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Abstract—Millimeter-Wave (mmWave) bands have become the
de-facto candidate for 5G vehicle-to-everything (V2X) since
future vehicular systems demand Gbps links to acquire the
necessary sensory information for (semi)-autonomous driving.
Nevertheless, the directionality of mmWave communications
and its susceptibility to blockage raise severe questions on
the feasibility of mmWave vehicular communications. The dy-
namic nature of 5G vehicular scenarios, and the complexity
of directional mmWave communication calls for higher context-
awareness and adaptability. To this aim, we propose an online
learning algorithm addressing the problem of beam selection
with environment-awareness in mmWave vehicular systems. In
particular, we model this problem as a contextual multi-armed
bandit problem. Next, we propose a lightweight context-aware
online learning algorithm, namely fast machine learning (FML),
with proven performance bound and guaranteed convergence.
FML exploits coarse user location information and aggregates
received data to learn from and adapt to its environment.
Furthermore, we demonstrate the feasibility of a real-world
implementation of FML by proposing a standard-compliant
protocol based on the existing architecture of cellular networks
and the forthcoming features of 5G. We also perform an extensive
evaluation using realistic traffic patterns derived from Google
Maps. Our evaluation shows that FML enables mmWave base
stations to achieve near-optimal performance on average within
33 mins of deployment by learning from the available context.
Moreover, FML remains within ∼ 5% of the optimal performance
by swift adaptation to system changes (i.e., blockage, traffic).

I. INTRODUCTION

Recent studies highlight the necessity of multi-Gbps links
to enable 5G vehicle-to-everything (V2X) communications [2],
[3]. Such a high data rate link is needed to acquire accurate
sensory data (e.g., HD maps, radar feeds), which is crucial for
(semi)-autonomous driving. Due to high congestion in sub-
6GHz bands used by 4G LTE-A systems, the 5G community
plans to exploit the underutilized mmWave bands (10-300
GHz). This underutilization is due to the impairments of
mmWave bands, such as high pathloss and penetration loss.
Nevertheless, new research demonstrates that: (i) directional
transmission and beamforming is the solution to compensate

This manuscript is an extended version of the work accepted for presenta-
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Fig. 1. An example of a mmWave cellular scenario and the impact of different
sources of blockage.

for the high pathloss, and (ii) higher deployment density of
base stations is the remedy for short communication range in
mmWave bands (100-150 m) [4], [5].

These solutions prove the feasibility of mmWave commu-
nication. However, they bring about many new challenges
in the system design. Firstly, the directional communication
requires accurate beam alignments between the base station
and the vehicle [6], which is unnecessary for the omnidirec-
tional transmission in sub-6GHz bands. Secondly, mmWave
signals are prone to blockages (e.g., buildings, foliage) due
to high penetration loss (see Fig. 1). Thus, the performance
of mmWave systems can be severely hampered by inaccurate
beam selection. The performance degradation can be mitigated
by enabling the base stations to perform beam selection based
on their surrounding environment (e.g., to avoid blockages).
In today’s network, this knowledge is populated via on-
site signal measurements (e.g., war-driving tests), which are
time-consuming and unscalable for dense 5G deployments.
Moreover, this approach cannot account for dynamic traffic
patterns and blockages. We believe that the base stations
should autonomously explore, learn from, and adapt to their
environment to make accurate beam selection while main-
taining sustainable scalability. To date, there is no proposal
fostering such a capability at mmWave base stations [7]. To



this aim, a practical approach should allow the base station to
characterize its surroundings autonomously by exploiting the
available contextual information. In particular, the correlation
between this information (e.g., location of the users) and the
outcome of a decision (e.g., beam selection) is the key to
optimal future decisions. This emphasizes the necessity of
autonomous learning more than ever, specifically to cope with
the massive densification of 5G networks [8], [9].

FML algorithm. In this paper, we propose fast machine
learning (FML), which is a low-complexity and a scalable
online learning algorithm for mmWave base stations. FML is
coupled with a practical protocol, which is designed based
on the features of the forthcoming 5G cellular network. We
model the beam selection as a contextual multi-armed bandit
problem and propose a contextual online learning algorithm.
This algorithm enables the mmWave base stations to au-
tonomously learn from prior decisions and their relations to the
available contextual information. In particular, FML explores
different beams over time while accounting for contextual
information (i.e., vehicles’ direction of arrival). The outcome
of the exploration is used to adapt to system dynamics such
as the appearance of blockages and changes in traffic patterns.
FML identifies blockages by evaluating the aggregate received
data of each vehicle for each selected beam. FML also adapts
to traffic patterns by learning the correlation between the
direction of arrival and the received data. Let’s take the mmBS
on the right-hand-side in Fig. 2 as an example. On the one
hand, when vehicles are coming from the north (i.e., the yellow
car), the mmBS will use the beams pointing to the north (as
shown by the blue mmWave beams) as it results in a higher
throughput. On the other hand, when the vehicles are arriving
from the east (i.e., the white car), then the mmBS will select
the beams that are pointing to the south (as shown by the
orange color beams). As a result, an mmBS that employs
FML selects the beams which maximize the aggregate network
capacity by accounting for the traffic pattern. Consequently,
FML provides higher coverage to the roads with higher traffic
and hence, it serves a larger number of vehicles compared to
non-contextual algorithms.

FML fights the issues of mmWave vehicular communication
in several fronts: (i) it detects permanent blockages (e.g.,
buildings), and frequently blocked areas due to temporary
blockages (e.g., parking spots, bus stations or construction
sites frequented by large trucks) using online learning; (ii) it
leverages traffic patterns to maximize the system capacity by
providing larger coverage (i.e., allocation of more beams) in
areas with heavier traffic. This is important because mmWave
base stations can transmit simultaneously over a limited num-
ber of beams. This limitation depends on the hardware charac-
teristics, the mmWave channel sparsity, and the beamforming
technique1; (iii) it infers traffic patterns from the context (i.e.,

1To allow simultaneous transmission over all beams with analogue/hybrid
beamforming techniques, the number of RF chains should be proportional to
the number of beams. Such a design is undesirable both in terms of form-
factor and manufacturing cost. Further technical details on this limitation can
be found in [5] and [10].
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Fig. 2. Illustration of our system model. For clarity, the figure contains only
two mmBSs. Each mmBS can transmit over two beams simultaneously. The
direction of arrival of the vehicles (shown in dashed line) is derived from the
location of the vehicle upon registration to the eNB.

the vehicle’s direction of arrival) and selects the best beams.
Majority of roads have distinct traffic patterns influenced by
the time of the day. For example, the traffic in the main
streets moves towards the financial center early in the morning
and away from it in the evening (i.e., towards the residential
areas). While interpreting these patterns is out of the scope of
this paper, we design FML to identify and learn from such
patterns. Specifically, FML identifies the change of the traffic
patterns through the context information and its impact on the
achievable throughput. This change triggers FML to re-explore
the performance of the beams and to adapt its beam selection
accordingly.

Our contributions. The following summarizes the contri-
butions of this paper:
• We model the beam selection at mmWave base stations as

a contextual multi-armed bandit problem. Our model is
generic, and it can be easily adapted to different contexts
for new 5G use-cases.

• We provide the first contextual online learning algorithm
for beam selection in mmWave base stations. The algo-
rithm enables the base stations to autonomously learn
the data rate of every beam, without requiring a training
phase.

• We give an analytical upper bound on the regret, i.e., the
loss of learning, which proves convergence of FML to
the optimal beam selection.

• We go beyond theory by illustrating how FML can
be practically implemented in a 5G cellular system. In
particular, we elaborate on design aspects of the FML
and its corresponding signaling requirements from an
architectural point of view.

• We demonstrate by means of extensive simulation that –
with live and typical traffic patterns obtained from Google
Maps at our premises – FML substantially outperforms
the benchmark algorithms.

II. SYSTEM MODEL

We consider a heterogeneous cellular system in which
mmWave base stations (mmBSs) overlay the coverage area
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of an LTE eNB (see Fig. 2). This network model is widely
expected for forthcoming 5G systems [11]–[13]. The mmBSs
are connected to the eNB via a backhaul link. The vehi-
cles are equipped with (i) an LTE interface to maintain a
connection to the eNB, and (ii) an mmWave interface for
high-speed data communication. We focus on the downlink
in this paper. Note that FML aims to find the best beam
for communication, regardless of its direction (uplink or
downlink). Hence, our analysis can be applied in uplink
since the beam alignment/selection is the same for uplink
and downlink. We assume neither the eNB nor the mmBSs
have any knowledge of their surroundings. We focus on a
system with small signaling overhead. On the one hand, the
only information available to the mmBS is the direction of
arrival of the vehicle (i.e., north, south, east, west), which we
define below formally as the vehicle context. On the other
hand, the vehicles will only know the location of the mmBS
and the selected beam(s). In Section IV, we elaborate how this
information is communicated within the network.

A. Choice of Learning Method

We model beam selection in an mmBS as an online learning
problem. This is because it allows the mmBS to identify
the best beams autonomously over time while accounting for
dynamic traffic and environment changes. Specifically, we
model the problem as a multi-armed bandit problem (MAB
problem). Various problems in wireless communications have
been treated using MABs [14]. In MAB problems, a decision
maker has to select a subset of actions of unknown expected
rewards with the goal to maximize the reward over time [15].
The challenge in MAB problems lies in solving the exploration
vs. exploitation dilemma, since all actions should be explored
sufficiently often to learn their rewards, but also those actions
which have already yielded high rewards should be exploited.
We model our problem as a MAB problem since an mmBS
may only use a limited set of beams simultaneously (as shown
in Fig. 2). Therefore, the mmBS needs to identify the best
beams by carefully selecting subsets of beams over time.
More specifically, our approach falls under the category of
contextual multi-armed bandit problems. In contextual MAB
problems, the decision maker is first presented with some
context information, before selecting an action. This context
information affects the rewards of the actions [16]–[19]. The
additional challenge in contextual MAB problems is how to
exploit historical reward observations under similar contexts.
We model our problem as a contextual MAB problem since, in
this way, the mmBS does not simply learn which beams are the
best on average, but instead it exploits additional information
about approaching vehicles to identify which beams are the
best under a given traffic situation. Then, we propose a
contextual online learning algorithm for our problem, which
tackles the above-mentioned challenges.

B. Problem Formulation

The mmBS can use a finite set B of B = |B| distinct,
orthogonal beams (see Fig. 2). We assume that the mmBS

may only select a subset of m beams simultaneously, where
m ∈ N, m < B, is a fixed number. This limitation is imposed
by the mmWave channel sparsity, beamforming technique, and
the hardware characteristics (e.g., number of RF chains) [5].
The goal of the mmBS is to select a subset of m beams that
maximizes the amount of data successfully received by the
bypassing vehicles in the coverage area. We assume that the
mmBS is unaware of its surrounding, i.e., the mmBS does
not have prior knowledge about its environment (e.g., street
course, blockages). This significantly reduces the complexity
of the network implementation as the operator does not need
to configure each mmBS based on its surroundings. Hence,
the mmBS should learn over time the best subset of beams
for its environment. For this purpose, the mmBS should take
into account vehicles’ context, since the best beams depends
on the context of bypassing vehicles (e.g., their directions of
arrival).

We consider a discrete time setting, where the mmBS
updates its beam selection in regular time periods. In each
period t = 1, ..., T , where T ∈ N is a finite time horizon, the
following events happen:

(i) A set Vt = {vt,i}i=1,...,Vt of Vt = |Vt| vehicles registers
to the mmBS via the LTE eNB. The number of vehicles
satisfies Vt ≤ Vmax, where Vmax ∈ N is the maximum
number of supported vehicles in the system, which
corresponds to the maximum number of vehicles that
fit on the streets within the coverage area of the mmBS.
The registration process is described in Section IV.
During the registration process, the mmBS receives the
required information about the context xt,i of each
approaching vehicle vt,i. Formally, the context xt,i is an
X-dimensional vector taken from the bounded context
space X = [0, 1]X , where we assume that the infor-
mation about a vehicle is described using X context
dimensions. In each of the X dimensions, the context
information is encoded as a value between 0 and 1. This
generic model allows to model both continuous as well
as discrete types of context information. In the numerical
simulations of this manuscript, the context vector is one-
dimensional (i.e., X = 1) since we only consider the
directional of arrival as the context. This will be further
clarified in Sections IV and V.

(ii) The mmBS selects a subset of m beams. We de-
note the set of selected beams in period t by St =
{st,j}j=1,...,m ⊆ B. Then, the vehicles in Vt are in-
formed about the selected beams through the associated
eNB via their LTE interface.

(iii) When vehicle vt,i reaches the mmBS’s coverage area,
the mmBS transmits data to vehicle vt,i and observes
the amount of data rst,j (xt,i, t) vehicle vt,i successfully
receives via the selected beams st,j , j = 1, ...,m, until
the end of the period t.

In general, the amount of data rb(x) a vehicle with context
x ∈ X can successfully receive from the mmBS using beam
b ∈ B during one period is a random variable that depends

3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNET.2018.2869244

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



on the environment of the mmBS (e.g., street conditions and
course, blockages, etc.). We call the random variable rb(x)
the beam performance (i.e, the aggregate received data by
the vehicle) of beam b under context x. We assume that
this random variable is bounded in [0, Rmax], where Rmax

is the maximum amount of data that can be received by a
vehicle. Rmax is bounded by the maximum achievable rate of
the channel, and it depends on the selected modulation and
coding scheme. The contact time as shown in Fig. 2 (i.e., the
time within which mmBS can transmit data to the vehicle) is
bounded by the coverage area of the beam, which depends on
the beam width and speed. By µb(x), we denote the expected
value of random variable rb(x), and we call it the expected
beam performance of beam b under context x. The mmBS
aims at selecting a subset of beams which maximizes the
expected received data at the vehicles, i.e., maximizes the sum
of the expected beam performances. We denote the optimal
subset in period t, by B∗t (Xt) = {b∗t,j(Xt)}j=1,...,m ⊆ B. The
set B∗t (Xt) depends on Xt = {xt,i}i=1,...,Vt and its m beams
formally satisfy

b∗t,j(Xt) ∈ argmax
b∈B\(

⋃j−1
k=1{b

∗
t,k(Xt)})

Vt∑
i=1

µb(xt,i) (1)

for j = 1, ...,m. Hence, if the mmBS knew the expected beam
performances µb(x) for each vehicle context x ∈ X and each
beam b ∈ B a priori, like an oracle, it could simply select the
optimal subset of beams for each set of approaching vehicles
according to (1). Over the sequence 1, ..., T of periods, this
would yield an expected amount of
T∑
t=1

Vt∑
i=1

m∑
j=1

E[rb∗t,j(Xt)(xt,i)]=
T∑
t=1

Vt∑
i=1

m∑
j=1

µb∗t,j(Xt)(xt,i) (2)

data that can be received in total.

However, the mmBS does not know the environment, and
hence it has to learn the expected beam performances µb(x)
over time. In order to learn these values, the mmBS has to try
out different beams for different vehicle contexts over time.
At the same time, it should ensure that those beams that were
already proven to be good are used sufficiently often. Hence,
the mmBS has to find a trade-off between exploring beams of
which it has little knowledge and exploiting beams with high
average beam performance. In the next section, we will present
a learning algorithm, which for each period with approaching
vehicles of contexts Xt, selects a subset St of m beams. The
selection of the learning algorithm depends on the history
of selected beams in previous periods and the corresponding
observed beam performances. Given an arbitrary sequence of
vehicle arrivals with arbitrary contexts the expected amount of
data received by the vehicles is given by:
T∑
t=1

Vt∑
i=1

m∑
j=1

E[rst,j(Xt)(xt,i)]=

T∑
t=1

Vt∑
i=1

m∑
j=1

E[µst,j(Xt)(xt,i)]. (3)

In (3), the expectation is taken with respect to the selections
of the learning algorithm and the randomness of beam perfor-
mances.

The expected difference in the amount of received data
achieved by an oracle and by the learning algorithm is called
the regret of learning. Given (2) and (3), it is defined as:

R(T )=E

 T∑
t=1

Vt∑
i=1

m∑
j=1

(
rb∗t,j(Xt)(xt,i)−rst,j(Xt)(xt,i)

)
=

T∑
t=1

Vt∑
i=1

m∑
j=1

(
µb∗t,j(Xt)(xt,i)− E[µst,j(Xt)(xt,i)]

)
. (4)

III. FML ALGORITHM

The above problem formulation corresponds to a contextual
multi-armed bandit problem and we propose a contextual
online learning algorithm inspired by [19]. Intuitively, the
algorithm learns the expected beam performances under dif-
ferent contexts online over time. The algorithm works on the
assumption that for similar vehicle contexts, the performance
of a particular beam will on average be similar.

The algorithm first uniformly partitions the context space
into small sets of similar contexts and learns about the
performance of different beams independently in each of these
small sets. Then, in each of its discrete periods, the algorithm
either enters an exploration phase or an exploitation phase. The
phase it enters is decided based on the contexts of approaching
vehicles and based on a control function. While in exploration
phases, the algorithm selects a random subset of beams, in
exploitation phases, the algorithm selects beams that showed
the highest performance when selected in previous periods.
By observing the amount of data received by vehicles in
the system, the algorithm acquires performance estimates of
beams; thereby, it learns the performance of the different
beams under different vehicle contexts over time.

A. Detailed Description

In detail, our proposed beam selection algorithm, called
FML works as follows (see Algorithm. 1): First, during
initialization (lines 2-4), FML uniformly partitions the context
space X = [0, 1]X into (pT )

X X-dimensional hypercubes
of size ( 1

pT
)X , where pT is an input to the algorithm. We

call the resulting partition PT . Moreover, FML initializes the
counters Nb,h(t) for each beam b ∈ B and each hypercube
h ∈ PT . Intuitively, these counters are used to describe how
many vehicles of a certain context have already arrived at the
mmBS in previous periods, in which the mmBS had selected
a certain beam. Formally, the counter Nb,h(t) represents the
total number of vehicles with the context in hypercube h that
approached the mmBS whenever beam b had been selected
in any of the periods 1, ..., t − 1. In addition, the algorithm
initializes the estimates µ̂b,h(t) for each beam b ∈ B and
each hypercube h ∈ PT . The estimator µ̂b,h(t) represents the
estimated beam performance of beam b for vehicles with the
context in hypercube h.

4

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNET.2018.2869244

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



In period t, FML observes the contexts Xt := {xt,i}i=1,...,Vt

of the Vt approaching vehicles and for each context xt,i, FML
determines to which hypercube this context belongs to (lines
6-7), i.e., it finds ht,i ∈ PT with xt,i ∈ ht,i. Based on the
collectionHt := {ht,i}i=1,...,Vt of hypercubes, FML next (line
8) computes the set BueHt(t) of under-explored beams via

BueHt(t) := ∪
Vt
i=1{b ∈ B : Nb,ht,i(t) ≤ K(t)}, (5)

where K : {1, ..., T} 7→ R is a deterministic, monotonically
increasing control function, which the algorithm gets as input.
The control function K(t) is used to decide whether to enter
an exploration or an exploitation phase. The control function
needs to be chosen adequately in order to guarantee that FML
achieves a good performance in terms of its regret. In Theo-
rem 1, we provide a suitable choice for the control function.
If there are under-explored beams, FML enters an exploration
phase (lines 9-16). In case the number u(t) := |BueHt(t)| of
under-explored beams is at least m, FML randomly selects m
of them. In case the number u(t) of under-explored beams
is smaller than m, FML selects all u(t) beams. In addition,
it selects the (m− u(t)) beams b̂1,Ht(t), ..., b̂m−u,Ht(t) from
B \ BueHt(t), which satisfy

b̂j,Ht(t) ∈ argmax

b∈B\(Bue
Ht

(t)∪
j−1⋃
k=1

{b̂k,Ht (t)})

Vt∑
i=1

µ̂b,ht,i(t) (6)

for j = 1, ...,m− u(t). If there are no under-explored beams,
FML enters an exploitation phase (lines 17-19). It selects the
m beams b̂1,Ht(t), ..., b̂m,Ht(t) from B, which satisfy

b̂j,Ht(t) ∈ argmax

b∈B\(
j−1⋃
k=1

{b̂k,Ht (t)})

Vt∑
i=1

µ̂b,ht,i(t) (7)

for j = 1, ...,m. After beam selection, FML observes the beam
performance of each selected beam for each vehicle within
this period (line 20). Using these observations, FML updates
its internal counters (lines 21-25).

B. Regret and Choice of Parameters

The regret of FML in (4) can be bounded from above.
The upper bound given below is based on the following
assumption, which states that, the expected beam performance
of a particular beam is similar in similar contexts:

Assumption 1. There exist L > 0 and α > 0 such that for
all b ∈ B and for all x, y ∈ X , it holds that

|µb(x)− µb(y)| ≤ L||x− y||α,

where || · || denotes the Euclidean norm in RX .

The regret of FML can be bounded as follows (see [19])

Theorem 1 (Bound for R(T )). Let K(t) = t
2α

3α+X log(t) and
pT = dT

1
3α+X e. If FML is executed using these parameters

and if Assumption 1 holds true, the leading order of the regret
R(T ) is O

(
mVmaxRmaxBT

2α+X
3α+X log(T )

)
.

Algorithm 1 Pseudocode of FML algorithm.
1: Input: T , pT , K(t)
2: Initialize context partition: Create partition PT of context space [0, 1]X

into (pT )
X hypercubes of identical size

3: Initialize counters: For all b ∈ B and all h ∈ PT , set Nb,h = 0
4: Initialize estimates: For all b ∈ B and all h ∈ PT , set µ̂b,h = 0
5: for each t = 1, ..., T do
6: Observe vehicle contexts Xt = {xt,i}i=1,...,Vt
7: Find Ht = {ht,i}i=1,...,Vt such that xt,i ∈ ht,i ∈ PT , i =

1, ..., Vt
8: Compute the set of under-explored beams BueHt (t) in (5)
9: if BueHt (t) 6= ∅ then . Exploration

10: u = size(BueHt (t))
11: if u ≥ m then
12: Select st,1, ..., st,m randomly from BueHt (t)
13: else
14: Select st,1, ..., st,u as the u beams from BueHt (t)
15: Select st,u+1, ..., st,m as the (m − u) beams

b̂1,Ht (t), ..., b̂m−u,Ht (t) from (6)
16: end if
17: else . Exploitation
18: Select st,1, ..., st,m as the m beams b̂1,Ht (t), ..., b̂m,Ht (t)

from (7)
19: end if
20: Observe received data rj,i of each vehicle vt,i, i = 1, ..., Vt, in

each beam st,j , j = 1, ...,m
21: for i = 1, ..., Vt do
22: for j = 1, ...,m do
23: µ̂st,j ,ht,i =

µ̂st,j ,ht,i
Nst,j ,ht,i

+rj,i

Nst,j ,ht,i
+1

and Nst,j ,ht,i =

Nst,j ,ht,i + 1
24: end for
25: end for
26: end for

Proof: The detailed proof of Theorem 1 can be found
in [19]. For brevity, we will not repeat the proof here.
Essentially, the regret is bounded as follows. First, the regret
is divided into three summands. One summand corresponds to
the regret due to exploration phases. The other two summands
correspond to the regret due to sub-optimal and near-optimal
choices in exploitation phases, respectively. Then, each of the
three summands is bounded separately.

This theorem shows that the regret of FML is sublinear in
the time horizon T , i.e., R(T ) = O(T γ) with γ < 1. This im-
plies that limT→∞

R(T )
T = 0 holds, which guarantees that the

algorithm has an asymptotically optimal performance. Hence,
over time, FML converges to the optimal beam selection
strategy. Moreover, for finite time horizon T , the upper bound
on the regret characterizes FML’s speed of convergence.

IV. IMPLEMENTATION FEASIBILITY OF FML

This section sheds light on the feasibility and practicality
of the implementation of FML within the existing 4G cellular
architecture and the forthcoming features of 5G systems.
In particular, we describe control and data communication
within the network. We also elaborate on the procedure that
enables FML for 5G V2X communications. In our proposed
system, vehicles maintain continuous connectivity via their
LTE interface. A vehicle sends a request to attach to an mmBS
when mmWave connectivity is needed (e.g., new HD map,
local traffic data). In the following, we describe FML in four
stages as shown in Fig. 3.
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Fig. 3. Integration feasibility of FML in a cellular system.

A. Registration request.

The vehicle sends an mmWave registration request to the
serving eNB which contains the vehicle’s location. This trig-
gers the eNB to send a service request message to a poten-
tial mmBS concerning the vehicle’s location. This message
contains the vehicle’s cellular identifier (e.g., RNTI), and its
expected direction of arrival at the mmBS. The conversion
of the GPS location to the low-resolution direction of arrival
reduces the backhaul signaling overhead. On the one hand, the
information exchange for the direction of arrival occurs only
once per vehicle. On the other hand, exchange of GPS location
requires a continuous coordinate update, which also results in
the increase of context space. As we will see in Section V,
the performance reduction due to the localization accuracy is
negligible as FML always remains very close to the optimal
solution.

B. mmBS association.

The mmBS responds to the service request with the infor-
mation regarding the selected beams. Next, the eNB forwards
the mmBS related information (i.e., the location of the mmBS
and selected beams) to the vehicle. FML does not require the
vehicle to react to this information. However, we argue that
knowing the context, the vehicle can perform a simple geo-
metric operation onboard to estimate its arrival to the coverage
area of a beam selected by the mmBS. This is advantageous
for both omni-directional and directional reception. Firstly, the
vehicle only starts listening to the mmWave channel shortly
before arrival to the coverage area (lower energy consump-
tion). Secondly, beam-alignment is simplified since the vehicle
knows the exact location of the transmission source. Without
this knowledge, the beam-alignment for moving objects can
be very challenging. As a result, the association becomes
more energy efficient and requires less signaling overhead.
Considering that the connection setup with a complete 360◦-
sweep for 802.11ad take a few milliseconds, limiting the
scanning angle should reduce this delay to a negligible value.

C. Communication.

Once in coverage, the vehicle starts the regular cellular
attachment process by sending an initial access request, which
is replied to by a response from the mmBS. The vehicle

mmBS

Permanent 

blockages

Fig. 4. The map of the simulation environment. The tram and bus temporarily
block the red vehicle and blue vehicle, respectively.

measures the channel state information (CSI) from the initial
access response message and sends the CSI feedback for
modulation and coding assignment. Next, the mmBS starts
the data transmission process. Note that although an mmBS
may be able to transmit from several beams simultaneously,
each beam transmits a separate data-stream (i.e., unicast).

D. Feedback.

No feedback is required if the communication phase is
successful because the mmBS has already received acknowl-
edgments for the transmitted frames. In case a vehicle fails to
detect the mmBS within a selected beam, it sends the feedback
to the serving eNB. This feedback will be forwarded to the
mmBS to update FML’s future decisions.

V. NUMERICAL EVALUATION

Here, we evaluate and benchmark FML via numerical sim-
ulations. In the following, we first describe the simulation
environment and the relevant parameters. Next, we provide
the pathloss model and other simulation settings, which are
chosen according to the 3GPP technical specification in [20].
Then, the benchmark algorithms and results are presented.

A. Simulation Setup

The simulation scenario (e.g., blockages, roads, and traffic
patterns) is designed with reference to information obtained
from Google Maps in the vicinity of our premises. The mmBS
is assumed to have 16 orthogonal beams with variable beam
width from 10◦ to 40◦ covering the 360◦ azimuth. The beams
are selected according to the recent measurements in [21].
The vehicles enter the system with an arrival rate of λ (in
vehicles per second) and their speed varies between 20km/h
and 70km/h. Each vehicle chooses one of the routes on the
map, whose probability is determined by the typical traffic
observed within the area in Google Maps (see Fig. 4). We
consider two types of blockages: permanent and temporary
blockages. Permanent blockages are the buildings that perma-
nently block the path between the mmBS and the vehicles
on the road. The temporary blockages (e.g., other vehicles or
trams) are modeled by random appearance of objects on either
side of the road causing a temporary signal blockage. Note
that both types of blockages are present in all our evaluations.

6

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNET.2018.2869244

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 60

 80

 100

 120

 140

 160

 180

 200

 220

 0  200  400  600  800  1000

A
g

g
re

g
at

e 
rx

 d
at

a 
[G

b
it

]

Time period (t)

Optimal
FML
UCB

MaxRate
Random

Fig. 5. Aggregate received data for arrival rate with λ = 0.4 and m = 4.

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.2 0.4 0.6 0.8 1

× 10
5

C
u

m
u

la
ti

v
e 

rx
 d

at
a 

[G
b

it
]

Arrival rate (λ)

Optimal
FML
UCB

MaxRate
Random

Fig. 6. Impact of arrival rate λ on cumulative received data for m = 4 after.

In our implementation, a time period is defined as the time
in which the vehicle under observation enters and leaves the
cell coverage area of an mmBS. Within this time period, the
learning algorithms additionally learn from the context and
received data of the other vehicles passing through the selected
beams. In this way, we ensure that the algorithms have enough
samples to learn from. We choose the direction of arrival as
context (i.e., north, south, east, and west), hence the context
vector is a one dimensional vector (i.e., X = 1). Table I
contains the important simulation parameters.

TABLE I
CHANNEL PARAMETERS AS SPECIFIED IN [20].

Parameter Value
Carrier frequency 28GHz
System Bandwidth 1GHz
Transmit power 30dBm
Noise figure 4dB@mmBS, 7dB@Vehicle
Vehicle’s beam width 30◦

Thermal noise −174dBm/Hz

Pathloss model (dB) 32.4 + 17.3 log10 d(m) + 20 log10(fc(GHz)) + ξ
ξ ∼ N (0, σ), σ = 1.1dB

B. Benchmark Algorithms and Metrics

We provide a thorough performance analysis by comparing
FML to several other schemes. The following elaborates on
each benchmark scheme:
• Optimal. This algorithm has a priori knowledge about

the expected beam performance µb(x) of each beam
b ∈ B in each context x ∈ X . In each period, Optimal
selects the optimal subset B∗t (Xt) of m beams as in (1).
Therefore the results achieved by Optimal is the ex-
pected performance upper bound of the system.

• UCB. This is a variant of the classical learning algorithm
UCB [15], which we adapted to our use-case. It learns
from previously observed beam performance, but without
taking into account the context information obtained from
the environment. In each period, UCB selects m beams
with the highest estimated upper confidence bounds on
their expected beam performance.

• MaxRate. This algorithm first explores each beam once.
Next, it will select the beam that achieved the highest
received data, i.e., the best beam. Once MaxRate selects
the best beam, it retains this selection even if the traffic
or environmental changes at a later time. MaxRate is

intended to show the performance of greedy and non-
adaptive schemes.

• Random. This algorithm selects m random beams, based
on a uniform random distribution, in each period.

Performance metrics. The performance metrics used in the
evaluation are aggregate and cumulative received (rx) data, the
number of served vehicles, and average learning time (i.e.,
the time required for FML to reach a certain percentage of
the Optimal’s performance). The aggregate received data is
defined as the data received (in bits) by all the vehicles in
the system in time period t. The cumulative received data is
defined as the data received by all the vehicles in the system
from beginning of the simulation up to time period t.

C. Numerical Evaluation

Here, we first evaluate a generic scenario. Next, we analyze
the impact of several parameters, i.e., the arrival rate of the ve-
hicles, the number of selected beams, the frequency of block-
ages, the underlying traffic patterns, the average contact time,
the adaptability, the radio performance versus environment,
and performance comparison to a tracking mechanism. Unless
otherwise stated, we consider the case where (i) the percentage
of permanent and temporary blockages each corresponds to
20% of all paths and (ii) traffic patterns (i.e., the vehicle
arrival rate and the route probabilities) change based on the
typical patterns provided by Google Maps. Since Google Maps
only provides the typical daily traffic patterns for 17 hours of
the day (from 06:00 to 22:00), we run algorithms over a 17-
hour simulation. These additional variables are introduced to
evaluate the adaptability of FML to the environment dynamics
(e.g., the location of temporary blockages, popular paths,
channel qualities, and speed of the vehicles). Each simulation
is repeated 20 times for which we show 95% confidence
intervals in the figures.

1) Average received data: In the following, we analyze the
aggregate received data achieved by the algorithms over a time
horizon of 17 hours. Fig. 5 shows the aggregate received data
per time period for an arrival rate of λ = 0.4 in the case of
m = 4 selected beams per period. The fluctuations in the graph
result from the number of vehicles in the system. Specifically,
the aggregate received data increases with the number of
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vehicles. The impact of vehicle arrival rate and traffic patterns
are evaluated in the following sections in detail. As expected,
Optimal gives an upper bound to the other algorithms due
to a priori knowledge of the expected beam performance.
Our proposed algorithm FML clearly outperforms the other
algorithms UCB, MaxRate, and Random. We observe that
FML’s performance quickly approaches that of Optimal
within the first 100 periods while the other algorithms perform
at least ∼ 20% worse than FML. This behavior is even more
pronounced from the 256th period when FML remains very
close to Optimal’s aggregate received data. FML experiences
small divergence (below 3%) from Optimal at a few points
within the simulation. These small variations are due to: (i) the
occurrence of new events, which are not learned from, or (ii)
the re-exploration of past decisions, which is as expressed
in (5). FML revisits past decisions to ensure that the historic
performance values for a given decision is still valid. If the
algorithm finds out that the observed performance of a decision
is changed, it will update the learning accordingly. Note that
at around time period 300, FML performs slightly better than
Optimal. This occurrence is due to the fact that Optimal
selects the beam that has the highest expected performance.
However, in rare cases, the instantaneous performance of
the beams selected by FML turns out to be higher. Average
performance within 17 hours of simulation indicates that the
average aggregate received data achieved by FML is 21.99%,
36.08%, and 54.76% higher than that achieved by UCB,
MaxRate and Random, respectively. Moreover, on average,
FML performs only 1.73% below that achieved by Optimal.

2) Impact of arrival rate: Next, we investigate the impact
of the arrival rate on the cumulative received data achieved by
the different algorithms in the case of m = 4 selected beams
per period for different arrival rates λ ∈ {0.2, 0.4, 0.6, 0.8, 1}.
From Fig. 6, we can observe that the cumulative received data
grows as the number of vehicles in the system increases. Over
the whole range of λ, the cumulative received data achieved by
FML lies between 9.36% and 23.06% higher than that achieved
by the next-best algorithm UCB and only up to 3.06% lower
than that achieved by the Optimal.

Fig. 7 shows the time required for FML to achieve
{80%, 85%, 90%} of the Optimal’s performance (i.e.,
the average received data) for different λ, respectively.
More specifically, we track the performance of our pro-
posal against Optimal during the simulation and record
the time at which FML achieve {80%, 85%, 90%} of
the Optimal. It is observed from our evaluation that
FML achieves {80%, 85%, 90%} of Optimal’s performance
within {13, 25, 56} mins for all arrival rates, respectively.
The large confidence interval is due to the randomness of
certain parameters both in the learning algorithm (exploration
decisions) and in the evaluation scenario (e.g., location of
temporary blockages, selected routes, speed). As a result, FML
may approach near-optimal performance below seven minutes
if all random effects are in favor, and up to 75 minutes
otherwise. Note that even manual configuration and war-
driving tests require much more than 75 mins. Furthermore,
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war-driving tests may only capture effects of permanent, but
not from temporary blockages. The convergence rate of a
learning algorithm depends on the selection actions and the
corresponding reward it observe, it thus varies tremendously.
The subplot in Fig. 7 shows the average received (rx) data
with λ = 0.4. Average rx data is the average data over all
the vehicles in the system up to this time period. This figure
illustrates FML’s quick learning and adaptation capability. In
particular, FML achieves 90% of the performance Optimal
within 30 time periods. This result tallies with the performance
figure shown for λ = 0.4 in Fig. 7 and the trend observed
in Fig. 5. This shows how quickly FML converges to near-
optimal beam selection. Moreover, the general trend shows
that the time to converge to near-optimal results reduces when
the vehicle density in the system increases. This is due to the
fact that with higher vehicle density, FML has more examples
to learn from simultaneously.

3) Impact of the number of selected beams: Here, we
analyze the impact of the number of selected beams m per
period on the cumulative received data. Fig. 8 shows the
cumulative received data achieved with an arrival rate of
λ = 0.4 for different m ∈ {1, 2, 4, 8}. As the number
of simultaneously selected beams increases, the cumulative
received data increases as well. This increase is due to the
enhanced coverage area. However, as mentioned earlier, the
higher the number of beams, the higher is the hardware
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Fig. 10. Data for 48 hours of live daily traffic pattern.

complexity and energy consumption at the mmBS [5]. For
different values of m, the cumulative received data achieved by
FML is between 10.45% and 18.98% higher than that achieved
by the next-best algorithm UCB and only up to 4.71% lower
than that achieved by the Optimal.

4) Impact of blockages: Here, we investigate the im-
pact of blockages on the cumulative received data. Fig. 9
shows the cumulative received data with an arrival rate of
λ = 0.4 in case of m = 4 selected beams per period for
{10%, 30%, 50%, 70%, 90%} of permanent blockages in the
system. Clearly, as the percentage of permanent blockages in
the system increases, the cumulative received data decreases2.
For any percentage of permanent blockages, FML outperforms
all non-optimal algorithms. The cumulative received data
achieved by FML lies between 15.55% and 17.42% higher than
that achieved by the next-best algorithm, i.e., UCB. Moreover,
FML’s achieved results deviate from that of Optimal merely
by at most 2.61%.

5) Live daily traffic pattern: The prior evaluation was
based on the typical traffic pattern as in Fig. 4. Due to the
averaging effect, Google’s typical traffic does not capture the
quick changes of traffic patterns which are visible in the live
traffic report. To this aim, we recorded the observed live traffic
reports of Google for a period of 48 hours in 30-minute

2We observed the same trend with temporary blockages. Due to the lack
of space, the aforementioned results are not graphically demonstrated.

intervals. We fed this data to the simulator to evaluate the
performance of FML in live traffic conditions. For instance,
the arrival rate is higher during office hours and lower at
other times of the day. Moreover, route probabilities also
change according to the live statistics. The top plot of Fig. 10
shows the number of vehicles in the system within a 48-
hour-period. Clearly, the arrival rate has characteristic peaks
during the course of a day (especially between 6 a.m. and
10 p.m.), which lead to an increase in vehicle density. For
better readability, the graph in Fig. 10 is smoothed by 5% and
1% for the figures at the top and bottom, respectively, with a
local regression using weighted linear least squares and a 2nd
degree polynomial model. The bottom plot of Fig. 10 shows
the aggregate received data for m = 4 selected beams per
period. We can see that FML achieves near-optimal aggregate
received data within at most four hours. We also observe that
FML can capture the effect of traffic fluctuations and leverage
it to make better decisions. Since the other algorithms do
not adapt to the change in traffic, they perform worse than
FML. Averaging over 48 hours of simulation, FML performs
24.96%, 39.61%, and 60.51% better than UCB, MaxRate, and
Random, respectively. Further, the performance of FML only
lies within 2.47% below that of Optimal.

6) Average contact time: The beam selection decision in a
dynamic environment (e.g., variable traffic pattern) is impacted
by several factors. These factors include: (i) the time each
vehicle remains within the beam coverage area (i.e., contact
time) and (ii) the achievable rate by each beam. Intuitively,
for the same vehicular’s speed, a wider beam should result
in higher contact time, as they provide a larger coverage area.
However, in urban areas, the contact time is also influenced by
the road topology and the speed of the vehicle. As mentioned
in the simulation setup, the speed of the vehicles in our
scenarios varies between 50km/h and 70 km/h.

Fig. 11 demonstrates the average contact time of each beam
under different algorithms. As observed, the contact times are
relatively similar regardless of the algorithm. This observation
stems from the fact that the decision of an algorithm has
no influence on the speed of the vehicles and road topology
but vice-versa. In fact, the slight variation is just due to
the variability in the vehicle speed. We also observe that
the contact time of some beams is zero. Zero contact time
implies either that a specific beam is never selected by a
given algorithm or when a beam is selected, the path that
is covered by it, is not traversed by any vehicle. Therefore, no
statistical data is available for that beam. Fig. 11 also shows
that contact time is not always dependent on the beam width,
but the distribution of speed of the vehicles that pass by the
beam. For example, beam 7 and 15 have similar beam width
(∼ 11◦), but the average contact of beam 7 is significantly less
than that of 15.

7) Adaptability: Here we take a closer look at the selected
beams by different algorithms in order to determine their
adaptability. In particular, we leverage pie charts to show the
frequency of each beam being selected. This form of result
representation assists us to visualize the capability of each
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Fig. 11. Average contact time of each beam under different algorithms.

algorithm to adapt to environmental changes by exploiting the
available beam patterns; this can be concluded by comparing
the selected beam of each algorithm to that of Optimal.
Furthermore, we can analyze the similarity of the decision
and strategy taken by the algorithms.

In Fig. 12, we can observe the portion of time each
beam is used by the Optimal, FML, and UCB algorithm
for the different number of possible orthogonal beams, i.e.,
m ∈ {1, 2, 4, 8}. Our first observation is that; on the one
hand, regardless of the values of m, FML’s beam selection
is very similar to that of Optimal. This tallies with our prior
observation (i.e., its performance on aggregate and cumulative
received data) and shows that FML adapts almost optimally
to the traffic dynamics. On the other hand, UCB confines
its selection to a small subset of beams as it does not
take into account the context information obtained from the
environment. Furthermore, we can see that the set of selected
beams extends as m increases. It is interesting to note that
the beams selected in m ∈ {1, 2} (such as 11 and 15) will
still be dominant for higher m. In addition, it can be observed
that beams 2, 8, 11, and 15 are the preferred choices. We will
take a closer look and further analyze the reasons behind such
beam selection policies in the following subsection.

8) Radio performance vs. environment: As observed
above, the widest beam is not necessarily the best beam. Here,
we discuss the impact of other factors such as the length
of roads which fall within the coverage of a specific beam
(i.e., covered path) and the achievable data rate, which itself
depends on the received signal quality. The achievable rate
depends on the beam width and the distance of a point on
the road to the mmBS. To this aim we analyze Fig. 13(a) and
Fig. 13(b) side-by-side. On the one hand, Fig. 13(a) shows a
plot of the covered path and the respective beam width of each
beam. On the other hand, Fig. 13(b) depicts the covered path
with respect to the average achievable rate when a beam is
used. The average rate is obtained by averaging the rate at all
the possible points on the road that is covered by a particular
beam.

It is observed in Fig. 13(a) that a wider beam does not
necessarily cover a longer stretch of the road. This behavior
is particularly obvious for beams 5, 6, 12, 13, and 14, which is
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Fig. 12. Fraction of time a beam is selected by Optimal, FML, and UCB.
The beam selection of FML is clearly very similar to that of Optimal. This
shows that FML adapts almost optimally to the traffic dynamics.

caused by the topology of the road. For example, a narrower
beam that is pointing in the direction of an intersection
potentially covers a larger portion of the road, while a wider
beam that points towards a straight road may not have a long
covered path.

Fig. 13(b) visualizes the achievable data rate for each beam
and it’s association with the length of the covered path. As
illustrated, beams 5, 6, and 7 provide the highest data rates.
However, referring to the pie charts in Section V-C7, none of
these beams are among the dominant selected beams. This is
due two main reasons: (i) the path which contributes to a high
average rate is less traversed by the vehicle, (ii) although the
average rate achieved by a beam is high, the total rate is highly
dependent on the rate achieved throughout the path, which may
be low. More specifically, the beam with the highest data rate
is not necessarily the best if it provides a very short contact
time due to street topology and the traffic pattern. For these
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Fig. 13. Information on the covered path, beam width and average data rate for each beam.

reasons, selecting those beams on the basis of data rate can
be indeed detrimental to the overall performance.

Analyzing the above-mentioned results side-by-side helps
us to verify that the dominant beams (i.e., 2, 8, 11, and 15)
are chosen because they provide a good trade-off between the
average rate and the covered path. The last ambiguity is on
the selection of beam 15 over beams 6 and 7. We observe that
the rate-coverage trade-off of 15 is somewhat similar to that
of 6 and 7, but it is still selected more often. As explained, the
reason behind this preference is the dominant traffic direction.
Specifically, beam 15 covers a more crowded stretch of the
road. As a result, both Optimal and FML choose beam 15
over 13 and 14. However, UCB’s chose beam 13 and 14 more
frequently since it does not have the notion of dominant traffic
(see Fig. 12). This result further emphasizes the importance
of traffic awareness in mmWave V2X scenarios.

9) To track or not to track: Tracking individual vehicles
is a common approach in the majority of the literature [22].
From the implementation point of view, this approach is
very challenging because the network needs to constantly
acquire/predict the vehicle’s location and trajectory. From a
network capacity point of view, tracking individual vehicles
may result in a very low number of served vehicles, specif-
ically in dense networks [23]. This is in particular impor-
tant if the number of simultaneous beams is limited due to
hardware limitation. In this scenario, we highlight the impact
of providing selective coverage areas to all vehicles versus
tracking individual vehicles. To illustrate this, we additionally
implemented an optimal tracking (i.e., OptTrack) algorithm,
which has an instantaneous localization knowledge of the
vehicle. Fig. 14(a) shows the cumulative received data and
the average number of served vehicles per period achieved by
FML and OptTrack for m = 4 after 17 hours for different
arrival rates λ. For a fair comparison, we assume OptTrack
may track as many vehicles simultaneously, as FML may select
beam patterns simultaneously. We observe that OptTrack
has a good performance as long as the number of vehicles in
the system is very low. This is because OptTrack follows
a few vehicles perfectly, which in this case is better than
sticking to a fixed subset of beams over the duration of a
period as done by FML. However, as the arrival rate and the
number of vehicles in the system increases, FML outperforms

OptTrack both in terms of the cumulative received data (up
to 61.37%) and the average number of served vehicles (up
to 82.55% vehicles more per period). FML achieves higher
gains for higher arrival rate because it provides larger and
better coverage in areas with higher traffic. In addition, FML
serves each vehicle passing through the selected beam, while
OptTrack only serves a limited set of perfectly tracked
vehicles while they reside within the coverage area of the
mmBS.

In Fig. 14(b), we observe the fraction of time each beam is
selected by OptTrack for a different number of simultaneous
beams m ∈ {1, 2, 4}. In this scenario, once a vehicle is served
by the mmBS, it will be tracked until it leaves the system.
Given that OptTrack’s beam selection simply depends on
the chosen path of the vehicles and other parameters (e.g.,
coverage area, data rate) do not play a role, we can observe
that the set of selected beams by OptTrack is rather uniform.
Specifically, OptTrack neglects opportunistic gain, and it has
no prioritizing mechanism among different beams.

VI. DISCUSSION

Our evaluation results confirm the superiority and adapt-
ability of FML compared to the benchmark algorithms. In this
section, we discuss the impact of some of our system model
assumptions (e.g., beam orthogonality) and the capabilities of
FML, which were not detailed previously.

A. Beam orthogonality
We assumed that the available beams at the mmBS are all

orthogonal. Nevertheless, FML’s performance is not restricted
to this limitation. In fact, non-orthogonality can be formulated
as an additional constraint in our model, where overlapping
beams cannot be used simultaneously. In this case, the set of
actions (i.e., different beam combinations) naturally increases.
However, not all possible combinations are allowed due to
the constraint that overlapping beams may not be used si-
multaneously. Thus, the number of actions remains feasible.
Nevertheless, the convergence time of the FML (similar to any
other learning-based approach) depends on the size of the
available actions. Using online learning algorithms (such as
FML) becomes necessary in such cases to ensure the system
remains operational before the algorithm converges to (near)-
optimal solution.
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Fig. 14. Impact of individual vehicle tracking using OptTrack on the
network performance.

B. Number of selected beams

We assumed that the number m of simultaneously selectable
beams at the mmBS is limited due to current hardware lim-
itation [5]. Assuming fully digital beamforming materializes
in the future, this limitation will present itself as overlapping
beam patterns, which cannot be selected simultaneously. FML
can also be used in such scenarios to select the most suitable
beam pattern according to the available context (e.g., vehicle’s
location).

C. Interference

In this paper, we assume that there is no interference
among orthogonal beams. However, theoretically orthogonal
beams may interfere with each other due to reflections from
surrounding objects (e.g., walls, buildings). Such scenarios are
very rare in high frequency ranges of mmWave bands such as
60 GHz due to low reflection coefficient but more plausible in
28 GHz and 38 GHz. Although this factor is not considered in
our simulation, its impact will be interpreted as a blockage by
FML, thus refraining from communicating over those beams.

D. Co-located vehicles

There could be multiple vehicles in the coverage area of
a beam at the same time. Given the focus of this paper
is on unicast communication, only one of these vehicles is
allowed to communicate with the mmBS. In our simulation,
we select one of the vehicles at random for communication.
While scheduling is out of our scope, the random selection can
be easily adapted to a scheme which takes into account the past

throughput of the co-located vehicles to increase the fairness.
More importantly, it should be noted that this phenomenon
has a high potential for multicast vehicular scenarios.

E. Location reporting

FML infers traffic patterns from a very coarse location
information (i.e., direction of arrival). This level of coarseness
is intentionally chosen to emphasize on the potential of FML to
infer traffic patterns based on coarse geo-locations. If the net-
work can afford the extra overhead for high-resolution location
reporting, FML’s performance will only improve further.

F. FML for tracking

We have shown in the evaluation that tracking individual
vehicles is less efficient. Our system model is designed to
provide selective coverage areas since V2X mmWave systems
are motivated by the need to exchange intermittent large data
files [2], [3]. Nevertheless, FML can be adapted to track indi-
vidual vehicles by using context such as speed of the vehicle,
traffic patterns, and blockages to estimate the vehicle’s future
location and to select the suitable beam width accordingly.

VII. RELATED WORK

Beam selection issues have been addressed before in con-
ventional vehicular and cellular networks operating at sub-6
GHz frequencies to achieve maximum rate using multi-lobe
beam patterns. Unlike our proposal, these works rely on accu-
rate GPS location reporting in order to perform beam switch-
ing. The complexity of this method grows exponentially with
variable vehicular speed and channel conditions. In addition,
the proposed algorithms are not able to adapt to environmental
change such as that considered in this manuscript. Most im-
portantly, as mentioned, the signal propagation characteristics
in sub-6 GHz frequencies fundamentally differs from that of
mmWave bands.

This paper proposes an adaptable learning algorithm for
mmWave vehicular scenarios in which blockages and traffic
are taken into account. Specifically, our algorithm does not
require either accurate localization information or prior statis-
tical knowledge of the variability or change in the traffic and
environment. Therefore, its performance is independent of the
aforementioned variabilities. In [24], MAB learning algorithm
is used for maximizing the directivity gain through efficient
beam alignment between mmWave transceivers. This work
suits applications which require tracking to prolong the contact
time between the transceivers. In essence, this work could be
used to extend FML to achieve longer connectivity, at the cost
of higher complexity and additional constraints based on the
system’s objective function. The increased complexity stems
from the additional learning required for beam alignment. In
what follows, we provide a short overview of the ongoing
efforts in mmWave vehicular research. For more details, we
encourage the readers to refer to a recent survey on the
topic in [7]. The body of the works on mmWave V2X can
be categorized in channel characterization, PHY design, and
MAC design.
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In [25], Kato et al. provide propagation characteristics
of mmWave communication in inter-vehicular scenarios. On
the other hand, the authors of [26] derive closed-form ap-
proximation for coherence time and beam width with con-
sideration of directional communication. The feasibility of
mmWave communication is analyzed in [4] via an extensive
measurement campaign. The results indicate the low number
of scattering cluster in mmWave bands, which imply that the
number of supported data streams are significantly less than
the antenna array size. The challenges of enabling mmWave
V2X communication is elaborated in [27]. In addition, the
authors describe possible solutions to these challenges from
PHY and MAC perspective. The works in [28]–[31] focus
on mmWave beam adaptation in vehicular scenarios. These
works exploit dedicated short-range communications (DSRC)
to estimate the location of the vehicles. This estimation allows
mmBS to track the moving vehicles and to adapt the mmWave
beam accordingly. While feasible, this technique requires a
complex transceiver chain and accurate localization informa-
tion. Further, modification to the MAC protocol to allow the
exchange of this information between the interfaces is crucial.

While prior work agrees that blockage is the Achilles heel
of mmWave communication [4]–[7], [27], most work focus
on modeling the blockages. Tassi et al. use a stochastic
geometry tool to derive an approximation for the achievable
signal quality. In [32], Wang et al. also take blockages into
account and model the closed-form expression using Manhat-
tan Poisson Line Process street model. These works provide
highly relevant insight to the performance bound of mmWave
communication in a vehicular network. However, they do not
provide a method to automatically detect the change in the
state of the network (i.e., blockages and traffic change) which
allow it to adapt accordingly. Furthermore, traffic-awareness
is another aspect which has not been addressed to the best of
our knowledge.

VIII. CONCLUSIONS

In this paper, we address the problem of beam selection
at mmWave base stations where the outcome of the selec-
tion is highly dependent on the traffic and the blockages
in the network. To this aim, we propose FML, an online
learning algorithm based on contextual multi-armed bandits
that operates on minimal contextual network information (i.e.,
a vehicle’s direction of arrival). In addition, we analyze the
implementation feasibility of FML in the cellular network by
proposing a protocol within the definition of 3GPP standard.
The advantage of FML is twofold: (i) it enables mmWave base
stations to autonomously learn from the context to understand
their surrounding environment and (ii) it provides a scalable
solution to increase the deployment density of mmWave base
stations with minimal setup overhead for the operators. Our
evaluation results show that FML requires on average only
33 mins to achieve near-optimal performance. Noteworthily,
without the overhead of tracking of OptTrack, FML achieves
61.37% and 82.55% gain in terms of the cumulative received
data and number of served vehicles, respectively. The results

demonstrate the capability of online bandit learning and em-
phasize on the relevance of context-awareness in 5G scenarios.
Furthermore, exploring a hybrid solution between tracking
individual vehicles and increasing the overall network capacity
appears to be an interesting future research avenue.

This is the first attempt to incorporate learning algorithms
in such dynamic vehicular scenarios. However, our analytical
modeling of the system can be extended to observe and learn
from richer context (e.g., coordinates and type of the vehicle).
Given the low complexity of contextual bandit learning, this
approach can be applied in other areas of mmWave cellular
networking such as initial access and user handover.
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