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Abstract—The complexity of the mode selection and resource
allocation (MS&RA) problem has hampered the commercializa-
tion progress of Device-to-Device (D2D) communication in 5G
networks. Furthermore, the combinatorial nature of MS&RA has
forced the majority of existing proposals to focus on constrained
scenarios or offline solutions to contain the size of the problem.
Given the real-time constraints in actual deployments, a reduction
in computational complexity is necessary. Adaptability is another
key requirement for mobile networks that are exposed to constant
changes such as channel quality fluctuations and mobility. In this
article, we propose an online learning technique (i.e., CBMoS)
which leverages combinatorial multi-armed bandits (CMAB) to
tackle the combinatorial nature of MS&RA. Furthermore, our
two-stage CMAB design results in a tight model, which eliminates
the theoretically feasible but practicality invalid options from the
solution space. We prototype the first SDR-based D2D testbed to
verify the performance of CBMoS under real-world conditions.
The simulations confirm that the fast learning speed of CBMoS
leads to outperforming the benchmark schemes by up to 132%.
In experiments, CBMoS exhibits even higher performance (up to
142%) than in the simulations. This stems from the adaptabil-
ity/fast learning speed of CBMoS in presence of high channel
dynamics which cannot be captured via statistical channel models
used in the simulators.

I. INTRODUCTION

Device-to-Device (D2D) communication emerged as a dis-
ruptive paradigm allowing direct communication between user
equipments (UEs) without traversing the eNodeB (eNB), en-
abling public-safety, IoT, industry 4.0, and V2X scenarios [1].
After a decade of research and standardization effort, D2D
is still not ready for commercial implementation. To date,
3GPP has only defined the overall architecture and basic
functionalities (e.g., user/service discovery) [2]. The slow
progress is endowed to the complexity of the mode selection
and resource allocation (MS&RA) problem and the intertwined
interference environment of D2D communication modes [3, 4].
The optimization-based solutions for MS&RA does not always
achieve the time-constraints expected in a real-world scenario.
Furthermore, they need to be recomputed every time the
network conditions changes (e.g., channel variation).

A. Background and related work

By definition, there are three available D2D modes, namely,
inband, outband, and legacy, see Fig. 1. In inband mode, D2D
communication occurs over the LTE-A wireless interface of
the UE in the licensed spectrum. Outband mode consists in
communicating over the WiFi interface in unlicensed ISM
spectrum [1]. Legacy mode refers to the legacy communication
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Fig. 1: An overview of different D2D modes.

through the eNB, as it happens in today’s networks, which
is the least desirable D2D mode since relaying the transmis-
sion through the eNB consumes both uplink and downlink
resources. Inband and outband modes are more resource-
efficient since the D2D UEs can directly communicate without
a relay in between. However, interference management is
difficult in inband mode as D2D communication over licensed
band can negatively impact other UEs in case of frequency
reuse. Outband mode, on the other hand, is susceptible to
interference from other devices and technologies operating
in ISM band. As result, the selection of a suitable D2D
mode is highly dependent on the channel dynamics of the
surrounding environment. Note that MS&RA goes beyond a
simple selection among these three modes. MS&RA entails
deciding the communicating mode, the resources to be used
within the selected mode, and the possibility of reusing the
selected resources (by accounting for interference). Given the
complexity of this decision, it comes as no surprise that the
optimal MS&RA is an NP-Hard problem [5, 6].

To date, MS&RA problem has been addressed via math-
ematical tools such as classic optimization [6–10], game
theory [11–13], and graph theory [14–16]. The seminal works
in [17, 18] propose heuristics on mode selection between
inband and legacy modes aiming at reducing interference
from cellular UEs to D2D UEs in static scenarios. In [10],
the authors formulate the D2D resource allocation as a non-
convex optimization problem which is then solved via ap-
proximation. The authors of [7–9] follow similar approach
in formulating the D2D mode selection as a (non)-linear
optimization problem, which is solved through heuristics due
to NP-Hardness. Furthermore, the authors of [7] derive a
throughput-optimal solution for a network with only one D2D
user in static scenarios. In [11] and [13], the authors use
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matching theory and stackelberg games, respectively, to solve
MS&RA problem between inband and legacy modes. In [12],
the inband D2D resource allocation problem is formulated
as a non-convex bargaining game theory framework, which
is solved via iterative methods. The authors of [14] show
that regular graph-theory approaches [15, 16] are too complex
for solving D2D resource allocation, and propose an inband
resource allocation algorithm using hypergraphs.

The majority of the above works only focus on D2D
resource allocation, which in essence reduces the complexity
of the MS&RA problem to scheduling D2D UEs within
one mode. Among those that focus on MS&RA, important
practical aspects such as accounting for network dynam-
ics [3, 6, 12, 13, 17, 18] and computational complexity of
the problem [15, 16, 19] are not addressed.

B. Motivation and challenge

A practical D2D MS&RA should maintain low complexity
while accounting for network dynamics (e.g., channel varia-
tion and mobility) in all D2D modes. However, accounting
for network dynamics in all three D2D modes intensifies the
complexity of an already convoluted problem. The limitation
of the state of the art in terms of computational complexity
stems in the combinatorial nature of mode selection problems.
Furthermore, the problem formulation with interference con-
sideration is often non-linear which is even harder to solve.
Although reduced and simplified versions of this problem can
be solved via numerical methods, its complexity remains an
issue, and its scalability is a concern. Hence, the majority of
the state of the art aims at (semi) static scenarios in inband
mode [20].

Leveraging machine learning techniques for MS&RA can
facilitate higher adaptability to network dynamics. However,
similar to aforementioned mathematical tools, the combi-
natorial nature of mode selection impacts the performance
of learning algorithms by increasing the action space. In
particular, learning decelerates because many feasible actions
should be explored before converging to the best solution. The
major challenge is devising a practical learning methods while
accounting for the following:

• Adapting to network dynamics. Existing solutions often
solve the MS&RA problem for a snapshot of the system
and cannot cope with network dynamics [3, 6, 9, 12,
13, 17, 18]. Thus, any change in the system demands
re-solving the problem without benefiting from the prior
knowledge [4].

• Considering all D2D modes. The majority of the liter-
ature only focuses on the inband mode [7–10, 14–18].
However, 3GPP includes the support for outband from
Rel.12 to encourage interworking of WLAN and LTE-
A [1, 3]. Extending support to all D2D modes adds new
dimensions to the problem.

• Minimizing computational complexity. Many propos-
als demonstrate impressive results, even with bounded
optimality. Unfortunately, such solutions are often offline

algorithms which do not meet the millisecond-scale sche-
duling requirement of cellular networks [9, 15, 16].

C. An overview of CBMoS

In this paper, we propose CBMoS, an online learning
technique for joint MS&RA in D2D networks. CBMoS is
designed based on a novel two-stage combinatorial multi-
armed bandit (CMAB) approach. From an algorithmic point
of view, the separation into stages allow us to reduce the
action space and increase the learning speed of the algorithm.
The first stage considers the resource allocation for cellular
UEs. By exploiting the fact that resources cannot be shared
among cellular UEs, the first stage breaks the combinatorial
nature of the resource allocation problem and it is able to find
solutions that aim at maximizing the throughput. The second
stage handles the MS&RA for D2D UEs. In this case, the
dimensionality of the problem is addressed by learning the
best resource allocation for every D2D pair and evaluating
the effect of the combined solution on the overall network
throughput. Furthermore, to explore the possible actions ef-
ficiently, the two stages of CBMoS leverage a D2D-specific
action selection policy based on a gradient-ascent approach.

From a networking point of view, CBMoS will simply
replace the existing scheduling algorithm at the eNB. Located
at the eNB, CBMoS has access to the channel quality indicator
(CQI) of the UEs and can therefore determine the achieved
performances in every scheduling slot. Using this information,
CBMoS updates its learning parameters, i.e., its estimates on
the expected performance of the possible MS&RA solutions,
and uses them to select the MS&RA of each UE in each
decision interval. The selected MS&RA solution is broadcast
via a DCI channel, as it is done in LTE-A. Note that this
decision contains the RB allocation for the cellular UEs, RB
allocation and mode selection for legacy, inband and outband
D2D UEs. After each decision interval, the UEs report back
the CQI and the outcome of the decision, i.e., the achieved
performance is obtained. Using this feedback, CBMoS updates
its learning parameters in order to select the next MS&RA
solution.

D. Our contributions

The following summarizes the contributions of this paper:

• We model the joint MS&RA problem as a two-stage
CMAB, see Section II. Our novel formulation prunes
the infeasible solutions by design via decoupling the
decisions for cellular and D2D UEs. Such decoupling
enables the reduction of the action space significantly.

• We propose CBMoS which provides fast convergence
by leveraging a tailored action selection policy, see
Section III. Specifically, the proposed policy uses the
gradient-ascent approach to learn preferences for each
possible MS&RA solution. These preferences are based
on the throughput achieved in the network when the
corresponding MS&RA was selected and ensure a more
efficient exploration of the action space.
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• We develop the first SDR-based testbed that is capable
of full inband and outband D2D communication, see
Section IV. Our modular design of the testbed allows for
future extensions and implementation of new algorithms
with minimal efforts. We have made the code base for
inband D2D publicly available1.

• The evaluation shows that CBMoS is the fastest to adapt
and the first to identify best strategies under variant user
density, network size, and channel occupancy. Further-
more, CBMoS achieves up to 132% and 142% throughput
gain in simulations and experiments, respectively. The
superiority of CBMoS stems from the aforementioned
two-stage design and the proposed preference-based ac-
tion selection policy. The former eliminates infeasible
actions without incurring additional overhead while the
latter exploits past experience in the calculation of the
preferences. That is, the performance achieved by each
selected MS&RA solution is used in the update of all
the preferences, thus reducing the number of iterations
required to identify efficient solutions.

II. SYSTEM MODEL

We aim to solve the joint MS&RA problem for D2D and
cellular UEs. In this section, we first describe the network
model and D2D modes in detail. Next, we elaborate on the
learning model and the underlying technical details which tie
our problem to a CMAB formulation. Finally, we formally
define the proposed two-stage CMAB.

A. Network model

We consider a multi-cell LTE-A network with 20 MHz
bandwidth in which downlink and uplink operate on separates
channels (i.e., FDD2) under a Rayleigh fading channel. We
assume a micro-cell deployment for urban areas in which the
inter-site distance is 200 m [21]. The eNB provides coverage
to N UEs, from which Nc are cellular UEs and Nd are D2D
UEs. Every UE is equipped with one LTE-A interface and one
WiFi interface. The traffic from the cellular UEs goes outside
the network, whereas a D2D UE communicates with another
UE within the cell (see Fig. 1). We consider three modes,
namely, legacy, inband, and outband. Each mode contains a
limited set of resources. The number of legacy and inband
resource blocks (RBs) is denoted by Rc and Ri, respectively.
The number of outband resources Ro is the number of available
WiFi channels.

Legacy mode. In this mode, the D2D transmits the data
via the uplink to the eNB, which then relays the packet to the
D2D receiver via a downlink. Although the D2D pair in legacy
mode communicate via the eNB (similar to the cellular UEs),
there is a key difference between D2D and cellular users. The
resource used by the cellular users cannot be re-used within
the same cell, whereas the resources used by D2D users can
be reused.

1http://sine.ni.com/cs/app/doc/p/id/cs-17689
2Since CBMoS only looks at the achieved performance on individual RBs,

we can apply the same solution to TDD.

C-CMAB

Execution

D2D-CMAB

Fig. 2: Schematic of the two-stage CMAB problem

Inband mode. In this mode, the D2D pair communicates
directly via their LTE-A interface over inband RBs. Unlike
legacy mode, D2D pairs are allowed to reuse the resources
within the cell in inband mode. Hence, D2D pairs can poten-
tially interfere with each other.

Outband mode. In this mode, the D2D pair communicates
directly over one of the available WiFi channels. In outband
mode, the D2D pairs use contention-based medium access
(i.e., CSMA), and thus their throughput can be impacted by
other existing users/services operating in the same band. Note
that the outband link is established following WiFi Direct
association procedure [22] and 3GPP specification on WLAN-
LTE integration as described in [23, 24]. After link activation,
the D2D pair can report the channel statistics over LTE
interface to the eNB.

B. Learning model

In essence, the MS&RA problem consists in choosing a
resource within one of the available modes for every UE in the
cell. Thus, the MS&RA problem matches very well to classic
multi-armed bandit (MAB) formulations, where a decision-
making agent must repeatedly choose one of several MS&RA
solutions (i.e., arms). However, the large number of possible
solutions, which depend on the amount of UEs in the network,
makes a classic MAB formulation infeasible for a practical
MS&RA scheme. That is, MAB requires each arm to be tried
several times to learn the optimal solution. For instance, the
number of solutions for a small network with 16 UEs is 291

when the three modes are considered. In such a case, trying
each possible MS&RA solution takes 7.8×1016 years assuming
each action is verified within 1 ms. Therefore, to overcome this
limitation, we model the D2D MS&RA as a two-stage CMAB
problem, as depicted in Fig. 2.

The classic MAB formulation ignores the inter-dependency
of the individual solutions (e.g., the impact of UE1’s MS&RA
on UE2) while CMAB accounts for this inter-dependency
by looking at the composite outcome of these solutions.
Given the high inter-dependency of D2D MS&RA decisions,
CMAB facilitates faster and smarter learning than the classic
MAB. Our proposed two-stage design stems from the fact
that MS&RA for cellular UEs only entails resource allocation
since they do not use D2D modes. Our formulation considers
this by decoupling MS&RA of cellular UEs from D2D UEs.
As a result, we reduce the solution space and improve the
learning speed. Specifically, we perform resource allocation
for the cellular UEs in the first stage (i.e., C-CMAB). Next,
the output of C-CMAB is fed into the second stage (i.e.,
D2D-CMAB) to perform MS&RA for the D2D UEs. After
the execution of every MS&RA decision, the eNB records the
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TABLE I: Table of notations
SYMBOL NOTATION SYMBOL NOTATION

i Index for variable X j Index for the super-arms
k Index for the value (arm) of variable Xi t Index for time interval
vi Selected value (arm) for variable Xi vi,k kth possible value (arm) of variable Xi

H(vi,k) Preference of selecting arm vi,k for Xi I Total number of variables Xi

J Total number of super-arms Jc Number of super-arms in C-CMAB
Jd Number of super-arms in D2D-CMAB Ki Total number of values (arms) variable Xi can take
L Validation function N Total number of UEs
Nc Total number of cellular UEs Nd Total number of D2D UEs
Rc Number of legacy resource blocks Ri Number of inband resource blocks
Ro Number of outband resource blocks Vj jth super-arm
Xi Variable for which a decision has to be made V Set of super-arms
Vi Set of values (arms) for variable Xi α Learning rate
ε Probability of selecting the actions via Local MABs µj Expected reward of super-arm Vj

ρj Reward function of super-arm Vj ρ̄j Estimated average reward of super-arm Vj

%i Reward function of arm vi %̄i Estimated average reward of arm vi

observed performance (i.e., throughputs) for updating learning
parameters.

C. Problem formulation: Two-stage CMAB

A CMAB is usually determined by a set of variables, a set
of arms and super-arms, a reward function and a validation
function, as described in the following:

• The set of I variables X = {X1, ..., XI} are the elements
in the problem for which a decision has to be made. For
C-CMAB, the variables Xi correspond to the available Rc

legacy resource blocks and for D2D-CMAB the variables
Xi are the Nd/2 D2D-pairs. For each variable Xi there
are Ki different options (i.e., arms) and the value of Xi
depends on the arm that is being selected. For example,
if Xi represents a D2D UE, the arms correspond to the
available resources and modes. The collection of the
possible values Xi can take in each time interval is given
by the set Vi = {vi,1, ..., vi,Ki

}, with |Vi| = Ki .
• The collection of the values taken by all the I variables

is termed a super-arm and it is given by the vector
V = (v1, ..., vI). Furthermore, the set containing all the S

possible super-arms is defined as V = {V ∈ V1 × ...× VI}.
Following our previous example, when Xi represents
D2D UEs, a super-arm V corresponds to the collection
of the resources and modes selected by each D2D UE. In
summary, an arm is associated to a single variable while
a super-arm is the collection of the arms selected by all
the variables.

• The reward function ρj : Vj→R is a random variable with
an unknown distribution and an expected value µj . It is
determined for each super-arm Vj ∈V and represents how
beneficial is the selection of super-arm Vj in a given time
interval.

• The validation function L determines whether a super-
arm Vj ∈ V is a valid solution or not. Although validation
functions introduce overhead to the learning algorithm,
they are needed when the collection of the values taken by
the variables Xi leads to practically infeasible solutions.
In our case, the feasibility of the super-arms is determined
by the possibility of sharing resources among the cellular
and D2D UEs. As a consequence, we propose a tight
model in which the unfeasible solutions are excluded and
the use of a validation function is successfully avoided.

We have summarized all the variables and notation in Table I.
As depicted in Fig. 2, our two-stage CMAB problem decouples
the MS&RA of the D2D and cellular UEs by considering
two different CMAB problems, namely C-CMAB and D2D-
CMAB.

C-CMAB. As described, the C-CMAB performs resource
allocation for the cellular UEs. Each variable Xi, i = 1, ..., Rc,
corresponds to one available resource in legacy mode. Since
each resource can only be allocated to one cellular UE at a
time, the set Vi of arms available for each Xi is formed by
the set of cellular UEs. Consequently, the number of possible
arms is the same for all the resources Xi and it is given by
the total number of cellular UEs, i.e., Ki = Nc. Furthermore,
in C-CMAB, each super-arm is formed by the values taken
by each of the Rc variables. In other words, the collection of
the scheduled UEs (i.e., the UEs which received a resource).
As every variable can take one out of Nc values, the total
number of possible super-arms |V| = Jc can be calculated as
the product of the possible values each resource can take which
can be expressed as:

Jc = (Nc)Rc . (1)
The reward obtained when selecting a super-arm Vj , j = 1, ..., Jc

is the total throughput achieved by cellular UEs3. As men-
tioned, our two-stage design removes the practically infeasible
solutions (e.g., a cellular UE using inband resources). As a
result, all the Jc super-arms are valid solutions for the MS&RA
and the definition of a validation function L is unnecessary.
The output of the C-CMAB, i.e., the resource allocation for
the cellular UEs, is fed into the second stage to determine
which cellular resources are available for the D2D UEs.

D2D-CMAB. The second stage performs MS&RA for the
D2D UEs. Unlike cellular UEs, the reuse of resources within
a mode is allowed for the D2D UEs. Consequently, the D2D-
CMAB considers I = Nd

2
variables Xi, i = 1, .., Nd

2
where each

variable Xi represents a D2D pair. The set Vi of arms available
for each D2D pair is formed by the collection of possible mode
selection solutions. The size of Vi represents the number of

3By means of a different reward function, other metrics such as proportional
fairness or delay can be considered. The reward should reflect the suitability
of the action taken with respect to the goal, e.g., for proportional fairness
higher rewards should be obtained when the distribution of resources is more
uniform.
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possible solutions which can be expressed as:

|Vi| = Ki = Ro +

Ri∑
l=1

(Ri

l

)
+

Rc∑
l=1

(Rc

l

)
+ 1. (2)

The first two terms in Eq. (2) are the possible MS&RA options
for outband and inband resources, respectively. The third term
depends on the number of cellular resources. This represents
the scenario in which D2D pairs operate in the legacy mode,
and 1 accounts for the case when no resources are allocated
to the D2D pair. The MS&RA of all D2D UEs forms a super-
arm in this stage. The total number of super-arms |Vd| = Jd

can be calculated as:

Jd =

Nd/2∏
i=1

Ki =

Ro +

Ri∑
l=1

(Ri

l

)
+

Rc∑
l=1

(Rc

l

)
+ 1

Nd/2

. (3)

Similar to the C-CMAB stage, the reward obtained when
selecting super-arm Vj is the total throughput achieved by D2D
UEs. Moreover, the definition of the function L is unnecessary
since all the super-arms are valid MS&RA solutions.

III. CBMOS ALGORITHM

We propose CBMoS, an online learning algorithm which is
designed to solve the MS&RA in D2D systems. The online
nature of CBMoS makes it effective in face of wireless channel
dynamics. In its core, CBMoS exploits the Naive Sampling
(NS) strategy [25]. The NS strategy breaks the CMAB problem
into several smaller MAB problems. This separation is based
on the assumption that for any CMAB, the reward function ρj

of super-arm Vj can be approximated as the summation of the
individual reward functions %(vi) of its arms as follows:

ρj ≈
I∑
i=1

%(vi), vi ∈ Vj . (4)

In our two-stage problem, the assumption in (4) is fulfilled
with equality by both, C-CMAB and D2D-CMAB. This is
due to the fact that the total throughput is the summation of
the achieved throughput of D2D and cellular UEs. Moreover,
this throughput per UE already includes the effect of the
interference caused by the other transmitting UEs as well as
the interference caused by other cells using the same frequency
bands. Following the formulation in Section II-C, CBMoS
solves the MS&RA in two stages which are elaborated in
the following. The pseudo-code of CBMoS is shown in
Algorithm 1.

A. First stage: C-CMAB

As shown in Fig. 3a, NS is used to separate C-CMAB
into Rc local and one super-MAB problems. Each local-MAB
problem is associated with a particular variable Xi, i = 1, ..., Rc

which corresponds to a cellular resource. At every decision
interval t = 1, ..., T , each local-MAB selects a cellular UE from
its corresponding set Vi. Note that the local-MAB problems do
not have a combinatorial nature because they only consider one
variable at a time. As explained in Section II, the collection
of the arms selected by all the local-MAB problems forms
a super-arm Vj . For C-CMAB, the super-arm contains the
scheduled cellular UEs. The task of the super-MAB is to select
one super-arm from the ones that have been already observed.

Algorithm 1 Two-stage CMAB algorithm
1: initialize α, α%, ε,H and
2: for every t = 1, ..., T do
3: generate random number ζ . C-CMAB
4: if ζ ≥ ε(t) then . Exploit from super-MAB
5: select the super-arm with higher expected reward
6: else . Explore from local-MABs
7: for each local-MAB do
8: calculate the preferences of each arm . Eq. (7)
9: calculate the probabilities for each arm . Eq. (8)

10: select the arm with the highest preference
11: end for
12: collect the selected arms to form the super-arm
13: if a new super-arm is encountered then
14: add it to the set of available super-arms in super-MAB
15: end if
16: end if
17: determine available resources in legacy mode
18: generate random number ζ . D2D-CMAB
19: if ζ ≥ ε(t) then . Exploit from super-MAB
20: select the super-arm with higher expected reward
21: else . Explore from local-MABs
22: for each local-MAB do
23: calculate the preferences of each arm . Eq. (7)
24: calculate the probabilities for each arm . Eq. (8)
25: select the arm with the highest preference
26: end for
27: if a new super-arm is encountered then
28: add it to the set of available super-arms in super-MAB
29: end if
30: end if
31: observe the achieved throughput
32: update baseline in C-CMAB and D2D-CMAB . Eq. (6)
33: update super-arms’ expected rewards . Eq. (5)
34: end for

As a result, the number of available super-arms grows every
time a new Vj is encountered. In summary, the local-MAB
problems are used to explore and discover new super-arms,
and the super-MAB is used to exploit the already known super-
arms by selecting the best available super-arm.

To balance the trade-off between exploration and exploita-
tion, we consider the ε-greedy policy. At every decision
interval t, the super-MAB selects a super-arm with probability
1 − ε (line 4) or the local-MAB selects a super-arm with
probability ε (line 6). The super-MAB follows a greedy policy
for the selection of the super-arms (line 5), i.e., the super-MAB
always selects the best super-arm from the set of available
super-arms. Furthermore, the quality of each super-arm Vj ,
Vj ∈ V is measured in terms of the estimate of its average
reward ρ̄j , which is calculated via the following:

ρ̄j,t+1 = ρ̄j,t + α (ρj,t − ρ̄j,t) , (5)

where 0 ≤ α < 1 is a fraction that affects the learning rate
and ρj,t is calculated using (4). Note that using α = 1/t in (5)
results in the sample-average method.

For the arm selection in the local-MAB, we propose a
customized preference-based policy, in which we obtain the
preference of allocating resource Xi, i = 1, ..., Rc to the kth,
k = 1, ..., Nc cellular UE (line 8). This policy increases the
convergence rate of CBMoS because it promotes the selection
of arms whose achieved throughput is higher than the average
throughput per resource experienced up to decision interval t
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(%̄i,t). We denote the difference between the achieved throu-
ghput %i,t when vi is selected and the average throughput per
resource %̄k,t, k = 1, ..., I, by:

δk,t = %i,t − %̄k,t. (6)

CBMoS learns the preferences based on the idea of gradient
ascent [26]. With (6), the preferences of all the arms in a local-
MAB are updated every time t as follows:

Ht+1(vi,k)=

Ht(vi,k)+αδk,t
(
1−P(vi,k)

)
if Xi=vi,k

Ht(vi,k)−αδk,t(P(vi,k)), if Xi 6=vi,k
, (7)

where P(vi,k) is the probability of selecting arm vi,k and it can
be calculated using a soft-max distribution as:

P
(
Xi = vi,k

)
=

eHt(vi,k)∑Ki
l=1 e

Ht(vi,l)
. (8)

In every interval, CBMoS checks whether the selected
super-arm in local-MAB has already been encountered (line
13). When a new super-arm is detected, the set of available
super-arms in super-MAB is updated (line 14). After the
selection of the super-arm, CBMoS determines the number
of available resources in legacy mode (line 17). This number
determines the possible MS&RA for the D2D pairs in the next
stage (i.e., D2D-CMAB).

B. Second stage: D2D-CMAB

Although the techniques used in D2D-CMAB are similar to
that of C-CMAB, they vary in the definition of the variables.
For brevity, we focus on these differences. Fig. 3b shows that
the NS divides D2D-CMAB into Nd

2
local and one super-MAB

problems. In this stage, each local-MAB represents a D2D
pair. At every decision interval, each local-MAB selects an
arm which is the MS&RA for its corresponding D2D pair.
The number of available arms Sarm is computed via (2). The
collection of the MS&RA for each D2D pair forms a super-
arm. As mentioned, the task of the super-MAB is to select one
super-arm from the ones that have been already observed.

We use ε-greedy to decide whether to select a super-arm via
the super-MAB or the local-MAB problems (line 19). Similar
to C-CMAB, the selection of D2D-CMAB consists in the
use of greedy policy for the super-MAB and the preference-
based policy for the local-MAB problems. In D2D-CMAB,
Ht(vi,k) is the preference of allocating the resources in arm
vi,k, k = 1, ..., Sarm to the ith, i = 1, ..., Nd

2
, D2D pair. In each

iteration, CBMoS checks whether the selected super-arm in
D2D-CMAB has already been encountered (line 27).

Finally, after the selection of the super-arms in C-CMAB
and D2D-CMAB is performed, the MS&RA solution is ap-
plied and the achieved throughput is observed. This achieved
throughput is used by CBMoS to update the averages and

expected reward estimates in C-CMAB and D2D-CMAB
(lines 31-33).

A common metric to evaluate the performance of the
strategies used to solve CMAB problems is the regret. The
regret is defined as the expected loss caused by the fact that
the optimal super-arm is not always selected [27]. The regret
at decision interval t is calculated as:

ηt =

J∑
j=1

(µ∗ − µj)E[mj,t] =

J∑
j=1

∆jE[mj,t] (9)

where ∆j = µ∗−µj and mj,t is the number of times super-arm
Vj has been selected up to decision interval t. The analysis of
the regret can be found in the following subsection.

C. Regret Analysis

In this section, we first derive the regret of C-CMAB and
D2D-CMAB. Next, we show the regret of CBMoS. For these
derivations, the seminal work of [27] is used as a baseline.

Proposition 1. For C-CMAB and D2D-CMAB, the probability
of selecting a non-optimal super-arm Vj after t decision
intervals, t ≥ a− b, where a, b ∈ R+, a ≥ b are constant values,
is bounded by

P (Vj)≤
a

b+t
+2a log

(
e1/a(b+t)

a

)
+

4

d2

(
a

e1/a(b+t)

) ad2

2

, (10)

where d = minj:µj<µ∗{µ∗ − µj} is the difference of between
the expected reward of the optimal super-arm V ∗ and the best
non-optimal super-arm Vj .

Proof. The probability of selecting super-arm Vj at any given
decision interval t is given by

P(Vj) ≤ εt
I∏
i=1

P(Xi = vi) + (1− εt)P(µ̄j,t−1 ≥ µ̄∗t−1), (11)

where µ̄j,t and µ̄∗t are the estimated average reward of Vj and
V ∗, respectively, at decision interval t. The first term in (11)
corresponds to the probability of selecting Vj via the local
MABs, while the second term is the probability of selecting
Vj via the super-MAB. For the first term, we consider the worst
case for the upper bound. This is, that a sub-optimal arm Vj

will be selected when exploring. As a result,
P(Vj) ≤ εt + (1− εt)P(µ̄j,t−1 ≥ µ̄∗t−1). (12)

To calculate the upper bound of the second term in (11), we
exploit the fact that

P(µ̄j,t ≥ µ̄∗t ) ≤ P (µ̄j,t ≥ λ) + P (µ̄∗t ≤ λ) , (13)
where λ =

µ∗+µj

2
. Now, for each term on the right side of (13)

we have that,

P (µ̄j,t ≥ λ) =

t∑
l=1

P (mj,t = l ∧ µ̄j,t ≥ λ) (14)

=
t∑
l=1

P (mj,t = l|µ̄j,t ≥ λ)P (µ̄j,t ≥ λ). (15)

Using Hoeffdings’s inequality, the second term in (15) can be
bounded as

P (µ̄j,t ≥ λ) ≤ e
−∆2

j l

2 , (16)
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As a result,

P (µ̄j,t ≥ λ) ≤
t∑
l=1

P (mj,t = l|µ̄j,t ≥ λ)e
−∆2

j l

2 . (17)

The right side of (17) can be written as
t0∑
l=1

P (mj,t= l|µ̄j,t ≥λ)e
−∆2

j l

2 +

t∑
l=t0+1

P (mj,t= l|µ̄j,t ≥λ)e
−∆2

j l

2 .

(18)
After bounding some terms in (18) to one, we obtain

t0∑
l=1

P (mj,t = l|µ̄j,t ≥ λ) +
t∑

l=t0+1

e
−∆2

j l

2 . (19)

Moreover, the exponential term in (19) can be bounded such
that

P (µ̄j,t ≥ λ) ≤
t0∑
l=1

P (mj,t = l|µ̄j,t ≥ λ) +
2

∆2
j

e
−∆2

j t0

2 (20)

holds. Denoting mrnd
j,t as the number of times super-arm Vj has

been randomly selected, (20) can be expressed as

P (µ̄j,t ≥ λ) ≤ t0P
(
mrnd
j,t ≤ t0

)
+

2

∆2
j

e
−∆2

j t0

2 . (21)

However, note that in C-CMAB the super-arm Vj can only
be randomly selected one time, i.e., at the beginning of the
algorithm when the preferences have not yet been calculated.
As a result, P

(
mrnd
j,t ≤ t0

)
= 1 and

P (µ̄j,t ≥ λ) ≤ t0 +
2

∆2
j

e
−∆2

j t0

2 . (22)

Now, let t0 =
∑t
l=1 εl. Moreover, as εt = a

b+t
where a, b ∈ R+

and a ≥ b, a lower bound for t0 can be found by considering
t′ = b− a as follows:

t0 =

t′∑
l=1

a

b+ l
+

t∑
l=t′+1

l = 1
a

b+ l
(23)

t0 ≥ 1 + a log

(
b+ t

b+ t′

)
(24)

t0 ≥ a log

(
e1/a(b+ t)

a

)
. (25)

Thus, using (12), (13), (22) and (25), and writing d =

minj:µj<µ∗{µ∗ − µj}, the probability in (11) can be expressed
as

P (Vj) ≤ εt +

(
2t0 +

4

∆2
j

e
−∆2

j t0

2

)
(26)

P (Vj) ≤
a

b+ t
+ 2a log

(
e1/a(b+ t− 1)

a

)

+
4

d2

(
a

e1/a(b+ t− 1)

) ad2

2

(27)

Theorem 1. The regret of C-CMAB and D2D-CMAB is
bounded by

ηt ≤
J∑
j=1

∆j

(
a

b+ t
+ 2a log

(
e1/a(b+ t− 1)

a

)

+
4

d2

(
a

e1/a(b+ t− 1)

) ad2

2

 , (28)

where a, b ∈ R+, a ≥ b are constant values and d =

minj:µj<µ∗{µ∗ − µj} is the difference of between the expected
reward of the optimal super-arm V ∗ and the best non-

optimal super-arm Vj . The leading order of the regret is
O

(
2a log

(
e1/a(b+t−1)

a

))
.

Proof. From (9), the regret can be rewritten as

ηt =
J∑
j=1

∆jP(Vj). (29)

The bound obtained by using Proposition 1:

ηt ≤
J∑
j=1

∆j

(
a

b+ t
+ 2a log

(
e1/a(b+ t− 1)

a

)

+
4

d2

(
a

e1/a(b+ t− 1)

) ad2

2

 , (30)

in which the leading order is given by

O

(
2a log

(
e1/a(b+ t− 1)

a

))
. (31)

Proposition 2. For CBMoS, the probability of selecting a non-
optimal combination of super-arms Vc,j and Vd,j , for C-CMAB
and D2D-CMAB, respectively after t decision intervals, t ≥
a − b, where a, b ∈ R+, a ≥ b are constant values, is bounded
by

P(Vc,j ∪ Vd,j) ≤ P (32)

where P is defined in (33), dc = minj:µc,j<µ∗c {µ
∗
c − µc,j} is the

difference of between the expected reward of the optimal super-
arm V ∗c and the best non-optimal super-arm Vc,j in C-CMAB
and dd = minj:µd,j<µ

∗
d
{µ∗d − µd,j} is the difference of between

the expected reward of the optimal super-arm V ∗d and the best
non-optimal super-arm Vd,j in D2D-CMAB.

Proof. For CBMoS, the probability of selecting a non-optimal
combination of super-arms is

P(Vc,j ∪ Vd,j) = P(Vc,j) + P(Vd,j) + P(Vc,j)P(Vd,j), (34)
where P(Vc,j) and P(Vd,j) are the probabilities of selecting
non-optimal super-arms in C-CMAB and D2D-CMAB, re-
spectively. Using the result in Proposition 1 and after some
algebraic manipulations, (34) can be bound as

P(Vc,j ∪ Vd,j) ≤ P. (35)

Theorem 2. The regret of CBMoS is bounded by

ηt ≤
JCBMoS∑
j=1

∆jP, (36)

where P is defined in (33), JCBMoS is the total number
of combined super-arms, dc = minj:µc,j<µ∗c {µ

∗
c − µc,j} is the

difference of between the expected reward of the optimal super-
arm V ∗c and the best non-optimal super-arm Vc,j in C-CMAB
and dd = minj:µd,j<µ

∗
d
{µ∗d − µd,j} is the difference of between

the expected reward of the optimal super-arm V ∗d and the best
non-optimal super-arm Vd,j in D2D-CMAB. The leading order
of the regret is O

(
4a2 log2

(
e1/a(b+t−1)

a

))
.
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P =
2a

b+ t
+ 4a log

(
e1/a(b+ t)

a

)
+

4

d2c

(
a

e1/a(b+ t)

) ad2
c

2

+
4

d2d

(
a

e1/a(b+ t)

) ad2
d

2

+


 a

b+ t
+ 2a log

(
e1/a(b+ t)

a

)
+

4

d2c

(
a

e1/a(b+ t)

) ad2
c

2


 a

b+t
+2a log

(
e1/a(b+t)

a

)
+

4

d2d

(
a

e1/a(b+t)

) ad2
d

2


 , (33)

Proof. From (9), the regret can be rewritten as

ηt =

JCBMoS∑
j=1

∆jP(Vc,j ∪ Vd,j). (37)

The bound is obtained by using Proposition 2:

ηt ≤
JCBMoS∑
j=1

∆jP (38)

From there it is easy to see that the leading order is given by

O

(
4a2 log2

(
e1/a(b+ t− 1)

a

))
. (39)

D. Computational complexity evaluation

In this section, we evaluate the computational complexity of
one iteration of our proposed CBMoS with respect to the size
of the network, i.e., the number of UEs (Nc and Nd) and the
number of available resources (Rc, Ri and Ro). We start our
analysis with C-CMAB and then continue with D2D-CMAB.

From Algorithm 1, it can be observed that for C-CMAB,
the selection of super-arms via the super-MAB (line 5) entails
the selection of the super-arm with the maximum average
estimated reward. This operation has a complexity that grows
as O(Jc,t), where Jc,t ≤ Jc = NRc

c is the number of super-
arms in the super-MAB up to decision interval t. For the
selection of super-arms via the local-MABs, three steps need
to be followed. First, the preferences are calculated (line 8).
As this operation is performed for each arm, its complexity
grows as O(Nc). Second, the probabilities for each arm are
calculated (line 9). This step has a complexity that grows as
O(Nc) because it involves the calculation of Nc probabilities.
Note that the calculation of the denominator in (8) is done
only once and the result is stored in memory. Third, the
arm with the highest preference is selected (line 10). As
mentioned before, determining the maximum value out of
Nc values has a complexity that grows as O(Nc). Conse-
quently, as these three steps need to be repeated Rc times
(line 7), the complexity of the selection of the super-arm
via the local-MABs grows as O(RcNc). Similarly, for D2D-
CMAB, the selection of super-arms via the super-MAB (line
20) has a computational complexity that grows as O(Jd,t),
where Jd,t ≤ Jd =

(
Ro +

∑Ri
l=1

(Ri
l

)
+
∑Rc
l=1

(Rc
l

)
+ 1
)Nd/2 is

the number of super-arms in the super-MAB up to decision
interval t. Let us denote Rd = Ro +

∑Ri
l=1

(Ri
l

)
+
∑Rc
l=1

(Rc
l

)
+ 1.

Then we have that for the selection of super-arms via the
local-MABs, the complexity grows as O(RdNd/2). This is
because each of the required operations (lines 23-25) have a
complexity that grows linearly with Rd and each the operations
needs to be repeated Nd/2 times. To determine how does the

computational complexity of CBMoS grow, we consider the
most computationally demanding ways to select the super-
arms in both, C-CMAB and D2D-CMAB, i.e., the selection
of super-arm via the super-MABs. As a result, the complexity
of CBMoS grows linearly with the number of super-arms as
O(Jc,t + Jd,t).

Following a similar approach, we can obtain that the com-
plexity of the benchmark approaches (ε-greedy and UCB)
grows as O(Jt) where Jt ≤ J = JcJd. This means, the two-
stage design of CBMoS allow us to achieve a complexity that
grows linearly with the number of possible super-arms, instead
of the quadratic growth of the benchmark approaches.

IV. SDR DESIGN AND IMPLEMENTATION

In this section, we elaborate on the overall architecture
and hardware/software components of the testbed. In addition,
we briefly explain the process of prototyping inband and
outband D2D communication. Finally, we provide details on
the integration of CBMoS in our testbed.

Our SDR hardware is comprised of NI 2954R USRP RIO
devices4. These devices are equipped with Xilinx Kintex-
7 FPGAs and multiple RF daughterboards. The USRPs are
connected through a PCI-e interface to a real-time host, which
is an off-the-shelf PC running NI Linux RT (NILRT), a
Linux real-time operating system. We use LabVIEW Com-
munications to program and control the platforms both in
FPGA and NILRT. Specifically, the computation-intensive
parts of our project (e.g., DSP blocks) are programmed in
FPGA using LabVIEW’s Clock-Driven Logic programming
language. Real-time host code mostly comprises higher-layer
control functionalities which require deterministic execution
in µ-second scale (e.g., scheduling). Our testbed benefits from
the LabVIEW Application Frameworks (AFWs), which are
reference designs of LTE and WiFi physical layers 5,6.

Overview of the eNB. The eNB is comprised of a real-time
host and a USRP, as depicted in Fig. 4. The main responsi-
bilities of the real-time host are processing the feedback and
signaling messages received from the UEs. This information
is used as input for our MS&RA algorithms. Furthermore, the
real-time host generates the transport blocks to be transmitted
via the physical layer. These transport blocks are sent to the
USRP for (de-)coding, (de-)modulation and RF transmission
and reception. Moreover, physical layer operations such as
channel equalization are performed at the USRP.

Overview of the UE. As shown in Fig. 5, the UE is com-
prised of a real-time host and two USRPs: one for emulation

4http://www.ni.com/de-de/support/model.usrp-2954.html
5http://www.ni.com/white-paper/53286/en/
6http://www.ni.com/white-paper/53279/en/
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of the LTE and the other for the WiFi interface, respectively.
The FPGA logic required for both physical layers exceeds
the available fabric on a Kintex-7 FPGA, hence the use of
two USRPs. The real-time host at the UE runs both LTE and
WiFi AFWs and facilitates communication between the two.
Similar to the eNB, the USRPs at the UE handle baseband
and RF processing, such as carrier frequency offset (CFO)
compensation. In addition to the physical layer, the USRP
running the WiFi AFW code implements a CSMA MAC layer.

Although the LTE and WiFi reference design implemen-
tations are instrumental to our testbed, numerous extensions
are required to enable inband and outband support. These
extensions include adding support for Multi-UE, enabling
OFDMA, inband channel, and outband channel. For brevity,
we provide a high-level description of the setup and only
describe the most significant changes for inband and outband.

A. Inband D2D communication links

According to the 3GPP specification, inband D2D users
communicate over the sidelink channel [28]. In our imple-
mentation, we leverage the FPGA logic of uplink transmitter
(at the UE) and receiver (at the eNB) to implement the
sidelink transceiver. Given that sidelink uses part of the uplink
resources, the UE either uses the uplink or sidelink channel in
every given subframe. We have to make the following modi-
fications to the transmission time interval (TTI) management
block to add this feature. Fig. 6 shows the high-level overview
of our inband D2D implementation at the UE.

The Host-FPGA interface is extended to contain additional
parameters for the D2D link including a ten-slot TX sub-
frame configurations array, which specifies for each subframe
whether it is to be used for uplink, sidelink, or no transmission
at all (e.g., to listen to an inbound D2D transmission). Depend-
ing on the subframe index, the TTI handling block outputs the
respective configuration for the current subframe.

As mentioned, we leverage the existing uplink logic to
implement sidelink. However, this task is not as easy as
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Fig. 6: Overview of inband D2D implementation at the UE
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duplicating the eNB’s uplink receiver logic in the UE, since
we need to account for synchronization. The eNB determines
system timing and carrier frequencies in LTE. The UEs
synchronize themselves with the eNB and estimate the CFO
by processing the primary synchronization signal (PSS). The
primary sidelink synchronization signal (PSSS) is a separate
synchronization signal which is used for D2D communications
according to [28]. We deviate from the standard in our
implementation by using the PSS signal for synchronization.
The LTE resource grid implementation in mostly hard-coded
and adding PSSS signal changes this grid which in turn sets
off a chain of modifications. Hence, we refrained from altering
the resource grid due to timing constraints. It should be noted
that this will not impact the accuracy of our results since PSSS
is important, particularly in out-of-coverage scenarios. These
scenarios are out of the scope of this paper.

Fig. 6 depicts the FPGA architecture of our D2D-enabled
UEs. The CFO and timing offset information obtained from
processing the PSS in the Synchronization block in the down-
link receiver chain are shared with the uplink transmitter
chain and the sidelink transceiver chain. The AFW already
includes the CFO correction and time alignment for the uplink
transmitter chain. We port this feature to the sidelink receiver.

B. Outband D2D communication links

We use the WiFi AFW to implement outband D2D links.
The architecture of outband links is shown in Fig. 7. We
use real-time queues to communicate between the LTE and
WiFi AFWs on host-level. For implementing the network-
assisted WLAN control feature specified by the standard, we
use three real-time queues: (i) Control Queue which provides
the MAC addresses (source and destination) for the outband
transmission; (ii) Transmit Queue which supplies the data to
be sent over the outband link; and (iii) Feedback Queue which
reports the performance of the outband link. The latter is then
reported to the eNB via the LTE uplink. The host portion of the
LTE AFW receives configuration packets from the eNB and
configures its WiFi interface accordingly via these queues.
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TABLE II: Parameters used in the evaluation

Parameter Value
Cellular

Cellular uplink bandwidth 20 MHz
Cell radius 200 m
TX power cellular UE 24 dBm
Thermal noise power -174 dBm/Hz
Noise figure eNB, UEs 5, 7
Fading, shadowing, pathloss Reyleigh, 4 dB, UMa [29]
Number of resource block pools 12

Outband
WiFi bandwidth 22 MHz
WiFi effective range 150 m
WiFi TX power 20 dBm

D2D
Underlay max bandwidth 20 MHz
Number of resource block pools 12
D2D maximum distance 30 m

C. Integration of CBMoS

The MS&RA occurs at the eNB, hence, CBMoS algorithm
is deployed within the real-time host at the eNB. At the end of
each decision interval, the UEs report the achieved throughput
to the eNB over the uplink channel. This information will
be available to CBMoS. Knowing the last decision, CBMoS
can map the achieved throughputs to the previous MS&RA
decision and calculate the rewards for the past actions. As
for implementation of CBMoS, we leverage the mathscript
node of LabVIEW which allows executing Matlab code within
LabVIEW. In addition to reducing development time, this ap-
proach eliminates the performance difference due to efficiency
of the code because we use the same implementation of CB-
MoS in the simulations and experiments. Note that integrating
CBMoS in a real-deployment does not require changes to
the architecture or signaling procedure of existing cellular
networks since it will only replace the existing scheduling
algorithm. The key difference is that the D2D UEs requires
to send feedback for both licensed and unlicensed spectrum,
whereas cellular users only send feedback for the licensed
spectrum.

V. EVALUATION

In this section, we evaluate and benchmark CBMoS via
numerical simulations and experiments. Our simulation en-
vironment (e.g., cell size and wireless propagation) is created
in accordance with 3GPP technical specification (see Sections
6.2 and 7.4 in [21] and Table II). We assume a multi-cell
scenario with frequency re-use factor 1 in which the cell under
evaluation can be interfered by its first-tier neighbors (6 cells)
and second-tier (12 cells) neighboring cells [30]. Note that
this is a worst-case scenario which maximizes the effect of
intercell interference. The duration of each simulation is 60 s,
and it is repeated for 500 times. The simulations demonstrate
the performance of CBMoS in large networks (e.g., 100 UEs
per cell) which cannot be studied using our testbed. Although
our testbed consists of 20 USRP nodes, the maximum number
of UEs in our experiments is limited to one eNB and eight
UEs; each UE requires two USRPs. In addition, we use a
couple of USRPs to create interference over outband channels.
Unless otherwise specified, the occupancy of outband channel
is 50%, and the number of UEs is 100 (50 cellular and 50
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Fig. 8: The learning speed and achieved throughput per mode.

D2D UEs). All users move at pedestrian speed following a
random direction mobility model [31]. The mobility not only
results in instantaneous channel fluctuations but also changes
the statistics behind these fluctuations, e.g., as the distance
between the eNB and the UE increases, the probability of
having low channel quality grows. As mentioned, no prior
work has used learning algorithms to solve the joint MS&RA
problem. Nevertheless, we adapt two well-known learning
policies (i.e., ε-greedy and UCB) to the MS&RA problem as a
benchmark to our proposal. For fair comparison, we adapt both
strategies to a CMAB instead of the original MAB problem
formulation.
• ε-greedy. In this approach, the ε-greedy policy is used

for the selection of arms in the global and local MAB
problems, i.e., for each MAB, there is a probability
(1−εMAB) of selecting the best arm and a probability εMAB

of randomly selecting one of the available arms. Note that
we have tailored this strategy such that only valid super-
arms and arms can be selected (i.e., avoids infeasible
solutions).

• UCB. This approach is similar to ε-greedy, but the UCB
strategy in [27] is used in each local MAB for the
selection of the arms.

• Random. At each decision interval, the algorithm selects
randomly one of the valid MS&RA solution. Each solu-
tion is chosen with the same probability.

A. Learning speed

Fig. 8a illustrates the aggregate system throughput over
time. We observe that CBMoS has much higher learning
speed in comparison to the benchmark schemes. Specifically,
CBMoS achieves up to 643 Mbps after 5 seconds and 662 Mbps
after 60 seconds which is 132% and 78% higher than the most
performant benchmark, respectively. Fig. 8b sheds light on the
contribution of each mode in the aggregate system throughputs
after 60 seconds. We can see that the least throughput is
achieved in legacy mode because reusing resource blocks is
not allowed in this mode. This figure illustrates the strategy
difference among CBMoS and the benchmark schemes. In
particular, we observe that CBMoS better utilizes the available
resource in outband while the rest of the algorithms have more
focus on the inband and cellular resources. Outband resources
are not well-explored by ε-greedy and UCB because outband
constitutes a smaller number of arms than inband and cellular,
hence the lower exploration probability.

The large performance difference between CBMoS and the
benchmark schemes stems from: (i) the two-stage CMAB
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Fig. 9: Number of D2D UEs vs. throughput.
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Fig. 11: Outband occupancy vs. throughput.

design which facilitates the formulation of learning problems
with a smaller solution space and (ii) the preference-based
action selection policy which enables more efficient explo-
ration/exploitation of the MS&RA problem. Specifically, for
this scenario, the number of possible solutions for CBMoS is
at most Jc+Jd = 5025+(8192)25, while for the other schemes is
at most JcJd = (409600)25, i.e., approximately 2.98×1042 times
higher.

Note that theoretically ε-greedy and UCB can achieve the
same performance as CBMoS if they are given infinite time.
Nevertheless, practical MS&RA demands for fast and efficient
solutions while ε-greedy and UCB suffers from slow learning
speed due to the prolonged exploration/exploitation phases
even when they are embedded in a CMAB formulation. This is
particularly noticeable for UCB because it forces continuous
exploration until all actions are visited at least once. For
example, in this scenario, each D2D pair has to try all the
possible 8192 solutions at least once. Given the number of
possible actions in the MS&RA, such exploration results in a
slow learning curve.

B. Impact of number of D2D UEs

Here, we evaluate the impact of the percentage of D2D
UEs (i.e., 5%, 25%, 50%, 75%, 95%) in the network of 100 UEs
on the system throughput. Fig. 9 shows that the throughput
significantly increases as the percentage of D2D UEs in the
network grows. This observation tallies with the results de-
picted in Fig. 8b. Note that the reuse of resource is prohibited
for cellular UEs but allowed for the D2D UEs in inband and
outband mode. Hence, the opportunity for reusing resources
grows with the number of D2D UEs. This result demonstrates
the importance of D2D communication in enhancing cellular
capacity.

C. Impact of network size

In the previous scenario, we observed that D2D UEs play
an important role in the achieved system throughput. Next we
study the impact of the number of UEs (i.e., network size)
on the aggregate throughput. Fig. 10 shows that the aggregate
throughput increases with the network size for all algorithms.
As the network size increases, so does the number of D2D
UEs (50% of the UEs are D2D UEs). As a result, as shown in
Fig. 9, this leads to higher aggregate system throughput.
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Fig. 12: The layout of the room and distribution of SDRs.

D. Impact of channel occupancy in outband

In this scenario, we analyze the impact of outband channel
occupancy on the system throughput (see Fig. 11). Since
outband channels are shared with all other services running on
ISM frequencies, it is important to observe the system behavior
in different traffic conditions. Here we evaluate a scenario in
which the other services occupied 5%, 25%, 50%, 75%, 95% of the
outband channel capacity. The use of inband mode increases
as the occupancy of the outband channel increases. We also
observe that the performance gap among different algorithms
reduces as the occupancy of outband channels increases. The
reason behind the similarity of performances between different
algorithms is two fold: firstly, outband resources, i.e., WiFi
channels, constitute a large portion of the total resources, thus
removing them pushes the system to a state in which there
are not many resources to share among UEs and consequently,
leaves little room for optimization. Secondly, the strength of
CBMoS lies within its fast convergence and its ability to find
the best solution in scenarios with very large action space.
Removing outband significantly reduces the action space,
which is one of the main challenges for the benchmarks. As
a consequence, the gap in the performance between CBMoS
and the benchmarks is reduced compared to the previous
cases. Nevertheless, CBMoS still outperforms the benchmark
schemes by at least 9%.

E. Experimental evaluation

To verify the practicality of CBMoS, we repeat the simu-
lated scenario in our SDR-based testbed. The experiments are
performed in a 50.4m2 room. Our testbed is comprised of one
eNB, which is placed in the center, and eight UEs which are
distributed over three tables in the room, see Fig. 12.
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Fig. 13 demonstrates the aggregate system throughput
achieved over 300 seconds for the different algorithms. In
this scenario, there are three D2D pairs and two cellular
UEs. We observe that CBMoS maintains its fast learning and
high performance in experiments. Interestingly, CBMoS shows
even higher performance in the experiments compared to the
simulations. In experiments, we face unpredictable channel
effects which cannot be captured by simulation models. While
CBMoS’s dynamic nature and its fast learning capabilities
allows for quick adaption, the other benchmark schemes fail
to cope with these changes.

Fig. 14 shows the impact of the number of D2D UEs in our
experiments. As observed in the simulations, the performance
of CBMoS increases with the number of D2D UEs due to
the reuse of resources. Note that for one D2D pair, CBMoS
learns to allocate one outband channel to the D2D pair because
it provides, on average, a higher throughput than the inband
resources. As mentioned before, the performance of ε-greedy
and UCB is reduced compared to CBMoS due to their slow
learning speed, as depicted in Fig. 13.

The effect of outband channel occupancy is presented in
Fig. 15. It can be seen that the contribution of the outband
channels to the aggregate throughput of CBMoS decreases
with the increase of the occupancy, as shown in the simulation.
Also, the usage of inband resources in CBMoS increases to
compensate for this fact. The performance of the benchmarks
is not significantly affected because, due to their slow learning
speed, they do not exploit the available outband resources.

VI. CONCLUSIONS

In this article, we model the joint MS&RA problem as a
two-stage combinatorial multi-armed bandit problem. Next,
we propose CBMoS which leverages a D2D-specific explo-
ration/exploitation policy. We benchmark CBMoS against pop-
ular learning approaches via extensive simulations in presence
of network dynamics (e.g., fading, interference and mobility).
To the best of our knowledge, there is no prior work proposing
a practical solution for such dynamic networks. The simu-
lation confirms that CBMoS increases the aggregate system
throughput up to 2 folds. To verify the practicality of our
proposal, we develop the first SDR-based testbed capable of
inband and outband D2D communication. Our experimental
evaluation confirms the high performance that is observed in
the simulation.

In the course of this research, we modeled and solved the
MS&RA via reinforcement learning and multi-armed bandits.

We do not present these results due to space constraints.
Nevertheless, both approaches resulted in very slow learning
speed. To this aim, we adapt the benchmark algorithms to
a combinatorial model to provide a fair comparison with
CBMoS. The correct tuning of the learning parameters, e.g.,
ε and α, impacts the performance of the learning algorithms,
hence they should be tuned in accordance with the intensity of
the network dynamics. As a future work, we intend to derive
these parameters on the fly from the reported performance
values and their fluctuations.
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