due to exploitation phases is bounded by

E[Roi(T )]

≤
T∑
t=1

(
2
∑
i∈W

Hi(t) + 2
∑
i∈W

LDi

α
2 T−αγi

)
+ E

[∑
t∈τ̃T

mtqmax

∑
i∈Wt

2 exp

(
−2Hi(t)

2tzi log(t)
1

q2max

)]

≤
T∑
t=1

(
2
∑
i∈W

Hi(t) + 2
∑
i∈W

LDi

α
2 T−αγi

)
+

T∑
t=1

mtqmax

∑
i∈Wt

2 exp

(
−2Hi(t)

2tzi log(t)
1

q2max

)
. (A.70)

So far, the analysis was performed with respect to arbitrary Hi(t) > 0, i ∈ W . Set-

ting Hi(t) := qmaxt
− zi

2 for i ∈ W , we get

E[Roi(T )]

≤
T∑
t=1

(
2
∑
i∈W

qmaxt
− zi

2 + 2
∑
i∈W

LDi

α
2 T−αγi

)
+

T∑
t=1

mtqmax

∑
i∈Wt

2 exp

(
−2q2max(t

− zi
2 )2tzi log(t)

q2max

)

≤ 2
∑
i∈W

qmax

T∑
t=1

t−
zi
2 + 2

∑
i∈W

LDi

α
2 T 1−αγi

+ qmaxW

T∑
t=1

mt2t
−2

≤ 2
∑
i∈W

qmax
T 1− zi

2

1− zi
2

+ 2
∑
i∈W

LDi

α
2 T 1−αγi

+ qmaxW
2π

2

3
, (A.71)

where, in the last step, we used the result from (A.74) in Appendix A.9, the fact

that mt ≤ W holds and the value of the Dirichlet series [GR14].

Applying Lemmas A.3–A.5, the overall regret in (A.45) can be bounded as given below.

Proof of Theorem 5.1. First, for i ∈ W , let Ki(t) = tzi log(t) and hT,i = dT γie,
where 0 < zi < 1 and 0 < γi <

1
Di

. Then, under Assumption 5.1, by combining
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the results of Lemmas A.3–A.5, the regret R(T ) is bounded by

R(T ) ≤ qmaxW
∑
i∈W

2Di(log(T )T zi+γiDi + T γiDi)

+ 2
∑
i∈W

qmax
T 1− zi

2

1− zi
2

+ 2
∑
i∈W

LDi

α
2 T 1−αγi

+ qmaxW
2π

2

3
. (A.72)

The summands contribute to the regret with leading orders O(
∑

i∈W T
zi+γiDi log(T )),

O(
∑

i∈W T
1−αγi) and O(

∑
i∈W T

1− zi
2 ). We balance the leading orders by setting the

parameters zi, γi according to zi := 2α
3α+Di

∈ (0, 1), γi := zi
2α
∈ (0, 1

Di
) for i ∈ W . Then,

the regret R(T ) is bounded by

R(T ) ≤ qmaxW
∑
i∈W

2Di(log(T )T
2α+Di
3α+Di + T

Di
3α+Di )

+
∑
i∈W

2qmax

(2α +Di)/(3α +Di)
T

2α+Di
3α+Di

+ 2
∑
i∈W

LD
α
2
i T

2α+Di
3α+Di + qmaxW

2π
2

3
. (A.73)

Setting Dmax := maxi∈W Di, the leading order of the regret is

hence O
(
T

2α+Dmax
3α+Dmax log(T )

)
.

A.8 Proof of Corollary 5.1

In this appendix, we prove Corollary 5.1 from Section 5.6.5, giving an upper bound on

the number of quality assessments per worker needed in the proposed algorithm HCL.

Proof of Corollary 5.1. This follows directly from the proof of Lemma A.4 given in

Appendix A.7 and the proof of Theorem 5.1 given in Appendix A.7. A quality as-

sessment is only requested if a worker is selected for exploration purposes. From the

proof of Lemma A.4, the number of times a worker can at most be selected for ex-

ploration purposes is upper-bounded by (hT,i)
DidT zi log(T )e = dT γieDidT zi log(T )e ≤

(1+T γi)Di(1+T zi log(T )). Setting the parameters zi, γi as in the proof of Theorem 5.1

concludes the proof.
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A.9 A Bound On Divergent Series

The following bound on divergent series is needed in the proof of Theorem 4.1 given

in Appendix A.5 and in the proof of Theorem 5.1 given in Appendix A.7.

For p > 0, p 6= 1, the following formula holds:

T∑
t=1

1

tp
≤ 1 +

T 1−p − 1

1− p
(A.74)

Proof. See [Chl09].





187

List of Acronyms

AP Access Point

AUER Awake Upper Estimated Reward Algorithm from [KNMS10]

CAC Context-Aware Proactive Caching Algorithm

CACao Context-Aware Proactive Caching with Area Overlap Algorithm

C-RAN Cloud Radio Access Network

CS Crowdsourcing

FDMA Frequency-Division Multiple Access

HCL Hierarchical Context-Aware Learning Algorithm

i.i.d. Independent Identically Distributed

ILP Integer Linear Programming

IoT Internet of Things

LC Local Controller

LFU Least Frequently Used Algorithm

LinUCB UCB-type Algorithm for Contextual Bandits with Linear Payoff

Functions from [LCLS10,CLRS11]

LRU Least Recently Used Algorithm

M2M Machine to Machine

MAB Multi-Armed Bandit

MBS Macro Base Station

MCC Mobile Cloud Computing

MCS Mobile Crowdsourcing

MCSP Mobile Crowdsourcing Platform

MEC Mobile Edge Computing

MIMO Multiple-Input and Multiple-Output
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MNO Mobile Network Operator

NP Non-Deterministic Polynomial-Time

OFDMA Orthogonal Frequency-Division Multiple Access

RL Reinforcement Learning

SAT Server Assigned Tasks

SBS Small Base Station

s.t. Subject To

TDMA Time-Division Multiple Access

TR Task Recommendation

UCB Upper Confidence Bound

UCB1 Upper Confidence Bound Algorithm from [ACBF02]

w.r.t. With Respect To

WST Worker Selected Tasks
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List of Mathematical Symbols

∅ Empty set

|s| Absolute value of a scalar s

|S| Cardinality of a set S
d·e Ceiling function, maps a number to the least integer greater than

or equal to the number

|| · ||D Euclidean norm in RD

argmaxx g(x) Returns the value of x that maximizes g(x)

Ac Complementary event of an event A

E[·] Expectation operator

I{·} Indicator function

N Set of positive integer numbers

O(·) O-Notation

Pr(·) Probability operator

R Set of real numbers

R+ Set of positive real numbers

R0,+ Set of non-negative real numbers

Ω(·) Ω-Notation
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List of Variables from Chapter 2

at Action selected in round t

a∗ Optimal action in expectation

a∗(xt) Optimal action with respect to context xt in expectation

A Number of actions

A Set of actions

c Capacity value

cj Capacity value w.r.t. attribute j

d Number of knapsack constraints

D Dimension of context space

effi Efficiency of an item i

g0 Objective function

gj Constraint function

I Number of items

I Set of items

J Number of constraint functions

k Number of optimization variables

L Parameter in Hölder continuity assumption

Na(T ) Number of times action a ∈ A has been played up to T

pi Profit of item i

rt,at Reward in round t depending on selected action at

R(T ) Regret of learning with respect to oracle after T rounds

t Index of a round

T Number of rounds

wi Weight of item i

wi,j Weight of item i w.r.t. attribute j

xt Context arrived in round t

X Context space

yi Binary decision variable for item i

y Vector of optimization variables

α Parameter in Hölder continuity assumption

ε Parameter in ε-Greedy algorithm

µa Expected reward of action a ∈ A
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List of Variables from Chapter 3

bn Bandwidth of node n

Bn Number of bits of node n’s task

eC,n Energy per CPU cycle for local computing at node n

eT,n Energy per bit node n consumes for data transmission

effn Efficiency measure of node n

EC,n Energy consumed by node n if node n computes its task locally

Enet(y) Total energy spent in the network as a function of the actions y

Eprov,n Energy provided by node n for a computation offloading session

ET,n Total amount of energy spent in the network if node n uses computa-
tion offloading

En
T,n Energy consumed by node n if node n uses computation offloading

Er
T,n Energy consumed by predecessor r ∈ Rn of node n if node n uses

computation offloading

hn Complex channel coefficient from node n to its parent

Ln Number of CPU cycles of node n’s task

Mn Processor speed of node n

n Index of a node

N Number of nodes

N Set of nodes

NC Set of nodes computing their tasks locally

NT Set of nodes transmitting their tasks to the server

PC,n Processing power of node n

PT,n Transmit power PT,n of node n

R Number of relay nodes

R Set of relay nodes

Rn Route from node n to server

yn Binary variable describing node n’s action

y Vector of optimization variables

σ2
n Noise power at node n
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List of Variables from Chapter 4

ct,j j-th cached file in time slot t

C∗ Optimal cache content for sequence of time slots t = 1, ..., T

Ct Set of cached files in time slot t

C∗t (Xt,Gt) Optimal cache content in time slot t

df (x) Random variable for number of times a user with context x ∈ X
requests file f ∈ F in one time slot

df (xt,i, t) Instantaneous number of times user i ∈ {1, ..., Ut} requests file
f ∈ F in time slot t

d̃f (x) Random variable for combined demand and rating for file f of a
user with context x

D Dimension of context space

Ef,p(t) Set of observed demands of users with context from set p ∈ PT
when file f ∈ F was cached up to time slot t

f ∗j (Xt,Gt) Top-j file for given pair (Xt,Gt) of contexts and service groups
in time slot t

f̂j,Pt,Gt(t) j-th file in file ranking in time slot t

Fue,t Number of under-explored files in time slot t

F File library

Fue
t Set of under-explored files in time slot t

gt,i Service group to which user i in time slot t belongs

G Set of service groups

Gt Service groups of all users in time slot t

hT Input parameter to Algorithm 4.1, determines number of sets in
partition PT

H(t) Auxiliary function used in regret analysis

K(t) Control function, input to Algorithm 4.1

L Parameter in Hölder continuity assumption

m Cache size

Nf,p(t) Number of times in which file f ∈ F was cached after a user
with context from set p ∈ PT was connected to the caching
entity before time slot t

o Overlap parameter for multiple caching entities with area overlap

pt,i Hypercube of partition to which context vector xt,i belongs

Pt Set of hypercubes corresponding to set of contexts Xt
PT Partition of the context space
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rmin Minimum value of user rating

rmax Maximum value of user rating

rf (x) Random variable for rating of a user with context x after re-
questing file f

Rmax Maximum possible number of requests a user can submit within
one time slot

R(T ) Regret of learning with respect to oracle after T rounds

Roi(T ) Regret due to exploitation phases

Ror(T ) Regret due to exploration phases

t Index of a time slot

T Number of time slots

Umax Maximum number of users that may be connected simultane-
ously to the caching entity

Ut Number of users connected to the caching entity in time slot t

vg Weight for cache hit by a user of service group g ∈ G
vmax Maximum weight for cache hit among all service groups

V (t) Auxiliary event used in the regret analysis

wf prioritization weight for file f ∈ F
wmax Maximum prioritization weight among all files in F
xt,i Context vector of user i in time slot t

X Context space

Xt Set of contexts of all users in time slot t

yt,f Binary variable describing if file f ∈ F is cached in time slot t

z Parameter used in regret analysis

α Parameter in Hölder continuity assumption

β Probability that a user reveals her/his rating

γ Parameter used in regret analysis

ε Parameter in ε-Greedy algorithm

λCAC Factor for control function of Algorithm 4.1 in simulations

µf (x) Expected number of times a user with context x ∈ X requests
file f ∈ F in one time slot

µ̂f,p(t) Estimated demand for file f ∈ F with respect to set p ∈ PT in
time slot t

τ̃T Set of time slots in which CAC enters an exploitation phase, used
in regret analysis

τ̃ cT Set of time slots in which CAC enters an exploration phase, used
in regret analysis
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List of Variables from Chapter 5

Ai(T ) Number of quality assessments per worker up to task T

bt Budget of task t

ct Context of task t

C Dimension of task context space

C Task context space

di(x, c) Random variable for decision of worker i ∈ W with current personal
context x ∈ Xi for a task with task context c ∈ C

Di Dimension of joint context space of worker i ∈ W
Dmax Maximum of dimensions of joint context spaces

emax Maximum price to be paid to a worker for completing a task

emin Minimum price to be paid to a worker for completing a task

et Price to be paid to each worker who completes task t

Ei,q(t) Set of observed performances of worker i before task t when worker i
was selected for a task and the joint context was in hypercube q

f̄µi,σ2
i

(c) Truncated Gaussian probability density function with mean µi and
standard deviation σi in the hybrid performance model in simula-
tions

hT,i Input parameter to Algorithm 5.1 of LC i, determines number of
sets in partition QT,i

Hi(t) Auxiliary function for LC i used in regret analysis

Ki(t) Control function, input to Algorithm 5.1 of LC i

li Number of distinct locations visited by the corresponding user from
the reduced Gowalla-NY data set in simulations

L Parameter in Hölder continuity assumption

mt Maximum number of workers who should complete task t

Ni,q(t) Number of times before task t, in which worker i ∈ W was se-
lected to complete a task for exploration purposes when her/his
joint context belonged to hypercube q ∈ QT,i

pi(x, c) Random variable for performance of worker i ∈ W with current
personal context x ∈ Xi for a task with task context c ∈ C

pi(xt,i, ct, t) Instantaneous performance of worker i ∈ Wt with current personal
context xt,i ∈ Xi for task t with task context ct ∈ C

qi(x, c) Random variable for quality of worker i ∈ W with current personal
context x ∈ Xi for a task with task context c ∈ C

qmax Maximum quality with which a worker can complete a task

qmin Minimum quality with which a worker can complete a task
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qt,i Hypercube of partition to which context vector (xt,i, ct) belongs

QT,i Partition of the context space of LC i

R(T ) Regret of learning with respect to oracle after T rounds

Rall(T ) Regret due to select-all-worker phases

Ror(T ) Regret due to exploration phases

Roi(T ) Regret due to exploitation phases

st,j j-th selected worker for task t

s∗t,j j-th best worker for task t

S∗ Collection of optimal subsets of workers for the collection {1, ..., T}
of tasks

St Set of selected workers for task t

S∗t Optimal subset of workers to select for task t

t Index for task

T Total number of tasks

V (t) Auxiliary event used in the regret analysis

wi

(
x
(2)
i

)
Location-specific weighting factor in the hybrid performance model
in simulations

W Number of workers

Wt Number of workers available at the arrival of task t

Wue,t Number of under-explored workers at the arrival of task t

W Set of workers

Wt Set of workers available at the arrival of task t

Wue
t Set of under-explored workers at the arrival of task t

x
(1)
i Worker i’s battery state in the hybrid performance model in simu-

lations

x
(2)
i Worker i’s location in the hybrid performance model in simulations

xt,i Personal context of worker i ∈ Wt at the arrival of task t

(xt,i, ct) Joint (personal and task) context of worker i ∈ Wt at the arrival of
task t

Xi Dimension of personal context space of worker i ∈ W
Xi Personal context space of worker i ∈ W
Xi × C Joint (personal and task) context space of worker i ∈ W
yt,i Binary variable describing if worker i ∈ Wt is selected to complete

task t

zi Parameter for worker i used in regret analysis

α Parameter in Hölder continuity assumption
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γi Parameter for worker i used in regret analysis

ΓT (A) Cumulative worker performance at T achieved by an algorithm A

ε Parameter in ε-Greedy algorithm

θi

(
c, x

(1)
i , x

(2)
i

)
Expected performance of worker i in the hybrid performance model
in simulations

θ̂i,q(t) Estimated performance of worker i ∈ W for contexts in hypercube
q ∈ QT,i at the arrival of task t

θi(x, c) Expected performance of worker i ∈ W with current personal con-
text x ∈ Xi for a task with task context c ∈ C

λAUER Input parameter to AUER algorithm in simulations

λHCL Factor for control function of Algorithm 5.1 in simulations

λLinUCB Input parameter to LinUCB algorithm in simulations

νi(x, c) Expected quality of worker i ∈ W with current personal context
x ∈ Xi for a task with task context c ∈ C

πi(x, c) Acceptance rate of worker i ∈ W with current personal context
x ∈ Xi for a task with task context c ∈ C

ρ Availability probability of each worker in simulations

τT Set of tasks for which Wt > mt, used in regret analysis

τ cT Set of tasks for which HCL enters a select-all-workers phase, used
in regret analysis

τ̃T Set of tasks for which HCL enters an exploitation phase, used in
regret analysis

τ̃ cT Set of tasks for which HCL enters an exploration phase, used in
regret analysis
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