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Abstract—Mobile-edge computation offloading (MECO) is a
promising solution for enhancing the capabilities of mobile de-
vices. For an optimal usage of the offloading, a joint consideration
of radio resources and computation resources is important,
especially in multiuser scenarios where the resources must be
shared between multiple users. We consider a multi-user MECO
system with a base station equipped with a single cloudlet server.
Each user can offload its entire task or part of its task. We
consider parallel sharing of the cloudlet, where each user is
allocated a certain fraction of the total computation power. The
objective is to minimize the completion time of users’ tasks. Two
different access schemes for the radio channel are considered:
Time Division Multiple Access (TDMA) and Frequency Division
Multiple Access (FDMA). For each access scheme, we formulate
the corresponding joint optimization problem and propose effi-
cient algorithms to solve it. Both algorithms use the bisection-
search method, where each step requires solving a feasibility
problem. For TDMA, the feasibility problem has a closed-
form solution. Numerical results show that the performance of
offloading is higher than of local computing. In particular, MECO
with FDMA outperforms MECO with TDMA, but with a small
margin.

I. INTRODUCTION

Today’s mobile devices are equipped with advanced tech-

nologies, for example, high resolution cameras and integrated

sensors. With the improving capabilities of the devices and the

increasing interest in mobile applications and services for daily

purposes, the functionality of mobile devices has made the

applications which require data collection and data processing

possible, for example, augmented reality, speech-to-text, image

processing [1]. One of the key challenges of these applications

is the high computation power requirement. However, with

current technology, the computation capabilities of mobile

devices are still limited. To overcome this limitation, mobile

edge computing [1][2][3] is proposed as a promising solution.

In the solution, small-scale computing clouds - also known as

cloudlets - are deployed at the edges of wireless networks, e.g.,

at wireless access points [1][2][3]. The mobile devices can of-

fload intensive computation tasks to the nearby cloudlets - also

refered to as mobile edge computation offloading (MECO) [2],

[4], [5]. In comparison with other cloud computing solutions,

one of the key advantages of cloudlets is low latency [1] due

to the short distance from the mobile devices to the cloudlet.

Two critical limiting factors of MECO are radio resources

of the wireless links and computation resources at the cloudlet.

Both factors are playing important roles. For example, for

shortening a job’s completion time, both radio transmission

time and cloudlet processing time must be reduced. In a

multiuser scenario with multiple users using the same cloudlet

to offload their tasks, the resources must be shared between

multiple users. Therefore, efficient resource allocation algo-

rithms are critical [5].

Many researchers have worked on resource allocation for

MECO. A common scenario is multi-user MECO with the ob-

jective of minimizing the total energy consumption of all user

nodes [4][6][7][8][9]. However, often the researchers focused

on one type of resources, either radio resources or computation

resources. For example, [6] and [7] focused on designing

radio resources allocation algorithms with the objective of

minimizing weighted sum energy consumption for predefined

execution delay deadline. The execution delay at the cloudlet

was modeled as a constant and can be subtracted from the

deadline constraint. Under that assumption, the offloading

decision problem can be modeled as a pure radio resource

allocation problem. Both works applied game theory to solve

the radio resource allocation problem. Some other works

focused on designing computation resources allocation and

power control algorithms where they assumed that the radio

resource had been pre-allocated for each user [8][9]. Both [8]

and [9] assumed the same channel bandwidth for each user

and proposed joint power control and computation resource

allocation algorithms. [8] focused on the energy minimization

problem and [9] focused on minimizing the weighted sum of

energy and delay. In [4], the authors considered both channel

time allocation and computation resource allocation. However,

they assume that the computation resource allocated to each

user is propotional to the offloaded tasks’ size of that user.

In this work, we consider a MECO system with a base

station and a single cloudlet server. Each user has one task.

Each task can be split into two parts, one for local computation

and one for offloading. We consider the problem of minimizing

the tasks’ completion delay including the time for data trans-

mission and the time for computing. We aim at developing

joint algorithms for the allocation of radio resources (including

power control) and computation resources. As in [8], we



wk − lk

lk

hk

fk
user k

F
AP

F user 1
user 2
user 3
user 4

time
Network model Computation resource sharing

Fig. 1. Network model and computation resource sharing model

assume that cloudlet resources can be allocated as percentages

of the total computation power to each user. This enables

parallel processing of jobs from different users. For radio

channel resource allocation, we consider two different multiple

access schemes: Time Division Multiple Access (TDMA) and

Frequency Division Multiple Access (FDMA). We formulate

the joint resources allocation as an optimization problem and

propose efficient algorithms to solve it.

The rest of this paper is organized as follows: Section II

presents the system model where task model, transmission,

computation delay, as well as multiple access schemes are

introduced. The problem of optimal offloading with TDMA

is considered in section III and FDMA is considered in

section IV. The performance of the proposed algorithms is then

investigated via numerical simulation in Section V. Finally, we

conclude our work in Section VI.

II. SYSTEM MODEL

We consider a multiuser system consisting of K single-

antenna mobile users (MUs) and a single-antenna wireless

access point (AP), as shown in Fig. 1. A cloudlet with finite

computation capability is deployed at the AP to provide

computing services. We consider a snapshot when the CPU

of the cloudlet is available. Let C = {1, 2, . . . ,K} denote

the K users, each with a task to execute. The AP schedules

a subset of users for complete/partial offloading. The users

with partial or no offloading compute a fraction of or all

input data, respectively, using their local CPU. The users with

partial or complete offloading offload a fraction of or all input

data, respectively, to the cloudlet. We consider a frequency flat

channel model. For multiple access, we consider two different

schemes: TDMA and FDMA. The AP is assumed to have

perfect knowledge of all the channel gains, local computation

capability of the user nodes, and the sizes of the input data at

all users. In addition, the channel gains are assumed to remain

constant within the considered snapshot duration. Using this

information, the AP selects and allocates the resources to the

users: the transmit power of the nodes, and the fraction of

cloudlet computation power for each node will be determined

together with the fraction of channel time for the TDMA case

and the fraction of channel bandwidth for the FDMA case for

each user.

A. Data rate with multiple access model

Let B denote the total channel bandwidth of the system

and N0/2 denote the power spectral density of the complex

white Gaussian channel noise. Let hk denote the channel gain

of user k to the AP and pk denote the transmission power

for mobile k. We assume that the user uses only one transmit

power level in each snapshot.

1) TDMA: Each user will be assigned a fraction of time

to use the channel. Let xk ≥ 0 denote the fraction of time

allocated to user k. Then the data rate of user k is

rTDMA
k = xkRk, and

K
∑

k=1

xk = 1, (1)

where

Rk = B log2

(

1 +
pk|hk|

2

BN0

)

(2)

is the Shannon channel capacity of user k.

2) FDMA: Each user will be allocated a fraction of the

system bandwidth. Let zk ∈ [0, 1] denote the fraction of

bandwidth allocated to user k. Then the data rate of the user

k is

rFDMA
k = zkB log2

(

1 +
pk|hk|

2

zkBN0

)

and

K
∑

k=1

zk = 1. (3)

B. Task model and execution time model

We follow the splittable task model used in [4]. Each task

Tk is described by its input data size wk in bits, and a known

constant βk in CPU cycles per bit, which describes the number

of CPU cycles required to process one bit of input data. Eask

task Tk can be divided into two jobs with lk and wk − lk bits

of input data, respectively, see Fig. 1. The first job with lk bits

will be offloaded to the cloudlet. It will be called offloaded

job. The second job with wk−lk bits will be computed locally

by the local CPU. It will be called local job. How the tasks

should be split is one of the subjects in our joint algorithms

and will be presented later.

1) Execution time of local job: For user k, the frequency

of the local CPU is fk. The size of the local job is wk − lk
bits. The processing time of the local job of user k is

T local
k =

βk(wk − lk)

fk
. (4)

2) Execution time of offloaded job: The execution time of

the offloaded job consists of the data transmission time and the

job processing time at the cloudlet. User k offloads lk bits of

data to the cloudlet. Let F in CPU cycles per second denote the

computation capability of the cloudlet. The total computation

power is split among the users, each with a fraction of the total

capability, see Fig. 1. Let yk ∈ [0, 1] denote the fraction of

computation power allocated for the offloaded job of user k.

With the data rate rk, the total execution time of the offloaded

job of user k is

T offload
k =

lk
rk

+
βklk
ykF

, (5)



where the first term is the data transmission time and the

second term is the job processing time. We do not consider

the time spent for sending back the result from the AP to

the users. This amount of time is often very short compared

with the total data offloading time and task execution time [4].

Therefore, the completion time of user k is defined as the time

when both the local job and the offloaded job are completed,

i.e.

T compl

k = max{T local
k , T offload

k }. (6)

III. MINIMIZING COMPLETION TIME WITH TDMA

In this section, resource allocation for multiuser MECO is

formulated as an optimization problem for the TDMA case.

The objective is to minimize the completion time of all the

users, i.e., minizing

T = max
1≤k≤K

T compl

k .

Under the constraints on the total channel access time and total

CPU time, the resource allocation problem can be formulated

as

min
T,{lk},{xk}

T (P-1)

subject to
βk(wk − lk)

fk
≤ T, ∀k (7)

lk
xkRk

+
βklk
ykF

≤ T, ∀k (8)

K
∑

k=1

xk = 1,
K
∑

k=1

yk = 1 (9)

0 ≤ lk ≤ wk, 0 ≤ xk, 0 ≤ yk. (10)

The objective T represents the completion time. The con-

straints in (7) mean that the execution time of the local jobs

should not exceed the completion time. The constraints in (8)

mean that the execution time of the offloaded jobs (including

data transmission time) should not exceed the completion time.

The constraints in (9) are the sum constraints of channel

time and total computation power. It is worth to mention that

constraints (8) consider the TDMA using the variables xk, ∀k
with

∑K

x=1 = 1 which determine the fractions of transmission

time of each user.

Our approach to solve the problem (P-1) is to use bisection

search on T . For each fixed T , we must solve a feasibility

problem for constraints (7) - (10). Due to constraint (7), we

have

lk ≥ lmin
k := max

{

0, wk −
Tfk
βk

}

. (11)

Because the equality in (11) holds only for the offloaded job

with minimum number lmin
k of bits, it is sufficient to ensure the

feasibility of the smallest of the offloaded jobs, i.e., lk = lmin
k .

We must solve the following feasibility problem:

min
{xk},{yk}

0 (P-1A)

subject to
lmin
k

xkRk

+
βkl

min
k

ykF
≤ T (12)

K
∑

k=1

xk = 1,

K
∑

k=1

yk = 1 (13)

0 ≤ xk, 0 ≤ yk. (14)

With ak =
lmin
k

Rk

and bk =
βkl

min
k

F
, we have the following

lemma:

Lemma 1. The necessary and sufficient conditions for the

feasibility problem (P-1A) are

K
∑

k=1

ak ≤ T ,

K
∑

k=1

bk ≤ T (15)

(

K
∑

k=1

√

akbk

)2

≤

(

T −

K
∑

k=1

ak

)(

T −

K
∑

k=1

bk

)

. (16)

Proof: See Appendix.

The algorithm for achieving minimum completion time with

TDMA is given in Algorithm 1:

Algorithm 1 Min completion time with TDMA

1) Initialize: Tlow = 0, Thigh = max
1≤k≤K

βkwk

fk
, set ǫ.

2) If Thight − Tlow < ǫ, terminate the algorithm.

3) Set T =
Thigh+Tlow

2
. Calculate lmin

k , ak, bk. Check the

feasibility conditions (15) and (16). If feasible, then set

Thigh = T , else set Tlow = T . Go to step 2.

IV. MINIMIZING COMPLETION TIME WITH FDMA

We have the following optimization problem for the FDMA:

min
T,{lk},{xk}

T (P-2)

subject to
βk(wk − lk)

fk
≤ T (17)

lk

zkB log2

(

1 + pk|hk|2

zkBN0

) +
βklk
ykF

≤ T (18)

K
∑

k=1

zk = 1,

K
∑

k=1

yk = 1 (19)

0 ≤ lk ≤ wk, 0 ≤ zk, 0 ≤ yk (20)

This problem is almost the same as the problem for the

TDMA case. The only difference are the constraints (18),

where the time for data offloading is calculated based on the

rate achieved with FDMA.

Similar to the TDMA case, we use bisection search method.

For a fixed T , we need to solve the feasibility problem for

constraints (17)-(20). With the same lmin
k as in (11), we must



only check the feasibility when lk = lmin
k . The feasibility

problem becomes

min
{zk},{yk}

0 (P-2A)

subject to
lmin
k

zkB log2

(

1 + pk|hk|2

zkBN0

) +
βkl

min
k

ykF
≤ T (21)

K
∑

k=1

zk = 1,

K
∑

k=1

yk = 1 (22)

0 ≤ zk, 0 ≤ yk. (23)

Let ck =
lmin
k

B
, dk = pk|hk|

2

BN0
, and ek =

βkl
min
k

F
. From

constraints (21), we have

yk ≥
ek

T − ck

zk log2

(

1+
dk

zk

)

. (24)

Combined with the constraint (22), the constraints on yk can

be formulated as constraints for zk:

zk log2

(

1 +
dk
zk

)

≥
ck
T

⇔ zk ≥ zmin
k (25)

K
∑

k=1

ek
T − ck

zk log2

(

1+
dk

zk

)

≤ 1, (26)

where zmin
k satisfies zmin

k log2

(

1 + dk

zmin
k

)

= ck
T

. Thus, in

order to check the feasibility problem (P-2A), we have to solve

the following optimization problem:

min
{zk}

K
∑

k=1

ek
T − ck

zk log2

(

1+
dk

zk

)

(P-2B)

subject to

K
∑

k=1

zk = 1, zk ≥ zmin
k . (27)

If the minimum value is smaller than or equal to 1, then (P-2A)

is feasible.

Lemma 2. The problem (P-2B) is a convex optimization

problem.

Proof: Because the function e
T− c

x

is decreasing for x >
c
T

, and the function z log2
(

1 + d
z

)

is a concave function, the

function u(z) = e
T− c

z log2(1+ d

z )
is a convex function for z

such that z log2
(

1 + d
z

)

≥ c
T

. As the result, the optimization

problem is a convex optimization problem.

Algorithm 2 Min completion time with FDMA

1) Initialize: Tlow = 0, Thigh = max
1≤k≤K

βkwk

fk
, set ǫ.

2) If Thight − Tlow < ǫ, terminate the algorithm.

3) Set T =
Thigh+Tlow

2
. Calculate lmin

k , ck, dk, ek, zmin
k . Solve

the problem (P-2B). If it is infeasible or the min value is

greater than 1, then set Tlow = T , otherwise set Thigh =
T . Go to step 2.
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Fig. 2. Minimum completion time for varying cloudlet capability

The problem (P-2B) is convex and has a single linear

constraint, thus, it can be solved efficiently, e.g. with bisection-

search method.

The algorithm for achieving the minimum completion time

with FDMA is given in Algorithm 2.

V. NUMERICAL RESULTS

We use the following paramters for our simulations. The

system consists of 10 mobile users. We take the following

parameters from [4]. The channel gains are modeled as in-

dependent Rayleigh fading with average power loss set to

10−6. In addition, the power spectral density of the com-

plex white Gaussian noise is N0/2 = 10−13W/Hz and the

channel bandwidth B = 10 MHz. For each user k, the

speed of the local CPU fk is randomly selected from the set

{0.5, 0.6, 07, 0.8, 0.9, 1.0}×109 CPU cycles/second. For the

computation tasks, the data size follows a uniform distribution

with wk ∈ [100, 300]kbits and the number of CPU cycles per

bit is βk ∈ [500, 1500]. The random variables are generated

independently for different users. The computation capability

F of the the cloudlet varies between 2 × 109 and 20 × 109

CPU cycles per second.

We compare the performance of the optimized offloading

schemes with TDMA and FDMA with the following reference

schemes:

• local computation scheme,

• equal resources allocation (computation and radio re-

sources) with TDMA and FDMA, respectively, and

• the extreme case when the cloudlet has infinite computa-

tion capabilities.

Fig. 2 shows the curves of the completion time for varying

cloudlet capability. The performance gain increases with in-

creasing computation capability of the cloudlet. With offload-

ing, the completion time is reduced greatly compared to local

computing. The optimized TDMA and FDMA schemes out-

perform the corresponding equal resource allocation schemes.

Moreover, there is a certain limit on the performance gain.

We also show the situation when the capability of the cloudlet



is infinite. In this case, the performance of the offloading

schemes depends only on the computation capability of the

local CPUs and the data transmission. Another observation is

that the performance of FDMA is better than that of TDMA.

This is due the different effective noise bandwidth in FDMA

and TDMA, see (2) and (3). Moreover, the performance

gap increases with increasing computation capability of the

cloudlet.

VI. CONCLUSION

We focused on the problem of designing optimal algorithms

for solving the joint radio resources and computation resources

problem in a multiuser MECO system for minimizing com-

pletion time. We formulated optimization problems that can

be solved efficiently. High performance gain can be obtained

using offloading. In particular, the performance of MECO with

FDMA is higher than of MECO with TDMA, but with a small

margin.
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APPENDIX

A. Proof of lemma 1

From the constraint (12), we have ak

xk

+ bk
yk

≤ T . Thus,

xk ≥
ak
T

and yk ≥
bkxk

Txk − ak
. (28)

Combining this with the constraint (13), we obtain

K
∑

k=1

bkxk

Txk − ak
≤ 1. (29)

From (28) and (13), we must have
K
∑

k=1

ak

T
≤ 1, thus one

condition for feasibility is

K
∑

k=1

ak ≤ T. (30)

In addition, (29) is satisfied if and only if the minimum value

of
K
∑

k=1

bkxk

Txk−ak

with constraints xk ≥ ak

T
and

K
∑

k=1

xk = 1 does

not exceed 1. First, we solve the problem

min
{xk}

K
∑

k=1

bkxk

Txk − ak
(31)

subject to

K
∑

k=1

xk = 1, xk ≥
ak
T
. (32)

It is easy to check that the function bx
Tx−a

is a convex function

for x > a
T

with a ≥ 0, T > 0, b ≥ 0. Therefore, the above

optimization problem is a convex problem with one linear

constraint. The corresponding Lagrangian function is

L({xk}, λ) =

K
∑

k=1

bkxk

Txk − ak
− λ

(

K
∑

k=1

xk − 1

)

. (33)

We have

∂L

∂xk

= −
akbk

(Txk − ak)2
+ λ (34)

∂L

∂λ
=

K
∑

k=1

xk − 1. (35)

Thus,

x∗
k =

ak +
√

akbk
λ

T
and

√
λ =

K
∑

k=1

√
akbk

T −
K
∑

k=1

ak

(36)

Substituting x∗
k in the objective function, we obtain the fol-

lowing minimum:

min value =
1

T











(

K
∑

k=1

√
akbk

)2

T −
K
∑

k=1

ak

+

K
∑

k=1

bk











. (37)

Comparing the minimum value with 1, we obtain the feasibil-

ity conditions

(

K
∑

k=1

√

akbk

)2

≤

(

T −

K
∑

k=1

ak

)(

T −

K
∑

k=1

bk

)

(38)

K
∑

k=1

ak ≤ T,

K
∑

k=1

bk ≤ T. (39)
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