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Abstract—Time series of neuronal activity corresponding to
different activity states in mouse brain are analyzed in the
time domain and the time-frequency domain. The signals are
associated with either a slow wave brain state or a persistent
brain state. For both states, characteristic spectral features are
identified and a simple detector is proposed that is able to identify
the brain state with low latency and high accuracy. In practice,
being able to monitor the brain state online and in real time is
crucial for improved in vivo experiments and, ultimately, for a
causal understanding of brain dynamics.

Index Terms—Brain state, neuronal circuits, detection, hypoth-
esis testing, time-frequency analysis

I. INTRODUCTION

Spontaneous changes of neuronal network activity states

are of great interest in neuroscience research [1], [2]. The

two brain states investigated in this paper are referred to as

the slow wave brain state and the persistent brain state. The

slow wave activity state is characterized by frequent transi-

tions between hyperpolarized Down states and depolarized

Up states. It can occur, for example, during non-rapid-eye-

movement sleep and during many forms of anesthesia, both

spontaneously and evoked by brief sensory stimulation [3],

[4], [5]. The persistent brain state, in contrast, is characterized

by desynchronized neuronal behavior and occurs during rapid-

eye-movement sleep and active wakefulness [1].

For the experimenter, it is highly attractive to be able to

detect these two states with low latency in order to manipulate

the experiment in real-time. For instance, depending on the

detection result, an experimenter can control the doses of

anesthesia drugs to maintain a certain brain state. Therefore,

the aim of this paper is to tackle this problem from a signal

processing point of view. Its contribution is twofold: first, a

detailed discussion of the characteristics of the microcircuit

activity in both states in the time and time-frequency domain

is given. Here, the focus is on the time-frequency domain,

since it admits several distinct features that, to the best of the

authors’ knowledge, have not been studied in existing work

yet. Second, the brain state detection problem is formulated

as a binary hypothesis test and a detector is proposed to

distinguish between the two states without human intervention.

Since the available data is scarce and its interpretation is, to

an extent, still the subject of ongoing research, the detector

is deliberately kept simple and merely serves as a proof of

concept.

The presented results are based on experiments that were

conducted on three different mice. Four weeks prior to the

experiments, a small craniotomy was performed with a dental

drill (Ultimate XL-F, NSK, Trier Germany, and VS1/4HP/005,

Meisinger, Neuss, Germany) in 3 female mice with a body-

weight between 20−25 g, fixed in a stereotactic frame and

under isoflurane anaesthesia (Forene, Abott, Wiesbaden, Ger-

many). 400 nl of the genetically encoded calcium indica-

tor GCaMP6f (UPenn Vector Core, PA, USA) was injected

−300 µm and −150 µm below the cortex surface in the area

of the visual cortex (V1). After injection, a coverslip (Electron

Microscopy Sciences, PA, USA; 5mm diameter) was used to

seal the craniotomy.

For in vivo imaging, the mice were anesthetized with

isoflurane to induce persistent and slow wave brain states. In

addition, the breathing rate was used as an indicator and mon-

itored to assess the physiological condition of the animals. To

induce a persistent brain state, a mixture of isoflurane/oxygen

of 0.6−1% was used, the breathing rate was 100 /min. To

induce a slow wave brain state, we used a relation of 1−1.5%
at a breathing rate of 50−70 /min.

Imaging was performed at a two-photon microscope (LaV-

ision Biotech, Bielefeld, Germany) with an excitation wave-

length of 920 nm at 5−20% of maximum laser power (3W).

The focus point was at 200 ± 50 µm with a field of view

of 325×325 µm. The sample rate was 30.5Hz. By that, the

optical correlate of neuronal spiking of a local microcircuit

comprising about 100−200 neurons in layer II/III of mouse

visual cortex is measured. Here, we integrated the activity of

the entire microcircuit.
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Fig. 1: Examples of signals in slow wave brain state (a)-(c) and in persistent brain state (d).

The remainder of this paper is organized as follows. In

Section II, the recorded time series are analyzed first in the

time domain and then in the time-frequency domain. Based on

their time-frequency representations, several spectral features

are extracted, which are used in Section III to formulate a

binary hypotheses test to discriminate between the slow wave

and the persistent brain states. In Section IV, experimental

results based on real data are given. Section V concludes the

paper.

II. CHARACTERISTICS OF SLOW WAVE AND PERSISTENT

BRAIN STATES

A. Characteristics in the Time Domain

Examples of time series that were observed in different brain

states are shown in Fig. 1. Note that the depicted signals have

already been detrended using the empirical mode decomposi-

tion method [6]. In the persistent brain state, see Fig. 1d, the

time series shows rapid and irregular signal fluctuations. In

contrast, in Figs. 1a to 1c, it can be seen that the slow wave

brain state is associated with Up-Down transitions, consisting

of hyperpolarized Down states and intermittent depolarized

Up states [1]. The Up state and the Down state correspond

to a pulse-shaped transient and a comparatively steady region

between the offset and the onset of the transients, respectively.

Comparing the three examples for time series in the slow

wave brain state leads to two main observations. First, the

frequency of occurrence and the duration of the state transients

are noticeably different. Unlike the long-lasting Down state in

Fig. 1a, the Down states in Fig. 1b and Fig. 1c are difficult

to identify. According to the experimental observation, the Up

state transients occurred with frequencies ranging from 3 to 10
events per minute, depending on the level of anesthesia. The

second observation is that the shapes of the Up state transients

differ from subject to subject. In Fig. 1a, the transient has a

steep onset and a slowly decaying offset. Clearly, the transients

in Fig. 1c have a distinctly different shape. Moreover, the

amplitudes of the transients depend on many local parameters,

including the level of Ca2+ indicator inside cells and the

intensity of the excitation light [1], so that they differ over

time and among subjects. In summary, these effects make it

difficult to detect slow wave brain states directly in the time

domain.

B. Time-Frequency Representations

In order to reveal more characteristics, it is useful to

transform the time series to the time-frequency domain. A

quadratic time-frequency distribution of a non-stationary sig-

nal presents its power distribution over the time-frequency

plane. Here, we choose the spectrogram since it provides a

good tradeoff between simplicity and performance, i.e., cross-

term suppression.

Fig. 2 depicts examples of spectrograms at different states

and of different subjects. Figs. 2a to 2c depict the spectrograms

of slow wave brain state signals and Fig. 2d depicts the

spectrogram of a persistent brain state signal. In the slow wave

brain state, there is a high frequency line around 6 to 8Hz.

The intensity of this line, however, varies with subjects. A high

frequency line is also present in the persistent brain state, but

it differs from the slow wave brain state in that it is located

at a higher frequency range, namely, 8 to 10Hz. However,

it is possible that this high frequency component is caused

by breathing or other unknown artifacts that are unrelated

to the brain activity. Hence, a better understanding of this

high frequency component is needed and further experiments

will be conducted to explore its origin. In this paper, we

show detection results when including and excluding this high

frequency component.

In addition to the high frequency line, a low frequency line

is present in the slow wave brain state at around 1Hz. From a

neurophysiological perspective, this frequency line is a much

more reliable indicator for the slow wave brain state than the

high frequency component. It is worth noting that a similar line

in the same frequency range is occasionally observed in the

persistent brain state as well. This raises the question whether

the respective frequency component is present in the persistent

brain state as well, or if it is caused by a superposition or

alternation of slow wave and persistent brain states.
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Fig. 2: Examples of spectrograms (Hamming window of 10 seconds) in slow wave brain state (a)-(c) and in persistent brain state (d).
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Fig. 3: Examples of normalized spectrograms (Hamming window of 10 seconds) of bandpass filtered signals in slow wave brain state (a)-(c)
and in persistent brain state (d).

The spectrogram of the persistent brain state signal is

dominated by low frequency components <2Hz. In contrast,

in the two examples of the slow wave brain state in Figs. 2a

and 2b, there is a larger share of power in the frequency region

>2Hz. The third example in Fig. 2c differs from the previous

two examples in that most power is concentrated in a relative

narrow low frequency region <0.2Hz. The reason is that its

corresponding time series, depicted in Fig. 1c, is oscillating at

a very low frequency. The amplitude of these slow oscillations

is substantially larger than that of the superimposed fast

oscillations, leading to dominant low frequency components.

Since they obfuscate the relative power distribution among the

higher frequencies, the high-power low frequency components

are filtered out in order to extract the power percentage feature,

see Section III-B.

We conclude this section by stating several minor observations,

which are not used in the detection approaches, but are

included for completeness. A nonlinear high frequency com-

ponent at around 13 to 15Hz is observed in several examples,

both in slow wave and persistent brain states. Furthermore,

several examples of both states contain harmonic components.

Additionally, repetitive short vertical lines located in low

frequency regions are present in several examples in the

slow wave brain state, as shown in Figs. 2a and 2c. The

temporal positions of these vertical lines correspond to the

time instances with rapid variation, for example, during the

transition from a Down state to an Up state in Fig. 1a.

However, if the Up states occur in rapid succession, as is

the case in Fig. 1b, this phenomenon is not visible in the

spectrogram – compare Fig. 2b.



III. STATE DETECTION

A. Problem Formulation

We formulate the brain state detection problem as a binary

hypothesis test with the two hypotheses, namely

H0 : persistent brain state,

H1 : slow wave brain state,
(1)

which are referred to as the null hypothesis and the alternative

hypothesis, respectively. The hypothesis test is performed

using several features that are calculated for every time instant

n and are denoted by v(n). More details on the features are

given in the subsequent section. Finally, the detector D maps

a feature vector v(n) to a decision d for one of the two

hypotheses, i.e.,

d = D (v(n)) ∈ {0, 1} , (2)

where 0 and 1 represent H0 and H1, respectively.

B. Feature Extraction

Several features are extracted from the time-frequency dis-

tribution of the time series based on the observations in Sec-

tion II-B. The spectrogram of the filtered signal is calculated

as

S(n, k) =

∣

∣
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∣
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∣
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, (3)

where n = 0, . . . , N − 1 denotes the time index, s(·) is the

time series of length N ∈ N, w(·) is a window function of

length M ∈ N and k is the frequency bin index [7].

To extract the frequency line within the interval 6 to 10Hz,

we calculate the frequency corresponding to the highest power

density over this region. More specifically, the frequency bin

with the highest power, denoted by kh(n), is defined as

kh(n) = arg max
k

S(n, k) s.t. fh(n) ∈ [6, 10]Hz, (4)

where fh(n) denotes the physical frequency corresponding to

the bin with index kh(n). In what follows, the one-to-one

mapping between the indices and the physical frequencies is

denoted by l(·), i.e.,

fh(n) = l(kh(n)) and kh(n) = l−1(fh(n)). (5)

Estimating the frequency line around 1Hz in real time is

challenging since it is occasionally covered by its neighboring

low frequency components and its value varies with the

experiment subject. To capture this feature, two closely related

quantities are considered. The first one aims at approximating

the frequency location of the line and, for each time instance

n, it is calculated by finding the frequency that corresponds to

the dominant peak of S(n, k) within the interval 0.5 to 2Hz.

This frequency is denoted by fl(n). On the basis that the low

frequency line is located between 0.8Hz and 1.5Hz in all

experimental data, we define the variable f i
l (n) that indicates

whether the low frequency line is located within this frequency

band or not, namely

f i
l (n) =

{

1, fl(n) ∈ [0.8, 1.5]Hz,

0, otherwise.
(6)

It should be highlighted that the low frequency line can be

better identified by considering a longer time series instead of

only the current time-frequency distribution S(n, k). However,

this comes at the cost of an additional latency. Furthermore,

the threshold-values are selected based on the experimental

data. Adjusting these values has the potential of improving the

detection performance. This, however, is beyond the scope of

this paper.

To characterize the differences in the power distribution in

both states, the percentage of power in the frequency region

<2Hz is considered as an additional spectral feature. To this

end, the time series s(n) is first filtered with a bandpass filter

with a passband at 0.2 to 6Hz so that the influence of the high

frequency line above 6Hz and the high-power low frequency

component <0.2Hz, which is cause by the slow oscillations,

are eliminated. Subsequently, the spectrogram of the bandpass-

filtered time series is normalized at each time instance and

the percentage of power in the band 0.2 to 2Hz, denoted as

PE(n), is defined by

PE(n) =

k=l−1(2)
∑

k=l−1(0.2)

SBP, norm(n, k), (7)

where SBP, norm(n, k) is the normalized spectrogram of the

bandpass filtered signal, i.e.,

k=l−1(6)
∑

k=l−1(0.2)

SBP, norm(n, k) = 1. (8)

The normalized spectrograms are depicted in Fig. 3. Af-

ter normalizing and removing the dominant low frequency

component, the difference in the power distributions in both

states becomes noticeable. As shown in Fig. 3d, most power

is concentrated in the frequency region below 2Hz in the

persistent brain state. In the slow wave brain state, a larger

share of the power is distributed in the frequency region

between 2Hz and 6Hz, see Figs. 3a to 3c. Therefore, PE(n)
is expected to be high when the subject is in the persistent

brain state and to be low in the slow wave brain state.

C. Binary Hypothesis Testing Methods

First, a hypothesis test based on each single feature is

considered. In this case, a nonparametric threshold test is per-

formed, since the underlying distributions of the features are

unknown [8]. Using the percentage of power as an example,

i.e., v(n) = PE(n), the nonparametric threshold test is defined

by

d =

{

0, PE(n) > τ

1, otherwise
(9)

where τ denotes the threshold.
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In order to improve the detection performance, we further

combined the binary-valued feature f i
l (n) and the power

distribution feature PE(n). We solve this binary test problem

using a decision tree [9]. The decision tree is defined as shown

in Fig. 4. In the first step, the value of f i
l (n) (0 or 1) is

calculated to establish whether the slow wave brain state or

the persistent brain state is more likely to be true. This splits

the test into two branches. In the second step, a nonparametric

threshold test is conducted using PE(n), where the thresholds

are τ1 and τ0, respectively.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed state

detection method, detection is performed at every time instant

n and for every test subject. The output of the detector is

then compared to manually placed labels that are considered

to represent the ground truth.

The detection results based on single features and using the

decision tree approach are depicted in Fig. 5. The results are

shown in terms of the receiver operating characteristic (ROC),

i.e., the detection rate (sensitivity) is plotted against the false

alarm rate (specificity). Here, the detection rate represents the

probability of correct detection of the slow wave brain state

and the false alarm rate represents the probability of erroneous

detection. The low frequency component provides the least

satisfactory detection result, partially owing to the interruption

of the low frequency line, as illustrated in Figs. 3a to 3c.

The dashed red line shows the detection result after excluding

atypical subjects for which the low frequency component is

also observed in the persistent brain state. By inspection, the

false alarm rate is significantly reduced for the same detection

rate.

The high frequency component fh(n) provides the best de-

tection performance, followed by the power percentage feature

PE(n). However, as mentioned in the preceding sections, the

high frequency component may be associated with artifacts

so that it is not clear whether or not it can be considered

a characteristic of the brain states. More experiments are

required to obtain a better understanding of this frequency line.

Surprisingly, a decision tree using both PE(n) and the low

frequency component indicator feature f i
l (n) achieves results

similar to those of the detector based only on PE(n). This can

be explained by the fact that the distributions of PE(n) are

approximately equivalent in both states, i.e. for f i
l (n) = 0 and

f i
l (n) = 1. This observation, however, may change as more
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experimental data become available and as additional features

are identified.

V. CONCLUSION AND OUTLOOK

We draw three main conclusions. First, automatically detect-

ing slow wave and persistent brain states seems to be possible

with low latency and high accuracy. Considering that even

the relatively simple methods proposed in this paper show a

reasonable detection performance, we conjecture that focused

efforts in this area of research will lead to fast and highly re-

liable detectors. However, second, further validation is needed

with a larger data set. Finally, given more data, a thorough

investigation of how to choose a causal and consistent set of

features is necessary that also explores signal representations

beyond the classic domains of time and frequency.
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