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Abstract—The mobile application market is growing very fast.
More and more applications require intensive computations.
However, computation power of mobile devices is limited and
does not catch up with the growth of computation demand of
applications. Computation offloading is a promising approach
for reducing the computation load and reducing execution time
and energy consumption. In this work, we investigate a wireless
distributed computing scenario where a mobile device exploits the
computation resources of the nearby devices to reduce execution
time. The main goal is to study the gain of computation offload-
ing among heterogeneous devices. We formulate the problem
of optimal offloading as a joint resource allocation problem
consisting of power allocation and task splitting. The resulting
problem is non-linear and non-convex. By exploiting the unique
characteristics of the problem, we can transform it into a convex
problem. The optimal solution of the original problem can then be
determined by performing a bisection search over one parameter.
Using numerical simulation, we can show that by offloading
computation load to nearby devices, the execution time is reduced
substantially. Moreover, the gain of offloading in comparison with
computing locally increases with the ratio of the computation load
to the size of input data of the task as well as with increasing
number of nearby devices.

I. INTRODUCTION

The last years have witnessed significant advancement

in the development of wireless mobile devices, e.g., smart

phones and smart wearable devices. Todays’ mobile devices

are equipped with advanced technologies, for example, high

resolution cameras or integrated sensors. With the improving

capabilities of the devices and the increasing interest in

mobile applications and services for our daily purposes, the

functionality of mobile devices has recently been progressively

extended to data collection and data processing. This results

in exponential growth in the usage of mobile devices in

many different areas. More and more applications require

high computation power, e.g., augmented reality, speech-to-

text, gaming, video processing, face recognition, 3D local-

ization/mapping or processing of bulky data. However, the

efficiency of the applications is limited by the computation

capability of small devices.

To overcome the limitation of computation resources at

mobile devices, mobile cloud computing is proposed as a

promising solution [1], [2]. Basically, mobile cloud computing

aims at shifting the computation tasks and data storage from

the mobile devices to entities with better computation and

storage capabilities. Computation offloading is typically a

service offered by a provider to the customer via networks

in a typical client-server architecture [3]. In this architecture,

mobile devices connect to the cloud server via a base station.

Input data of the tasks will be transmitted first to the base

station via wireless connection and then it will be sent to the

cloud server via the backhaul network. This architecture and

its related computation offloading problems in single-hop and

multi-hop networks have been intensively investigated, e.g. [4],

[5], [6] and references therein.

A different scenario is considered in this paper. We in-

vestigate a situation where, instead of remote cloud servers,

a mobile node can exploit nearby devices with computation

capability to enable parallel task execution. Nearby devices

could be local computing servers at nearby small-cell base

stations or other mobile nodes around that node, or computing

devices that can be reached from that node via multi-hop trans-

mission. Such a scenario, as depicted in Figure 1, is known as

wireless distributed computing (WDC) [7] or mobile ad-hoc

cloud computing [8]. WDC/mobile ad-hoc cloud computing is

useful for offloading of splittable tasks. A splittable task can be

partitioned into independent sub-tasks. The sub-tasks are then

distributed to other devices and processed in parallel. Some

practical applications of WDC/mobile ad-hoc cloud computing

and splittable task model are discussed in references [8][9].

In [8], the authors proposed a general framework for mobile

ad-hoc cloud computing and implementation with real devices.

In [9], a similar framework is considered and an algorithm

for task splitting is considered. They also implemented a test-

bed consisting of android devices to validate their algorithm.

They showed that by using a mobile ad-hoc cloud computing

architecture, the execution time and the energy consumption

can be reduced greatly. However, they neither considered the

case when the source node can send the sub-tasks to the

neighbors simultaneously (on orthogonal frequency channels)

nor considered heterogeneous radio channel conditions. In

their model, the wireless connections from the source node

to the neighbors have the same rate. The neighbors are sorted

based on their computation power. Based on this, transmis-

sions from the source node to the neighbors are scheduled

one after another. The task splitting is then considered taking

into account both, delay caused by the data transmission and

by the sub-task computation.

A similar scenario is considered in [10]. The authors fo-

cused on maximizing nodes’ life-time. They investigated and

proposed a solution to the problem of joint clock frequency
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Fig. 1. Network with one source node and multiple neighbors

control, power control of mobile nodes, task splitting, and

communication rate among mobile nodes. In [11], the WDC

scenario in multi-hop wireless networks is considered. The

authors proposed an algorithm for performing node selection

and task splitting. However, in their model, the rates from the

source node to the computing nodes are preallocated.

Different from the mentioned works, in this paper, we

focus on the problem of minimizing the total execution time

including transmission time and computation time. Our aim

is to investigate and propose an optimal algorithm for the

joint task splitting and radio resource allocation problem in

a scenario where the source node can transmit data to the

neighbors simultaneously. The wireless links are, however,

coupled in such a way that there is a total transmit power

constraint on the sum of the powers used on the wireless

channels. We also consider the heterogeneous scenario where

the wireless channels have different gains and the mobile

nodes have different computation capabilities.

The rest of this paper is organized as follows: Section II

presents the network model and splittable task model. The

problem of optimal task splitting and radio resource allocations

is formulated in Section III and its solution is presented in

Section IV. The performance of the proposed solution is then

investigated via numerical simulation in Section V. Finally,

we conclude our work in Section VI.

II. NETWORK AND TASK MODEL

A. Network Model

The considered network is depicted in Figure 1. It consists

of a source node with a splittable computation task and

K neighbors. The source node has direct connection to the

neighbors on orthogonal frequency channels. Let B be the total

bandwidth of the system. In this work, we do not consider

bandwidth allocation, thus, the bandwidth for each channel

from the source to the neighbors is pre-allocated, e.g. Bi =
B
K

,

i = 1, . . . ,K. We consider a block fading channel, i.e. the

channel is invariant over a frame, and the channel coefficient

is drawn from a distribution and is independent from frame

to frame. We also assume that the data transmission duration

is much longer than the coherence time of the channel. The

transmit data will be divided into packets. In each frame,

one packet will be transmitted. For each link i, let hi denote

the random variable representing the channel coefficient. Let

Fi(x) be the Complementary Cumulative Density Function

(CCDF) of |h2
i |. We assume the network operates at the

rates satisfying the packet error rate of ǫ, where ǫ is a given

designed system parameter, e.g., ǫ = 0.1 is commonly used in

practical communications systems. The transmission rate Ci,ǫ

is choosen such that

Prob

(

Bi log2

(

1 +
pi|hi|

2

BiN0

)

< Ci,ǫ

)

= ǫ, (1)

where pi ≥ 0 is the transmit power allocated to the i-the link

and N0 is the power spectral density of the additive white

Gaussian noise at the receiver. According to [12], we have

Ci,ǫ = Bi log2

(

1 +
F−1
i (1− ǫ)pi
BiN0

)

. (2)

We assume that if a transmission of a data packet in a frame

is erroneous, then that packet will be retransmitted in the next

frame until it is successfully received at the receiver. With

packet error rate of ǫ, the average number of frames for a

successul transmission is 1
1−ǫ

. Therefore, the average rate of

the i-th link is

ri = (1− ǫ)Ci,ǫ = (1− ǫ)Bi log2 (1 + aipi) , (3)

where ai =
F

−1

i
(1−ǫ)

BiN0

. Furthermore, the transmit power must

satisfy the total sum transmit power constraint, i.e.,

K
∑

i=1

pi ≤ pmax. (4)

Remark 1. We have assumed that the perfect instantaneous

channel state information (CSI) is known at the receiver.

The instantaneous CSI can be obtained through pilot-aided

channel estimation. The CCDF can be obtained from a channel

model based on practical measurement or training. The source

node only needs to know the value F−1
i (1 − ǫ). This can

be obtained by a feedback channel from the receivers. The

amount of feedback is small, therefore, it is feasible for

practical implementation.

B. Splittable Task Model

We consider a task model when the original task can

be partioned into a number of independent subtasks. The

computation requirement of each subtask is proportional to

the size of the subtask. Such a model is applicable for

data-partioned-oriented applications [13]. One example are

language translation applications. In these applications, the

input audio file or text file can be split into smaller chunks

and the chunks can be translated independently. The time

to process each chuck is approximately proportional to the

chunk’s size.

Let T be the splittable task with W data input bits and

requiring L CPU cycles of processing. The source partitions

the original task into K + 1 sub-tasks T0, T1, . . . , TK with

x0, x1, ..., xK , 0 ≤ xi ≤ 1, i = 0, . . . ,K, being the

corresponding percentage of the original task that is partitioned

into the sub-tasks. Sub-task T0 is calculated locally at the

source node and for each i = 1, . . . ,K, sub-task Ti is



offloaded to the i-th neighbor, see Fig. 1. Similar to [9], we

assume that the task T is uniformly splittable, i.e. a fraction

of x of the original task has xW input data bits and requires

xL CPU cycles for processing. The sub-tasks must cover the

complete original task, i.e.,

K
∑

i=0

xi = 1. (5)

The computation load of sub-task Ti is given by xiL. Let fi
denote the clock speed of the i-th neighbor, and f0 denote the

clock speed of the source node. Then the processing time of

sub-task Ti is calculated as

Tp,i =
xiL

fi
, i = 0, . . . ,K. (6)

We assume that the size of the results of the sub-tasks after

processing is very small in comparison with the size of input

data. This assumption is valid for a large range of applications

[9]. Therefore, the time required for transmitting the results

from the neighbors back to the source node is ignored.

III. OPTIMIZATION PROBLEM FORMULATION

Computation offloading in wireless networks must take into

account the delay caused by data transmission via wireless

communications because the nodes can process the sub-task

only when the data transmission of the input bits is finished.

The time when sub-task Ti, i = 1, . . . ,K, is finished is

Ti =
xiW

(1− ǫ)Bi log2 (1 + aipi)
+

xiL

fi
(7)

where the first term is the data transmission time duration

and the second term is the processing time duration. No

communication is required for sub-task T0 at the source node.

Thus, the time when the source node finishes sub-task T0 is

T0 =
x0L

f0
. (8)

The completion time is defined as the time duration from the

transmission of the sub-tasks to the neighbor nodes until all

sub-tasks are finished. Therefore, the completion time is de-

fined by max
0≤i≤K

Ti. The problem of minimizing the completion

time can now be formulated as

min max
0≤i≤K

Ti

K
∑

i=1

pi ≤ pmax, pi ≥ 0, i = 1, . . . ,K

K
∑

i=0

xi = 1, xi ≥ 0, i = 0, 1, . . . ,K.

(9)

In general, problem (9) is non-linear and non-convex. There is

no efficient algorithm to find the optimal solution. However,

by exploiting the unique characteristics of the problem, in the

next section we show that the optimal solution can be found

by solving another convex problem.

IV. POWER ALLOCATION AND TASK SPLITTING

ALGORITHMS

By adding a new variable T , the minimum completion time

problem can be transformed to the following problem:

min T (10)

s.t.
x0L

f0
≤ T (11)

xiW

(1− ǫ)Bi log2(1 + aipi)
+

xiL

fi
≤ T, i = 1, . . . ,K

(12)

K
∑

i=1

pi ≤ pmax, pi ≥ 0, i = 1, . . . ,K (13)

K
∑

i=0

xi = 1, xi ≥ 0, i = 0, 1, . . . ,K (14)

where T , x0, x1, . . . , xK , and p1, . . . , pK are variables. For

fixed p1, . . . , pK , the problem is linear with respect to T ,

x0, x1, . . . , xK .

We now propose two different algorithms to solve the above

optimization problem. The first is a suboptimal algorithm,

which first allocates the power and then optimizes the task

splitting. In the second, optimal algorithm, power allocation

and task splitting are optimized jointly.

A. Optimal task splitting algorithm for preallocated power

In this case, we assume the powers pi are already allocated

according to some given criterion, e.g., maximum sum rate.

By introducing the new parameters

b0 =
L

f0
, bi =

W

(1− ǫ)Bi log2(1 + aipi)
+

L

fi
, i = 1, . . .K,

(15)

the corresponding problem obtained from problem (10) for

fixed pi can be written as

min T (16)

s.t. xibi ≤ T, i = 1, . . . ,K, (17)

K
∑

i=0

xi = 1, xi ≥ 0, i = 1, . . . ,K. (18)

Due to (17),
K
∑

i=1

xi ≤ T
K
∑

i=1

1
bi

holds. Moreover, because of

(18), we obtain 1 ≤ T
K
∑

i=1

1
bi

. As a result,

T ≥
1

K
∑

i=1

1
bi

. (19)

The minimum of T is achieved in case of equality, i.e., if and

only if xibi = T , for all i = 0, . . . ,K. Therefore, the optimal

solution of problem (16) is:

T ∗ =
1

K
∑

i=1

1
bi

and x∗
i = T ∗ 1

bi
, i = 1, . . . ,K. (20)



One important property is that, at the optimum point, all the

inequality constraints become equality constraints.

B. Optimal joint power allocation and task splitting algorithm

Exploiting the insight obtained from solving the optimal

task splitting for preallocated power, we now propose an

optimal solution to the joint power allocation and task splitting

problem (10). First, we prove the following lemma:

Lemma 1. At the optimum point, the inequality constraints

(11) and (12) become equalities.

Proof. Let T ∗, x∗
i , p∗i be the optimal solution of the optimiza-

tion problem (10). If we fix the variables pi to p∗i , then T ∗ and

x∗
i are the optimal solution to the reduced linear problem for

fixed powers. This problem has been solved in Section IV-A.

According to the result in Section IV-A, at the optimum point

all the inequality constraints become equality constraints.

Applying the lemma, in order to find the optimal solution

of the original problem, we need to consider only the case

when constraints (11) and (12) become equality. As a result

the variables xi can be rewritten as a function of T and pi as

x0 = T
f0
L

and xi = T
(1− ǫ)fiBi log2(1 + aipi)

Wfi + (1− ǫ)LBi log2(1 + aipi)
.

(21)

Combined with the constraint (14) it must hold

1 = T
f0
L

+

K
∑

i=1

T
(1− ǫ)fiBi log2(1 + aipi)

Wfi + (1− ǫ)LBi log2(1 + aipi)

= T









K
∑

i=0

fi

L
−

W

L
g(p1, . . . , pK)









(22)

where

g(p1, . . . , pK) =

K
∑

i=1

f2
i

Wfi + (1− ǫ)LBi log2(1 + aipi)
.

(23)

Thus,

T =
1

K∑

i=0

fi

L
− W

L
g(p1, . . . , pK)

. (24)

Let gmin be the global minimum of g(p1, . . . , pK) under the

constraints (13). We obtain

T ≥
1

K∑

i=0

fi

L
− W

L
gmin

=: Tlb. (25)

As a consequence of (25), T is lower bounded by Tlb.

Moreover, suppose g achieves the global minimum gmin at

p∗1, . . . , p
∗
K . If we choose T = Tlb, pi = p∗i , and xi are

calculated from (21) with T = Tlb, pi = p∗i , then the

constraints of the problem (10) are all satisfied and T achieves

its lower bound value Tlb. Therefore, in order to solve problem

(10) we only have to solve the following power allocation

problem with variables pi:

min

K
∑

i=1

f2
i

Wfi + (1− ǫ)LBi log2(1 + aipi)
(26)

s.t.

K
∑

i=1

pi ≤ pmax (27)

pi ≥ 0, i = 1, . . . ,K. (28)

For each i, function Wfi + (1 − ǫ)LBi log2(1 + aipi) is

concave and positive with respect to pi ≥ 0, thus the function
f2

i

Wfi+(1−ǫ)LBi log2
(1+aipi)

is convex with respect to pi ≥ 0.

Therefore, the above optimization problem is convex. More-

over, since Slater’s constraints qualifications hold true, we may

impose the KKT conditions to find the optimal solutions. The

corresponding Lagrangian is

L(p) =

K
∑

i=1

f2
i

Wfi + (1− ǫ)LBi log2(1 + aipi)

−

K
∑

i=1

νipi + λ(

K
∑

i=1

pi − pmax)

(29)

where the variables νi, λ are all nonnegative coefficients

representing the Lagrange multipliers

ui(pi) = λ, i = 1, . . . ,K

λ(
K
∑

i=1

pi − pmax) = 0

pi ≥ 0, i = 1, . . . ,K,

(30)

where

ui(pi) =
log2(e)(1− ǫ)f2

i Lai

(1 + aipi) (Wfi + (1− ǫ)LBi log2(1 + aipi))
2 .

(31)

From (30), it follows that λ must be strictly positive. Moreover,

for each i = 1, . . .K, the function ui(pi) is strictly decreasing

for pi ≥ 0. Thus, the inverse function u−1
i exists and it is also

strictly decreasing. Thus, the system of equations (30) has a

unique solution λ∗, p∗i satisfying

p∗i =
[

u−1
i (λ∗)

]+

K
∑

i=1

p∗i = pmax

(32)

where [x]+ = max{0, x}. The new system of equations can be

solved by using bisection search on λ. The proposed algorithm

is similar to the well-known water-filling algorithm. In this

work, the water level depends not only on the quality of the

channel to the neighbors, but also on the computation power

of the neighbors. According to (32), it may happen that some

neighbors are not used if their channel is too bad or their

computation capabilities are too low.
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V. NUMERICAL EVALUATION

In this section, the performance of the proposed algorithms

is investigated as a function of L
W

and K, where L/W is

the ratio of the number L of CPU cycles of the task to the

number W of bits of the same task and K is the number

of neighbors. We simulate a scenario of a source node and

varying number K of neighbors. The processing speed of the

source node is f0 = 109 CPU cycles per second, and for

node i, i = 1, . . . ,K, fi is randomly chosen from the set

{0.5, 1.0, 1.5, 2.0} × 109 CPU cycles per second. The size of

the input data is W = 10Mbits. The total available bandwidth

is B = 10MHz. The bandwidth of each link is Bi =
B
K

= 10
K

MHz. The channel gain of the i-th link is given by |hi|
2d−3

i ,

where the channel coefficient hi is a random variable following

the Rayleigh distribution with zero mean and unit variance.

The position of the i-th neighbor is chosen randomly within

the circle with radius of 100m around the source node. The

power spectral density of the additive white Gausian noise is

N0 = 10−12W/Hz. The total transmit power is pmax = 1W.

The packet error rate is ǫ = 0.1.

The performance of the proposed optimal and sub-optimal

algorithms is measured by the offloading gain. It is defined as

the ratio of the completion time achieved by local computing

to the completion time achieved by offloading. In the first

simulation, we investigate the offloading gain as a function

of L
W

. The number of neighbors is fixed with K = 4. The

result is shown in Figure 2. The offloading gain increases

with L/W . At low L/W , or in data-intensive domain, the

offloading gain is low whereas the offloading gain is higher

at high L/W (computation-intensive domain). This is to be

expected because at low L/W when performing offloading,

most of the time is spent for data transmission and, thus,

reduces the benefit of having more computation resources.

The difference in performance of the optimal algorithm and

the sub-optimal algorithm also increases with the ratio L/W .

This can be explained as follows. At low L/W , only a small

part of the original task is offloaded. Therefore, the penalty of

choosing the non-optimum power levels is not much. However,

at high L/W , a larger part of the original task is offloaded.

Therefore, non-optimum selection of transmit power results

in longer transmission time and, thus, increases the overall

completion time.

In the second simulation, we investigate the offloading

gain as a function of the number K of neighbors. Two

representative values of L/W are used in the simulation,

L/W = 200 for data-intensive domain and L/W = 2000 for

computation-intensive domain. The result is shown in Figure

3. The offloading gain increases with the number of neighbors.

This is to be expected because more neighbors means more

computation resources and more diversity of wireless chan-

nels. Much higher offloading gain is achieved in computation-

intensive domain. The difference of the performance between

the optimal and sub-optimal algorithm is larger and increases

faster in the computation-intensive domain than in the data-

intensive domain.

VI. CONCLUSION

In this work, we consider the problem of optimal radio

resource allocation and task splitting in a wireless distributed

computing scenario. The joint problem is formulated as an

non-linear non-convex optimization problem. Two algorithms,

one simple sub-optimal algorithm and one optimal algorithm,

are proposed. Via numerical evaluation, we show that high

offloading gain can be obtained by the proposed algorithms.

When the size of the task’s input dominates the computation

load, then the offloading gain is lower.
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