
Daniel Nowak, Tobias Mahn, Hussein Al-Shatri, Alexandra Schwartz and Anja Klein, ”A

Generalized Nash Game for Mobile Edge Computation Offloading,” in Proc. 6th IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering (Mobile

Cloud)), March 2018.

c©2018 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this works must be obtained from the IEEE.

A Generalized Nash Game for Mobile Edge

Computation Offloading

Daniel Nowak∗, Tobias Mahn†, Hussein Al-Shatri†, Alexandra Schwartz∗, Anja Klein†

∗ Graduate School of Computational Engineering, TU Darmstadt, Germany, {nowak, schwartz}@gsc.tu-darmstadt.de

† Communications Engineering Lab, TU Darmstadt, Germany, {t.mahn, h.shatri, a.klein}@nt.tu-darmstadt.de

Abstract—The number of tasks performed on wireless mobile
devices instead of stationary computers is steadily increasing. Due
to the limited resources of battery and computation capability on
these devices, computation offloading became a relevant concept.
We consider several mobile users with a splittable computation
task each, which try to minimize their own computation time. All
of them are connected to a central access point, where a cloudlet
with limited computation power can be utilized for offloading
fractions of their tasks. To account for the selfishness of the
users and their individual goals, we propose a game theoretic
framework resulting in a nonconvex generalized Nash game.
The decision of each mobile user, which fraction of his task
to offload, depends on the offloading decisions of the others,
since they share the communication resources and computation
capabilities of the cloudlet. We prove the existence and uniqueness
of the generalized Nash equilibrium and propose an algorithm
for computing it efficiently. In addition, we show that the price
of anarchy of our model is one and investigate the advantage
of computation offloading numerically. Furthermore, we extend
our model to a scenario, where mobile users are able to offload
parts of their computation in repeated sessions during a given
time period. This allows every mobile user to offload multiple
successive tasks.

I. INTRODUCTION

Computation offloading has become an active field of re-

search over the last few years [1]. Although wireless mobile

devices are steadily increasing their computation capabilities,

the limited battery capacity prohibits the local execution of

highly demanding tasks on the devices. Even before the

smartphone era, studies showed that an increased battery life

is a crucial feature for customers [2]. A later study, that

evaluated the typical charging behavior and battery levels of

over 4000 smartphones users, revealed a cautious attitude

of most users towards keeping as much charge as possible

[3]. Thus, offloading of demanding applications like video

processing or augmented reality to a more powerful server

instead of processing the data locally is a desirable approach

to save battery power and computation time. The remote server

can be a distant cloud service, but also mobile edge computing

has become a desirable concept for 5G cellular networks [4],

[5].

While many publications consider central optimization algo-

rithms to determine a globally minimal solution for completion

time or energy consumption in the network [6], [7], these

formulations neglect the individual behavior of users. Since

users can be considered selfish and pursue their own goals,

like battery level and individual completion time, the central

solution might not be optimal for them. Therefore, they may be

unsatisfied with the forced offloading decision by the central

entity.

For this a game-theoretic approach can be considered, see

for example [8]–[11]. In a game users can be modeled as

individual players competing against each other. Although

this might not lead to the globally optimal solution (price

of anarchy), it can be an intuitive option to describe the

behavior of the users as multiple independent decision makers.

Therefore, it is an interesting question to investigate whether a

globally optimal result can be achieved when applying a game

theoretic model to computation offloading.

The aforementioned computation offloading publications

can be divided into two groups, publications [8]–[10] consider

non-splittable tasks, whereas [11] considers a splittable task

model. Usually, multiple offloading tasks are positioned in

a queue and it is only possible to compute the task locally

or to offload it completely. For many applications this is a

valid choice when the whole set of information is required

to complete the computation, e.g. for sorting data. On the

other hand, splittable tasks can occur in data processing

applications [6]. One possible application mentioned in [11]

is a future concept for public WiFi access points, where the

provided connection not only grants internet access, but also

holds the ability to offload computation tasks partially to an

attached server with computation capability (cloudlet). The

authors of [11] model tasks in their offloading scenario as a

constant stream, which allows them to use the tools of queuing

theory. In contrast, we assume only a single splittable task

per user, which leads to non-smooth constraints in the game

theoretic formulation and prevents the use of queuing theory.

Nonetheless, we show the existence of a generalized Nash

equilibrium. To introduce the possibility of multiple tasks per

user in a given time period, we further extend our model with a

dynamic offloading scheme. We consider an access point with

attached cloudlet that has a finite computation capability which

results in a competition about resources among the users.

The paper is structured as follows: In Section II we intro-

duce the scenario, a communication model and a computation

model. Section III contains the game formulation, existence

result and an algorithm to alternatively solve the offloading

problem in a closed-form. Additionally we investigate the

price of anarchy here. Finally we apply our theoretical results

numerically in Section IV, where we examine the impact of

computation offloading for the users.

II. SYSTEM MODEL

A. Overview

For our mobile-edge computation offloading system model

we consider K mobile users (MUs) which are connected to

one wireless access point (AP) with an attached cloudlet. Each

MU has a uniformly splittable task he wants to compute in

the shortest possible time. For this, he can offload fractions

of the computation task to a cloudlet service, which is offered

by the AP. This way, he can simultaneously compute on his

local mobile device and use the computation power of the

cloudlet service to shorten his overall computation time. Since

the cloudlet has limited computation power, offloading might

or might not be beneficial. To model the individual behavior

of each MU, we use a game theoretic framework for the

offloading model. In order to achieve this, we first introduce

the communication model for transmitting the task parts to

the cloud. Afterwards, the computation model is explained,

which is separated into local computation at the K MUs and

offloaded computation.

B. Communication Model

We assume a communication model with K MUs with

index k, k = 1, . . . ,K. The MUs transmit their offloaded data

utilizing a TDMA scheme with bandwidth B. Hence, there is

no interference while offloading. Let pk denote the transmit

power of mobile device k, hk the channel coefficient from the

k-th user to the AP and σ2 the power of white Gaussian noise.

Then, the transmission rate of MU k is given by the Shannon

channel capacity

Rk = B log2

(

1 +
pk|hk|

2

σ2

)

.

The AP is assumed to have one antenna, i.e. being able to

receive one signal at a time. To avoid scheduling problems,

we assume all transmissions have to be completed before the

computation starts, which can be seen as an upper bound for

transmission time. After the computation the AP transmits

the result back to each MU. The result is expected to have

a negligible size compared to the original task size Wk and is

not considered in the offloading scenario, similar to [12]. Let

xk be the percentage of the task that user k offloads. Further,

let Wk be the size of user k’s computation task in bits. Then

the accumulated offloading time for all MUs is given by

K∑

k=1

xk

Wk

Rk

. (1)

After all transmissions are finished, the computation on the

cloudlet begins.

C. Computation Model

Each MU is able to split his computation task into two

parts: the local part and the offloaded part. The local part

(1 − xk) is computed on the mobile device of user k and

the computation starts at the same moment the transmission

for offloading starts. Since different types of tasks may have

different computation complexities, let Lk denote the task size

of MU k in CPU cycles. Further let fk denote the computation

power of his mobile device in CPU cycles per second. Then,

the time MU k needs for the local part of his computation, is

given by

T local
k = (1− xk)

Lk

fk
.

The time of the offloaded tasks to finish depends on the

offloading decisions of all MUs and the availability of the

cloudlet. The total time needed is the sum of the transmission

time (1) to the AP, the computation time at the cloudlet and

possibly the time C ≥ 0 necessary to finish some already

running tasks on the cloudlet. This enables us to look at a

dynamic scenario, where multiple MUs can offload several

tasks in a given time frame, which will be explained in detail

in Section IV. Let fc denote the computation power of the

cloudlet in CPU cycles per second. Then the total time for all

offloaded tasks to be finished is

T offload =

K∑

k=1

xk

(
Wk

Rk

+
Lk

fc

)

︸ ︷︷ ︸

=:Ok

+C,

where xkOk represents the amount of time that MU k con-

tributes to the total time for offloading. Throughout the paper

we assume Ok ∈ (0,∞) for all MUs k, i.e all MUs can

reach the AP, the cloudlet has nonzero computation power and

communication and computation are not instantaneous. Let Tk

denote the time for user k until his computation is finished.

It depends on his decision, whether to offload a part of the

computation (xk > 0) or to compute only on his local device

(xk = 0):

Tk =

{

max{T local
k , T offload}, if xk > 0,

T local
k , if xk = 0.

(2)

Since each MU tries to minimize his overall computation

time Tk, we use a non-cooperative game theoretic framework,

which is explained in the following.

III. GAME FORMULATION

In this section, the game theoretic approach for the com-

putation offloading scenario is explained in detail. Each MU

solves his own optimization problem with his respective design

variables being his offloading decision xk and his completion

time Tk, which he seeks to minimize. The completion time

has to fulfill two constraints:

1) Tk ≥ T local
k , i.e. the completion time is as least as long

as the local computation time.

2) Only if MU k chooses to offload and thus xk > 0:

Tk ≥ T offload, i.e. MU k has to wait for the offloaded

computation tasks to finish.

The second constraint results in a vanishing constraint (see

for example [13], [14]), which is modeled by

xkT
offload ≤ xkTk.

Note that T offload also depends on xk. For xk > 0, this

constraint is equivalent to the desired constraint stated in 2)

and for xk = 0 it vanishes, i.e. is automatically fulfilled. The

complete optimization problem of MU k is then given by:

min
xk,Tk

Tk,

s.t. (1− xk)
Lk

fk
≤ Tk,

xk

[
K∑

l=1

xlOl + C

]

≤ xkTk,

xk ∈ [0, 1], Tk ∈ [0, T̄].

(3)

Here, T̄ is an upper bound which can be chosen for example

as T̄ = maxk

{
Lk

fk

}

. The feasible set of (3) are all (xk, Tk)

that satisfy the given constraints. Furthermore, let z−k =
(xl, Tl)l 6=k denote the strategy vector of all MUs besides k.

Since the feasible set for each MU depends on the decisions

of the other MUs, the K coupled optimization problems (3)

are called a generalized Nash game, which we denote by Γ.

To solve his optimization problem MU k needs information

about the other players (offloading decisions x−k and the

offloading factors O−k). This assumption can be weakened

and is explained at the end of this section. Next, we introduce

the concept of generalized Nash equilibria:

Definition 1. A strategy vector z̄ =
(
x̄k, T̄k

)K

k=1
is called a

generalized Nash equilibrium (GNE) of the game Γ, if (x̄k, T̄k)
is the optimal solution of the respective optimization problem

(3) with x−k fixed to x̄−k for each k = 1, . . . ,K.

In a generalized Nash equilibrium, no MU will deviate

from his offloading strategy, if all other MUs keep theirs.

One typical way to ensure the existence of generalized Nash

equilibria are convexity assumptions, see for example [15].

Unfortunately the vanishing constraint for the computation

offloading is nonconvex. We show in the next section that

we can prove the existence of a generalized Nash equilibrium

nonetheless and even give a closed form solution.

A. Game Properties

As mentioned before, the game Γ is nonconvex and thus we

need a different approach from the standard existence theory.

For this, we first need a few statements which enable us to

explicitly derive the best response map for each player and

therefore, the best response map of the game. All proofs are

given in the respective section of the Appendix. Lemma 1

ensures that for all optimal solutions of (3) the inequality

constraints corresponding to (2) hold with equality.

Lemma 1. For all optimal solutions (x̄k, T̄k) of (3) we have

(1− x̄k)
Lk

fk
= T̄k.

If x̄k > 0, then it additionally holds that

∑

l 6=k

xlOk + x̄kOk + C = T̄k.

With this knowledge, we can easily derive the best response

map for MU k for a given z−k. Although the best response

function is defined partially, it is continuous. The condition

for purely local computation basically says that MU k can

compute his whole task locally at least as fast as the time

needed by all other users for transmissions to the AP and the

following computations at the cloudlet.

Lemma 2. The best response map for MU k, i.e. the global

solution of problem (3) for a given z−k, is given by

Sk (z−k) =







(

0, Lk

fk

)

, if
∑

l 6=k xlOl + C ≥ Lk

fk
,









Lk

fk
−
∑

l 6=k xlOl + C
Lk

fk
+Ok

︸ ︷︷ ︸

=:x̄k

, (1− x̄k)
Lk

fk









, else,

(4)

where Sk (z−k) = Sk (x−k) is single valued and continuous.

Since we have shown that there exists a continuous best

response map for each user k, the existence of a generalized

Nash equilibrium is not difficult to prove.

Theorem 1. The nonconvex generalized Nash game Γ has a

generalized Nash equilibrium.

Standard algorithms for finding a generalized Nash equilib-

rium, like Gauss-Seidel (see [15]), would require an enormous

amount of signaling between all users, which is not desired.

In the following we present a closed form for the generalized

Nash equilibrium. Note that this form still depends on the

optimal set A of users who offload a fraction of their task,

whose existence and uniqueness is discussed later.

Theorem 2. Every generalized Nash equilibrium (x̄, T̄) of the

game Γ is of the form

x̄k = max

{

1−

fk
Lk

[
C +

∑

k∈A Ol

]

1 +
∑

k∈A Ol
fl
Ll

, 0

}

and T̄k = (1− x̄k)
Lk

fk
for all k = 1, . . . ,K, where

A =

{

k |
Lk

fk
>

C +
∑

l∈A Ol

1 +
∑

l∈A Ol
fl
Ll

}

.

The set A of active MUs in Theorem 2 is defined in an

implicit way, which is not desirable from an algorithmic point

of view. A solution for this can be achieved by reordering the

MUs according to their computation time without offloading,

which can be interpreted as the “need to offload”:

L1

f1
≥

L1

f2
≥ . . . ≥

LK

fK
. (5)

In addition to providing an explicit formulation, we can thus

show that the set A and the generalized Nash equilibrium is

unique.

Theorem 3. There is exactly one set A, such that

A =

{

k |
Lk

fk
>

C +
∑

l∈A Ol

1 +
∑

l∈A Ol
fl
Ll

}

.

In the case of L1

f1
≥ . . . ≥ LK

fK
it is of the form

Ā =

{

k |
Lk

fk
>

C +
∑k

l=1
Ol

1 +
∑k

l=1
Ol

fl
Ll

}

.

Consequently the game Γ has exactly one generalized Nash

equilibrium.

As a consequence of Theorem 3 we propose Algorithm 1,

which computes the set Ā of active players and thus also the

generalized Nash equilibrium of the game Γ.

Algorithm 1 Computation of a GNE for the game Γ

Require: Ordering of MUs, such that L1

f1
≥ . . . ≥ LK

fK
A = ∅
k = 1

while k ≤ K and

(

Lk

fk
>

C+
∑k

i=1
Oi

1+
∑

k
i=1

Oi
Li
fi

)

do

A ← A∪ {k}
k ← k + 1

end while

Set (x̄, T̄) according to Theorem 2

return Generalized Nash equilibrium (x̄, T̄)

As stated earlier, conventional algorithms to derive GNEs

require nearly all information for every MU and a lot of

signaling. This can be circumvented by Algorithm 1 due

to the closed form solution. It can easily be computed at

the cloudlet (or AP), returning for each user the amount of

offloading that he should perform, i.e. the information only

needs to be present at the central entity. The question that

arises is whether a completely centralized solution without

individual decisions (see for example [6], [7]) differs from a

game theoretic approach. This will be answered in the next

subsection.

B. Comparison to a Centralized Solution

We compare our game theoretic approach to a centralized

one with the respective model. In a centralized offloading sce-

nario the cloudlet strives to minimize the overall completion

time which includes the completion times of all MUs and of

the cloudlet itself. This can be formulated as the following

optimization problem:

min
{xk},T

T,

s.t. (1− xk)
Lk

fk
≤ T, ∀k

K∑

k=1

xkOk + C ≤ T,

xk ∈ [0, 1], ∀k
T ≥ 0,

(6)

where T is the overall completion time. For (6) we can also

prove the corresponding counterpart to Lemma 1:

Lemma 3. For each optimal solution (x̂, T̂) of (6) ,where

x̂ = (x̂k)
K
k=1

, holds

K∑

k=1

x̂kOk + C = T̂

and for all k with x̂k > 0 holds

(1− x̂k)
Lk

fk
= T̂ .

Following from this one can prove the following (compare

Theorem 2 for the game):

Theorem 4. Every optimal solution (x̂, T̂) of (6) is of the

form

x̂k = 1−

fk
Lk

[
C +

∑

k∈A Ol

]

1 +
∑

k∈A Ol
fl
Ll

for all k ∈ A and x̂k = 0 else, where

A =

{

k |
Lk

fk
>

C +
∑

l∈A Ol

1 +
∑

l∈A Ol
fl
Ll

}

.

With this we can connect the unique GNE of the game Γ
with the solution of (6):

Theorem 5. The optimal solution (x̂, T̂) of (6) and the unique

GNE (x̄k, T̄k)
K
k=1

of the game Γ coincide in the sense that

x̂k = x̄k ∀k, and T̂ = max{C, T̄1, . . . , T̄K}.

For A = ∅ due to a large C > 0 the computation time

T̂ of the central optimization problem can be larger than the

computation time of each MU. Then the computation time for

each MU k for the centralized optimization is equal to Lk

fk
,

since x̂k = 0 for all k. Thus the computation time for the

MUs in the centralized optimization can be described with

T̂ central
k := (1− x̂k)

Lk

fk

due to Lemma 3. With this it follows immediately that the

price of anarchy (see [16]), which displays the ratio of the

worst possible Nash equilibrium and the social optimum to

measure the effectiveness of the system, is given by

PoA =
maxk T̄k

maxk T̂
central
k

= 1,

i.e. there is no loss for the system. The proofs for Lemma 3

and Theorem 4 are similar to the proofs of Lemma 1 and The-

orem 2, respectively and are omitted. The proof of Theorem 5

is straight forward.

IV. NUMERICAL RESULTS

For the simulation scenario we place K mobile users

randomly distributed in a circle around the access point with

the distance uniformly chosen in [10, 100] m. Every MU k is

assumed to have a single-core processor handling a single task

at once and its CPU frequency fk to be uniformly chosen from

the set of possible frequencies {0.8, 0.9, 1.0, 1.1, 1.2} GHz.

Each MU has a single task of size Wk = 10 MB that has to

be computed locally or is (partially) offloaded. Computation

of one bit of the task requires 1000 CPU cycles at the MU’s or

cloudlet’s processor. The server connected to the AP is more

powerful than the MU devices and is therefore assumed to

have a single core computation capability fc = 5 GHz. At

first we assume that the queue of the cloudlet is empty which

results in C = 0.

The channel coefficient hk from the AP to each MU k is

modeled by 1/dαk with α = 3, where dk is the normalized

distance in the range of [0, 1]. The SNR at the transmitter is

chosen to be 20 dB and the overall available bandwidth is

B = 10 MHz. Every data point in Figures 1 and 2 consists of

1000 Monte Carlo runs, where the MUs are randomly placed

every run.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

47.07%

32.89%

24.01%

Number of Mobile Users

P
er

ce
n

ta
g

e
o

f
O

ffl
o

ad
ed

C
o

m
p

u
ta

ti
o

n

Offloading Game
Optimal Central Solution

Fig. 1. Average percentage of offloaded data per user
(∑

xk

K

)

for different

numbers of mobile users K

Figure 1 illustrates the dependency of the scenario on the

number of MUs connected to the AP. Due to the random

placement of MUs around the AP, the average percentage of

offloaded data per MU is shown. As the number of connected

users increases, the desire to offload fractions of the task falls

rapidly. While in our simulated system with 5 MUs each user

offloads on average 47% of his task, in a system with 15 MUs

it is only half of the amount at an average of 24%. In Figure

1 it is also visible that the game theoretic formulation solved

using Algorithm 1 and the central optimization problem (6)

lead to the exact same results and thus a price of anarchy of

one as proven in Subsection III-B.

In Figure 2 the computation time at the cloudlet (= maxi-

mum computation time for all MUs since C = 0) is shown

versus the number of CPU cycles required to successfully

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

50

100

150

200

250

Computational Complexity per bit
[

CPU cycles

bit

]

M
ax

m
iu

m
C

o
m

p
u

ta
ti

o
n

T
im

e
[s

]

Offloading Game
Without Offloading
33% Offloading
67% Offloading

Fig. 2. Maximum computation time for different computational complexities

compute one bit of the task (L
W
) for K = 10 users. While

the task size is still fixed at Wk = 10 MB, the computational

complexity of the tasks is varying. Algorithm 1 is again used

to compute the generalized Nash equilibrium of the offloading

game. The simulation shows that when the task becomes more

complex and more CPU cycles are required, the gap between

a system employing computation offloading and a system with

full local computation will strongly increase.

The additional two curves in Figure 2 represent reference

scenarios, where each MU connected to the access point

offloads a fixed percentage of his task. The value of 33% was

chosen according to the result shown in Figure 1 that in a

system with 10 MUs each user offloads on average nearly

33% of his task. While the 33% curve shows a significant

decrease of the maximum computation time compared to a

system without offloading, the offloading game leads to an

even better solution. For the highest simulated value of 2000

CPU cycles per bit, the optimal game solution reduces the

computation time of the system to 102 seconds compared to

132 seconds with the fixed amount of 33% offloading. The

curve for 67% of offloaded data is included to demonstrate

that offloading is not always beneficial due to the limited

computation resources at the cloudlet. In this case the cloudlet

is overburdened which results in an increase of the maximum

computation time compared to the scenario where nothing is

offloaded. In a scenario with more MUs, bigger task sizes or

higher complexity even smaller amounts of fixed offloading

could lead to an overload of the cloudlet and to increased

computation times, as visualized (for increased number of

MUs) in Figure 1.

A dynamic scheme for computation offloading is exemplary

demonstrated in Figure 3. Every 20 seconds a session starts,

where MUs are able to offload parts of their computation

to the nearby cloudlet. A MU can only offload parts of his

task, if he did not participate in the previous session or

if he finished all his previous computation, i.e. he cannot

offload several tasks at once. For each session a random

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Time [s]

R
em

ai
n
in

g
C

o
m

p
u
ta

ti
o
n

T
im

e
[s

]
Cloudlet Load
New Session Starting

Fig. 3. Exemplary timeline for multiple offloading sessions at the cloudlet

number of MUs uniformly chosen in {0, . . . , 10} decides to

compute a task. The remaining simulation parameters are equal

to the described model at the beginning of Section IV. If

computations from the previous session are still executed while

MUs want to offload in a new session, the remaining time C
(height of the gray dotted lines in Figure 3) is be added to

the computation time of the new session at the cloudlet. Due

to this the cloudlet is able to handle simple queues, whereas

the offloading decisions of the MUs are influenced by the

remaining computation time C on the cloudlet.

V. CONCLUSION

We proposed a game theoretic formulation for the presented

computation offloading model for a single access point with

attached cloudlet that serves multiple mobile users. In the

following, we proved the existence of the unique generalized

Nash equilibrium, which can also be derived by a simple

algorithm. As this algorithm can be computed at the central

entity, the amount of needed signaling can be limited as well

as the information sharing between the mobile users, here we

also proved that the price of anarchy of the game theoretic

formulation is one.

We showed that our formulation could be used for a

dynamic offloading scheme and that offloading is an efficient

method to reduce the total computation time of the system.

Additionally, we showed that offloading performance will

decrease if the number of MUs exceeds a critical number.

In future work we plan to extend the model and in-

vestigate, whether an increase in the price of anarchy will

occur. Additionally, a reasonable extension could be a local

algorithm running on the mobile devices with limited available

information about the other players connected to the same

access point.

ACKNOWLEDGMENT

This work is supported by the ’Excellence Initiative’ of

the German Federal and State Governments and the Graduate

School of Computational Engineering at Technische Univer-

sität Darmstadt.

The work of Tobias Mahn, Hussein Al Shatri, and Anja

Klein has been performed in the context of the DFG Collabo-

rative Research Center (CRC) 1053 MAKI - subproject B03.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge
computing: Survey and research outlook,” CoRR, vol. abs/1701.01090,
2017.

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[3] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” in International Confer-

ence on Pervasive Computing. Springer, 2011, pp. 19–33.
[4] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while

computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45–55,
2014.

[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing - a key technology towards 5g,” ETSI White Paper, vol. 11,
2015.

[6] Q. H. Le, H. Al-Shatri, and A. Klein, “Optimal joint power allocation
and task splitting in wireless distributed computing,” in International

ITG Conference on Systems, Communication and Coding, 2016.
[7] M.-H. Chen, B. Liang, and M. Dong, “Joint offloading decision and

resource allocation for multi-user multi-task mobile cloud,” in IEEE

International Conference on Communications (ICC). IEEE, 2016, pp.
1–6.

[8] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource
allocation for overall energy minimization in mobile cloud computing
system,” in ACM/IEEE International Symposium on Low Power Elec-

tronics and Design, ser. ISLPED ’12, 2012, pp. 279–284.
[9] X. Chen, “Decentralized computation offloading game for mobile cloud

computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[10] M.-H. Chen, M. Dong, and B. Liang, “Multi-user mobile cloud of-
floading game with computing access point,” in 5th IEEE International

Conference on Cloud Networking (Cloudnet). IEEE, 2016, pp. 64–69.
[11] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi,

F. L. Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming,
vol. 157, no. 2, pp. 421–449, 2016.

[12] H. Al-Shatri, S. Müller, and A. Klein, “Distributed algorithm for en-
ergy efficient multi-hop computation offloading,” in IEEE International

Conference on Communications (ICC). IEEE, 2016, pp. 1–6.
[13] W. Achtziger and C. Kanzow, “Mathematical programs with vanishing

constraints: optimality conditions and constraint qualifications,” Mathe-

matical Programming, vol. 114, no. 1, pp. 69–99, 2008.
[14] T. Hoheisel, “Mathematical programs with vanishing constraints,” Ph.D.

dissertation, Julius-Maximilians-Universität Würzburg, 2009.
[15] F. Facchinei and C. Kanzow, “Generalized nash equilibrium problems,”

Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.
[16] E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” Comput.

Sci. Rev., vol. 3, no. 2, pp. 65–69, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.cosrev.2009.04.003

[17] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals

of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 03 1950.
[18] M. Bartlett, “An inverse matrix adjustment arising in discriminant

analysis.” The Annals of Mathematical Statistics, vol. 22, pp. 107–111,
1951.

APPENDIX

Proof of Lemma 1

Case 1: x̄k = 0:

Then every Tk ≥
Lk

fk
is feasible and thus the minimal value

is attained at

T̄k =
Lk

fk
= (1− x̄k)

Lk

fk
.

http://dx.doi.org/10.1016/j.cosrev.2009.04.003

Case 2: x̄k > 0:

First note that
∑

l 6=k

xlOl + C ≤
Lk

fk
(7)

holds. Otherwise the solution (0, Lk

fk
) strictly dominates

(x̄k, T̄k), which would be a contradiction to the optimality.

Now choose x̂k as the solution of

(1− x̂k)
Lk

fk
=
∑

l 6=k

xlOl + x̂kOk + C.

It follows that

x̂k =

Lk

fk
−
∑

l 6=k xlOl − C
Lk

fk
+Ok

.

Note that 0 ≤ x̂k ≤ 1 due to (7). Then (x̂k, T̂k) with T̂k =
(1− x̂k)

Lk

fk
is feasible.

Assume for contradiction (1−x̄k)
Lk

fk
< T̄k. Then we obtain

T̂k = (1− x̂k)
Lk

fk
=

(

1−

Lk

fk
−
∑

l 6=k xlOl − C
Lk

fk
+Ok

)

Lk

fk

=

(

Ok +
∑

l 6=k xlOl + C
Lk

fk
+Ok

)

Lk

fk

≤

(

Ok + T̄k − x̄kOk

Lk

fk
+Ok

)

Lk

fk

=
T̄k

Lk

fk
+ (1− x̄k)

Lk

fk
Ok

Lk

fk
+Ok

<
T̄k

Lk

fk
+ T̄kOk

Lk

fk
+Ok

= T̄k,

a contradiction to the optimality of (x̄k, T̄k). It follows

(1− x̄k)
Lk

fk
= T̄k

for all optimal solutions.

Now assume
∑

l 6=k xlOk + x̄kOk +C < T̄k. Then we have

x̂k =

Lk

fk
−
∑

l 6=k xlOl − C
Lk

fk
+Ok

>

Lk

fk
− T̄k + x̄kOk

Lk

fk
+Ok

=

Lk

fk
− (1− x̄k)

Lk

fk
+ x̄kOk

Lk

fk
+Ok

= x̄k.

Thus it follows that

T̂k = (1− x̂k)
Lk

fk
< (1− x̄k)

Lk

fk
= T̄k,

which is a contradiction to the optimality of (x̄k, T̄k).

Proof of Lemma 2

For
∑

l 6=k xlOl+C ≥ Lk

fk
all feasible strategies with xk > 0

are strictly dominated by (x̄k, T̄k) = (0, Lk

fk
).

For
∑

l 6=k xlOl + C < Lk

fk
we know from Lemma 1 that

every optimal solution (x̄k, T̄k) with x̄k > 0 satisfies

(1− x̄k)
Lk

fk
= T̄k =

∑

l 6=k

xlOl + x̄kOk + C,

hence the unique solution is

x̄k =

Lk

fk
−
∑

l 6=k xlOl − C
Lk

fk
+Ok

and (8)

T̄k = (1− x̄k)
Lk

fk
=

Ok +
∑

l 6=k xlOl + C
Lk

fk
+Ok

Lk

fk
. (9)

Since Sk(z−k) is piecewise continuous and continuous at
∑

l 6=k xlOl + C = Lk

fk
, it is continuous in general.

Proof of Theorem 1

We define the best response map S(z) of the game by

S(z) = S1(z−1)× . . .× SK(z−K),

where z = (xk, Tk)
K

k=1
. From Lemma 2 we know that S(z) is

continuous and that S : Z → Z, where Z = [0, 1]K × [0, T̄]K

is convex and compact. With Brouwer’s fixed point theorem

it follows that S(z) has at least one fixed point on Z, which

is a generalized Nash equilibrium of the game.

Proof of Theorem 2

Let (x̄, T̄) be a generalized Nash equilibrium of the game

Γ and define

A := {k | x̄k > 0}.

In case A = ∅ we have x̄k = 0 for all MUs k and thus the

formulae are correct due to Lemma 2. Now consider A 6= ∅.
Without loss of generality reorder the MUs, such that A =
{1, . . . , n} with n = |A|. We know that each MU k ∈ A has

x̄k > 0 and therefore

(1− x̄k)
Lk

fk
= T̄k =

∑

l 6=k

x̄lOk + x̄kOk + C,

⇔
∑

l∈A\{k}

x̄lOl + x̄k

(

Ok +
Lk

fk

)

=
Lk

fk
− C,

for all k ∈ A. Thus, all x̄k for k ∈ A are given by the solution

of the n× n linear system of equalities










O1 +
L1

f1
O2 · · · On

O1 O2 +
L2

f2

...

...
. . .

On · · · On + Ln

fn

















x̄1

x̄2

...

x̄n








︸ ︷︷ ︸

=:x̄

=









L1

f1
− C

L2

f2
− C
...

Ln

fn
− C









︸ ︷︷ ︸

=:b

,

which is equivalent to











diag

(
Lk

fk

)

︸ ︷︷ ︸

=:A

+e ·






O1

...

On






T

︸ ︷︷ ︸

=:vT











x̄ = b,

where e is a n-dimensional column vector of all ones. Since

A is a nonsingular matrix and vTA−1e 6= −1 we can compute

x̄ using the Sherman-Morrison formula (see [17], [18]):

x̄ =

(

A−1 −
A−1evTA−1

1 + vTA−1e

)

b

=



diag

(
fk
Lk

)

−
diag

(
fk
Lk

)

evT diag
(

fk
Lk

)

1 + vT diag
(

fk
Lk

)

e



 b

= e−

(
fl
Ll

)

l∈A

[

C +

∑

l∈A Ol −
∑

l∈A Ol
fl
Ll
C

1 +
∑

l∈A Ol
fl
Ll

]

.

This means, for each k ∈ A it holds that

x̄k = 1−
fk
Lk

[

C +

∑

l∈A Ol −
∑

l∈A Ol
fl
Ll
C

1 +
∑

l∈A Ol
fl
Ll

]

= 1−

fk
Lk

[
C +

∑

l∈A Ol

]

1 +
∑

l∈A Ol
fl
Ll

.

Lemma 1 yields the representation of T̄k. Additionally this

formula implies for all k ∈ A

0 < x̄k = 1−

fk
Lk

[
C +

∑

l∈A Ol

]

1 +
∑

l∈A Ol
fl
Ll

⇔
Lk

fk
>

C +
∑

l∈A Ol

1 +
∑

l∈A Ol
fl
Ll

.

With Lemma 1 it follows that for all k /∈ A

Lk

fk
≤

K∑

l=1

x̄lOl + C =
∑

l∈A

x̄lOl + C

from which we can conclude

Lk

fk
≤

∑

l∈A

Ol

(

1−

fl
Ll

[
C +

∑

i∈A Oi

]

1 +
∑

i∈A Oi
fi
Li

)

+ C

=
∑

l∈A

Ol −

∑

l∈A Ol
fl
Ll

[
C +

∑

i∈A Oi

]

1 +
∑

i∈A Oi
fi
Li

+
C
[

1 +
∑

i∈A Oi
fi
Li

]

1 +
∑

i∈A Oi
fi
Li

=

∑

l∈A Ol

[

1 +
∑

i∈A Oi
fi
Li

]

1 +
∑

i∈A Oi
fi
Li

−

∑

l∈A Ol
fl
Ll

∑

i∈A Oi + C

1 +
∑

i∈A Oi
fi
Li

=

∑

l∈A Ol + C

1 +
∑

l∈A Ol
fl
Ll

.

Together this yields

A =

{

k |
Lk

fk
>

C +
∑

l∈A Ol

1 +
∑

l∈A Ol
fl
Ll

}

as well as

x̄k = max

{

1−

fk
Lk

[
C +

∑

k∈A Ol

]

1 +
∑

k∈A Ol
fl
Ll

, 0

}

for all k = 1, . . . ,K.

Proof of Theorem 3

W.l.o.g. reorder the MUs such that (5) holds.

First note, that at least one such set A always exists, since

we know of the existence of a GNE and its explicit formulation

from Theorem 2.

Due to the ordering of the MUs we know k ∈ A ⇒ k−1 ∈
A and thus A is of the form {1, . . . , n} for some n ≤ K.

Note that the case n = 0 is possible, in which A = ∅. Let

B = {1, . . . ,m} be another such set where we assume without

loss of generality m > n. Then n+ 1, . . . ,m /∈ A and thus

Ln+1

fn+1

≤
C +

∑n

l=1
Ol

1 +
∑n

l=1
Ol

fl
Ll

⇒
Ln+1

fn+1

(

1 +

n∑

l=1

Ol

fl
Ll

+On+1

fn+1

Ln+1

)

≤ C +

n+1∑

l=1

Ol

⇒
Ln+1

fn+1

≤
C +

∑n+1

l=1
Ol

1 +
∑n+1

l=1
Ol

fl
Ll

.

Since
Ln+2

fn+2
≤ Ln+1

fn+1
we can repeat this process and derive

Lm

fm
≤

C +
∑m

l=1
Ol

1 +
∑m

l=1
Ol

fl
Ll

=
C +

∑

l∈B Ol

1 +
∑

l∈B Ol
fl
Ll

,

which is a contradiction to m ∈ B. Consequently there is only

one such set A and since all Nash equilibria are given by

Theorem 2, the Nash equilibrium of game Γ is unique.

Next we show that the unique set A = {1, . . . , n} is given

by Ā. To show this we first prove k ∈ Ā implies k − 1 ∈ Ā
for k > 1.

k ∈ Ā ⇒
Lk

fk
>

C +
∑k

l=1
Ol

1 +
∑k

l=1
Ol

fl
Ll

⇒
Lk

fk

(

1 +

k−1∑

l=1

Ol

fl
Ll

)

+Ok > C +

k−1∑

l=1

Ol +Ok

⇒
Lk−1

fk−1

≥
Lk

fk
>

C +
∑k−1

l=1
Ol

1 +
∑k−1

l=1
Ol

fl
Ll

⇒ k − 1 ∈ Ā.

Now we know that Ā is of the form Ā = {1, . . . ,m} for

some m. It remains to show n = m. This is done by verifying

n ∈ Ā, which follows directly from the formula for A, Ā, and

n+ 1 /∈ Ā, which follows from

n+ 1 /∈ A ⇔
Ln+1

fn+1

≤
C +

∑n

l=1
Ol

1 +
∑n

l=1
Ol

fl
Ll

⇔
Ln+1

fn+1

(

1 +

n∑

l=1

Ol

fl
Ll

)

+On+1 ≤ C +

n+1∑

l=1

Ol

⇔
Ln+1

fn+1

(

1 +
n+1∑

l=1

Ol

fl
Ll

)

≤ C +
n+1∑

l=1

Ol

⇔
Ln+1

fn+1

≤
C +

∑n+1

l=1
Ol

1 +
∑n+1

l=1
Ol

fl
Ll

⇔ n+ 1 /∈ Ā.

With this we see that Ā is the desired set.

	Introduction
	System Model
	Overview
	Communication Model
	Computation Model

	Game Formulation
	Game Properties
	Comparison to a Centralized Solution

	Numerical Results
	Conclusion
	References
	Appendix

