
Tobias Mahn, Dennis Becker, Hussein Al-Shatri and Anja Klein, ”A Distributed Algorithm for

Multi-Stage Computation Offloading,” in Proc. of the 7th IEEE International Conference on

Cloud Networking (IEEE CloudNet 2018), October 2018.

c©2018 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating

new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this works must be obtained from the IEEE.

A Distributed Algorithm for Multi-Stage

Computation Offloading

Tobias Mahn, Dennis Becker, Hussein Al-Shatri, Anja Klein

Communications Engineering Lab, TU Darmstadt, Germany, {t.mahn, h.shatri, a.klein}@nt.tu-darmstadt.de

Abstract—A scenario consisting of several mobile users, an
access point (AP) and a cloud server in a multi-stage hierarchy
is considered. Each user has a computation task which can
be computed locally or offloaded to the AP or to the cloud
server. Considering the shared access channel between users and
the AP, the shared computation resources at the AP and the
shared backhaul link connection from the AP to the cloud, an
energy minimization computation offloading problem with a time
constraint is tackled. The time constraint guarantees that the
offloading time will not exceed the local computation time. In
this paper, we propose a distributed game theoretic algorithm
which decomposes the offloading problem into the subproblems
of resource allocation and offloading decisions. The algorithm
works iteratively between the two subproblems as follows: The
AP receives offloading decisions from the users and accordingly
optimizes the fractions of the bandwidth on the access channel,
the fractions of the backhaul link rate and the fractions of the
computation resource at the AP for all offloading users. Based on
the assigned resources, each user autonomously decides between
local computation or offloading to the AP or to the cloud server
and reports its decision to the AP. Our proposed algorithm is
shown to require only limited signaling between users and AP
and converges in significantly few iterations. Furthermore, the
results show that our algorithm performs close to the optimal
policy.

I. INTRODUCTION

Computation offloading has seen a great interest in research

as shown in a recent survey [1]. One of the reasons is the rapid

growth of mobile devices and internet of things gadgets in our

daily life that perform demanding tasks like high resolution

photo editing, video processing for augmented reality or nat-

ural language recognition [1]. While the recent generations of

mobile devices, e.g. smartphones, tablets and laptops, usually

offer high computational resources, their battery is the limiting

factor for such demanding purposes [2]. As studies have

shown, mobile phone users have always been very cautious

about their battery level [3], [4]. Hence, offloading tasks to

a cloud server might be the solution for saving energy on

the mobile devices and yet enabling a rich experience for the

mobile users.

Besides computation offloading to a cloud server, mobile

edge computing (MEC) is a new approach to the topic [5], [6].

Instead of a cloud server, a cloudlet with less computational

capability than the cloud server is attached to the access point

(AP). The cloudlet is closer to the mobile unit (MU) than

the cloud server. This reduces the latency and enables more

real time applications than offloading to a cloud server. Since

access channel and remote computation resources are limited

and shared among the MUs, each MU has to consider, where to

offload its task and whether offloading is beneficial at all. The

advantage of computation offloading over local computation

of a task can be a shorter computation time, a reduction of

energy consumption or a combination of both.

The authors of [7] and [6] investigate computation time min-

imization problems under the constraint of maximum allowed

transmit power in MEC scenarios using optimization methods.

The authors of [6] propose and compare the system offloading

performance of different access schemes of the wireless radio

channel for a single task per MU. In [7], the focus lies on

device internal task scheduling of multiple tasks at a single

MU. Transmission time of the task is modeled by the Shannon

channel capacity and the task size. Offloading of the task is

only possible if the transmission time is smaller than the time

slot duration.

In [8] and [9], the authors formulate central algorithms

for energy minimization with a maximum computation time

constraint and propose optimization approaches. Both consider

MEC computing scenarios and arbitarily splittable tasks. Mul-

tiple different optimization approaches of energy minimization

problems are investigated in [8] for only a single MU. In

[9], multiple MUs try to minimize their transmit power, while

sharing the radio access and cloudlet computation resources.

Simultaneous offloading of multiple MUs causes interference

on the radio access channel and hence, the transmit power has

to be optimized to ensure successful reception at the AP.

The authors of [10] and [11] combine energy and time

minimization through a weighting variable as a joint objective.

The energy reduction by offloading of a MU is compared to the

maximum computation time required. The results computed

by this formulation have proven to be strongly dependent on

the choice of the weighting variable. Compared to the central

appraoches in [6]- [9], distributed approaches based on game

theory are proposed in [10] and [11]. These games can be

executed in a distributed manner at each MU instead of a

central computation at the AP. Nevertheless, the convergence

to a Nash equilibrium requires full knowledge about all

parameters in the system at every MU. While [10] considers

only offloading to a cloud server, [11] investigates a multi-

stage scenario. This multi-stage scenario combines MEC with

an additional cloud server and a MU has to choose the most

beneficial location for offloading. In [11], the radio access link

to the AP is proposed as a simple transmission rate model.978-1-5386-6831-3/18/$31.00 c©2018 IEEE

This paper investigates a multi-stage offloading hierarchy

with a combination of a cloudlet for MEC and a cloud server.

Each MU has a non-splittable task. By offloading, the MU

tries to minimize the energy spent for the computing or

transmission of its task. Since the hardware of a MU requires

a static power while transmitting or waiting for the result of

the remote computation, this power is included in our energy

model. The offloading time of a MU is defined as the sum

of the time for transmission and the time for the computation

at the AP or at the cloud server. A combination of energy

and computation time in the objective function is avoided by

a constrained version of an energy minimization problem. To

ensure that offloading is always beneficial in terms of time

delay, the offloading time is constrained to be less than the

local computation time.

A novel distributed algorithm is proposed, where each MU

takes an autonomous offloading decision on its task. The

offloading decisions and the resource allocation are separated

and executed iteratively. The resource allocation of the shared

radio access channel, the shared backhaul link to the cloud

and the shared computation resources at the AP is performed

at the AP based on offloading decisions of the MUs. After

receiving feedback from the AP about its fraction of the shared

resources, every MU decides whether offloading or local

computation is more beneficial. Furthermore, this decision

can be performed without knowledge about the offloading

decisions of the other MUs as a best response to the allocated

resources. Our proposed algorithm requires significantly low

signaling between AP and MUs and no direct signaling among

the MUs.

The paper is structured as follows: Section II introduces

the scenario. In Section III, we formulate the optimization

problem to our model and show how it can be transformed

into the hierarchical game formulation. Our theoretical results

are tested numerically in Section IV.

II. SYSTEM MODEL

A. Scenario

In this paper, we consider a computation offloading scenario

with K MUs connected to a single wireless AP with an

attached cloudlet. Furthermore, a cloud server with high com-

putational capability is available through a limited capacity

backhaul link to the AP. This scenario is shown in Figure 1

and could be a part of a larger network. While the MUs receive

their energy from a limited battery, the AP, cloudlet and cloud

server have access to energy through the power grid.

Every MU with index k = 1, . . . ,K has one task to be

computed. This task is non-splittable and therefore, has to be

either computed locally or can be offloaded to the cloudlet

or the cloud server. The size lk of the task of MU k is

measured in bits. For the computation of the task, we introduce

a complexity factor βk which determines the number of CPU

cycles needed for the computation of one bit of the task of

MU k. This factor βk is dependent on the type of task, e.g.

the processing of a video stream can have a higher βk than

the processing of a text file. Exemplary values for βk can be

Fig. 1. Multi-stage computation offloading scenario with K MUs, a single
AP with attached cloudlet and a cloud server

found in [2]. For a high task complexity factor βk, even the

computation of a small task might result in a huge energy

consumption and processing time at the MU. So, offloading

the task can be beneficial for a MU trying to save energy.

B. Local Computation

First, we are considering the case of MU k computing

its task locally. Furthermore, every MU has a processing

frequency fMU,k, which is measured in CPU cycles per second.

Using the assumptions, the local processing time is

TMU,k =
βklk

fMU,k

. (1)

TMU,k with the power pcalc,k required for local processing

at MU k in Watt leads to energy consumed for a local

computation of MU k’s task, which is given by

EMU,k = pcalc,k ·
βklk

fMU,k

. (2)

C. Computation at the AP

Now, offloading of the task of MU k to the AP with

attached cloudlet is introduced. The cloudlet is assumed to

be more powerful in terms of computation capability than

the MUs, i.e. fMU,k ≤ fAP with fAP being the overall

processing frequency of the cloudlet in cycles per second.

If more than one MU decides for offloading its task to the

AP, the limited computation resources are split and denoted

by fAP,k for the assigned processing frequency to MU k for

offloading its task. Only MUs offloading their task to the AP

are allocated a non-zero processing frequency. Furthermore, all

MUs offloading their task to the AP cannot exceed the total

processing frequency of the cloudlet, i.e.
∑K

k=1 fAP,k ≤ fAP.

A possible strategy for the allocation of all shared commu-

nication and computation resources among the MUs offloading

their tasks will be discussed in Section III.

Each MU k has a radio access to the AP through a channel

using an orthogonal frequency-division multiplexing access

(OFDMA) transmission scheme with bandwidth bk. The over-

all bandwidth assigned to the MUs offloading their tasks has to

be smaller than or equal to the total system bandwidth B, i.e.
∑K

k=1 bk ≤ B. All MUs computing their task locally, receive

no bandwidth bk = 0. For MU k, the resulting transmission

rate is expressed by the Shannon channel capacity as

rAP,k = bk log2

(

1 +
ptrans,k|hk|

2

σ2

)

, (3)

where ptrans,k denotes the transmission power of MU k, |hk|
2

the wireless uplink channel gain from MU k to the AP and

σ2 the white Gaussian noise power. The channel gains |hk|
2

and the noise power σ2 can be assumed to be known by the

AP. When offloading the task of MU k to the AP, the total

time for offloading to the AP is the summation of transmission

time and time for remote computation, i.e.

TAP,k =
lk

rAP,k

+
βklk

fAP,k

. (4)

An additional transmission time for the result of the offloaded

task back to the MU will be omitted, as the number of bits of

the result can be assumed to be much smaller than the original

task, similar to [6], [12].

For the transmission over the wireless channel, a transmit

power of ptrans,k is needed by MU k. As the AP is connected

to the power grid, only the energy consumed by the MUs

is considered in our system model. A MU k requires a

static power pstatic,k during the transmission and during the

computation of its task at the AP. This static power is much

smaller than computation power pcalc,k or transmit power

ptrans,k of MU k. Following from this, we can formulate the

energy consumed for offloading the task to the AP as

EAP,k = ptrans,k ·
lk

rAP,k

+ pstatic,k ·

(

lk

rAP,k

+
βklk

fAP,k

)

. (5)

It is assumed that the computation frequencies fMU,k and

powers ptrans,k and pstatic,k are fixed values and can be transmit-

ted to the AP by every MU when establishing the connection.

D. Offloading to the Cloud

Finally, a MU can also offload its task to the cloud server.

This server is able to provide each MU a guaranteed pro-

cessing frequency fcloud that does not have to be shared. If

a MU k decides to offload its task to the cloud server, the

AP receives the task from the MU and transmits it over the

shared backhaul link with total backhaul transmission rate

Rcloud. The transmission rate assigned to MU k is rcloud,k and

we can formulate a similar constraint as for the other shared

resources
∑K

k=1 rcloud,k ≤ Rcloud. All MUs computing locally

or offloading to the AP will receive no backhaul transmission

rate, i.e. rcloud,k = 0.

Compared to the total time for offloading to the AP another

additional transmission time lk
rcloud,k

has to be considered, which

leads to

Tcloud,k =
lk

rAP,k

+
lk

rcloud,k

+
βklk

fcloud

. (6)

The energy for offloading to the cloud server can be

calculated as

Ecloud,k =ptrans,k ·
lk

rAP,k

+ (7)

pstatic,k ·

(

lk

rAP,k

+
lk

rcloud,k

+
βklk

fcloud

)

III. PROBLEM FORMULATION

A. Optimization Problem

In this section, the general computation offloading optimiza-

tion problem (8) is formulated based on our system model,

where the objective is the summation of the energies of all K

MUs.

argmin
xk,rk

K
∑

k=1

Ek, (8)

s.t. xAP,kTAP,k ≤ TMU,k, ∀k, (8a)

xcloud,kTcloud,k ≤ TMU,k, ∀k, (8b)

K
∑

k=1

bk ≤ B, (8c)

K
∑

k=1

rcloud,k ≤ Rcloud, (8d)

K
∑

k=1

fAP,k ≤ fAP, (8e)

bk, rcloud,k, fAP,k ≥ 0, ∀k, (8f)

xMU,k, xAP,k, xcloud,k ∈ {0, 1}, ∀k, (8g)

xMU,k + xAP,k + xcloud,k = 1, ∀k. (8h)

Three decision variables xMU,k, xAP,k and xcloud,k are intro-

duced for the location in the network, where the task of MU

k is computed. Constraint (8g) ensures the binarity of the

variables. For a MU k, its task can be computed at only

one location which is ensured by constraint (8h). Using these

decision variables and the energies defined in (2), (5) and (7),

the energy spend by MU k is

Ek = xMU,kEMU,k + xAP,kEAP,k + xcloud,kEcloud,k. (9)

In our scenario, the time required for offloading the task of

MU k to the AP or to the cloud shall not be longer than a local

computation at the MU such that a good quality of experience

is achieved for MU k, see constraints (8a) and (8b).

With constraints (8c)-(8e), the sum of transmission band-

width bk, backhaul link capacity rcloud,k and computation

resources at the cloudlet fAP,k assigned to the MUs is limited

to their individual upper bounds.

The notation of the optimization variables is simplified by

defining a decision vector xk = [xMU,k, xAP,k, xcloud,k] and a

resource allocation vector rk = [bk, rcloud,k, fAP,k] for every

MU k. The joint optimization (8) of the decision vectors

xk and the resource vectors rk for all K users is a non-

convex mixed integer problem and intractable. Therefore, a

sub-optimum approach to this problem is proposed in the next

subsection.

B. Distributed Algorithm

When considering that every MU tries to minimize its

energy, which is required to obtain the result of its own

computation task, it is rational to model the MUs as individual

decision makers. A MU can only influence its own offloading

decision under the consideration of the available resources, i.e.

both its local resources and the ones provided by the network.

Our approach separates the offloading decision, which will be

performed at each MU, from the resource allocation, which

will be executed by the AP.

The proposed algorithm is iterative. In the beginning, every

MU transmits its initial decision vector xk, the size of its task

lk and the complexity factor βk to the AP. The AP allocates the

shared resources according to the initial decision vectors xk

and returns a resource vector rk to each corresponding MU.

Now, the first MU can redecide its initial decision, submit an

updated decision vector x1 and the AP will recalculate the

resource allocation. The algorithm terminates when no MU

can save more energy by updating its decision. Throughout

every iteration, the MUs only have to exchange the decision

vectors xk to the AP, while the AP has to return the updated

resource allocation vectors rk back to the corresponding MUs.

1) Resource Allocation: The AP solves (10), where the re-

source allocation is only dependent on the energy, because the

computation time is unknown. Furthermore, the optimization is

simplified in this problem formulation as the decision vectors

xk are given to the AP by the MUs.

argmin
rk

K
∑

k=1

Ek, (10)

s.t. (8c), (8d), (8e), (8f).

The energy minimization objective can be combined with

the three constraints for the shared resources (8c)-(8e) by

Langrangian multipliers and problem (10) can be rewritten

as

L =

K
∑

k=1

Ek + µ1

(

K
∑

k=1

bk −B

)

+ (11)

µ2

(

K
∑

k=1

rcloud,k −Rcloud

)

+ µ3

(

K
∑

k=1

fAP,k − fAP

)

.

As these resources are independent of each other, a closed

form solution for the optimal allocation of each resource for

MU k can be found. Taking the partial derivative with respect

to bk leads to

∂L

∂bk
= −(xAP,k+xcloud,k)

(ptrans,k + pstatic,k)lk

b2k log2

(

1 +
ptrans,k|hk|2

σ2

)+µ1 (12)

and by setting it to zero, the fraction of the bandwidth can be

found as

bk =

√

√

√

√

√

(xAP,k+xcloud,k)(ptrans,k+pstatic,k)lk

log
2

(

1+
ptrans,k|hk|2

σ2

)

µ1
. (13)

The optimal value for the Langrangian multiplier µ1 can be

found by the partial derivative of (11) with respect to µ1 as

∂L

∂µ1
=

K
∑

k=1

bk −B, (14)

which leads to an optimal µ1 of

µ1 =







1

B

K
∑

k=1

√

√

√

√

(xAP,k + xcloud,k)(ptrans,k + pstatic,k)lk

log2

(

1 +
ptrans,k|hk|2

σ2

)







2

.

(15)

Inserting (15) into (13), results in an equation for the optimal

bandwidth bk = b∗k allocated to MU k. The equation describes

the fraction of the total bandwidth B that MU k will receive

if it decides for offloading its task in relation to all other MUs

that are offloading their tasks.

In a similar way, the optimal backhaul transmission rate for

offloading the task of MU k to the cloud server can be found

by the partial derivative with respect to rcloud,k, which can be

written as

∂L

∂rcloud,k

= −xcloud,k

pstatic,klk

r2cloud,k

+ µ2
!
= 0 (16)

and leads to

rcloud,k =

√

xcloud,kpstatic,klk

µ2
. (17)

The partial derivative with respect to µ2

∂L

∂µ2
=

K
∑

k=1

rcloud,k −Rcloud
!
= 0 (18)

leads to the equation for the optimal µ2 of

µ2 =

(

1

Rcloud

K
∑

k=1

√

xcloud,kpstatic,klk

)2

. (19)

By inserting (19) into (17), the optimal allocated backhaul

transmission rate rcloud,k = r∗cloud,k for MU k is found. Each

MU k is assigned the backhaul transmission rate rcloud,k in

relation to every other MU taking the decision for offloading

to the cloud.

The third result is the optimal shared computation frequency

at the AP assigned to the task of MU k. Taking the partial

derivative with respect to fAP,k results in

∂L

∂fAP,k

= −xAP,k

pstatic,kβklk

f2
AP,k

+ µ3
!
= 0 (20)

Algorithm 1 Distributed Multi-Stage Offloading

Take any initial strategy profile s[0] and calculate corre-

sponding optimal resource allocation {rk}
Set NE = False and m = 0
while NE == False do

flag = 0; k = 1;

while flag == 0 and k ≤ K do

AP calculates {r∗k} for (s′k, s−k[m]), ∀s′k ∈ Sk

MU k checks, if (8a) and (8b) are fulfilled, otherwise

sets corresponding utility to uk(s
′
k, s−k[m]) = ∞

if uk(s[m]) > uk(s
′
k, s−k[m]), s′k ∈ Sk then

Set s[m+1] = (s′k, s−k[m]); flag = 1; m = m+1;

else if k == K then

Set flag = 1; NE = True;

else

k = k + 1;

end if

end while

end while

return NE s
∗ of game G and corresponding resource

allocation {r∗k}

and the optimal value

fAP,k =

√

xAP,kpstatic,kβklk

µ3
. (21)

The partial derivative with respect to µ3 is

∂L

∂µ3
=

K
∑

k=1

fAP,k − fAP
!
= 0 (22)

leads to the equation for the optimal µ3 of

µ3 =

(

1

fAP

K
∑

k=1

√

xAP,kpstatic,kβklk

)2

. (23)

The insertion of (23) into (21) leads to the result that each

MU k offloading its task to the AP will receive the optimal

fraction of the total computation frequency fAP = f∗
AP relative

the to static powers, task sizes and complexity factors of all

other MUs also offloading to the AP.

The optimal values for the three shared resources can

be written as an optiomal resource allocation vector r
∗
k =

[b∗k, r
∗
cloud,k, f

∗
AP].

2) Offloading Decisions: For the offloading decisions of

the MUs, we define a strategic form game. The players

of the game are the MUs, which are defined by the set

K = {1, . . . ,K}. Every MU k has a set of strategies (Sk)k∈K,

written as

Sk =

{

sk = (xMU,k, xAP,k, xcloud,k) | (24)

xMU,k + xAP,k + xcloud,k = 1;

xMU,k, xAP,k, xcloud,k ∈ {0, 1}

}

,

which defines the decision of MU k. The decisions of all K

MUs can be expressed by a strategy profile s = (sk, s−k),
where sk ∈ Sk is one possible strategy of MU k and

s−k = (s1, . . . , sk−1, sk+1, . . . , sK) ∈ S−k =
∏

j 6=k Sj , ∀k
are the played strategies of the other MUs. In order to verify

the timing constraints (8a) and (8b), the utility function of MU

k is defined as

uk(s) =











∞,
for xAP,kTAP,k > TMU,k

or xcloud,kTcloud,k > TMU,k

Ek, else.

(25)

Accordingly, the game can be defined as G =
(K, (Sk)k∈K, (uk)k∈K).

As the resource allocation is executed independently from

the offloading decisions, each MU is able to compute his utility

function independent of the other MUs. Due to this, game

G can be proven to be an exact potential game by defining

a potential function Φ(s) =
∑K

k=1 Ek and calculating the

difference of two strategies sk and s′k. The existence of a Nash

Equilibrium has been proven for an exact potential game [13].

The proposed algorithm is summarized in Algorithm 1.

IV. NUMERICAL RESULTS

For our simulations, a scenario with K = 5 MUs is consid-

ered. Each MU has a task of length lk that is randomly chosen

out of a uniform distribution between 2 MB and 10 MB. The

computation frequencies are set as fMU,k = 1 GHz for all

MUs, fAP = 2 GHz for the cloudlet and fcloud = 4 GHz

for the cloud server. Powers are set to pcalc,k = 2 W for

local calculation, ptrans,k = 1 W for transmitting the task and

pstatic,k = 1 W as static power of the MUs hardware.

To model the wireless channel between the MUs and the

AP, the signal-to-noise ratio is set to 0 dB and the channel

gain |hk|
2 from MU k to the AP is modeled randomly with

uniform distribution and an average E{|hk|
2} = 1. A total

transmission bandwidth of B = 100 MHz and a total backhaul

transmission rate of Rcloud = 100 Mbit/s are assumed.

The performance of our algorithm is assessed against full

local computation and against the optimal policy, which is

calculated by computing all possible 3K combinations of

offloading decisions for the K MUs. For each decision com-

bination, the corresponding resource allocation problem is

solved. For Figures 2 and 3, 100 Monte Carlo runs were

performed per data point.

Figure 2 shows the total energy consumed by all K MUs

as a function of the task complexity βk. For low βk no

MU offloads and the results for all policies are equal. In the

50 100 150 200 250 300

5

10

15

20

25

Complexity Factor βk in cycles/bit

T
o
ta

l
E

n
er

g
y

C
o
n
su

m
p
ti

o
n

in
J

Distributed Offloading Algorithm
Optimal Policy
Local Computation

Fig. 2. Total energy consumption of the MUs for different task complexities

50 100 150 200 250 300

2

4

6

8

10

12

Complexity Factor βk in cycles/bit

N
u

m
b

er
o

f
It

er
at

io
n

s

Fig. 3. Average number of iterations for different task complexities

plotted range for task complexity βk from 1 to 300, not all

MU are able to offload their tasks and meet the maximum

time constraint. While the curve for local computation rapidly

increases, the proposed algorithm and the optimal policy stay

at a much lower level of about 10 J total energy consumption.

Although, our algorithm leads to suboptimal offloading

decisions, the offloading gain Elocal

Eoffloading
of our algorithm is

still close to the offloading gain of the optimal policy. For

βk = 100, our algorithm has a gain over local computation of

2.13, while the optimal policy has a gain of 2.75. At βk = 250,

the gain increases to 5.64 for our algorithm compared to 6.24

for the optimal policy. This result also proves the effectiveness

of offloading in general for tasks with high computational

complexity.

The average number of iterations m until the algorithm

reaches a NE is shown in Figure 3 as a blue line. Furthermore,

the gray area represents the variance of the number of itera-

tions. Even for the overall maximum number of 12 iterations,

the number of computations our algorithm requires is much

smaller than the computation of the optimal policy.

V. CONCLUSION

We introduce a time constrained energy minimization prob-

lem for a multi-stage computation offloading scenario with

multiple MUs connected to an AP. A distributed algorithm

separating the resource allocation at the AP and the au-

tonomous offloading decisions at the MUs is formulated. Due

to the separation, the required knowledge at each entity in

the network is limited and signaling is greatly reduced. The

proposed algorithm has proven to be computationally efficient

by reaching performance results close to the computationally

exhaustive optimal policy with only a few iterations.

ACKNOWLEDGEMENT

This work has been performed in the context of the DFG

Collaborative Research Center (CRC) 1053 MAKI - subpro-

jects B3 and C7.

Supported by DAAD with funds from the Federal Ministry

of Education and Research (BMBF).

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[2] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing.” Proc. of the 2nd USENIX Conf. Hot Topics on

Cloud Computing, pp. 1–4, 2010.
[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can off-

loading computation save energy?” IEEE Computer Magazine, vol. 43,
no. 4, pp. 51–56, 2010.

[4] D. Ferreira, A. K. Dey, and V. Kostakos, “Understanding human-
smartphone concerns: a study of battery life,” in Proc. of the Interna-

tional Conference on Pervasive Computing. Springer, 2011, pp. 19–33.
[5] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile

edge computing - a key technology towards 5G,” ETSI White Paper,
vol. 11, 2015.

[6] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,”
in Proc. of the IEEE International Symposium on Information Theory

(ISIT), 2017, pp. 2513–2517.
[7] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation

task scheduling for mobile-edge computing systems,” in Proc. of the

IEEE International Symposium on Information Theory (ISIT), 2016, pp.
1451–1455.

[8] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[9] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 45–55,
2014.

[10] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2015.

[11] M.-H. Chen, M. Dong, and B. Liang, “Multi-user mobile cloud off-
loading game with computing access point,” in Proc. of 5th IEEE

International Conference on Cloud Networking (Cloudnet), 2016, pp.
64–69.

[12] C. You and K. Huang, “Multiuser resource allocation for mobile-edge
computation offloading,” in IEEE Global Communications Conference

(GLOBECOM), 2016, pp. 1–6.
[13] S. Lasaulce and H. Tembine, Game theory and learning for wireless

networks: fundamentals and applications. Academic Press, 2011.

