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ABSTRACT

A data dissemination scenario is considered. The trans-

mitter harvests energy from the environment and uses it to

transmit individual data to multiple receivers. We consider a

realistic scenario in which only causal knowledge regarding

the energy harvesting, the channel fading and the data arrival

processes is available. Our goal is to find a power allocation

policy aiming at maximizing the throughput. We propose a

two-layer reinforcement learning algorithm which divides the

learning task into two sub-tasks, namely, how much power to

use in each time interval and how to split the power among

the data to be transmitted. By dividing the task, we increase

the learning speed as compared to the standard reinforcement

learning algorithms Q-learning and SARSA. Moreover, the

proposed algorithm outperforms reference policies that de-

plete the battery in every time interval.

Index Terms— Data Dissemination, Energy Harvesting,

Reinforcement Learning

1. INTRODUCTION

Energy harvesting (EH) communication devices are able to

collect ambient energy from the environment to recharge their

batteries. This means, EH communication devices are able of

self-sustainability and theoretical perpetual operation [1].

We consider a data dissemination scenario with an EH

transmitter and multiple receivers. Research effort on EH

data dissemination scenarios has mainly focused on offline

approaches in which perfect non-causal knowledge regarding

the EH, the channel fading and the data arrival processes is

available [2–7]. In [2], an EH transmitter with an infinite bat-

tery broadcasting individual data packets to two receivers over

an additive white Gaussian noise (AWGN) channel is consid-

ered. Similarly, in [3] a two-user EH broadcast (BC) channel

with a finite battery and fading channels is studied. Authors

in [4] and [5] consider an EH transmitter with a fixed number

of data packets to be sent to multiple receivers. The goal is to

minimize the time required to deliver the data packets. In [6],

the total delay in a two-user EH BC channel is minimized and

in [7] the effect of an inefficient battery is investigated.

This work was funded by the LOEWE Priority Program NICER.

In [8], a two-user EH BC scenario, in which the amounts

of harvested energy are causally known, is studied and the op-

timal power scheduling policy when the EH process follows

a Bernoulli distribution is found.

In real scenarios, the requirement of perfect non-causal

knowledge, as in [2–7], or knowledge about the statistics of

the processes, as in [8], cannot be fulfilled. However, a learn-

ing approach can be considered to overcome this requirement.

This is because in learning approaches, more specifically in

reinforcement learning (RL), an agent learns how to behave

in an unknown environment by interacting with it. This ap-

proach has been applied to EH point-to-point scenarios in

[9–12], two-hop communication scenarios in [13, 14] and to

multiple access channels in [15].

In this paper, an EH data dissemination scenario in which

the EH transmitter sends individual data to multiple receivers

is considered. Only causal knowledge is assumed to be avail-

able. Our goal is to find a power allocation policy that aims

at maximizing the amount of data at the receivers. To find the

power allocation policy, a two-layer RL algorithm is proposed

which divides the learning task into two sub-tasks, namely,

how much power to allocate in each time interval and how

to split the allocated power among the data to be transmit-

ted. This division is inspired by [5], where the offline optimal

transmission policy is found by reducing the BC channel to

consider a single receiver at a time and the power is allocated

according to the hierarchy of the channel gains. In each time

interval, the upper layer of the proposed algorithm learns how

much power to allocate in order to avoid battery overflows.

The result is fed into the lower layer which learns how to dis-

tribute the power for the transmission of the individual data

considering the avoidance of data buffer overflows and aiming

at maximizing the throughput. By dividing the task, the pro-

posed algorithm achieves a larger learning speed compared to

the standard RL algorithms Q-learning and SARSA. More-

over, it outperforms reference low-complexity approaches.

The rest of the paper is organized as follows. In Sec. 2,

the system model is presented. In Sec. 3, the power allocation

problem in a data dissemination scenario is formulated. The

proposed two-layer RL algorithm that aims at maximizing the

throughput is explained in Sec. 4. Performance results are

presented in Sec. 5 and Sec. 6 concludes the paper.



2. SYSTEM MODEL

A data dissemination scenario consisting of a single-antenna

transmitter and K single-antenna receivers is considered. As

depicted in Fig. 1, the transmitter N0 harvests energy from

the environment and uses it exclusively for transmitting data

to the K receivers Nk, k = 1, ...,K .

A time slotted system using I time intervals is considered

with a constant duration τ for each time interval i, i = 1, ..., I .

At the beginning of time interval i, N0 receives an amount of

energy Ei ∈ R
+. The maximum amount of energy Emax

that can be harvested depends on the energy source. Ei is

stored in a rechargeable finite battery with maximum capacity

Bmax. As the harvested energy cannot be instantly stored in

the battery, Ei cannot be used in time interval i but earliest

in time interval i + 1. The battery level Bi is measured at

the beginning of time interval i. At the beginning of time

interval i = 1, N0 has not yet harvested any energy and B1 =
0. The data intended for each Nk is different and depends

on a particular data arrival process. In our model, we divide

the data buffer of N0 in K equal size virtual data buffers as

shown in Fig. 1. The size of each virtual data buffer in bits is

Dmax. At the beginning of time interval i, Mk,i data packets

intended for Nk are received and stored in the corresponding

virtual data buffer. To simplify the notation, we assume that

all incoming data packets have the same size d. The level of

the virtual data buffer containing the data intended for Nk is

measured at the beginning of time interval i and is denoted by

Dk,i. At the beginning of time interval i = 1, Dk,1 = 0.

The fading channel from N0 to Nk is described by the

channel coefficient hk,i ∈ C. It is assumed that hk,i stays

constant for one time interval. The noise at Nk is i.i.d. zero

mean AWGN with variance σ2. Additionally, a bandwidth W
is available for the transmission to all receivers. The trans-

mitted signal is the superposition of the data intended for the

different receivers. The power values pk,i, used for transmit-

ting to Nk in time interval i are kept constant during the time

interval. Furthermore, the throughput

Rk,i = τW log2

(

1 +
|hk,i|

2pk,i
∑K

j 6=k;j=1 |hj,i|2pj,i + σ2

)

(1)

in bits, is the amount of data received by Nk in time interval i.
Note that in the interference term, pj,i = 0 if Nj is not served.

Only energy stored in the battery can be allocated. Therefore,

∑

k=1,...,K

τpk,i ≤ Bi ∀i, (2)

must be fulfilled. Additionally, to avoid battery overflows in

which part of the harvested energy is wasted because the bat-

tery is full, the battery overflow condition

Bmax ≥ Bi + Ei −
∑

k=1,...,K

τpk,i, ∀i, (3)

Fig. 1: Data dissemination scenario with an EH transmitter.

is also considered. Only data already stored in the data buffer

can be transmitted. Therefore, the data causality condition

Dk,i ≥ Rk,i ∀k, i (4)

has to be fulfilled. Similar to (3), we define the data buffer

overflow condition as

Dmax ≥ Dk,i + dMk,i −Rk,i, ∀i. (5)

3. PROBLEM FORMULATION

Next, we formulate the power allocation problem in an EH

data dissemination scenario. With only causal knowledge

available, in each time interval i, N0 decides how much

power to allocate for the transmission of the individual data.

We model this problem as a Markov decision process (MDP)

which consists of a set S of states, a set A of actions, a transi-

tion model P and a set R of rewards [16]. The proposed RL

algorithm provides a solution of the MDP presented here.

In time interval i, the state Si ∈ S is a function of Ei, Bi,

hk,i and Dk,i, ∀k. As Ei, Bi and hk,i, can take any value in a

continuous range, the set S contains infinitely many possible

states. The set A contains the transmit power tuples ai =
(p1,i, ..., pK,i) that can be selected. In our model, A is finite

and each pk,i in ai is taken from the set {0, δ, 2δ, ..., Bmax},

where δ is an arbitrary step size. P defines the probability

of going from Si to Si+i after performing ai. Finally, the

rewards ri ∈ R indicate how beneficial it is to select ai in Si.

The solution of the MDP is given by the policy π which

maps states to actions, i.e., ai = π(Si) [17]. To evaluate

π, the so-called action-value function Qπ(Si, ai) is used.

Qπ(Si, ai) is the expected reward starting in Si, performing

ai and following π thereafter [17]. The policy whose Qπ

is greater than or equal to the one for any other policy for

every Si and ai is an optimal policy π∗ and the corresponding

optimal action-value function is denoted by Q∗. When Q∗ is

known, π can be easily determined because for each Si, any

ai that maximizes Q∗(Si, ai) is an optimal action.

As a consequence of having only causal knowledge, N0

does not know in advance for how many time intervals it will

operate. Similar to [9], we consider a discount factor γ, 0 ≤
γ ≤ 1 to account for the preference of achieving a higher

throughput in the current time interval vs. achieving a higher

throughput later on. We aim at maximizing the amount of



transmitted data given by

R = lim
I→∞

E

[

I
∑

i=1

K
∑

k=1

γiRk,i

]

, (6)

where Rk,i is defined by (1).

4. TWO-LAYER RL ALGORITHM

Here, the proposed two-layer RL algorithm is presented. The

two layers are motivated by the fact that the set A of Sec. 3

grows exponentially withK , i.e., |A| = |{0, δ, 2δ, ..., Bmax}|
K ,

where | · | is the cardinality of the set. Such a large action

set reduces the learning speed and hence the performance

since more actions need to be tried to find the optimal policy.

Moreover, for large K , only the average channel gain and

data buffer levels are relevant to calculate the total power to

be used in each time interval. In our two-layer algorithm,

each layer solves part of the power allocation problem. In

each time interval i, the upper layer decides the total power

to be used and the lower layer decides how to distribute it.

4.1. SARSA algorithm

Based on our previous work [10], we use SARSA with lin-

ear function approximation in each of the layers. The main

idea of SARSA is to build an estimate of Qπ based on the vis-

ited states, the performed actions and the obtained rewards.

In each time interval i, the actions are taken by following

the ǫ-greedy policy on Qπ. This is, in Si there is a proba-

bility 1 − ǫ of selecting the action ai that yields the highest

Qπ and a probability ǫ of randomly selecting any action ai.
This method provides a trade-off between the exploitation of

known actions and the exploration of new ones [16, 17].

When S is infinite, linear function approximation can be

used to represent Qπ as a weighted sum of feature functions

[17]. Each feature function maps Si and ai onto a feature

value. Let f be a vector containing all the feature values and

let w be a vector of weights containing the contribution of

each feature value. Qπ is then approximated as [17]

Qπ(Si, ai) ≈ Q̂
π
(Si, ai,w) = fTw. (7)

In each time interval i, w is adjusted in the direction that re-

duces the error between Qπ and Q̂
π

following the gradient

descent approach. Formally, the update rule is given by [17]

∆w = αi

[

ri + γQ̂
π
(Si+1, ai+1,w)− Q̂

π
(Si, ai,w)

]

f, (8)

where αi is the learning rate. Next, we define the set A, the

rewards ri and the feature functions to be used in each layer.

4.2. Upper layer

The upper layer decides on the total transmit power pi to al-

locate in each time interval such that battery overflows are

avoided. i.e., ai = pi. In a fading downlink channel, capacity

can be achieved if the power is allocated for transmitting to

the receiver with the best channel [18]. To find pi, we reduce

the scenario to a point-to-point scenario considering only the

receiver with the best channel in time interval i. We denote

this best channel as h∗
i . Note that this does not mean that only

the receiver with the best channel will be served. It is only

used as a reference since it provides an upper bound of the

possible performance.

For this layer, we set A = {pi|pi ∈ {0, δ, 2δ, ..., Bmax}}
and the reward obtained by selecting pi as ri(pi) = log2(1 +
pi|h

∗
i |

2). As this layer solves an EH point-to-point communi-

cation problem, we use the feature we defined in [10, 13]. f
up
1

indicates if in Si, the selection of pi fulfills the conditions in

(2) and (3) and it is given by

f
up
1 (Si, pi) =











1, if (Bi + Ei − τpi ≤ Bmax)∧

(τpi ≤ Bi)

0, else,

(9)

where ∧ is the logical conjunction operation. f
up
2 performs the

water-filling (WF) algorithm between h∗
i and the mean of all

the past channel gains of all receivers. Let pWF
i be the power

calculated with WF. f
up
2 is given by

f
up
2 (Si, pi) =

{

1, if δ
⌊

pWF
i /δ

⌋

= pi

0, else,
(10)

where ⌊·⌋ is the floor function. f
up
3 is activated if Ei ≥ Bmax.

In this case, the battery should be depleted to minimize the

energy losses due to battery overflow. f
up
3 is written as

f
up
3 (Si, pi) =

{

1, if (Ei ≥ Bmax) ∧
(

pi = δ⌊Bi

τδ
⌋
)

0, else.
(11)

f
up
4 allocates a larger pi when a data buffer overflow situation

is imminent. Let D∗
i be the highest data buffer level among all

Dk,i and M̄i be the average amount of incoming data packets.

f
up
4 is given by

f
up
4 (Si, pi) =











1, if (D∗
i + dM̄i − ri(pi) ≤ Dmax)

∧(ri(pi) ≤ D∗
i )

0, else,

(12)

where ri(pi) is the reward to be obtained if pi is selected.

4.3. Lower layer

The task of this layer is to distribute pi among the individ-

ual data to be transmitted aiming at minimizing data buffer

overflows and maximizing the throughput. The pi selected in

the upper layer is used as an input. Let ρk,i be a fraction

indicating how much of pi is assigned to the transmission

of data intended for Nk, i.e., pk,i = ρk,ipi. For this layer,



A = {ai = (ρ1,i, ..., ρK,i)|
∑K

k=1 ρk,i = 1} and ri(ai) =
∑K

k=1 Rk,i, with Rk,i given by (1). We propose three fea-

ture functions based on three different transmission strategies,

namely, water-filling (WF), maximum rate (MR) and propor-

tional fairness (PF). flo
1 distributes pi using the WF algorithm.

Let aWF
i be the distribution obtained with, then flo

1 is defined

as

flo
1 (Si, ai) =

{

1, if ai = aWF
i

0, else.
(13)

flo
2 is based on MR. It allocates pi for the transmission to the

receiver with the strongest channel. Let j be the index of the

receiver with the strongest channel. flo
2 is written as

flo
2 (Si, ai) =

{

1, if ai ∈ A ∩ {ai|ρj,i = 1}

0, else.
(14)

flo
3 is based on the PF scheduler in [19]. Let R′

k,i(pi) be the

data packets that would be sent if pi is allocated for the trans-

mission to Nk and let υ and β be tunable parameters that con-

trol the fairness. f
up
3 allocates pi for the transmission to Nj if

j = argmax∀k
(R′

k,i(pi)Dk,i)
υ

1

i

∑
i
l=1

(Rk,l)β
. For PF, υ = β = 1 and flo

3 is

flo
3 (Si, ai) =

{

1, if ai ∈ A ∩ {ai|ρj,i = 1}

0, else.
(15)

5. PERFORMANCE RESULTS

For the evaluation of the proposed algorithm, one hundred

independent random realizations are generated. Each realiza-

tion is an episode of I = 1000 time intervals. The amounts

of harvested energy Ei are taken from a uniform distribu-

tion with a maximum value Emax. We set the battery ca-

pacity Bmax = 2Emax and the time interval duration τ to

one time unit. The channel between N0 and Nk is assumed

to be i.i.d. Rayleigh fading with zero mean, unit variance

and a path loss exponent of 3.5. The noise variances are as-

sumed to be σ2 = 1. We set δ = 0.02Bmax, γ = 0.9 and

α = ǫ = 1/i. Moreover, a bandwidth of W = 1MHz, and

a data packet size of d = 200kbits are assumed. The data

buffer size is calculated considering a unit channel gain as

Dmax = ⌊W log2(1 +Bmax)⌋. The incoming data packets are

taken from a Poisson distribution with an average amount of

five data packets per time interval.

As a comparison, we consider Q-learning, SARSA [10],

and the equal power allocation (EPA) and MR policies. For

Q-learning, the set S is discretized and the set A defined in

Sec. 3 is used. For SARSA, we only consider the upper layer

explained in Sec. 4.2 and to minimize the interference, the

selected power is allocated in each time interval for the trans-

mission to the receiver with best channel conditions. The EPA

and MR policies deplete the battery in each time interval. EPA

allocates equal amounts of power for the transmission of data
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and the MR policy spends the energy in the battery for the

transmission to the receiver with the best channel conditions.

Fig. 2 shows the average number of transmitted data pack-

ets per time interval vs. Emax/(2σ
2). As expected, the per-

formance of all approaches increases when Emax increases.

The large gain of our proposed approach is due to the consid-

eration of data buffer levels, in addition to the channel con-

ditions, for the power allocation. If only channel conditions

are considered, data buffer overflows are not avoided and the

achievable throughput is reduced.

The convergence speed of the proposed algorithm is eval-

uated in Fig. 3 for Emax/(2σ
2) = 10dB. The figure shows the

normalized number of transmitted data packets vs. the num-

ber I of time intervals. The number of transmitted data pack-

ets is normalized with respect to I . The proposed algorithm

converges faster than SARSA and Q-learning and it achieves

a better performance. This is because the set A of each layer

is much smaller than for SARSA or Q-learning. The smaller

A, the less exploration is required and the faster the learning.

6. CONCLUSIONS

An EH data dissemination scenario with individual data in-

tended for different receivers was investigated. Causal knowl-

edge regarding the EH, channel fading and data arrival pro-

cesses was assumed. We modelled the power allocation prob-

lem as an MDP and we proposed a two-layer RL algorithm

to find a power allocation policy that aims at maximizing the

throughput. Numerical results show that the proposed algo-

rithm achieves a better performance compared to the standard

RL algorithms Q-learning and SARSA.
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