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Abstract The 3GPP’s self-organizing networks (SONs) standards are a huge step towards

the autonomic networking concept. They are the response to the increasing complexity and

size of the mobile networks. This paper proposes a novel scheme for SONs. This scheme is

based on machine learning techniques and additionally adopting the concept of abstraction

and modularity. The implementation of these concepts in a machine learning scheme al-

lows the usage of independent vendor and technology algorithms and reusability of the

proposed approach for different optimization tasks in a network. The scheme is tested for

solving an energy saving optimization problem in a heterogeneous network. The results

from simulation experiments show that such an approach could be an appropriate solution

for developing a full self-managing future network.
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1 Introduction

With the development of today’s mobile networks towards next generation Heterogeneous

Networks (HetNets), the Operation, Administration and Management (OAM) and network

optimization issues are becoming more and more complex. Nowadays, the optimization of

such networks does not only require deep understanding of the implemented technologies,

but also a huge amount of man/hours for processing and analysis of the statistical and

signaling data generated from the network before taking any decision and/or action. To

overcome this problem an initiative was started called Autonomic Networking, with its

ultimate target being to create self-managing networks, which will enable further growth

with less or none human intervention [1]. The first response towards solving this problem

in mobile networks is the development of the so called self-organizing network (SON)

standards for the 3GPP 4th generation mobile networks. Even though that these standards

are more or less technology specific, there is plenty of room for vendors of telecommu-

nication equipment to implement their own algorithms. But in most cases the practically

implemented algorithms are not applicable in multi-vendor network scenarios. In addition,

it must be noted that the digitally recorded data, such as the signaling information between

the base stations (BS) and mobile terminals and the signaling information inside the mobile

network, is not used efficiently for the implementation of SON. On the other hand, with

more and more available collected and recorded digital data, it becomes obvious that there

are meaningful relations and information in the data archives that are way too big and too

complex for the practical application of standard data processing approaches. Therefore,

SON should evolve in a new concept called cognitive network (CN) or fully autonomic

network (FAN) [1]. This can be achieved by using the power of artificial intelligence (AI)

approaches or machine learning (ML) algorithms.

In this paper, we illustrate the implementation of a novel model for the introduction of

autonomic capabilities in SON initially proposed in [2]. The idea is based on simplification

of a complex task by splitting it into smaller ones that could be much more easily solved

with ML learning techniques through the approaches of abstraction and modularity and

adaptation via learning from the preprocessed data generated from the network. Based on

this a scheme that is technology and vendor independent and reusable for other common

optimization tasks is achieved.

The model is tested in a simulation scenario of a heterogeneous mobile network to solve

an energy saving problem.

The rest of the paper is organized as follows. In the next section the state of the art

related to the implementation of SON algorithms based on machine learning and the

system model are presented. In Sect. 3, the proposed cognitive plane and machine learning

scheme are described and how they are adopted for the implementation of an energy saving

mechanism. The results are presented and analyzed in Sect. 4. Finally, we conclude the

paper in Sect. 5.

2 Overview and System Model

2.1 Overview

In SON the algorithms for self-organization are control loops, which usually can be

implemented in a mobile network by deploying them either in the control plane or in the
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management plane. Control plane SON algorithms in long term evolution mobile network

(LTE) are built in the eNodeBs (eNB), which are sometimes denoted as on-line algorithms.

Management plane SON solutions (off-line) are deployed in the network management

system (NMS) and can be used from the telecom operator in the operation and maintenance

center (OMC) by means of the application programming interfaces (APIs) [3]. Control

plane SON functions are usually vendor specific algorithms, which will as was mentioned

above hardly will work in a multi-vendor network.

These days there is a great interest in data mining and ML, because of the increased

computational efficiency of the hardware. There are many papers, which present opti-

mization solutions for SON scenarios, but rather few of them implement ML or data

mining. In [4], a cognitive engine based on case-based reasoning and decision tree searches

for improving coverage in 3G wireless networks is proposed. Again in [5], decision tree

based unsupervised learning is used for network selection in wireless HetNets. The authors

in [6] propose an algorithm for handover self-optimization using big data analytics. In [7] a

support vector regression for autonomous parameter optimization of a heterogeneous

wireless network aggregation system is introduced. In [8–13] reinforcement learning

algorithms are used for coverage, capacity optimization and spectrum occupancy fore-

casting. K-means clustering and support vector machine learning (SVM) are other pow-

erful algorithms, which are used in [14] for cooperative spectrum sensing in cognitive radio

networks. By using traffic statistics in [15], an algorithm is proposed for self-optimization

of the antenna configuration in LTE aiming at energy saving. For load balancing and

handover optimization a reinforcement Q-learning technique is used respectively in

[16, 17].

2.2 System Model

The simulated network was performed in a MATLAB environment. The simulation was

initially developed by Aalborg University following 3GPP recommendations for network

simulations. The simulation was used in papers [18, 19], but further modifications were

made for the purposes of this paper with the support of the Institute for Telecommuni-

cations at the Technical University of Darmstadt.

The simulated system model represents an urban environment with 19 macro sites

(MBS) with 3 macro cells per site as shown in Fig. 1. Additionally, three micro sites

(mBS) per macro cell are distributed uniformly with omni antennas. The MBSs have a

height of 30 m and an electrical down-tilt of 15� for each antenna as proposed by 3GPP in

[20]. The path loss Model (PL) is the Model 2 proposed by 3GPP in [20] which considers

different PL for line of sight (LOS) and non-LOS (NLOS) conditions. The MBS antenna

gain pattern is as proposed in [20]. Equation (1) is for vertical gain, (2) for horizontal and

(3) is the overall gain.

GainV ¼ �min 12 � h� edtilt

h3 dB

� �2

;Gainh
min

( )
; ð1Þ

where h is the vertical angle, edtilt is the electrical down-tilt of the antenna, h3 dB the value

of the h at 3 dB and Gainmin
h the minimum vertical gain.
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GainH ¼ �min 12 � u
u3 dB

� �2

;Gain
u
min

( )
; ð2Þ

where u is the horizontal angle, u3 dB the value of the u at 3 dB and Gainmin
u the minimum

horizontal gain. All angles are in degrees [�].

GainMcro ¼ �min � GainV þ GainHð Þ;Gain
u
minf g: ð3Þ

The mBSs are modeled with omnidirectional antenna patterns, with Gainmicro = 0

[dB]. The signal-to-interference-plus-noise ratio (SINR) is given with Eq. (4):

SINRn
c;u ¼

Pn
TX;c;u � hn

c;u

��� ���2
r2 þ Pn

micro;u þ Pn
Macros;u

; ð4Þ

where u is the user equipment (UE), c the Cell and n the Physical Resource Block (PRB),

PTX the transmission power, |h|2 the channel gain between the user and the cell and r2 is the

variance of the AWGN. Pmicro; and PMacros are the powers received by the UE, from the

micro cells and macro cells respectively. The achievable rate can be calculated, as

expressed in Eq. (5):

Ru ¼
X

n

log2 1þ An
tc;u
� SINRn

c;u

� �
; ð5Þ

where An
tc;u

depicts the influence of a Rayleigh Fading Channel, giving this a more realistic

approach. The Rayleigh fading channel, as proposed in [21], is simulated as a random

variable that follows an exponential distribution with a mean value of 1. The cell load

through the day is modeled as in [22] and it is shown on Fig. 2. The power consumption

model for MBS and mBS is based on Eqs. (6) and (7) respectively [23]:

Fig. 1 Simulated network topology
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PMBS ¼ Nsector � NPApSec �
PTX

lPA

þ PSP

� �
� 1þ Ccð Þ � 1þ CPSBBð Þ ð6Þ

PmBS ¼ Nsector � NPApSec � NL �
PTX

lPA

1� CTX;static

� �
� CTX;NL þ PSP;NL

� �
� 1þ CPSð Þ; ð7Þ

where PMBS and PmBS are the power consumptions of a MBS and mBS respectively, Nsector

is the number of sectors, NPApSec is the number of power amplifiers per sector, PTX is the

transmit power, lPA is the power efficiency, PSP is the signal processing overhead, Cc is the

cooling loss, CPSBB is the battery backup and power supply loss, NL is the number of active

links, CTX,static is the static transmit power, CTX,NL is the dynamic transmit power per link,

PSP,NL is the dynamic power consumption caused by signaling processing per link, CPS

power supply loss.

3 Machine Learning Scheme

3.1 Motivation

Every communication network is generating signaling and statistical data and events,

which are used from the OAM specialists for monitoring, troubleshooting and management

of the network. Nowadays, when a problem in the network occurs, before taking any

action, the necessary specific data from the network is analyzed based on the OAM

engineers’ knowledge and experience. As the amount of data increases exponentially with

the increase in the complexity of communication technologies it becomes impossible for

man to processes and analyze such data correctly. This is why ML schemes become an

inherent tool for the development of autonomic processes in a communication network and

to path the way towards the creation of a fully autonomous network. The logic of this

Fig. 2 Cell load pattern through a day
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autonomy will be placed or stored on a separate plane, called ‘‘cognitive plane’’. This is the

plane which will interact and control different communication technologies and devices

from different vendors.

3.2 Cognitive Plane and Machine Learning Scheme

For the development of a fully autonomic network we propose a novel cognitive plane and

ML scheme based on abstraction, modularity and hierarchy, as shown in Figs. 3 and 4.

Abstraction and modularity are well known concepts and could be seen in programming, in

fabric production lines, in protocol stacks and etc. In Fig. 3 the cognitive plane is shown

with its major functional blocks. Its main responsibilities are related to the simulation of

human activities by monitoring and processing signaling data from the network plane and

taking decisions on behalf of the OAM specialists or assist the OAM engineers to maintain

the network by doing or processing repetitive events. The Cognitive plane will be

developed separately from the network plane, which includes network devices, network

protocols and etc. By implementing abstraction with the ‘‘standard based data and con-

figuration model’’ block we can reuse the cognitive functions independently from the

operating devices and used technologies.

We propose modularity and decision hierarchy also for the cognition block, as shown in

Fig. 4. Every layer has its own and unique processes and can interact with the adjacent

layers. The top layer will take high level decisions based on the created goals and policies.

They are stored in the policy block (Fig. 3). The network itself cannot decide which are the

tasks and goals that have to be pursued. That is why the tasks, goals and policies are

developed by the mobile operator. For every problem a decision process will be created

Fig. 3 Abstracted cognitive plane
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using one or more functional blocks from the given layer. Decisions are getting less

complex going from the top layer down to the lower ones. For taking a decision, a given

layer can use the functionalities from the layer below. For example, the lowest layer can

have the functionality to gather data from the sensors in a network and the layer above has

to decide based on the gathered information how to represent the data for further analysis

in the next higher layer. Decisions from a top layer will be translated or divided into less

complicated tasks or goals for the layer below. A layer will create decision processes

depending on the tasks/goals given from the top layer. A decision process from a layer can

use one or many decision processes from the layer below.

In Fig. 5 the proposed ML scheme and the creation of the basic cognition flow, which

resides in the ‘‘cognition’’ block are illustrated. It is divided into many individual func-

tional steps, which are modular and abstracted from one another. Some of the steps in the

proposed scheme can be skipped. For example, the ‘‘dimensionality reduction’’ step can be

removed if in the ‘‘initialization’’ step are picked only those features which are important

for the given task. More or less the cognition functionality in a network is related to the

way how humans are taking decisions. A man does not have a particular algorithm for

every task, but tools like ML algorithms, which are used and shaped while searching for a

solution, do have. For example when a man is learning how to ride a bike or drive a car, he

has at the beginning a statistical information, which will help him to create some states.

Then he will use supervised or unsupervised learning methods to find the best action for

Fig. 4 Modular and hierarchical cognition

Ini�aliza�on 

Observa�on 
and sta�s�cal 

processing 

Normaliza�on 
and clustering 

Mapping 
clusters to 

ac�ons 

Ac�on response 

Dimensionality 
reduc�on Rule extrac�on 

Performing self-
op�miza�on 

Fig. 5 Proposed machine
learning flow
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every state depending on the situation (learning with someone or by himself). This human

learning behavior can be described as an abstracted program shaped by the data gathered

from the environment by the man. So, our cognition flow will mimic this kind of behavior.

We will create the flow as a program, which will be shaped by the signaling data in the

network.

Having this kind of ML scheme will give us the following advantages:

• Decreased complexity One complex optimization problem or task could be solved by

many small and simple ML functional steps. In some cases it is impossible to create an

optimization task, because a full knowledge of the problem is required, such as

parameter dependencies, ranges and etc. Even assumptions are made to simplify the

problem solving scenario. The end result is a complex algorithm difficult to understand

with high level of determinism and low scalability. By splitting the problem into

smaller optimization tasks and solving each one of them by ML algorithms we acquire

a solution, which is easy to follow, understand, shaped and changed by the data

generated from the network;

• Reusability Usually complex problems have similarities. If these similarities are solved

with ML, we can reuse the algorithm for solving another problem;

• Flexibility and scalability Cognitive algorithms must be scalable and flexible. Having

functional steps with abstracted ML algorithms it will be easy to manipulate the

cognitive flow in time.

The cognition flow steps and blocks from the abstracted cognitive plane are as follows:

1. ‘‘Initialization’’ Here the input features, the actions, the constraints are defined and

initiated. The target parameters, which need to be optimized are set as input;

2. ‘‘Observation and statistical processing’’ Actual learning data is gathered from the

network (signaling information, key performance indicators and etc.). Useful

information is extracted from the data for the learning process;

3. ‘‘Normalization and clustering’’ In order the features to have an equal impact to

the decision making and similar value ranges, normalization is used. Through

grouping the samples with rather equal values into clusters a minimization of the

number of the states in which the network can reside is achieved. The clusters

determine the states, in which the network can be;

4. ‘‘Mapping clusters to actions’’ (i.e., the ‘learning process’) An action is mapped to

a cluster, which maximizes the value of the target parameter or parameters, which

have to be optimized without violating the constraints;

5. ‘‘Action response’’ This step predicts the potential future state of the network, if a

particular action will be taken. This is done by gathering the input and output states

for every action during learning. The transitions are stored and an interpolation is

used for every feature to find the transition surface. This transition surface will

show how the values of the features will change, while taking a particular action;

6. ‘‘Dimensionality reduction’’ Features, which do not contribute to the decision

making are discarded;

7. ‘‘Rule extraction’’ After the learning process is completed, a decision boundary is

extracted, which can be exchanged/shared between agents to speed up the learning

process;

8. ‘‘Performing self-optimization’’ Based on the information obtained from the

previous steps, a simple algorithm is derived for the optimization of the target

parameter;
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9. ‘‘User interface’’ This is an interface, which allows interaction with the

autonomous learning model;

10. ‘‘Polices’’ High level abstracted and non-engineering rules are created to control

the behavior of the AML model;

11. ‘‘Memory’’ All knowledge and gathered data are stored there;

12. ‘‘Standard base data and configuration model’’ The data, which is coming from a

network device is standardized and abstracted;

13. ‘‘Coordination and cooperation’’ In a multi user scenario data has to be shared and

actions among the users need to be coordinated.

3.3 Machine Learning Flow for Energy Saving

The goal of energy saving is to minimize the total power consumption in the network, thus

decreasing the CO2 emissions. In ‘‘Energy Saving’’ mode the algorithm finds the optimum

time periods in which cells with low cell loads can offload their traffic to the neighboring

cells. Measurements such as cell load (CL), reference signal received power (RSRP),

measurement reporting events (MRE) in a mobile terminal and etc. are used to create the

state spaces. Key performance indicators (KPI) such as handover failure rate (HFR),

handovers per call (Ping Pong Handover), The radio link failure ratio (RLFR) will assess

the effectiveness of the action taken in a particular state.

3.3.1 Simulated Energy Saving Scenario

In the proposed scenario every macro cell acts as an agent and is controlling many micro/

pico cells. The cell load pattern is given in Fig. 2 and will fluctuate every day. A particular

agent has to decide when and which of the micro/pico cells is justified to be turned off or

on. The ‘‘on/off’’ pattern must be such, so that the consumed energy is less, but without

handover failures and/or dropped traffic. First, for each cell under its control, the agent has

to find out the better state (‘‘off’’ or ‘‘on’’) and then to use this information for the multi-

cell scenario.

Let the vector x = [x1, x2, t] have three features. The load of cell 1 is represented by the

feature x1, x2 represents load of cell 2 and t is the time. For simulation purposes samples of

the load of cell 1 and 2 will be taken with a sampling step of 20 min. For the sake of

simplicity we will assume that cells 1 and 2 have the same capacity. The cell load value is

normalized so that the value changes from 0 to 1.

The energy saving optimization problem can be defined as follows:

MIN Ptotalð Þ subject to action space;KPI thresholds, ð8Þ

where Ptotal is the total power consumption in the network, action space are all possible

actions for the network, which minimize the total power consumption, KPI thresholds are

the network performance indicators thresholds requirements, which must be met while

minimizing the power consumption.

The constraints in the energy saving scenario, are to deactivate cells without increasing

the handover failure rate or overloading the recipient cell. Let cell 1 is the recipient cell and

cell 2 is the donor cell, which has to be turned off. Cell 1 will command cell 2, if it is

needed to be turned off or not. The possible actions will be: [turn off cell 2; turn on cell 2].

It is obvious that when the total load of cell 1 and cell 2 is higher than one (x1 ? x2[ 1)
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we will have call failures or call drops, but this information will not be given to the

recipient cell. The latter has to learn it.

Instead creating a complex solution for this optimization problem, we will use some of

the functional steps from the proposed ML scheme. Every step from the cognition flow has

its own task so that at the end of the flow in the ‘‘optimization’’ step we can write a simple

algorithm in the form of:

Pick best actionA for stateN when in time periodT

while constraint1\value; constraints2\value
ð9Þ

Action A is found in step 4, state N is created in step 3, time period T is measured in

step 2 and 3 and constraints are set in step 1.

The steps for achieving energy saving are explained as follows:

Step 1 Initialization

Here we define the possible actions for cell 1, constraints, input features and the target

parameter for optimization, which in this case is the total power consumption.

Step 2 Observation and statistical processing

If a mobile network is not reconfigured, it is expected all the functional data that is

generated to have a repetitive pattern with periodicity of one or up to several days. This

means that if we observe (or monitor) the network continuously for a number of con-

secutive days and gather enough long-term statistical data we could determine a time

depending function for every feature. For this we apply a Fourier regression model and the

function representation is (10):

f tð Þ ¼ a0 þ a1 � cos t � wð Þ þ b1 � sin t � wð Þ þ � � � þ ap � cos p � t � wð Þ þ bp � sin p � t � wð Þ;
ð10Þ

where t is time, w is the sampling rate, ap and bp coefficients, p [ {0} [ N.

Step 3 Clustering

The result from the previous step is the collection of a large number of samples in time.

One efficient way to process such data samples is to group them into clusters, which will

represent a particular state in which we can take a given action. The most promising

unsupervised algorithm for this kind of a scenario is the K-means algorithm [24]. The

application of this technique gives us groups or clusters with samples, which have similar

characteristics. The K-means algorithm divides a set of M samples into K disjoint clusters

C, each described by the mean l of the samples in the cluster. The means are commonly

called the cluster ‘‘centroids’’. In general, they are not points from x, although they live in

the same space. The K-means algorithm aims to choose centroids that minimize the inertia,

or within-cluster sum of squared criterion:

Xn

ði¼0Þ
min xi � lk

		 		2
� �

; ð11Þ

where lk is mean value in cluster k, xi data sample, n [ {0} [ N.

To find the optimal number of clusters we need to compare the variance of the clusters

for a different size of K. The following measure represents the sum of intra-cluster dis-

tances between the points in a given cluster Ck, containing nk points:
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Dk ¼ 2nk

X
xi2Ck

xi � l2
k : ð12Þ

Adding the normalized intra-cluster sums of squares gives a measure of the compact-

ness of the clustering:

Wk ¼
XK

k¼1

1

2nk

Dk: ð13Þ

This variance quantity Wk (or weight) is the basis of a procedure used to determine the

optimal number of clusters: the elbow method [25]. Initially the clusters will add more

information with a high variance (distance between data point and the centroid inside a

cluster), but with increasing the number of clusters, at some point the marginal gain will

drop, giving an angle in the graph. The number of clusters are chosen at this point, hence

the ‘‘elbow criterion’’ applied. The number K can be automatically determined using the

following rule:

if Wk �Wkþ1\threshold then clusters ¼ K: ð14Þ

If we reduce our dimensionality from 3 to 2 by discarding the time feature we will have

all the samples distributed on the [x1, x2] plane. A representation of the samples as a result

from a simulation of the system model described in point II, after the ‘‘observation and

statistical processing’’, and the ‘‘normalization and clustering’’ steps, is shown in Fig. 6.

Step 4 Mapping clusters to actions

For the mapping of actions to states simple reinforcement learning (RL) is used. A RL

agent interacts with its environment in discrete time steps. At each time t, the agent

receives an observation Ot, which typically includes the reward rt. It then chooses an action

from the set of actions available, which is subsequently sent to the environment. The

environment moves to a new state st?1 and the reward rt?1 associated with the transition

(st, at, st?1) is determined. The best action for a given state will be the action giving

maximum reward. As we have introduced some constraints in the form of thresholds, the

best action has to comply with them. The reward will be the value of the parameter that

must be optimized. In the case of energy saving the reward will be the amount of energy

saved for the period in which a given action is taken. The update for the action value

function is defined by Eq. (6) [26]:

Q st; atð Þ  Q st; atð Þ þ d rtþ1 þ cmax
a

Q stþ1; að Þ � Q st; atð Þ
h i

; ð15Þ

where Q(st, at) is the last updated action value function; rt?1 is the reward for taking an

action at in a state st; max
a

Q stþ1; að Þ is the maximum action value, which can be assumed in

a state st?1; d is the update rate and c is the discount rate.

Step 5 Action response

If we want to predict what will be the next state after taking an action, the Nearest-neighbor

interpolation algorithm can be used [27]. This step will be needed for a multi cell energy

saving scenario when the dependencies between the actions have to be discarded.

In a multi cell scenario the action will be multidimensional in the form of vector A[a2,

a3, …, an], where an is the action taken for cell n. It must be noted that there is no action for
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cell 1, because the cell acts as a decision maker for the rest of the cells. For two possible

actions for a given cell [‘turned on’, ‘turned off’] and a number of N cells the possible

variations of the action vector will be 2N - 1. Every action for a cell is dependent from the

actions taken for the rest of the cells. It will be inefficient to try every possible variation of

the action vector in a given state. That is why this dependency from the decision process

must be discarded. This is done through the implementation of feature prediction for a

particular action and a target cell. Analyzing the data before and after taking every single

action, a response function is created which is used for future decisions. For a four cell

scenario we have a three dimensional action vector. Also we have six response functions

divided into three groups, one for every target cell. In the response function groups we

have the action response for the feature ‘load of cell 1’ when action ‘turn on’ or ‘turn off’ is

taken only for the target cell. For example the response function Fcell1 load[action - ‘turn

off’, state {loadcell1, loadcell2}] shows how the load of cell 1 will change after taking action

‘turn off’ for cell 2 in the given state with features loadcell1 and loadcell2. This is illustrated

on Fig. 9.

First the algorithm will decide the action for one target cell. Then it will determine the

potential next state from the action response function for this cell with the decided action,

which will be used for the decision of the next action with the next target cell in queue.

After the second decision the next potential state will be calculated and so on. In this case a

decision-prediction chain is created. This chain will stop, when a prediction state enters an

area, where the constraints are not met. In this way instead trying 2N-1 possible actions for

every state, we can create 2 � (N - 1) action response functions. If the learning rate is

1 day per cell, with action response functions it will take only 2 � (N - 1) days to com-

plete the learning stage in multi cell scenario. Because the action response nature for a

given feature is the same among all target cells we can minimize the learning period even

more by combining action response data from all cells into one.

Fig. 6 Sample distribution and clustering
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In multivariate nearest-neighbor interpolation, the algorithm assigns to some point P(x1,

x2, x3, …, xn) the value of the closest observed/given data point P*(x1*, x2*, …, xn*) to P,

which minimizes the objective function:

d x1
i ; x

2
i ; . . .; x

n
i

� �
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x1

ið Þ2þ x2 � x2
ið Þ2þ. . .þ xn � xn

ið Þ2
q

ð16Þ

for all i = 1, 2, …, N, where (xi
1, xi

2, …, xi
n) are the given data points.

Step 6 Rule extraction

When the mapping is ready, we can extract some rule/boundary how the classes/actions are

separated. For multidimensional input space the decision boundary will be a hyper plane.

For the learning classification (linear boundary) a logistic regression or a support vector

machine learning (SVM) with linear kernel can be used. For non-linear classification (non-

linear boundary) a SVM with Gaussian kernel can be used [28]. Rule extraction will be

useful also, when we want to share the knowledge among cells, which are responsible for

taking actions.

For the simulated scenario, the mapping of clusters into actions and the rule extraction

step is illustrated in Fig. 8. In green are the samples in which the action ‘turn off’ is taken

for a given cell, while in red are the samples, in which the action ‘‘turn on’’ is chosen to be

better.

Step 7 Optimization

The flow is in learning stage from step 1 through step 6. When the learning stage is done, in

step 7 the learned features from the previous steps are exploited in the form of simple

commands as shown in (9). In a multi cell scenario the algorithm needs to decide which

cells are more efficient to be ‘turned off’ or ‘turned on’. The decision is based on the

calculation of the reward over action cost efficiency ratio. Reward is the saved energy and

action cost is the reciprocal value of the distance between the present/predicted state and

the decision boundary for the cell agent and target cell. If a state is near to the decision

boundary (distance is low, action cost is high), there is a higher chance for the next state to

be in the zone where the next target cell cannot be turned off. The cells with higher

efficiency ratio will be turned off first.

4 Simulation Results

Following, we present not only the end results, but illustrate all intermediate steps from the

machine learning flow.

In Fig. 6 are shown the statistics gathered for 3 days. Also the ‘normalization’ and

‘clustering’ steps are applied. Because cell traffic has periodicity with 1 day we can see

that the cell load samples have a distribution pattern. This information can be extracted and

used for learning purposes. Also we can see the optimum number of clusters, which later

will be used for the ‘mapping actin to states’.

In Fig. 7 the variation of the cell load and the transition of the clusters in time are

shown. Again through statistics we can extract useful information about the clusters or

states transitions in time and how long a cell or cells remains in a particular state.

The outcomes from ‘mapping actions to states’ and ‘rule extraction’ are illustrated in

Fig. 8. If the decision boundary falls within a cluster, the latter will be split during the

learning process. There is little difference between the actual and learned boundary, but
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this gap is expected to diminish in time as a result of the learning process. In this simu-

lation the learning process has a duration of 3 days. If the learning process was longer, the

cluster would be split into two parts. The part, which is between actual boundary and

learned boundary on Fig. 8 will be classified in the other region.

In Fig. 9 the action response function is shown. It can be seen how the load of cell 1 will

change after the action ‘‘turn off’’ is applied for cell 2. It is visible that for an area where

the data distribution is compacted, the prediction is more accurate than for an area where

no data was observed. In these areas the error prediction from the actual value can be

significant. This error can be minimized with more gathered data in step 2 and with the

increase of the learning time, with the use of a better algorithm for multivariate interpo-

lation. As mentioned above, the cell load is normalized to the maximum load that a cell can

have in the network.

From Fig. 10 the load of cell 1 during learning (day 1) and after learning (day 2) could

be seen. It is illustrated what the actual load of cell 1 will be without shutting down cell 2

and what is the sum of the loads of the two cells. In Fig. 11 the normalized power

consumption of cell 2 and call drops values are shown. There is a clear difference between

the learning stage and the exploitation stage. In the learning stage we have three periods

where a wrong decision was taken, where cell 2 was shut down and cell 1 did not have the

capacity to receive the load of cell 2. The result is that the number of dropped calls

exceeded the predefined normalized threshold. In the exploitation stage the agent (cell 1)

already learned that in these periods of time the state will be in the zone where action ‘‘turn

on’’ is better to be applied. After taking the correct decision higher values of call drops

were not perceived.

In Fig. 12 the total load of cell 1 is shown in a simulated multi-cell energy saving

scenario. Around 1 AM cell 1 has enough free capacity and the algorithm, embedded in

cell 1, decides to switch off a cell, thus the total load of cell 1 starts to increase. Half an

hour later another cell is switched off. After 6 h as a result of the increased overall traffic,

some cells are turned on, thus creating a saw-edged look of the total load of cell 1.

For the energy saving optimization problem there are different approaches as the ones

proposed in [29–33]. Taking into account their simulation setup, it could be concluded that

the results are similar to the above. By making a general comparative analysis between the

Fig. 7 Cluster transitions in time

P. Semov et al.

123



proposed machine learning scheme and other algorithms for energy saving the following

main differences can be observed:

• Scalability Some of the papers are having too much assumptions, which will lead to

difficulties in large a scale deployment scenario;

• Complex algorithms It seems that many of the solutions are very complex for this kind

of a problem.

• ‘Fail protection’/validation Some of the algorithms do not propose protective

mechanisms with KPIs, which will validate the efficiency of the taken action for

turning ‘off’ or ‘on’ a cell;

• Statistical data Only small number of papers are using the collection of statistical data

for their algorithms.

Fig. 8 Learned boundary

Fig. 9 Action response—prediction of cell 1 load after shutting down cell 2
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Fig. 10 Cell load of the recipient cell 1 during and after learning

Fig. 11 Normalized power consumption of cell 2 and call drops values

Fig. 12 Multi cell energy saving scenario
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5 Conclusion and Future Work

In this paper a novel energy saving approach for self-organized HetNets is presented. By

splitting an complex optimization problem into several modules, each one representing a

more simple optimization task and the application of a ML scheme in which the principles

of abstraction an modularity are incorporated, the advantages of this approach are outlined.

They are mainly related to the lower complexity of the final definition of the optimization

task and the flexibility and adaptation in the ML process, the latter based on the data

generated and gathered from the heterogeneous network. Based on this, an algorithm is

developed and simulated for the optimization of the energy efficiency in a HetNet. The

results from the simulation experiments show that such an approach could be an appro-

priate solution for developing a full self-managing future network. One of the disadvan-

tages of the proposed approach is the need for coordination between different autonomic

processes during and after the learning process and in some cases the necessity of a longer

time of the learning stage. They could be minimized, if the extracted knowledge is shared

among the agents and a simple coordinating scheme is implemented. In this relation the

future work will be related to the implementation of a simple coordination scheme among

the different autonomic processes and to introduce some priorities, which reflect the mobile

operator’s needs. Also we will define and test a more simplified event driven ML

scheme for problems which have a high computational complexity and cannot be easily

solved with numerical methods.
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1. Hämäläinen, S., Sanneck, H., & Sartori, C. (2012). LTE self-organising networks (SON). New York:
Wiley.

2. Semov, P., Koleva, P., Tonchev, K., Poulkov, V., & Mihovska, A. (2016). Autonomous learning model
for achieving multi cell load balancing capabilities in HetNet. In Proceedngs of the IEEE BlackSeaCom
2016 Conference. Varna, Bulgaria.

3. Altman, Z., Sallem, S., Nasri, R., Sayrac, B., & Clerc, M. (2014). Particle swarm optimization for
mobility load balancing SON in LTE Networks. In Wireless Communications and Networking Con-
ference Workshops (WCNCW) (pp. 172–177). IEEE. doi:10.1109/WCNCW.2014.6934881.

4. Morales-Tirado, L., Suris-Pietri, J. E., & Reed, J. H. (2009). A hybrid cognitive engine for improving
coverage in 3G wireless networks. In Communications Workshops, 2009. ICC Workshops 2009 (pp.
1–5). doi:10.1109/ICCW.2009.5208034.

5. Wang, Y., & Zhang, K. (2011). Decision tree based unsupervised learning to network selection in
heterogeneous wireless networks. In Consumer communications and networking conference (CCNC)
(pp. 1108–1109). IEEE. doi:10.1109/CCNC.2011.5766340.

6. Lee, C.-L., Su, W.-S., Tang, K.-A., & Chao, W.-I. (2014). Design of handover self-optimization using
big data analytics. In Network operations and management symposium (APNOMS), 2014 16th Asia-
Pacific (pp. 1–5). doi:10.1109/APNOMS.2014.6996546.

7. Kon, Y., Ito, M., Hassel, N., Hasegawa, M., Ishizu, K., & Harada, H. (2012). Autonomous parameter
optimization of a heterogeneous wireless network aggregation system using machine learning algo-
rithms. In Consumer communications and networking conference (CCNC) (pp. 894–898). IEEE. doi:10.
1109/CCNC.2012.6181186.

8. Ul Islam, M. N., & Mitschele-Thiel, A. (2012). Reinforcement learning strategies for self-organized
coverage and capacity optimization. In Wireless Communications and Networking Conference (WCNC)
(pp. 2818–2823). IEEE. doi:10.1109/WCNC.2012.6214281.

9. Thampi, A., Kaleshi, D., Randall, P., Featherstone, W., & Armour, S. (2012). A sparse sampling
algorithm for self-optimisation of coverage in LTE networks. In Wireless communication systems
(ISWCS) (pp. 909–913). doi:10.1109/ISWCS.2012.6328500.

Implementation of Machine Learning for Autonomic Capabilities…

123

http://dx.doi.org/10.1109/WCNCW.2014.6934881
http://dx.doi.org/10.1109/ICCW.2009.5208034
http://dx.doi.org/10.1109/CCNC.2011.5766340
http://dx.doi.org/10.1109/APNOMS.2014.6996546
http://dx.doi.org/10.1109/CCNC.2012.6181186
http://dx.doi.org/10.1109/CCNC.2012.6181186
http://dx.doi.org/10.1109/WCNC.2012.6214281
http://dx.doi.org/10.1109/ISWCS.2012.6328500


10. Razavi, R., & Claussen, H. (2013). Improved fuzzy reinforcement learning for self-optimization of
heterogeneous wireless networks. In International conference on telecommunications (ICT) (pp. 1–5).
doi:10.1109/ICTEL.2013.6632073.

11. Rouzbeh, R., Siegfried, K., & Holger, C. (2010). A fuzzy reinforcement learning approach for self-
optimization of coverage in LTE networks. Bell Labs Technical Journal, 15(3), 153–175. doi:10.1002/
bltj.20463.

12. Semov, P. T., Poulkov, V., Mihovska, A., & Prasad, R. (2014). Increasing throughput and fairness for
users in heterogeneous semi coordinated deployments. In Wireless communications and networking
conference workshops (WCNCW) (pp. 40–45). IEEE. doi:10.1109/WCNCW.2014.6934858.

13. Baltiiski, P., Iliev, I., Kehaiov, B., Poulkov, V., & Cooklev, T. (2015). Long-term spectrum monitoring
with big data analysis and machine learning for cloud-based radio access networks. Wireless Personal
Communications. doi:10.1007/s11277-015-2631-8.

14. Thilina, K. M., Choi, K. W., Saquib, N., & Hossain, E. (2013). Machine learning techniques for
cooperative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Com-
munications, 31(11), 2209–2221. doi:10.1109/JSAC.2013.131120.

15. Wu, R., Wen, Z., Fan, C., Liu, J., & Ma, Z. (2010). Self-optimization of antenna configuration in LTE-
advance networks for energy saving. In 3rd IEEE international conference on broadband network and
multimedia technology (IC-BNMT) (pp. 529–534). doi:10.1109/ICBNMT.2010.5705146.

16. Mwanje Stephen S., & Mitschele-Thiel A. (2013). A Q-learning strategy for LTE mobility load bal-
ancing. In 24th international symposium on personal indoor and mobile radio communications
(PIMRC) (pp. 2154–2158). IEEE. doi:10.1109/PIMRC.2013.6666500.

17. Mwanje, S. S., & Mitschele-Thiel A. (2014). Distributed cooperative Q-learning for mobility-sensitive
handover optimization in LTE SON. In Symposium on computers and communication (ISCC) (pp. 1–6).
IEEE. doi:10.1109/ISCC.2014.6912619.

18. Eduardo, S., Mihovska, A., Rodrigues, A., Prasad, N., & Prasad, R. (2013). Cell load balancing in
heterogeneous scenarios. In Proceedings of GWS 2013, June 24–28, 2013, Atlantic City, NJ.

19. Monteiro, N., Mihovska, A., Rodrigues, A., Prasad, N., & Prasad, R. (2013). Interference analysis in a
LTE-A HetNet scenario: Coordination vs. uncoordination. In Proceedings of GWS 2013, June 24–28,
2013, Atlantic City, NJ.

20. GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA
physical layer aspects; (Release 9). TR 36.814, 3rd Generation Partnership Project (3GPP), March
2010.

21. Li, J., Bose, A., & Zhao, Y. Q. (2005). Rayleigh at fading channels’ capacity. In Proceedings of the 3rd
annual communication networks and services research conference (pp. 214–217).

22. Oliver, B., Anton, A. Michael, W., & Ulrich, B. (2013). Energy efficiency of LTE networks under traffic
loads of 2020. In Proceedings of the tenth international symposium on wireless communication systems
(ISWCS 2013) (pp. 1–5).

23. Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different
base station types in heterogeneous cellular networks. In Future Network and Mobile Summit (pp. 1–8).

24. Zaki, M. J., & Meirajr, W. (2014). Data mining and analysis. Cambridge: Cambridge University Press.
25. Ketchen, D. J., Jr., & Shook, C. L. (1996). The application of cluster analysis in strategic management

research: An analysis and critique. Strategic Management Journal, 17(6), 441–458. doi:10.1002/
(SICI)1097-0266(199606)17:6\441::AID-SMJ819[3.0.CO;2-G.

26. Sutton, Richard S., & Barto, Andrew. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

27. Surhone, L. M., Timpledon, M. T., & Marseken, S. F. (2010). Nearest—Neighbor interpolation. VDM
Publishing. ISBN 9786131015762.

28. Suykens, J. A. K. (2001). Nonlinear modelling and support vector machines. In IMTC 2001 (Vol. 1,
pp. 287–294). doi:10.1109/IMTC.2001.928828.

29. Bousia, A., Kartsakli, E., Alonso, L., & Verikoukis, C. (2012). Energy efficient base station maxi-
mization switch off scheme for LTE-advanced. In 2012 IEEE 17th international workshop on computer
aided modeling and design of communication links and networks (CAMAD). doi:10.1109/CAMAD.
2012.6335345.

30. Roth-Mandutz, E., & Mıtschele-Thıel, A. (2013). LTE energy saving SON using fingerprinting for
identification of cells to be activated. In Future Network and Mobile Summit (FutureNetworkSummit).
ISBN: 978-1-905824-37-3.

31. Hiltunen, K. (2013). Improving the energy-efficiency of dense LTE networks by adaptive activation of
cells. In 2013 IEEE international conference on communications workshops (ICC). doi:10.1109/ICCW.
2013.6649410.

P. Semov et al.

123

http://dx.doi.org/10.1109/ICTEL.2013.6632073
http://dx.doi.org/10.1002/bltj.20463
http://dx.doi.org/10.1002/bltj.20463
http://dx.doi.org/10.1109/WCNCW.2014.6934858
http://dx.doi.org/10.1007/s11277-015-2631-8
http://dx.doi.org/10.1109/JSAC.2013.131120
http://dx.doi.org/10.1109/ICBNMT.2010.5705146
http://dx.doi.org/10.1109/PIMRC.2013.6666500
http://dx.doi.org/10.1109/ISCC.2014.6912619
http://dx.doi.org/10.1002/(SICI)1097-0266(199606)17:6&lt;441::AID-SMJ819&gt;3.0.CO;2-G
http://dx.doi.org/10.1002/(SICI)1097-0266(199606)17:6&lt;441::AID-SMJ819&gt;3.0.CO;2-G
http://dx.doi.org/10.1109/IMTC.2001.928828
http://dx.doi.org/10.1109/CAMAD.2012.6335345
http://dx.doi.org/10.1109/CAMAD.2012.6335345
http://dx.doi.org/10.1109/ICCW.2013.6649410
http://dx.doi.org/10.1109/ICCW.2013.6649410


32. Hiltunen, K. (2013). Utilizing eNodeB sleep mode to improve the energy-efficiency of dense LTE
networks. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio
communications (PIMRC). doi:10.1109/PIMRC.2013.6666707.

33. Ambrosy, A., Blume, O., Ferling, D., Jueschke, P., Wilhelm, M., & Yu, X. (2014). Energy SAVINGS in
LTE macro base stations. In Wireless and mobile networking conference (WMNC), 2014 7th IFIP.
doi:10.1109/WMNC.2014.6878872.

Plamen T. Semov has received his two M.Sc. degrees at the Technical
University of Sofia and at the Alborg University. He has more than
3 years of work experience in leading mobile operators in Bulgaria in
the field of fixed access network planning, radio planning and opti-
mization of radio access network and base station design. He also has
more than 1 year of expertise in network security operation. He has
publications related to the development of algorithms for self-organi-
zation, power control and energy efficiency in heterogeneous net-
works. His major fields of scientific interest and expertise are related to
machine learning, self-organizing networks, resource management in
next generation networks. Currently he is a Ph.D. student at the
Technical University of Sofia.

Hussein Al-Shatri received the B.Sc. degree in electronic and com-
munications engineering from Hadhramout University, Yemen, the
M.Sc. degree in communications engineering from Munich University
of Technology, Germany, and the Ph.D. degree in electrical engi-
neering from the University of Rostock, Germany, in 2003, 2008, and
2014, respectively. Between 2009 and 2014, he was assistant
researcher with the Institute of Communications Engineering,
University of Rostock. During that time, he was active in the topics of
power allocation and interference alignment. Since August 2014, he is
a Postdoctoral Researcher with Communications Engineering Labo-
ratory, Technische Universität Darmstadt, Germany. His research
interests include hierarchical signal processing, cloud radio access
networks, distributed algorithms design, and user preferences analysis
& integration in underlay wireless networks.

Krasimir Tonchev graduated M.Sc. in Telecommunications at the
Technical University of Sofia, Bulgaria, in 2009. He is currently
working on his second M.Sc. in Applied Mathematics and on his Ph.D.
work in Computer Vision. He is also leading researcher at the Tele-
infrastructure R&D laboratory at the Technical University of Sofia. His
primary research interests include machine learning, computer vision,
general data analysis and processing. He has published multiple papers
on these topics. As an engineer, he has realized multiple projects,
including image processing and computer vision systems deployed
across the world.

Implementation of Machine Learning for Autonomic Capabilities…

123

http://dx.doi.org/10.1109/PIMRC.2013.6666707
http://dx.doi.org/10.1109/WMNC.2014.6878872


Vladimir Poulkov has received his M.Sc. and Ph.D. degrees at the
Technical University of Sofia. He has more than 30 years of teaching,
research and industrial experience in the field of telecommunications,
starting from 1981 as R&D engineer working for the telecommuni-
cation industry, and developing his carrier to a full professor at the
Faculty of Telecommunications, Technical University of Sofia, Bul-
garia. He has successfully managed and realized numerous industrial
and engineering projects, related to the development of the telecom-
munication transmission and access network infrastructure in Bulgaria,
many R&D and educational projects. His fields of scientific interest
and expertise are related to interference suppression, resource man-
agement in next generation networks and IoT. He is author of more
than 100 scientific publications and is leading B.Sc., M.Sc. and Ph.D.
courses in the field of Information Transmission Theory and Access
Networks. In the period 2007–2015 he was Dean of the Faculty of
Telecommunications at the Technical University of Sofia. Currently he

is head of the ‘‘Teleinfrastructure R&D’’ laboratory at the Technical University of Sofia. He is Chairman of
the Bulgarian Cluster of Telecommunications, Senior IEEE Member and co-founder of the CONASENSE
(Communication, Navigation, Sensing and Services) society.

Anja Klein received the diploma and Dr.-Ing. (Ph.D.) degrees in
electrical engineering from the University of Kaiserslautern, Germany,
in 1991 and 1996, respectively. From 1991 to 1996, she was a member
of the staff of the Research Group for RF Communications at the
University of Kaiserslautern. In 1996, she joined Siemens AG, Mobile
Networks Division, Munich and Berlin. She was active in the stan-
dardization of third generation mobile radio in ETSI and in 3GPP, for
instance leading the TDD group in RAN1 of 3GPP. She was vice
president, heading a development department and a systems engi-
neering department. In May 2004, she joined the Technische Univer-
sität Darmstadt, Germany, as full professor, heading the
Communications Engineering Lab. Her main research interests are in
mobile radio, including multi-antenna systems, radio resource man-
agement, interference management, relaying and multi-hop, coopera-
tive communication, network planning, and cross-layer design. Dr.
Klein has published over 290 refereed papers and has contributed to

twelve books. She is inventor and co-inventor of more than 45 patents in the field of mobile radio. In 1999,
she was inventor of the year of Siemens AG. Dr. Klein is a member of IEEE and of Verband Deutscher
Elektrotechniker-Informationstechnische Gesellschaft (VDE-ITG).

P. Semov et al.

123


	Implementation of Machine Learning for Autonomic Capabilities in Self-Organizing Heterogeneous Networks
	Abstract
	Introduction
	Overview and System Model
	Overview
	System Model

	Machine Learning Scheme
	Motivation
	Cognitive Plane and Machine Learning Scheme
	Machine Learning Flow for Energy Saving
	Simulated Energy Saving Scenario


	Simulation Results
	Conclusion and Future Work
	References




