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Abstract—In this work, we focus on the transmission of
measurements to an estimator over a wireless communication
channel with limited capacity. The process it divided into two
phases, measurement and transmission. In the first phase, mul-
tiple noisy measurements of the sensor value, which is assumed
to stay constant over those measurements, are taken. More
measurements can improve the accuracy, but also consume
more time and energy. These measurements are aggregated
into a sum value, which is quantized and transmitted over the
communication channel with limited capacity. The measurement
and transmission phases share the same time and energy budget,
which limits the number of measurements and the number of bits
that can be transmitted.At the receiver, the aggregated value
is fed into an estimator optimized for a certain Bayes risk
distortion function. Since the resources used for measurement
and transmission are limited, a trade-off between measurement
accuracy and quantization precision for minimum Bayes risk is
found. Moreover, the influence of different resource limits for time
and energy, as well as different ratios of the resources used by the
measuring process and the transmission process are investigated.
Both parameters show great influence on the optimum time and
energy resource allocation.

Index Terms—Wireless Networked Control Systems, Measure-
ment Accuracy, Quantization Precision, Bayes Risk, Internet of
Things, Communication and Control

I. INTRODUCTION

Nowadays, the Internet of Things (IoT) receives growing
attention from many different research fields, e.g. industrial
communication [1] or connected cars [2]. The enormous
amount of additional smart devices deployed will greatly
increase the number of devices per area [3]. Many devices
will act as autonomous agents and not only do sensing,
but also cooperate to fulfill tasks [4]. Most of them will
use a wireless connection for communication, which results
in increasing competition for the available communication
resources like frequency bands. The sensors will be used
for sensing many different types of values like temperature,
humidity, air pressure, filling levels of tanks, positions, or
velocities.
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Fig. 1. The general wireless networked control loop

The sensors will often be part of control loops as shown in
Fig. 1. The control loop contains the sensor, which senses
the current state of a plant. The sensor values are then
transmitted over a wireless communication link to a controller,
which generates a control value to control the plant, which
is either connected to the controller by wire or also uses
a wireless connection to receive control values. The two
phases of sensing and transmitting often compete for available
resources at the sensor, e.g. time or energy for measuring
values and subsequently transmitting them. Networked Control
System (NCS) are often used in multi-agent systems, where
the sensors will generate a huge amount of data, which is
not used directly at or close to the sensor, thus needing
communication. This work focuses on this transmission of
sensor values between sensor and controller.

One example for such control systems is smart logistics [5],
where many small vehicles act as the plants and distribute
products. During operation, a huge amount of data, e.g.
position, remaining fuel, or battery power, is collected by
sensors on the vehicles and is then used at central controllers
to calculate individual control actions for the devices, for
example to schedule refueling of vehicles. Since the devices
are moving most of the time, a wireless connection is required.

Another example are cognitive buildings, which have nu-
merous sensors installed in all areas [6]. Here, environmental
data, like temperature, humidity, or air pressure is collected as
well as the presence of humans is detected. From the collected
data, the overall system behavior including the user prefer-
ences can be learned by a central controller. This controller
then drives plants like blinds, lightning or heating. Even in
this static application with fixed sensors, a wireless connection
simplifies the installation, especially in existing buildings.

From those examples, it can be clearly seen that the sensors
and corresponding controllers are often separated and a wired
communication link is not desired for different reasons. In
this case, the communication has to be wireless, and the
increasing density of devices increases the competition for the
limited wireless communication resources. Additionally, the
devices often rely on battery power, which imposes additional
constraints on the energy consumption of the systems. The
examples show two main classes of NCSs. Firstly, there is the
class of decentralized NCSs, where independent sensors and
agents compete for transmission resources. Secondly, there



are centralized NCS, which rely on a central entity, which
coordinates all agents and also the transmission resources.

Such a central scenario is considered in [7], where a central
entity measures system states and signals them to the devices
in the field. The communication is scheduled based on the
system state deviation, but the control law is not adapted to the
communication channel state. A decentralized model is used in
[8], where autonomous agents in the field compete for limited
communication resources used to transmit sensor values. In
[9], a digital transmission chain is used to transmit sensor
data. The objective is to find the optimum power allocation in
transmitting the sensor values reliably.

A slightly different objective is considered in [10], which
looks at the packet size of sensor networks and tries to
find a trade-off between packet error probability and data
integrity. In all these works, the data from the sensor is not
interpreted and processed prior to transmission, but rather the
raw values are transmitted. The acquisition is not adapted to
the communication system state, and similarly, the process of
measuring and then transmitting the data is not adapted to the
state of the underlying control system plant. Sensor outputs
with a certain resolution are not compressed for transmission
by reducing the resolution, even if the control system plant
state would only require a coarse control action, which can
also be generated from a coarse input.

In [11], the transmission power is adapted to harvested
energy, which also influences the estimation error of the
sensor value at the receiver. The objective is to keep a
control loop stable, despite the error introduced by the wireless
transmission, while the harvested energy varies over time. The
transmission uses an analog transmission scheme to be able
to directly relate transmission errors to sensor data estimation
errors at the receiver. However, the analog scheme complicates
the processing at the receiver.

In [12], the influence of very low resolution analog-to-
digital conversion is considered. A receiver with only 1-bit
quantization is used for channel estimation. The estimation
performance is improved by exploiting information about the
temporal evolution of the channel.

In this work, we focus on a single sensor-receiver pair and
use the properties of the underlying measurement model and
communication model to jointly optimize the quality of the
estimation at the receiver. Multiple noisy measurements of a
parameter are taken and aggregated afterwards. The aggregated
value is quantized and transmitted over a wireless channel. For
both phases, measurement and transmission, only limited time
and energy is available. The time limit results from the large
amount of devices competing for transmission time. This limit
can directly be translated to a limit of the data bits that can
be transmitted in one time slot. On the other hand, a high
transmit power to improve the signal-to-noise ratio (SNR) at
the receiver might drain a prohibitively high amount of energy
from the batteries of mobile or embedded devices. For this
reason, a limitation in resolution of the quantization prior to
the transmission is needed. As each individual measurement is
also consuming time and power, the two phases of measuring

and transmitting compete for the available time and energy
resources. To find the best ratio of number of measurements
and number of quantization intervals for a given time or energy
limit, the Bayes risk is used as an estimation quality measure.
This joint optimization of the number of measurements and
the number of quantization steps allows for a minimum Bayes
risk for given time or energy resource constraints.

II. SYSTEM STRUCTURE

This work focuses on the sensor value measurement and
transmission, so only the part of the control loop in Fig.
1 with the sensor, wireless channel and controller will be
modeled. The detailed chain of the measuring sensor with
transmitter, receiver and estimator is shown in Fig. 2. The
measured quantity, denoted by w, is observed by a sensor
and impaired by noise, denoted by m. A batch of Nmeas
noisy measurements of w is taken sequentially, denoted by
x1, . . . , xNmeas . Each individual measurement takes the time
Tmeas and the energy Emeas. The measurement values are
then aggregated into a single value s, which is subsequently
quantized into one of Qquant data symbols, denoted by y. The
symbol y is then transmitted over a wireless communication
channel and distorted by receiver noise z. The number Qquant
of quantization steps determines the time and energy spent for
transmission, denoted by Ttx and Etx, respectively. The total
energy and time for measuring and transmitting are limited
by Emax and Tmax, respectively. The received symbol, denoted
by y′, is then decoded according to a codebook. The output
v of the decoder is used by the estimator Ψ to generate the
estimate ŵ of w. In the next subsections, the individual steps
are described in detail.

A. Measurement Model
The value of w ∈ R is assumed to lie between wmin

and wmax and follow a known probability-density function
(pdf) pW (w). w is assumed to stay constant during the Nmeas
measurements, but with varying noise m. The noise is assumed
to be Additive White Gaussian Noise (AWGN) with zero-mean
and variance σ2

M. The complete measurement phase takes the
time Tacq = NmeasTmeas. Likewise, the complete energy for
measuring is Eacq = NmeasEmeas. The pdf pW (w) as well as
wmin, wmax and σ2

M are assumed to be known at the transmitter
and the receiver, since they all are properties of the sensor and
the observed process.
To generate the aggregated value s, the measurement values
xn = w + mn, n = 1, . . . , Nmeas are summed up, which is
assumed to take no additional time or energy. Instead of the
sum the mean could also be chosen, since they are related by
the number of measurements and the receiver can find the same
optimum trade-off between the number Nmeas of measurements
and the number Qquant of quantization steps as the sensor, since
the properties of the random value v, the measurement noise
m and the resource limits are known to the receiver.

B. Quantization and Transmission Model
The quantization of the sum value s to the data symbol y

is carried out according to a Qquant-step function φQ : R 7→



{1, 2, . . . , Qquant}. From [13], it is known that the mutual infor-
mation between sender and receiver over a binary symmetric
channel is maximized for equally probable transmit symbols.
To achieve this, φQ is designed to have equal probability for
each step, based on the pdf pS(s) of s, which can be generated
from pW (w) as shown in section III.
The resulting transmit symbol y is transmitted over a wire-
less communication channel. This transmission is subject to
receiver noise z, which is assumed to be AWGN with zero-
mean and variance σ2

Z. The channel has the constant channel
coefficient h and the transmit power is given by P . For a
capacity C = log2

(
1 + hP

σ2
Z

)
, the channel is assumed to be

error-free, thus, for the received symbol, y′ = y applies. Since
each transmit symbol is equally probable, all symbols can be
encoded by the same number Nbits of bits. It is determined
by Nbits = log2(Qquant), which is not necessarily an integer
number, if Qquant is not a power of 2. To transmit a non-integer
number Nbits of bits, the communication systems symbol
alphabet has to be designed with Qquant different symbols.
The time Tbit consumed for transmitting one bit is determined
by the channel capacity C as Tbit = 1

C . Since increased
transmission power P increases the capacity C logarithmi-
cally, linearly increasing the energy Etx for transmission
logarithmically increases the possible number Nbits of bits.
This results in a direct proportionality of Qquant and Etx, i.e.
Etx = QquantEquant.
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Fig. 2. System structure

C. Estimation Model

The received data symbol y′ is mapped back to a value
v, according to a codebook φC. v is subsequently used
by the estimator Ψ to generate the estimate ŵ of w. The
optimization objective is to minimize the Bayes risk of the
estimation, which is a metric for the estimation accuracy
[14]. It is calculated according to a distortion function l, i.e.
RB = E{l (W ; Ψ(V ))}. In this work, l is chosen to take the
form l(w,Ψ(v)) = |w −Ψ(v)|q with q ≥ 1, i.e.

RB = E{|w −Ψ(v)|q}. (1)

For the well-known mimimum mean-square error (MMSE)
estimator, q = 2 applies. The MMSE estimation minimizes the
squared error, which is suitable, if the cost increases quadrati-
cally with the measured quantity, e.g. for an error in a voltage
measurement, which results in increased power consumption.
In other cases, where there is a linear dependency of the
cost on the estimation error, the minimum absolute-value error

(MAVE) estimator is used. An application example would be
a distance measurement of drones, where the error in distance
linearly increases with the time to reach a certain point with
constant velocity.

D. Constraint Model

The estimation process is constrained by limited time or
energy resources, which are shared between the measuring
and the transmission phase. The sum time or sum energy
taken by the measurement of w and the transmission of y
must not exceed a certain limit, Tmax or Emax, respectively.
In the time limited case, the number Nmeas of measurements
determines Tacq, the number Nbits of bits determines Ttx. Since
the transmission of the aggregated value s cannot start till
all measurements have been taken, the total time spent for
measuring and transmitting is sum of these times. It must not
exceed the available time, i.e. Tmax ≥ Ttx + Tmeas.
Likewise, in the energy limited case, the total energy is the
sum of the energy Eacq consumed for measuring, determined
by Nmeas, and the energy Etx, determined by Qquant. The energy
is constraint is then Emax ≥ Eacq + Etx.

III. MATHEMATICAL DERIVATIONS

The estimation of the sensor value w at the receiver is
based on a Bayes estimation scheme. First, the probability
distributions for the non-quantized case are derived. Based on
these distributions, the estimators for the MMSE and MAVE
case are calculated. Then, the quantization and codebook-
based reconstruction is introduced. Finally, the Bayes risk,
which includes the influence of the quantization, is calculated.

A. Probability distribution pS(s)

In this section the pdf pS(s) is derived. The pdf of the
parameter w of interest is pW (w), which is only non-zero for
wmin ≤ w ≤ wmax. Each measurement is impaired with the
measurement noise m, which is i.i.d. Gaussian distributed, i.e.
pM (m) = 1√

2πσ2
M

exp
(
− m2

2σ2
M

)
. Nmeas measurement values

are taken, which results in the vector

x = w · 1Nmeas + (m1,m2, . . . ,mNmeas)
T (2)

of measurement values, where 1L is the all-ones vector with
L elements. The sum of i.i.d. Gaussian random variables is
again Gaussian, which results in

Nmeas∑
n=1

xn = s (3)

pS|W (s|w) =
1√

2πσ2
M

exp

(
(s−Nmeas · w)

2

2σ2
M

)
. (4)

This leads to the joint probability of w and w:

pS,W (s, w) = pS|W (s|w) · pW (w) (5)

To get the unconditional pdf of s, the marginal probability
w.r.t. w is calculated as

pS(s) =

∫ wmax

wmin

pS,W (s, w)dw. (6)



B. Estimators

The MAVE estimate is defined in [14] as the upper or
lower bound, respectively, which splits the integral over the
a-posteriori pdf into two equal parts, i.e.∫ ΨMAVE(s)

−∞
pS|W (s|w)dw =

∫ ∞
ΨMAVE(s)

pS|W (s|w)dw = 0.5,

(7)

The MMSE estimator ΨMMSE(s) is defined as

ΨMMSE(s) =

∫ wmax

wmin

wpS|W (s|w)dw, (8)

which is the expected value of the a-posteriori pdf pS|W .

C. Quantizer design

From information theory, it is known that the optimum
communication channel usage is achieved, if the mutual
information between the transmitted and received values is
maximized. For finite symbol alphabets, a uniform distribution
of the symbols maximizes the mutual information [13]. To
achieve this uniform distribution for the quantizer outputs, the
quantization intervals are designed according to pS(s). In a
first step, the cumulative distribution function (cdf) of S is
calculated as

PS(s) =

∫ s

−∞
pS(s′)ds′. (9)

Then, the quantization interval bounds are calculated, with
−∞ as left bound of the first interval and with +∞ as right
bound of the last interval. The bounds pn in between are
calculated by solving the equation n

Qquant
= PS(pn), which

provides equally probable output symbols.

D. Reconstruction codebook design

Since the transmission errors from the noisy channel are
assumed to be completely removed by the error correction,
the received symbol y′ is equal to the transmitted symbol y.
At the receiver, the received symbol Y ′ is used to look up
an input value cn to the estimators from a codebook. The
codebook is designed based on pS(s) inside the quantization
intervals, i.e. the expected value for each individual interval is
calculated as

cn = Qquant

∫ qy′+1

qy′

pS(s)ds. (10)

E. Calculation of the Bayes risk

From (1), the Bayes risk of the MAVE estimator is given
by

RB, MAVE =

∫ +∞

−∞

∫ wmax

wmin

|ΨMAVE(s)− w| pV,W (s, w)dwds,

(11)

and similarly for the MMSE estimator by

RB, MMSE =

∫ +∞

−∞

∫ wmax

wmin

(ΨMMSE(s)− w)
2
pV,W (s, w)dwds.

(12)

F. Resource Constraints

The time and energy constraints, see section II-D, limit the
number of measurements as well as the number of bits which
can be transmitted over the wireless channel in a given time
or with a given amount of energy, respectively. The capacity
limit is given by Shannon as

C = B · log2

(
1 +

P

σ2
Z

)
(13)

with the received signal power P , the used bandwidth B and
the noise power σ2

Z. For the transmission, a linear relation
between the transmitted and received power is assumed. In
the energy limited case, this leads to a linear relation between
the available quantization steps in a given time interval Ttx and
the transmission energy, as Qquant = 2Nbits and Nbits = TtxC.
For this reason, a parameter γE is introduced to characterize
the relation between the transmission energy Equant needed for
transmission of one additional quantization step and the energy
Emeas consumed for each measurement, i.e.

Equant = γEEmeas. (14)

For the time limited case, the time needed to transmit one bit
and the time needed to take one measurement are related by
a linear coefficient γT, i.e.

Tbit = γTTmeas. (15)

IV. RESULTS

A. Setup

All calculations are carried out with fixed measurement
noise σ2

M = 9. The range of w is set to wmin = 0 and
wmax = 100. The a-priori pdf of w is set to

pW (w) =

{
2w

w2
max−w2

min
if 0 ≤ w ≤ wmax

0 otherwise.
(16)

B. Bayes risk

To get a general overview of the influence of Nmeas and
Nbits on the Bayes risk, the Bayes risk is calculated for up to
Nmeas = 9 and Nbits = 9 with both estimators, MMSE and
MAVE. Fig. 3 shows RB, MAVE curves for different values of
Nmeas for the MAVE estimator. The more measurements are
taken and the higher the quantization resolution is, the lower
is the Bayes risk RB, MAVE. For an increasing Nmeas and a
fixed Nbits, RB, MAVE decreases asymptotically, so that for a
higher Nmeas the improvement on RB, MAVE decreases. This is
also true for increasing Nbits with fixed Nmeas. For the MMSE
estimator in Fig. 4, a similar behavior is observed. Please
note that RB, MMSE is quadratic, since the MMSE estimator
is optimal for the squared error. More measurements lead to a
stronger reduction of RB, MMSE than for the MAVE estimator.
Fig. 5 shows the Bayes risk for a given maximum time of
Tmax = 13 and γT = 0.25. The available time is completely
used, i.e. Tacq + Ttx = Tmax, so increasing Ttx decreases Tacq
and vice versa. The results show the trade-off between Tacq
and Ttx with minimum RB can be found. A similar relation
can be found for limited energy.
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Fig. 3. Bayes risk for the MAVE estimator
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0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Ttx

R
B

MMSE
MAVE
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C. Optimum ratio of number of measurements and quantiza-
tion steps

To investigate the influence of time constraints on the opti-
mal selection of Nmeas and Nbits or, likewise, energy constraints
on Nmeas and Qquant, the minimum RB, MMSE and RB, MAVE for
different constraint sets is investigated. First, the influence of
changing constraints Tmax and Emax is considered. For a fixed
ratio γT and γE, respectively, the optimum allocation of time

or energy, respectively, was found. From the previous results
for the Bayes risk, it is clearly visible that a finer quantization
and more measurements will always lead to a lower Bayes
risk. This result suggests that the optimum resource allocation
should always use all available time or energy resources. To
find the optimum allocation for a given limit, all possible
combinations of Nbits and Nmeas which fully use Tmax in the
time limited case, and all possible combinations of Qquant and
Nmeas which fully use Emax in the energy limited case, are
considered. The resulting optimal values for Ttx and Tacq are
shown in Fig. 6 and for Etx and Eacq in Fig. 7. In both cases,
for Tmax = 1 or Emax = 1, it is only possible to carry out
one measurement, but not to transmit, so the estimate is based
solely on pW (w). For the time constrained case, γT = 2 and
Tmax = 1 results in only 0.5 bits available to quantize the value,
so only a single value can be transmitted and the estimation
is again carried out solely based on the knowledge of pW (w).
Both, in the time limited and in the energy limited case,
the time or energy spent for measuring, Tacq or Eacq, and
transmitting, Ttx or Etx, increase. In the time limited case, the
time spent for transmission increases faster with increasing
Tmax, because one additional bit always doubles the number
of available quantization steps, while the corresponding two
additional measurements, which could be done in the same
time, give less and less improvement for higher Tmax.
In the energy limited case, the growth is almost proportional,
because now there is just a linear instead of an exponential
relation between Equant and Qquant. Since the improvement for
each additional quantization step and measurement reduces,
they increase alternating. The two estimators only show minor
differences in the optimal resource allocation.
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Now, the influence of changing ratio γT is investigated. The
available time is set to Tmax = 13, the ratio γT is varied
between 0.75 and 4. For rising γT, this makes the transmission
relatively more time consuming. The results are shown in Fig.
8. The longer time per bit results in more time spent for
transmitting data than measuring. This leads to a growing Ttx.
As shown in the previous results, the overall RB increases,
since the duration of a single measurement and the available
time Tmax is held constant, while less bits can be transmitted.
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Decreasing Nbits and increasing Nmeas is generally not an
option, because decreasing Nbits by one halves Qquant.
For the energy constrained case, a similar result is shown
in Fig. 9. Here, the linear relation between Qquant and Nmeas
results in a more constant ratio of Etx and Eacq, because, in
contrast to the previous case, an additional measurement can
often compensate for a smaller Qquant.
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V. CONCLUSION

In this work, the estimation of a parameter following a given
pdf using quantized measurements transmitted over a wireless

channel was considered. Multiple noisy measurements of
a parameter can be taken sequentially and are aggregated
afterwards. The aggregated value is quantized and transmitted
to the receiver, which executes the estimation of the measured
parameter. The number of measurements in the measurement
phase and the number of quantization steps is limited by a
shared time or energy budget. It was shown that a trade-off
between the two parameters exist. Furthermore, the different
influence of time and energy limits was shown, as well as
the behavior for changing ratios of the resources needed for
measurement and transmission.
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