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Abstract—Millimeter-Wave (mmWave) bands have become the
de-facto candidate for 5G vehicle-to-everything (V2X) since
future vehicular systems demand Gbps links to acquire the
necessary sensory information for (semi)-autonomous driving.
Nevertheless, the directionality of mmWave communications
and its susceptibility to blockage raise severe questions on
the feasibility of mmWave vehicular communications. The dy-
namic nature of 5G vehicular scenarios, and the complexity of
directional mmWave communication calls for higher context-
awareness and adaptability. To this aim, we propose the first
online learning algorithm addressing the problem of beam selection
with environment-awareness in mmWave vehicular systems. In
particular, we model this problem as a contextual multi-armed
bandit problem. Next, we propose a lightweight context-aware on-
line learning algorithm, namely FML, with proven performance
bound and guaranteed convergence. FML exploits coarse user
location information and aggregates received data to learn from
and adapt to its environment. We also perform an extensive
evaluation using realistic traffic patterns derived from Google
Maps. Our evaluation shows that FML enables mmWave base
stations to achieve near-optimal performance on average within
33 minutes of deployment by learning from the available context.
Moreover, FML remains within ~ 5% of the optimal performance by
swift adaptation to system changes such as blockage and traffic.

I. INTRODUCTION

Recent studies highlight the necessity of multi-Gbps links to
enable 5G vehicle-to-everything (V2X) communications [1]-
[3]. Such a high data rate link is needed to acquire accurate
sensory data (e.g., HD maps, radar feeds), which is crucial for
(semi)-autonomous driving. Due to high congestion in sub-6
GHz bands used by 4G LTE-A systems, the 5G community
plans to exploit the underutilized mmWave bands (10-300
GHz). This underutilization is due to the impairments of
mmWave bands, such as high path loss and penetration loss.
Nevertheless, new research demonstrates that: (i) directional
transmission and beamforming is the solution to compensate
for the high path loss, and (i) higher deployment density of
base stations is the remedy for short communication range in
mmWave bands (100-150 m) [4], [5].

These solutions prove the feasibility of mmWave commu-
nication. However, they bring about many new challenges
in the system design. Firstly, the directional communication
requires accurate beam alignments between the base station
and the vehicle [6], which is unnecessary for the omnidirec-
tional transmission in sub-6 GHz bands. Secondly, mmWave
signals are prome to blockages (e.g., buildings, foliage) due
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Fig. 1. An example of an mmWave cellular scenario and the impact of
different sources of blockage.
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to high penetration loss (see Fig. 1). Thus, the performance
of mmWave systems can be severely hampered by inaccurate
beam selection. The performance degradation can be mitigated
by enabling the base stations to perform beam selection based
on their surrounding environment (e.g., to avoid blockages).
In today’s network, this knowledge is populated via on-
site signal measurements (e.g., war-driving tests), which are
time-consuming and unscalable for dense 5G deployments.
Moreover, this approach cannot account for dynamic traffic
patterns and blockages. We believe that the base stations
should autonomously explore, learn from, and adapt to their
environment to make accurate beam selection while main-
taining sustainable scalability. To date, there is no proposal
fostering such a capability at mmWave base stations [7]. To
this aim, a practical approach should allow the base station to
characterize its surroundings autonomously by exploiting the
available contextual information. In particular, the correlation
between this information (e.g., location of the users) and the
outcome of a decision (e.g., beam selection) is the key to
optimal future decisions. This emphasizes the necessity of
autonomous learning more than ever, specifically to cope with
the massive densification of 5G networks [8], [9].

FML algorithm. In this paper, we propose fast machine
learning (FML), which is a low-complexity and a highly
scalable online learning algorithm for mmWave base stations.
FML is coupled with a practical protocol designed based on
the features of the forthcoming 5G cellular network. We model
the beam selection as a contextual multi-armed bandit problem
and propose a contextual online learning algorithm. This



algorithm enables the mmWave base stations to autonomously
learn from prior decisions and their relations to the available
contextual information. In particular, FML explores different
beams over time while accounting for contextual information
(i.e., vehicles’ direction of arrival). The outcome of the ex-
ploration is used to adapt to system dynamics such as the
appearance of blockages and changes in traffic patterns. FML
identifies blockages by evaluating the aggregate received data
of each vehicle for each selected beam. It also adapts to traffic
patterns by learning the correlation between the direction
of arrival and the received data. As a result, FML selects
the beams, which maximize the overall network capacity.
Consequently, FML provides more coverage to the roads with
higher traffic and hence, serves a larger number of vehicles.

FML fights the issues of mmWave vehicular communication
on several fronts: (¢) it detects permanent blockages (e.g.,
buildings), and frequently blocked areas due to temporary
blockages (e.g., parking spots, bus stations or construction
sites frequented by large trucks) using online learning; (%) it
leverages traffic patterns to maximize the system capacity by
providing larger coverage (i.e., allocation of more beams) in
areas with heavier traffic. This is important because mmWave
base stations can transmit simultaneously over a limited num-
ber of beams. This limitation depends on the hardware char-
acteristics (e.g., limited number of RF chains), the mmWave
channel sparsity, and the beamforming technique [5]; (7i%) it
infers traffic patterns from the context (i.e., the vehicle’s
direction of arrival) and selects the best beams. Majority of
roads have distinct traffic patterns influenced by the time of
the day. For example, the traffic in the main streets tends to
go towards the financial center early in the morning and away
from it in the evening. While interpreting these patterns are
out of the scope of this paper, we design FML to identify and
learn from such patterns.

Our contributions. The following summarizes the contri-
butions of this paper:

e We model the beam selection at mmWave base stations
as a contextual multi-armed bandit problem. Our model
is generic, and it is easily adaptable to different contexts.

o We provide the first contextual online learning algorithm
for beam selection in mmWave base stations. The algo-
rithm enables the base stations to autonomously learn
each beam’s data rate, without requiring a training phase.

o We give an analytical upper bound on the regret, i.e., the
loss of learning, which proves convergence of FML to
the optimal beam selection.

« We demonstrate by means of extensive simulation that —
with live and typical traffic patterns obtained from Google
Maps at our premises — FML substantially outperforms
the benchmark algorithms.

II. SYSTEM MODEL

We consider a heterogeneous cellular system in which
mmWave base stations (mmBSs) overlay the coverage area
of an LTE eNB (see Fig. 2). This network model is widely
expected for forthcoming 5G systems [10]-[13]. The mmBSs
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Fig. 2. Tllustration of our system model. For clarity, the figure contains only
two mmBSs. Each mmBS can transmit over two beams simultaneously. The
direction of arrival of the vehicles (shown in dashed line) is derived from the
location of the vehicle upon registration to the eNB.

are connected to the eNB via a backhaul link. The vehicles are
equipped with (¢) an LTE interface to maintain a connection
to the eNB, and (i¢) an mmWave interface for high-speed
data communication. We focus on the downlink in this paper.
However, our proposal can be applied in uplink with marginal
modifications. We assume neither the eNB nor the mmBSs
have any knowledge of their surroundings. We focus on a
system with small signaling overhead. On the one hand, the
only information available to the mmBS is the direction of
arrival of the vehicle (i.e., north, south, east, west), which we
define below formally as the vehicle context. On the other
hand, the vehicles will only know the location of the mmBS
and the selected beam(s).

A. Choice of Learning Method

We model beam selection in an mmBS as an online learning
problem. This is because it allows the mmBS to identify
the best beams autonomously over time while accounting for
dynamic traffic and environment changes. Specifically, we
model the problem as a multi-armed bandit problem. Various
problems in wireless communications have been treated using
multi-armed bandits [14]. In multi-armed bandit problems,
a decision maker has to select a subset of actions of un-
known rewards with the goal to maximize the reward over
time [15]. Such a multi-armed bandit approach is relevant for
our problem since an mmBS may only use a limited set of
beams simultaneously (as shown in Fig. 2). Therefore, the
mmBS needs to identify the best beams by carefully selecting
subsets of beams over time. Our approach falls under the
category of contextual multi-armed bandit problems. These
problems additionally include side information that affects the
rewards of the actions [16]-[19]. We chose a contextual multi-
armed bandit approach since in this way, the mmBS does not
simply learn which beams are the best on average, but instead
it exploits additional information about approaching vehicles
to identify which beams are the best under a given traffic
situation.



B. Problem Formulation

The mmBS can use a finite set B of B = |B]| distinct,
orthogonal beams (see Fig. 2). We assume that the mmBS
may only select a subset of m beams simultaneously, where
m € N, m < B, is a fixed number. This limitation is imposed
by the mmWave channel sparsity, beamforming technique, and
the hardware characteristics (e.g., number of RF chains) [5].
The goal of the mmBS is to select a subset of m beams that
maximizes the amount of data successfully received by the
bypassing vehicles in the coverage area. We assume that the
mmBS is unaware of its surrounding, i.e., the mmBS does
not have prior knowledge about its environment (e.g., street
course, blockages). This significantly reduces the complexity
of the network implementation as the operator does not need
to configure each mmBS based on its surroundings. Hence,
the mmBS should learn over time the best subset of beams
given its environment. For this purpose, the mmBS should
take into account vehicle context, since which are the best
beams depends on the context of bypassing vehicles (e.g., their
directions of arrival).

We consider a discrete time setting, where the mmBS
updates its beam selection in regular time periods. In each
period t = 1,...,7, where T € N is a finite time horizon, the
following events happen:

(i) Aset Vy = {v;}i=1,.. v, of Vo = |V4| vehicles registers
to the mmBS via the LTE eNB. The number V; of
vehicles satisfies V; < Viax, Where Vi € N is the
maximum number of supported vehicles in the system.
During the registration process, the mmBS receives
information about the context x,; of each approach-
ing vehicle v, ;. Formally, the context z;; is an X-
dimensional vector taken from the bounded context
space X = [0,1]%

(ii)) The mmBS selects a subset of m beams. We de-

note the set of selected beams in period ¢ by S; =

{s¢;}j=1,.,m C B. Then, the vehicles in V; are in-

formed about the selected beams via the LTE interface.

When vehicle v, ; reaches the mmBS’s coverage area,

the mmBS transmits data to vehicle v;; and observes

the amount of data 7, , (z;,t) vehicle v ; successfully
receives via the selected beams s; j,j = 1,...,m, until

the end of the period .

In general, the amount of data 7,(x) a vehicle with context
x € X can successfully receive from the mmBS using beam
b € B during one period is a random variable that depends
on the environment of the mmBS (e.g., street conditions and
course, blockages, etc.). We call the random variable r,(x)
the beam performance (i.e, the aggregate received data by
the vehicle) of beam b under context x. We assume that
this random variable is bounded in [0, Ryax|, Where Rpax
is the maximum amount of data that can be received by a
vehicle. Ry .« is bounded by the maximum achievable rate of
the channel, and it depends on the selected modulation and
coding scheme. The contact time as shown in Fig. 2 (i.e., the
time within which mmBS can transmit data to the vehicle) is

(iii)

bounded by the coverage area of the beam, which depends on
the beam width and speed. By p (), we denote the expected
value of random variable r,(z), and we call it the expected
beam performance of beam b under context x. The mmBS
aims at selecting a subset of beams which maximizes the
expected received data at the vehicles, i.e., maximizes the sum
of the expected beam performances. We denote the optimal
subset in period ¢, by B} (X;) = {b;j(/’vt)}j:17...7m C B. The
set B (X;) depends on X; = {x;}i=1, v, and its m beams
formally satisfy
Vi
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for j = 1, ..., m. Hence, if the mmBS knew the expected beam
performances p,(x) for each vehicle context = € X and each
beam b € B a priori, like an oracle, it could simply select the
optimal subset of beams for each set of approaching vehicles
according to (1). Over the sequence 1,...,7T" of periods, this
would yield an expected amount of
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data that can be received in total.

However, the mmBS does not know the environment, and
hence it has to learn the expected beam performances ()
over time. In order to learn these values, the mmBS has to try
out different beams for different vehicle contexts over time.
At the same time, it should ensure that those beams that
were already proven to be good are used sufficiently often.
Hence, the mmBS has to find a trade-off between exploring
beams of which it has little knowledge and exploiting beams
with high average beam performance. In the next section, we
will present a learning algorithm, which for each period with
approaching vehicles of contexts X, selects a subset S; of
m beams. The selection of the learning algorithm depends
on the history of selected beams in previous periods and
the corresponding observed beam performances. Given the
selections Sy, t = 1,...,T, of the learning algorithm, the
expected amount of data received by the vehicles is given by
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The expected difference in the amount of received data
achieved by an oracle and by the learning algorithm is called
the regret of learning. Given (2) and (3), it is defined as
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III. FML ALGORITHM

The above problem formulation corresponds to a contextual
multi-armed bandit problem and we propose a contextual
online learning algorithm inspired by [19]. Intuitively, the
algorithm learns the expected beam performances under dif-
ferent contexts online over time. The algorithm works on the
assumption that for similar vehicle contexts, the performance
of a particular beam will on average be similar.

The algorithm first uniformly partitions the context space
into small sets of similar contexts and learns about the
performance of different beams independently in each of these
small sets. Then, in each of its discrete periods, the algorithm
either enters an exploration phase or an exploitation phase. The
phase it enters is decided based on the contexts of approaching
vehicles and based on a control function. While in exploration
phases, the algorithm selects a random subset of beams, in
exploitation phases, the algorithm selects beams that showed
the highest performance when selected in previous periods.
By observing the amount of data received by vehicles in
the system, the algorithm acquires performance estimates of
beams; thereby, it learns the performance of the different
beams under different vehicle contexts over time.

A. Detailed Description

In detail, our proposed beam selection algorithm, called
Fast Machine Learning (FML) works as follows: First, during
initialization (lines 2-4), FML uniformly partitions the context
space X = [0,1]% into (pr)* X-dimensional hypercubes
of size (%)X , where pr is an input to the algorithm. We
call the resulting partition Pr. Moreover, FML initializes
the counters N j,(¢) and fip 5 (t) for each beam b € B and
each hypercube h € Pp. The counter Ny j(t) represents the
total number of vehicles with the context in hypercube h that
approached the mmBS whenever beam b was selected in any
of the periods 1, ...,¢ — 1. The counter fi; »(f) represents the
estimated beam performance of beam b for vehicles with the
context in hypercube h.

In period ¢, FML observes the contexts X; := {x;; }i=1... v,
of the V; approaching vehicles and for each context x; ;, FML
determines to which hypercube this context belongs to (lines
6-7), i.e., it finds h;; € Pr with z;; € h;;. Based on the
collection H; := {h¢; }i=1,....,v, of hypercubes, FML next (line
8) computes the set BY} (t) of under-explored beams via

B (1) = UL {b € B: Ny, () < K1)}, (9

where K : {1,...,T} — R is a deterministic, monotonically
increasing control function, which the algorithm gets as input.
If there are under-explored beams, FML enters an exploration
phase (lines 9-16). In case the number u(t) := |B3 (t)| of
under-explored beams is at least m, FML randomly selects m
of them. In case the number () of under-explored beams
is smaller than m, FML selects all u(t) beams. In addition,
it selects the (m — u(t)) beams by 34, (£), ..., by —u 3¢, () from

Algorithm 1 Pseudocode of FML algorithm.

1: Input: T, pr, K(t)
2: Initialize context partition: Create partition Pr of context space [0, 1]X
into (p7 ) hypercubes of identical size

3: Initialize counters: For all b € B and all h € Pr, set Ny ,, =0

4: Initialize estimates: For all b € B and all h € Pr, set fi, j, = 0

5: foreacht =1,...,T do
6:
7

Observe vehicle contexts X; = {x¢; }i=1,... v;
Find H: = {ht}i}i:lylnyvt such that Tt € ht,i € Pr,i =

1.,V

8: Compute the set of under-explored beams B37, (¢) in (5)

9: if By} (t) # (0 then > Exploration
10: u = size(B3f, ()

11: if w > m then

12: Select s¢,1, ..., St,m randomly from B‘;_ft ()

13: else

14: Select s¢,1, ..., St,u as the u beams from B;{fﬁ (t)

15: §elect Styugls - Stym @S the (m — wu) beams

bl,Ht (t), ceay bmfu,Ht (t) from (6)

16: end if

17: else . > Exploitation
18: Select s¢,1,...,5¢,m as the m beams by 34, (t), ..., by 2, (1)

from (7)

19: end if
20: Observe received data r;; of each vehicle vy, i = 1,..., V4, in

each beam s j,j = 1,...,m
21: fori=1,...,V; do

22: for j=1,...,m do N
N By ohy i Nsy i by ;75,0
23: Hsy jhei = = ]\tfét ] :L:-‘—tl = and Ny b =
2] st
N-St,jvht,i +1
24: end for
25: end for
26: end for
B\ Bjf (t), which satisfy
Vi
bj7Ht (t) S argmax Z /lbyht,i(t) (6)

beB\(B37, (0U'U (b, () '

for j = 1,...,m — u(t). If there are no under-explored beams,
FML enters an exploitation phase (lines 17-19). It selects the
m beams by 7, (t), ..., bm,2, (t) from B, which satisfy

Vi
_ Zﬂb»ht,i(t) @)

beB\(U (b, () =1

k=

l;j}[t (t) € argmax

for j = 1, ..., m. After beam selection, FML observes the beam
performance of each selected beam for each vehicle within
this period (line 20). Using these observations, FML updates
its internal counters (lines 21-25).

B. Regret and Choice of Parameters

The regret of FML in (4) can be bounded from above.
The upper bound given below is based on the following
assumption, which states that, the expected beam performance
of a particular beam is similar in similar contexts:

Assumption 1. There exist L > 0 and o > 0 such that for
all b € B and for all x,y € X, it holds that

\up(z) — o (y)| < Lz — yl|*,

where || - || denotes the Euclidean norm in RX.



The regret of FML can be bounded as follows (see [19]):

Theorem 1 (Bound for R(T)). Let K(t) = tsaix log(t) and
pr = [Tﬁw If FML is executed using these parameters
and if Assumption 1 holds true, the leading order of the regret
R(T) is O <meaXRmaxBT% 1og(T)3

This theorem shows that the regret of FML is sublinear in
the time horizon T, i.e., R(T) = O(T") with v < 1. This im-
plies that limp_, % = 0 holds, which guarantees that the
algorithm has an asymptotically optimal performance. Hence,
over time, FML converges to the optimal beam selection
strategy. Moreover, for finite time horizon 7', the upper bound

on the regret characterizes FML’s speed of convergence.

IV. NUMERICAL EVALUATION

Here, we evaluate and benchmark FML via numerical sim-
ulations. In the following, we first describe the simulation
environment and the relevant parameters. Next, we provide
the path loss model and other simulation settings, which are
chosen according to the 3GPP technical specification in [20].
Then, the benchmark algorithms and results are presented.

A. Simulation Setup

The simulation scenario (e.g., blockages, roads, traffic pat-
terns) is designed with reference to information obtained from
Google Maps in the vicinity of our premises. The mmBS is
assumed to have 16 orthogonal beams with variable beam
width from 10° to 40° covering the 360° azimuth. The beams
are selected according to the recent measurements in [21]. The
vehicles enter the system with an arrival rate of A (in vehicles
per second) and their speed varies between 20km/h and
70km/h. Each vehicle chooses one of the routes on the map,
whose probability is determined by the typical traffic observed
within the area in Google Maps (see Fig. 3). We consider
two types of blockages: permanent and temporary blockages.
Permanent blockages are the buildings that permanently block
the path between the mmBS and the vehicles on the road. The
temporary blockages (e.g., a large vehicle or tram) are modeled
by random appearance of objects on either side of the road
causing a temporary signal blockage. In our implementation,
a time period is defined as the time in which the vehicle
under observation enters and leaves the cell coverage of the
mmBS. Thus, the length of the time periods varies over the
simulation depending on the path and speed of the vehicles.
Within this time period, the learning algorithms additionally
learn from the context and received data of the other vehicles
passing through the selected beams. In this way, we ensure
that the algorithms have enough samples to learn from. Table I
contains the important simulation parameters.

B. Benchmark Algorithms and Metrics
We provide a thorough performance analysis by comparing
FML to several other schemes. The following elaborates on
each benchmark scheme:
e Optimal. This algorithm has a priori knowledge about
the expected beam performance u;,(z) of each beam b €
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Fig. 3. The map of the simulation environment. The tram and bus temporarily
block the red vehicle and black vehicle, respectively.

B in each context x € X. In each period, Optimal
selects the optimal subset B} (X;) of m beams as in (1)
and hence gives an upper bound to the other algorithms.

e UCB. This is a variant of the classical learning algorithm
UCB [15], which we adapted to our use-case. It learns
from previously observed beam performance, but without
taking into account context information. In each period,
UCB selects m beams with the highest estimated upper
confidence bounds on their expected beam performance.

o MaxRate. This algorithm first explores each beam once.
Then, it sticks to the beam with the highest received data.

o Random. This algorithm selects m random beams in each
period.

Performance metrics. The performance metrics used in the
evaluation are aggregate and cumulative received (rx) data, the
number of served vehicles, and average learning time (i.e.,
the time required for FML to reach a certain percentage of
the Opt imal’s performance). The aggregate received data is
defined as the data received (in bits) by all the vehicles in
the system in time period ¢. The cumulative received data is
defined as the data received by all the vehicles in the system
up to time period ¢.

C. Numerical Evaluation

Here, we first evaluate a generic scenario. Next, we analyze
the impact of several parameters, i.e., the arrival rate of the
vehicles, the number of selected beams, the frequency of
blockages, and the underlying traffic patterns. Unless other-
wise stated, we consider the case where (i) the percentage of
permanent and temporary blockages each corresponds to 20%

TABLE 1
CHANNEL PARAMETERS AS SPECIFIED IN [20].
[ Parameter [ Value
Carrier frequency 28 GHz
System Bandwidth 1 GHz
Transmit power 30 dBm
Noise figure 4 dB@mmBS, 7 dB@ Vehicle
Vehicle’s beam width 30°
Thermal noise —174 dBm/Hz
. N 32.4 4+ 17.3log; d(m) + 20 log( (f.(GHz)) + &

Path loss model (dB) ¢ ~N(0,0),0 = 1.1dB
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of all paths and (ii) traffic patterns (i.e., the vehicle arrival
rate and the route probabilities) change based on the typical
patterns provided by Google Maps. Since Google Maps only
provides the typical daily traffic patterns for 17 hours of the
day (from 06:00 to 22:00), we run algorithms over a 17-hour
simulation. Each simulation is repeated 20 times for which we
show 95% confidence intervals in the figures.

1) Average received data: In the following, we analyze
the aggregate received data achieved by the algorithms over a
time horizon of 17 hours. Fig. 4 shows the aggregate received
data per time period for an arrival rate of A = 0.4 in the
case of m = 4 selected beams per period. The fluctuations in
the graph result from the number of vehicles in the system.
Specifically, the aggregate received data increases with the
number of vehicles. The impact of vehicle arrival rate and
traffic patterns are evaluated in the following sections in detail.
As expected, Optimal gives an upper bound to the other
algorithms due to a priori knowledge of the expected beam
performance. Our proposed algorithm FML clearly outper-
forms the other algorithms UCB, MaxRate, and Random.
We observe that FML’s performance quickly approaches that
of Optimal within the first 100 periods while the other
algorithms perform at least ~ 20% worse than FML. This
behavior is even more pronounced starting from the 256"
period when FML remains very close to Opt imal’s aggregate
received data. FML experiences small divergence (below 3%)
from Optimal at a few points within the simulation. These
small variations are due to the occurrence of new events,

which are not learned from or the re-exploration of past events.
Average performance within 17 hours of simulation indicates
that the average aggregate received data achieved by FML
is 21.99%, 36.08% and 54.76% higher than that achieved
by UCB, MaxRate and Random, respectively. Moreover, on
average, FML performs only 1.73% below that achieved by
Optimal.

2) Impact of arrival rate: Next, we investigate the impact
of the arrival rate on the cumulative received data achieved by
the different algorithms in the case of m = 4 selected beams
per period for different arrival rates A € {0.2,0.4,0.6,0.8,1}.
From Fig. 5, we can observe that the cumulative received data
grows as the number of vehicles in the system increases. Over
the whole range of A, the cumulative received data achieved by
FML lies between 9.36% and 23.06% higher than that achieved
by the next-best algorithm UCB and only up to 3.06% lower
than that achieved by the Optimal.

Fig. 6 shows the time required for FML to achieve
{80%, 85%, 90%} of the Optimal’s performance for differ-
ent A, respectively. It is observed from our evaluation that
FML achieves {80%, 85%,90%} of Optimal’s performance
within {13, 25,56} minutes for all arrival rates, respectively.
The large confidence interval is due to the randomness of
certain parameters both in the learning algorithm (exploration
decisions) and in the evaluation scenario (e.g., location of
temporary blockages, selected routes, and speed). As a result,
FML may approach near-optimal performance below seven
minutes if all random effects are in favor, and up to 75 minutes
otherwise. Note that even manual configuration and war-
driving tests require much more than 75 minutes. Furthermore,
war-driving tests may only capture effects of permanent, but
not from temporary blockages. The subplot in Fig. 6 shows
the average received (rx) data with A\ = 0.4. Average rx data
is the average data over all the vehicles in the system up to
this time period. This figure illustrates FML’s quick learning
and adaptation capability. In particular, FML achieves 90% of
the performance Opt imal within 30 time periods. This result
tallies with the performance figure shown for A = 0.4 in Fig. 6
and the trend observed in Fig. 4. This shows how quickly
FML converges to near-optimal beam selection. Moreover,
the general trend shows that the time to converge to near-
optimal results reduces when the vehicle density in the system
increases. This is due to the fact that with higher vehicle
density, FML has more examples to learn from simultaneously.

3) Impact of the number of selected beams: Here, we
analyze the impact of the number of selected beams m per
period on the cumulative received data. Fig. 7 shows the
cumulative received data achieved with an arrival rate of
A = 0.4 for different m € {1,2,4,8}. As the number
of simultaneously selected beams increases, the cumulative
received data increases as well. This increase is due to the
enhanced coverage area. However, as mentioned earlier, the
higher the number of beams, the higher is the hardware
complexity and energy consumption at the mmBS [5]. For
different values of m, the cumulative received data achieved by
FML is between 10.45% and 18.98% higher than that achieved
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by the next-best algorithm UCB and only up to 4.71% lower
than that achieved by the Optimal.

4) Impact of blockages: Here, we investigate the im-
pact of blockages on the cumulative received data. Fig. 8
shows the cumulative received data with an arrival rate of
A = 0.4 in case of m = 4 selected beams per period for
{10%, 30%, 50%, 70%,90%} of permanent blockages in the
system. Clearly, as the percentage of permanent blockages in
the system increases, the cumulative received data decreases.
For any percentage of permanent blockages, FML outperforms
all non-optimal algorithms. The cumulative received data
achieved by FML lies between 15.55% and 17.42% higher
than that achieved by the next-best algorithm UCB. Moreover,
FML’s achieved results deviate from that of Opt imal merely
by at most 2.61%.

5) Live daily traffic pattern: The prior evaluation was
based on the typical traffic pattern as in Fig. 3. Due to the
averaging effect, Google’s typical traffic does not capture the
quick changes in traffic patterns which are visible in the live
traffic report. To this aim, we recorded the observed live traffic
reports of Google for a period of 48 hours in 30-minute
intervals. We fed this data to the simulator to evaluate the
performance of FML in live traffic conditions. The top plot
of Fig. 9 shows the number of vehicles in the system within
a 48-hour-period. Clearly, the arrival rate has characteristic
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Fig. 9. Data for 48 hours of live daily traffic pattern.

peaks during the course of a day (especially between 6 a.m.
and 10 p.m.), which lead to an increase in vehicle density. For
better readability, the graph in Fig. 9 is smoothed by 5% and
1% for the figures at the top and bottom, respectively, with a
local regression using weighted linear least squares and a 2"?-
degree polynomial model. The bottom plot of Fig. 9 shows
the aggregate received data for m = 4 selected beams per
period. We can see that FML achieves near-optimal aggregate
received data within at most two hours. This tallies with our
observation of 256" time periods in Fig. 4. We also observe
that FML can capture the effect of traffic fluctuations and
leverage it to make better decisions. Since the other algorithms
do not adapt to the change in traffic, they perform worse than
FML. Averaging over 48 hours of simulation, FML performs
24.96%, 39.61%, and 60.51% better than UCB, MaxRate, and
Random, respectively. Further, the performance of FML only
lies within 2.47% below that of Optimal.

V. DISCUSSION

Our evaluation results confirm the superiority and adapt-
ability of FML compared to the benchmark algorithms. In this
section, we discuss the impact of some of our system model
assumptions (e.g., beam orthogonality) and the capabilities of
FML, which were not detailed previously.

Beam orthogonality. We assumed that the available beams
at the mmBS are all orthogonal. Nevertheless, FML’s per-
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formance is not restricted to this limitation. In fact, non-
orthogonality can be formulated as an additional constraint
in our model, where overlapping beams cannot be used si-
multaneously. In this case, the set of actions (i.e., different
beam combinations) naturally increases. However, not all
possible combinations are allowed due to the constraint that
overlapping beams may not be used simultaneously. Thus, the
number of actions remains feasible.

Interference. In this paper, we assume that there is no
interference among orthogonal beams. However, theoretically
orthogonal beams may interfere with each other due to reflec-
tions from surrounding objects (e.g., walls, buildings). Such
scenarios are very rare in high frequency ranges of mmWave
bands such as 60 GHz due to low reflection coefficient but
more plausible in 28 GHz and 38 GHz. Although this factor is
not considered in our simulation, its impact will be interpreted
as a blockage by FML, thus refraining from communicating
over those beams.

Co-located vehicles. There could be multiple vehicles in
the coverage area of a beam at the same time. Given the
focus of this paper is on unicast communication, only one
of these vehicles is allowed to communicate with the mmBS.
In our simulation, we select one of the vehicles at random
for communication. Nevertheless, it should be noted that this
phenomenon has a high potential for multicast scenarios.

Number of selected beams. We assumed that the number
m of simultaneously selectable beams at the mmBS is limited
due to current hardware limitation [5]. Assuming fully digital
beamforming materializes in the future, this limitation will
present itself as overlapping beam patterns, which cannot
be selected simultaneously. FML can also be used in such
scenarios to select the most suitable beam pattern according
to the available context (e.g., vehicle’s location).

Location reporting. FML infers traffic patterns from a very
coarse location information (i.e., direction of arrival). This
information is chosen to emphasize the potential of FML to
infer traffic patterns based on coarse geo-locations. If the
network can afford the extra overhead for high-resolution
location reporting, FML’s performance would only improve.

VI. RELATED WORK

Beam selection issues have been addressed before in con-
ventional vehicular networks operating at sub-6 GHz fre-
quencies to achieve maximum rate using multi-lobe beam
patterns [22], [23]. Unlike our proposal, these works rely on
accurate GPS location reporting in order to perform beam
switching. The complexity of this method grows exponen-
tially with variable vehicular speed and channel conditions.
Moreover, as mentioned, the signal propagation characteristics
in sub-6 GHz frequencies significantly differs from mmWave
bands.

This is the first paper to propose an adaptable learning
algorithm for mmWave vehicular scenarios in which block-
ages, and traffic are taken into account. Specifically, our
algorithm does not require accurate localization information,
and its performance is independent of the aforementioned
variabilities. In what follows, we provide a short overview of
the ongoing efforts in mmWave vehicular research. For more
details, we encourage the readers to refer to a recent survey
on the topic in [7]. The body of the works on mmWave V2X
can be categorized in channel characterization, PHY design,
and MAC design.

In [24], Kato et al. provide propagation characteristics
of mmWave communication in inter-vehicular scenarios. On
the other hand, the authors of [25] derive closed-form ap-
proximation for coherence time and beam width with con-
sideration of directional communication. The feasibility of
mmWave communication is analyzed in [4] via an extensive
measurement campaign. The results indicate the low number
of scattering cluster in mmWave bands, which imply that the
number of supported data streams are significantly less than
the antenna array size. The challenges of enabling mmWave
V2X communication is elaborated in [26]. In addition, the
authors describe possible solutions to these challenges from
PHY and MAC perspective. The works in [27]-[30] focus on
mmWave beam adaptation in vehicular scenarios. These works
exploit DSRC to estimate the location of the vehicles. This
estimation allows mmBS to track the moving vehicles and
to adapt the mmWave beam accordingly. While feasible, this
technique requires a complex transceiver chain and accurate
localization information. Further, modification to the MAC
protocol to allow the exchange of this information between
the interfaces is crucial.

While prior work agrees that blockage is the Achilles heel
of mmWave communication [4]-[7], [26], none of the above
provide a method to detect blockages in vehicular scenarios.
Furthermore, traffic-awareness is another aspect which has not
been addressed to the best of our knowledge. Finally, this
work provides the first online learning algorithm for vehicular
mmWave communications.

VII. CONCLUSIONS
In this paper, we address the problem of beam selection
at mmWave base stations where the outcome of the selec-
tion is highly dependent on the traffic and the blockages
in the network. To this aim, we propose FML, an online



learning algorithm based on contextual multi-armed bandits
that operates on minimal contextual network information (i.e.,
a vehicle’s direction of arrival). In addition, we analyze the
implementation feasibility of FML in the cellular network by
proposing a protocol within the definition of 3GPP standard.
The advantage of FML is twofold: (7) it enables mmWave base
stations to autonomously learn from the context to understand
their surrounding environment and (47) it provides a scalable
solution to increase the deployment density of mmWave base
stations with minimal setup overhead for the operators. Our
evaluation results show that FML requires on average only 33
minutes to achieve near-optimal performance. Noteworthily,
without the overhead of tracking of Opt Track, FML achieves
61.37% and 82.55% gain in terms of the cumulative received
data and number of served vehicles, respectively. The results
demonstrate the capability of online bandit learning and em-
phasize on the relevance of context-awareness in 5G scenarios.

This is the first attempt to incorporate learning algorithms
in such dynamic vehicular scenarios. However, our analytical
modeling of the system can be extended to observe and
learn from richer context (e.g., coordinates and type of the
vehicle). Also extending FML to non-orthogonal code-books
and evaluating the combinatorial overhead would be an in-
teresting future research direction. Given the low complexity
of contextual bandit learning, this approach can be applied
in other areas of mmWave cellular networking such as initial
access and user handover.
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