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Abstract—In this paper, the 2-antenna 3-user multiple-input
single-output broadcast channel is considered, where the channel
state information at the transmitter (CSIT) for every receiver
can be either perfect (P) or delayed (D), resulting thus in total
in 8 possible CSIT states I1I2I3, Ii ∈ {P,D}, i ∈ {1, 2, 3}. For
this scenario, we show the achievability of the optimal degrees
of freedom (DoF) for the setting where the CSIT states are
restricted to take the following 5 values: PPP, PPD, PDP, PDD
and DDD. The achievability is facilitated through the introduction
of two novel constituent encoding schemes (CSs), in which joint
encoding over the CSIT state pairs (PPP,PDD) and (PDD,DDD)
is performed. After a careful assignment of the newly proposed
and existing in the literature CSs to the available CSIT states,
optimal DoF are achieved.

I. INTRODUCTION

The multiple-input single-output (MISO) broadcast channel
(BC) is a network comprised of a single M -antenna transmitter
and K single-antenna receivers, where each receiver desires
a private message. The work of [1] has shown the degrees of
freedom (DoF) of the MISO BC to be min {M,K}, where for
the DoF achievability zero-forcing (ZF) encoding was applied.
The result in [1] relied on the assumption of perfect and up-
to-date channel state information at the transmitter (CSIT).

Contrary to having the current CSIT, the authors in [2]
considered the MISO BC under the so-called delayed CSIT
setting, in which the CSIT is completely outdated, exclud-
ing thus all possibilities to exploit channel time correlation.
Despite the absence of the current CSIT, the work of [2]
has shown the DoF to be greater than in case of completely
absent CSIT given in [3]. The achievability in [2] was based
on a novel transmission scheme, referred to in the following
as MAT scheme. A more general CSIT setting has been
considered in [4], [5] and [6], where at every channel use, the
CSIT for each user can be either perfect (P), delayed (D) or not
available (N), referred to as alternating CSIT. The complete
DoF characterization for the 2-user MISO BC with alternating
CSIT was given in [4]. The DoF of the MISO BC with delayed
and imperfect CSIT were studied in [7] and [8], where the
work of [8] completely characterized the DoF for the 2-user
case.

In this paper, we consider the 2-antenna 3-user MISO BC
with alternating CSIT, where the CSIT for each user can be
either perfect (P) or delayed (D), resulting thus in total in 8
possible CSIT states I1I2I3, Ii ∈ {P,D}, i ∈ {1, 2, 3}. For
the overloaded M < K MISO BC with delayed CSIT, it has

been shown in [2] that additional DoF gains are possible by
applying joint encoding over the whole set of users. However,
optimal DoF have been achieved in [2] only for the case M =
2, K = 3.

Related Work and Contribution: Outer bounds for the M -
antenna K-user MISO BC with alternating CSIT have been
provided in [4] and [7]. As for the achievability, the work of [4]
achieved the optimal min {M,K} DoF in a symmetric CSIT
setting where at every channel use, at least for M users perfect
CSIT is available. For the case M = 2, K = 3, the result of
[4] gives the optimal DoF for the case where admissible CSIT
states are PPD, PDP and DPP. For the achievability, [4] relied
on ZF. The work of [7] considered a modification of the CSIT
setting in [4] by allowing in addition an alternation with the
jointly delayed state. The authors in [7] proposed to apply
MAT scheme for the jointly delayed CSIT state and ZF for
the remaining states, where optimal DoF have been achieved
for the case M = 2, K = 3. The work of [5] considered
an overloaded M = K − 1 MISO BC where CSIT alternates
between jointly perfect and jointly delayed states, for which a
novel constituent encoding scheme (CS) was proposed. For the
case M = 2, K = 3, the CS proposed by [5] achieved optimal
DoF. In [9], a novel transmission scheme was proposed, which
achieved optimal DoF for the M = 2, K = 3 MISO BC with
a fixed PDD state.

In this paper, we characterize the optimal DoF for the
M = 2, K = 3 MISO BC with alternating CSIT where
the admissible CSIT states are PPP, PPD, PDP, PDD and
DDD. Our result partially generalizes the findings on the DoF
characterization obtained for the M = 2, K = 3 MISO BC
with alternating CSIT in [2], [4], [5], [7] and [9]. In terms of
the converse, we rely on the existing outer bound in [7]. As for
the achievability, we first introduce two novel CSs in which
joint encoding over the CSIT state pairs (PPP, PDD) and
(PDD,DDD) is performed. Then, after a careful assignment
of two newly proposed CSs, ZF, MAT scheme and the CS in
[5] to the available CSIT states, optimal DoF are achieved.

II. SYSTEM MODEL

We consider a MISO BC depicted in Fig. 1, which is
comprised of a 2-antenna transmitter Tx and 3 single-antenna
receivers Rxi, i ∈ {1, 2, 3}. The signal received by Rxi at the
t-th channel use is given by

yi (t) = hT
i (t)x (t) + zi (t) , (1)
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Fig. 1: The 2-antenna 3-user MISO BC

where x (t) ∈ C
2×1 is the vector of transmitted signals,

hi (t) ∈ C
2×1 is the vector of channel coefficients corre-

sponding to Rxi, and zi (t) ∼ CN (0, 1) is the additive white
Gaussian noise at Rxi. Channel coefficients are drawn from
continuous distributions, and are independent across transmit
antennas, receivers and different channel uses. The transmitted
signal is subject to the average transmit power constraint
1
n

n∑
t=1

E
{
‖x (t)‖2

}
≤ P , where n is the communication

duration.
We consider an alternating CSIT setting in which the CSIT

corresponding to each Rxi at time t is either perfect (P)
or delayed (D). In such scenario, there are 8 possible joint
CSIT states which are denoted by I1I2I3, Ii ∈ {P,D},
i ∈ {1, 2, 3}. The joint CSIT state statistics are characterized
by the joint probabilities λI1I2I3 , where

∑
I1I2I3

λI1I2I3 = 1
holds. In such case, the probability that the CSIT for Rxi
is in P state is described by the marginal probability λi =∑

I1I2I3,Ii=P λI1I2I3 . Without loss of generality, we assume
the users to be ordered such that λ1 ≥ λ2 ≥ λ3 holds. At
every receiver, global instantaneous CSI is assumed.

We assume Tx has messages W1, W2 and W3 intended
to receivers Rx1, Rx2 and Rx3, respectively. Achievable rate
tuples (R1 (P ) , R2 (P ) , R3 (P )) are defined in the standard
Shannon theoretic sense. We define the DoF region D as the
set of all achievable DoF tuples (d1, d2, d3), for which di =

lim
P→∞

Ri(P )
log2(P ) holds. The maximum achievable sum-DoF (or

simply DoF) is denoted by d = max
(d1,d2,d3)∈D

d1 + d2 + d3.

III. MAIN RESULTS

We first state the DoF outer bound for the alternating CSIT
which follows from the DoF outer bound for delayed and
imperfect CSIT in [7].

Theorem 1. For the 2-antenna 3-user MISO BC with alter-
nating CSIT, the DoF region is outer bounded as

2d1 + d2 + d3 ≤ 2 + λ1, (2a)
d1 + 2d2 + d3 ≤ 2 + λ2, (2b)
d1 + d2 + 2d3 ≤ 2 + λ3, (2c)

d1 + d2 + d3 ≤ 2, (2d)

d1, d2, d3 ≤ 1. (2e)

Below, we provide the analysis of the DoF outer bound
given by Theorem 1. Depending on the set of active bounds
in (2a)–(2e), we distinguish the following three regions of the
CSIT configurations.

1) Region I: 3λ1 − λ2 − λ3 ≤ 2, λ1 + λ2 + λ3 ≤ 2.
In this case, the bound (2d) is inactive.
The optimal DoF tuple is given by AI =(
1
2 + 3λ1−λ2−λ3

4 , 1
2 + 3λ2−λ1−λ3

4 , 1
2 + 3λ3−λ1−λ2

4

)
.

2) Region II: 3λ1 − λ2 − λ3 > 2.
In this case, the bounds (2a) and (2d) are inactive. The optimal
DoF tuple is given by AII =

(
1, 1

3 + 2λ2−λ3

3 , 1
3 + 2λ3−λ2

3

)
.

3) Region III: λ1 + λ2 + λ3 > 2.
In this case, all bounds are active. The are three optimal
DoF tuples which are the corner points of the DoF region
A

[1]
III = (λ1, λ2, 2− λ1 − λ2), A

[2]
III = (λ1, 2− λ1 − λ3, λ3)

and A
[3]
III = (2− λ2 − λ3, λ2, λ3).

The examples of the shapes of the DoF regions are given
in Fig 2. The corollary below summarizes our findings in a
form of the DoF upper bound.

Corollary 1. The DoF in the 2-antenna 3-user MISO BC with
alternating CSIT are bounded from above as follows

d ≤

⎧⎪⎪⎨
⎪⎪⎩

3
2 + 1

4 (λ1 + λ2 + λ3) if
3λ1 − λ2 − λ3 ≤ 2,
λ1 + λ2 + λ3 ≤ 2,

5
3 + 1

3 (λ2 + λ3) if 3λ1 − λ2 − λ3 > 2,
2 if λ1 + λ2 + λ3 > 2.

(3)

The main result of the paper is then given by the following
theorem.

Theorem 2. For the 2-antenna 3-user MISO BC with alter-
nating CSIT where λDPP = λDPD = λDDP = 0, the DoF
upper bound (3) is achievable.

The proof of Theorem 2 is given in two sections. In Section
IV, the set of the CSs necessary for the DoF achievability
will be introduced. Then, the formal proof will be provided in
Section V by assigning the CSs to the CSIT states.

IV. CONSTITUENT ENCODING SCHEMES

In this section, we describe the CSs which will be used to
prove Theorem 2 in Section V. The schemes described in this
section are summarized in Table I.

A. Schemes Achieving 2 DoF

First, we consider three CSs which rely on ZF encoding. In
each of the CSs, single symbols are delivered to two receivers
over a single channel use.

1) S2
1 achieves (d1, d2, d3) = (1, 1, 0) for λPPD = 1.

2) S2
2 achieves (d1, d2, d3) = (1, 0, 1) for λPDP = 1.

3) S2
3 achieves (d1, d2, d3) = (1, 1, 0) for λPPP = 1.

In the following, we describe the first newly proposed CS in
which joint encoding over PPP and PDD states is performed.
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Fig. 2: Shapes of the DoF regions for 2λ1 − λ2 ≥ 2
and 2λ2 − λ3 ≥ 2: (a) Region I, (b) Region II and
(c) Region III. The non-optimal DoF tuples are given
by C

[1]
12 =

(
1, 1+λ2

2 , 0
)
, C

[2]
12 = (1, λ2, 0), C

[1]
13 =(

1, 0, 1+λ3

2

)
, C

[2]
13 = (1, 0, λ3), C

[1]
23 =

(
0, 1, 1+λ3

2

)
,

C
[2]
23 = (0, 1, λ3), B12 = (1, 1− λ1 + λ2, 2λ1 − λ2 − 1, ),

B13 = (1, 2λ1 − λ3 − 1, 1− λ1 + λ3) and B23 =
(2λ2 − λ3 − 1, 1, 1− λ2 + λ3)

TABLE I: Summary of the constituent encoding schemes.

CS CSIT state fractions DoF tuple Achievability

S2
1 λPPD = 1 (1, 1, 0) ZF

S2
2 λPDP = 1 (1, 0, 1) ZF

S2
3 λPPP = 1 (1, 1, 0) ZF

S2
4 (λPPP, λPDD) =

(
1
2
, 1
2

) (
1, 1

2
, 1
2

)
Proposed

S2
5 (λPPP, λDDD) =

(
2
3
, 1
3

) (
2
3
, 2
3
, 2
3

)
[5]

S5/3 (λPDD, λDDD) =
(
2
3
, 1
3

) (
1, 1

3
, 1
3

)
Proposed

S3/2 λDDD = 1
(
1
2
, 1
2
, 1
2

)
MAT [2]

4) S2
4 achieves (d1, d2, d3) =

(
1, 1

2 ,
1
2

)
for (λPPP, λPDD) =(

1
2 ,

1
2

)
.

The transmission spans two channel uses: t = 1 correspond-
ing to PDD state and t = 2 corresponding to PPP state. During
the transmission, the symbols u

[1]
1 and u

[2]
1 are delivered to

Rx1, the symbol u2 is delivered to Rx2 and the symbol u3 is
delivered to Rx3.

At t = 1, the symbol vector u1 = [u
[1]
1 u

[2]
1
]
T

is trans-
mitted using random precoding and the symbols u2 and u3

are transmitted using ZF to ensure that no interference is
overheard at Rx1. The signal transmitted at t = 1 writes as
x (1) = C1 (1)u1 + c23 (1) (u2 + u3), where C1 (1) ∈ C

2×2

is a random matrix with independent entries taken from con-
tinuous distributions and c23 ∈ C

2×1 is a precoding vector sat-
isfying hT

1 (1) c23 (1) = 0. By omitting the receive noise term,
the signal received by Rx1 writes as y1 (1) = hT

1 (1)C1 (1)u1,
which contains a useful linear combination of u

[1]
1 and u

[2]
1 .

The signals yi (1) = hT
i (1) (C1 (1)u1 + c23 (1) (u2 + u3)),

j ∈ {2, 3}, are comprised of useful signal and interference.
At t = 2, the symbols u2 and u3 are retransmitted using ZF

to ensure that no interference is received at Rx1. Additionally,
perfect CSIT available for Rx2 and Rx3 is employed for the
design of the precoding vectors to ensure that Rx2 and Rx3
overhear at t = 2 the interference identical to that at t = 1. The
signal transmitted at t = 2 is given by x (2) = C1 (2)u1 +
c23 (2) (γ2u2 + γ3u3), where c23 (2) ∈ C

2×1 is a precoding
vector satisfying hT

1 (2) c23 (2) = 0. C1 (2) ∈ C
2×2 is the

precoding matrix which has to fulfill⎡
⎣hT

2 (2)

hT
3 (2)

⎤
⎦C1 (2) =

⎡
⎣hT

2 (1)

hT
3 (1)

⎤
⎦C1 (1) , (4)

which is ensured by setting

C1 (2) =

⎡
⎣hT

2 (2)

hT
3 (2)

⎤
⎦
−1 ⎡

⎣hT
2 (1)

hT
3 (1)

⎤
⎦C1 (1) . (5)

γ2, γ3 ∈ C are the precoding scalars which have to fulfill

hT
3 (2) c23 (2) γ2 = hT

3 (1) c23 (1) , (6)

hT
2 (2) c23 (2) γ3 = hT

2 (1) c23 (1) , (7)

which is ensured by setting

γ2 =
hT
3 (1) c23 (1)

hT
3 (2) c23 (2)

, γ3 =
hT
2 (1) c23 (1)

hT
2 (2) c23 (2)

. (8)
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At t = 2, Rx1 receives y1 (2) = hT
1 (2)C1 (2)u1 containing

the second remaining linear combination of u[1]
1 and u

[2]
1 which

guarantees the decodability of both symbols. Rx2 and Rx3
cancel the interference in the received signals as yi (1)−yi (2),
i ∈ {2, 3}, where u2 and u3 are decoded from the obtained
interference-free signals.

5) S2
5 achieves (d1, d2, d3) =

(
2
3 ,

2
3 ,

2
3

)
for (λPPP, λDDD) =(

2
3 ,

1
3

)
.

For S2
5 we refer to the CS in [5], in which 2 symbols are

delivered to every receiver over a single DDD and two PPP
states.

B. Scheme Achieving 5
3 DoF

5
3 DoF have been achieved in the fixed PDD setting in [9].

The CSIT requirement in [9] can be relaxed to (λPDD, λDDD) =(
5
6 ,

1
6

)
by substituting the PDD states which do not exploit

perfect CSIT by DDD states. In the following we describe the
second newly proposed CS which improves upon the CS in
[9] by achieving the same 5

3 DoF while further relaxing the
CSIT requirement to (λPDD, λDDD) =

(
2
3 ,

1
3

)
.

1) S5/3 achieves (d1, d2, d3) =
(
1, 1

3 ,
1
3

)
for

(λPDD, λDDD) =
(
2
3 ,

1
3

)
.

In S5/3, joint encoding over 6 PDD and 3 DDD states is
performed. During the transmission, nine symbols {u[k]

1 }9k=1

are delivered to Rx1, three symbols {u[k]
2 }3k=1 are delivered to

Rx2 and three symbols {u[k]
3 }3k=1 are delivered to Rx3.

The transmission is split into two phases. Phase 1 comprises
the first five channel uses t = 1, 2, 3, 4, 5, each having
PDD state, during which the original information symbols are
transmitted. From the interference terms overheard in phase 1,
five terms useful for pairs of receivers, u2,3, u[1]

1,2, u[2]
1,2, u[1]

1,3

and u
[2]
1,3, referred to as order-2 symbols, are generated. The

transmission of the generated order-2 symbols is performed
in phase 2 which comprises the remaining four channel uses
t = 6, 7, 8, 9, three of which have DDD state and one has PDD
state. The summary of the transmission is given in Table II,
where the overheard interference terms are marked in red. The
detailed description of the transmission is provided below.

Phase 1: Phase 1 is split into (2, 3)-stage, (1, 2)-stage
and (1, 3)-stage, during which the order-2 symbols useful for
different pairs of receivers are generated.

(2, 3)-stage: t = 1. In (2, 3)-stage, the order-2 symbol u2,3

is generated.
At t = 1, the symbol u

[1]
1 is transmitted using random

precoding and the symbols u
[1]
2 and u

[1]
3 are transmitted using

ZF to ensure that no interference is overheard by Rx1. The
signal transmitted at t = 1 is given by

x (1) = c1 (1)u
[1]
1 + c23 (1) (u

[1]
2 + u

[1]
3 ), (9)

where c1 (1) ∈ C
2×1 is a random precoding vector

and c23 (1) ∈ C
2×1 is a precoding vector satisfying

hT
1 (1) c23 (1) = 0. At t = 1, Rx1 receives an interference-

free signal y1 (1) = hT
1 (1) c1 (1)u

[1]
1 , which allows Rx1 to

decode u
[1]
1 .

The signal received by Rxj , j ∈ {2, 3}, is given by yj (1) =

hT
j (1) (c1 (1)u

[1]
1 +c23 (1) (u

[1]
2 +u

[1]
3 )), which can be written

for Rx2 as y2 (1) = β
[1]
2 u

[1]
1 + β

[2]
2 u

[1]
2 + β

[3]
2 u

[1]
3 = β

[2]
2 u

[1]
2 +

L
[1]
2

(
u
[1]
1 , u

[1]
3

)
and for Rx3 as y3 (1) = β

[1]
3 u

[1]
1 + β

[2]
3 u

[1]
2 +

β
[3]
3 u

[1]
3 = β

[3]
3 u

[1]
3 + L

[1]
3

(
u
[1]
1 , u

[1]
2

)
. From the interference

terms overheard by Rx2 and Rx3, an order-2 symbol

u2,3 = β
[1]
2 β

[1]
3 u

[1]
1 + β

[1]
2 β

[2]
3 u

[1]
2 + β

[1]
3 β

[3]
2 u

[1]
3

= β
[1]
2 β

[2]
3 u

[1]
2 + β

[1]
3 L

[1]
2 (u

[1]
1 , u

[1]
3 )

= β
[1]
3 β

[3]
2 u

[1]
3 + β

[1]
2 L

[1]
3 (u

[1]
1 , u

[1]
2 ) (10)

is generated. The delivery of u2,3 is to allow Rx2 and Rx3 to
cancel the interference in the received signals and decode u

[1]
2

and u
[1]
3 , respectively.

(1, 2)-stage: t = 2, 3. In (1, 2)-stage, the order-2 symbols
u
[1]
1,2 and u

[2]
1,2 are generated.

At t = 2, the symbol vector u
[2,3]
1 = [u

[2]
1 u

[3]
1
]
T

is trans-

mitted using random precoding and the symbol u[2]
2 is trans-

mitted using ZF to ensure that no interference is overheard by
Rx1. The signal transmitted at t = 2 is

x (2) = C1 (2)u
[2,3]
1 + c2 (2)u

[2]
2 , (11)

where C1 (2) ∈ C
2×2 is a random precoding matrix and

c2 (2) ∈ C
2×1 is a precoding vector satisfying hT

1 (2) c2 (2) =

0. At t = 2, Rx1 receives y1 (2) = hT
1 (2)C1 (2)u

[2,3]
1 ,

which contains the useful linear combination of the ele-
ments of u

[2,3]
1 . Rx2 receives y2 (2) = hT

2 (2) (C1 (2)u
[2,3]
1 +

c2 (2)u
[2]
2 ) = β

[4]
2 u

[2]
2 + L

[2]
2 (u

[2,3]
1 ), where from the inter-

ference term overheard by Rx2, an order-2 symbol u
[1]
1,2 =

L
[2]
2 (u

[2,3]
1 ) is generated. The delivery of u[1]

12 is to allow Rx1
and Rx2 to decode u

[2,3]
1 and u

[2]
2 , respectively.

At t = 3, the new symbol vector u
[4,5]
1 = [u

[4]
1 u

[5]
1
]
T

and

the new symbol u[3]
2 are transmitted. The signal transmitted at

t = 3 is given by x (3) = C1 (3)u
[4,5]
1 + c2 (3)u

[3]
2 , where

C1 (3) ∈ C
2×2 is a random precoding matrix and c2 (3) ∈

C
2×1 is precoding vector satisfying hT

1 (3) c2 (3) = 0. From
the interference term overheard by Rx2, the order-2 symbol
u
[2]
1,2 = L

[3]
2 (u

[4,5]
1 ) is generated.

(1, 3)-stage: t = 4, 5. In (1, 3)-stage, the order-2 symbols
u
[1]
1,3 and u

[2]
1,3 are generated.

At t = 4, the symbol vector u
[6,7]
1 = [u

[6]
1 u

[7]
1
]
T

is

transmitted using random precoding and the symbol u
[2]
3 is

transmitted using ZF. The signal transmitted at t = 4 is given
by x (4) = C1 (4)u

[6,7]
1 +c3 (4)u

[2]
3 , where C1 (4) ∈ C

2×2 is
a random precoding matrix and c3 (4) ∈ C

2×1 is a precoding
vector satisfying hT

1 (4) c3 (4) = 0. At t = 5, the transmission

is repeated with the new symbol vector u
[8,9]
1 = [u

[8]
1 u

[9]
1
]
T

and the symbol u[3]
3 . The signal transmitted at t = 5 is given by

x (5) = C1 (5)u
[8,9]
1 + c3 (5)u

[3]
3 , where C1 (5) ∈ C

2×2 is a
random precoding matrix and c3 (5) ∈ C

2×1 is the precoding
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TABLE II: Summary of the scheme S5/3

t State Rx1 Rx2 Rx3 Generated Symbol

1 PDD β
[1]
1 u

[1]
1 β

[1]
1 u

[1]
2 +L

[1]
2 (u

[1]
1 , u

[1]
3 ) β

[1]
2 u

[1]
3 +L

[1]
3 (u

[1]
1 , u

[1]
2 )

u2,3 = β
[1]
2 β

[2]
3 u

[1]
2 + β

[1]
3 L

[1]
2 (u

[1]
1 , u

[1]
3 )

= β
[1]
3 β

[3]
2 u

[1]
3 + β

[1]
2 L

[1]
3 (u

[1]
1 , u

[1]
2 )

2 PDD L
[1]
1 (u

[2,3]
1 ) β

[4]
2 u

[2]
2 +L

[2]
2 (u

[2,3]
1 ) - u

[1]
1,2 = L

[2]
2 (u

[2,3]
1 )

3 PDD L
[2]
1 (u

[4,5]
1 ) β

[5]
2 u

[3]
2 +L

[3]
2 (u

[4,5]
1 ) - u

[2]
1,2 = L

[3]
2 (u

[4,5]
1 )

4 PDD L
[3]
1 (u

[6,7]
1 ) - β

[4]
3 u

[2]
3 +L

[2]
3 (u

[6,7]
1 ) u

[1]
1,3 = L

[2]
3 (u

[6,7]
1 )

5 PDD L
[4]
1 (u

[8,9]
1 ) - β

[5]
3 u

[3]
3 +L

[3]
3 (u

[8,9]
1 ) u

[2]
1,3 = L

[3]
3 (u

[8,9]
1 )

6 DDD L
[5]
1 (u1,2) L

[4]
2 (u1,2) L

[4]
3 (u1,2) u1,2;3 = L

[4]
3 (u1,2)

7 DDD L
[6]
1 (u1,3) L

[5]
2 (u1,3) L

[5]
3 (u1,3) u1,3;2 = L

[5]
2 (u1,3)

8 DDD L
[7]
1 (u1,2;3, u1,3;2) β

[6]
2 u1,2;3 β

[6]
3 u1,3;2 -

9 PDD L
[8]
1 (u1,2;3, u1,3;2) L

[6]
2 (u2,3, u1,2;3) L

[6]
3 (u2,3, u1,3;2) -

vector satisfying hT
1 (5) c3 (5) = 0. From the interference

terms overheard at t = 4, 5 by Rx3, the order-2 symbols
u
[1]
1,3 = L

[2]
3 (u

[6,7]
1 ) and u

[2]
1,3 = L

[3]
3 (u

[8,9]
1 ) are generated.

Phase 2: In the first two channel uses t = 6, 7, each having
a DDD state, the order-2 symbols u

[1]
1,2, u

[2]
1,2, u

[1]
1,3, u

[2]
1,3 are

transmitted, where from the interference terms overheard at the
unintended receivers, two terms u1,2;3 and u1,3;2 useful for two
receivers and known at the remaining third receiver, referred
to as order-(2,1) symbols, are generated. In the remaining two
channel uses t = 8 having DDD state and t = 9 having
PDD state, the freshly generated order-(2,1) symbols u1,2;3

and u1,3;2 and the remaining order-2 symbol u2,3 are delivered
to the receivers which desire them.

At t = 6, the order-2 symbol vector u1,2 = [u
[1]
1,2 u

[2]
1,2

]
T

is transmitted using random precoding. The signal transmitted
at t = 6 is given by

x (6) = C1,2 (6)u1,2, (12)

where C1,2 (6) ∈ C
2×2 is a random precoding matrix. The

signal received at t = 6 by Rxi, i ∈ {1, 2, 3}, is given by
yi (6) = hT

i (6)C1,2 (6)u1,2, in which Rx1 and Rx2 receive
useful linear combinations of the elements of u1,2 and Rx3

overhears an interference term. From the interference term
overheard by Rx3, an order-(2,1) symbol u1,2;3 = y3 (6) =

L
[4]
3 (u1,2) useful for Rx1 and Rx2 and known at Rx3 is

generated. The delivery of u1,2;3 is to allow Rx1 and Rx2
to decode u1,2.

At t = 7, the order-2 symbol vector u1,3 = [u
[1]
1,3 u

[2]
1,3

]
T

is transmitted using random precoding. The signal transmit-
ted at t = 7 is given by x (7) = C1,3 (7)u1,3, where
C1,3 (7) ∈ C

2×2 is a random precoding matrix. From the
interference term overheard by Rx2, an order-(2,1) symbol
u1,3;2 = L

[5]
2 (u1,3) useful for Rx1 and Rx3 and known at

Rx2 is generated.
At t = 8, 9, u1,2;3 and u1,3;2 are transmitted using random

precoding and u2,3 is transmitted using ZF. The signals
transmitted at t = 8, 9 are given by

x (8) = c1,2;3 (8)u1,2;3 + c1,3;2 (8)u1,3;2,

x (9) = c1,2;3 (9)u1,2;3 + c1,3;2 (9)u1,3;2 + c2,3 (9)u2,3

(13)

where c1,2;3 (8) , c1,3;2 (8) , c1,2;3 (9) , c1,3;2 (9) ∈ C
2×1 are

random precoding vectors and c2,3 (9) ∈ C
2×1 is a precoding

vector satisfying hT
1 (9) c2,3 (9) = 0. At t = 8, 9, Rx1

receives y1 (t) = hT
1 (t) (c1,2;3 (t)u1,2;3 + c1,3;2 (t)u1,3;2),

from which both desired order-(2,1) symbols are decoded.
The signals received by Rx2 and Rx3 are given by yj (8) =
hT
j (8) (c1,2;3 (8)u1,2;3 + c1,3;2 (8)u1,3;2) and yj (9) =

hT
j (9) (c1,2;3 (9)u1,2;3 + c1,3;2 (9)u1,3;2 + c2,3 (9)u2,3),

j ∈ {2, 3}, from which Rx2 and Rx3 decode the desired
symbols after subtracting the known order-(2,1) symbols.

C. Scheme Achieving 3
2 DoF

1) S3/2 achieves (d1, d2, d3) =
(
1
2 ,

1
2 ,

1
2

)
for λDDD = 1.

Here, we refer to the scheme for delayed CSIT in [2], in
which 4 symbols are delivered to every receiver in 8 time slots.

V. PROOF OF THEOREM 2

In this section, we provide the assignment of the CS
introduced in Section IV to the available CSIT states, which
results in the achievability of the DoF upper bound (3).

The encoding over PPD and PDP states is performed
independently using S2

1 and S2
2 , respectively, where the CS

fractions are given by λS2
1

= λPPD and λS2
2

= λPDP. The
encoding over the remaining PPP, PDD and DDD states is
performed jointly. Initially, S2

4 is applied for joint encoding
over PPP and PDD states. Depending on whether λPDD is
greater or smaller than λPPP, two cases are distinguished.

1) Case A: λPDD ≥ λPPP. In this case, PPP state can be fully
exhausted using S2

4 with the CS fraction λS2
4
= 2λPPP. The

remaining PDD state fraction λ∗
PDD = λPDD−λPPP is alternated

with DDD state using S5/3. Depending on whether 2λDDD is
greater or smaller than λ∗

PDD, two sub-cases are distinguished.
A.1. 2λDDD ≥ λ∗

PDD: The remaining PDD state fraction λ∗
PDD

can be fully exhausted using S5/3 with the CS fraction
λS5/3 = 3

2λ
∗
PDD. Over the remaining fraction of DDD

state, encoding using S3/2 is performed with the CS
fraction λS3/2 = λDDD − λ∗

PDD
2 .
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TABLE III: Case A.1: achieving 3
2 + 1

4 (λ1 + λ2 + λ3) DoF
for Region I, λPDD ≥ λPPP

CS CSIT state fractions DoF tuple CS fraction

S2
1 λPPD = 1, (1, 1, 0) λPPD

S2
2 λPDP = 1, (1, 0, 1) λPDP

S2
4 (λPPP, λPDD) =

(
1
2
, 1
2

) (
1, 1

2
, 1
2

)
2λPPP

S5/3 (λPDD, λDDD) =
(
2
3
, 1
3

) (
1, 1

3
, 1
3

)
3
2
λ∗

PDD

S3/2 λDDD = 1
(
1
2
, 1
2
, 1
2

)
λDDD − λ∗

PDD
2

TABLE IV: Case A.2: achieving 5
3 + 1

3 (λ2 + λ3) DoF for
Region II

CS CSIT state fractions DoF tuple CS fraction

S2
1 λPPD = 1, (1, 1, 0) λPPD

S2
2 λPDP = 1, (1, 0, 1) λPDP

S2
4 (λPPP, λPDD) =

(
1
2
, 1
2

) (
1, 1

2
, 1
2

)
2λPPP

S5/3 (λPDD, λDDD) =
(
2
3
, 1
3

) (
1, 1

3
, 1
3

)
λ∗

PDD + λDDD

A.2. 2λDDD < λ∗
PDD: DDD state can be fully exhausted using

S5/3. Over all available PDD and DDD states, joint
encoding is performed with the CS fraction λS5/3 =
λ∗

PDD + λDDD.
2) Case B: λPDD < λPPP. In this case, PDD state can be

fully exhausted using S2
4 with the CS fraction λS2

4
= 2λPDD.

The remaining PPP state fraction λ∗
PPP = λPPP − λPDD is

alternated with DDD state using the scheme S2
5 . Depending on

whether 2λDDD is greater or smaller than λ∗
PPP, two sub-cases

are distinguished.
B.1. 2λDDD ≥ λ∗

PPP: The remaining PPP state fraction λ∗
PPP

can be fully exhausted using S2
5 with the CS fraction

λS2
5
= 3

2λ
∗
PPP. Over the remaining fraction of DDD state,

encoding using S3/2 is performed with the CS fraction
λS3/2 = λDDD − λ∗

PPP
2 .

B.2. 2λDDD < λ∗
PPP: DDD state can be fully exhausted using

λS2
5

with the CS fraction λS2
5

= 3λDDD. Over the
remaining fraction of PPP state, encoding using S2

3 is
performed with the CS fraction λS2

3
= λ∗

PPP − 2λDDD.
Relationship to the DoF upper bound (3): For λDPP =

λDPD = λDDP = 0, the relationship

λ1 = λPPP + λPPD + λPDP + λPDD,

λ2 = λPPP + λPPD,

λ3 = λPPP + λPDP, (14)

holds. In such case, 2λDDD ≥ λ∗
PDD is equivalent to 3λ1−λ2−

λ3 ≤ 2 and 2λDDD ≥ λ∗
PPP is equivalent to λ1 + λ2 + λ3 ≤ 2.

Hence, Cases A.1 and B.1 correspond to Region I with λPDD ≥
λPPP and λPDD < λPPP, respectively, and Cases A.2 and B.2
correspond to Regions II and III, respectively. The calculations
of the achieved DoF for each of the cases are given in Tables
III, IV, V and VI.

VI. CONCLUSION

In this paper, the 2-antenna 3-user MISO BC with alter-
nating CSIT was considered. We showed the achievability of

TABLE V: Case B.1: achieving 3
2+

1
4 (λ1 + λ2 + λ3) DoF for

Region I, λPDD < λPPP

CS CSIT state fractions DoF tuple CS fraction

S2
1 λPPD = 1 (1, 1, 0) λPPD

S2
2 λPDP = 1, (1, 0, 1) λPDP

S2
4 (λPPP, λPDD) =

(
1
2
, 1
2

) (
1, 1

2
, 1
2

)
2λPDD

S2
5 (λPPP, λDDD) =

(
2
3
, 1
3

) (
2
3
, 2
3
, 2
3

)
3
2
λ∗

PPP

S3/2 λDDD = 1
(
1
2
, 1
2
, 1
2

)
λDDD − λ∗

PPP
2

TABLE VI: Case B.2: achieving 2 DoF for Region III

CS CSIT state fractions DoF tuple CS fraction

S2
1 λPPD = 1, (1, 1, 0) λPPD

S2
2 λPDP = 1, (1, 0, 1) λPDP

S2
4 (λPPP, λPDD) =

(
1
2
, 1
2

) (
1, 1

2
, 1
2

)
2λPDD

S2
5 (λPPP, λDDD) =

(
2
3
, 1
3

) (
2
3
, 2
3
, 2
3

)
3λDDD

S2
3 λPPP = 1

(
1
2
, 1
2
, 1
2

)
λ∗

PPP − 2λDDD

the optimal DoF for the CSIT setting in which the admis-
sible CSIT states are PPP, PPD, PDP, PDD and DDD. To
accomplish this, two novel CSs were proposed. After a careful
assignment of the newly proposed and existing in the literature
CSs to the available CSIT states, optimal DoF were achieved.
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