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Abstract—In this paper, we propose a novel algorithm to
maximize the sum-rate in interference-limited scenarios where
each user decodes its own message with the presence of unknown
interferences and noise. The problem of adapting the transmit
and receive filters of the users to maximize the sum-rate with a
transmit power constraint is nonconvex. Our novel approach is
to formulate the sum-rate maximization problem as an equivalent
multiconvex optimization problem by adding two sets of auxiliary
variables. An iterative algorithm, which alternatingly adjusts the
system variables and the auxiliary variables is proposed to solve
the multiconvex optimization problem and we show that the algo-
rithm converges to a stationary point. The proposed algorithm
is applied to a downlink cellular scenario consisting of several
cells each of which contains a base station serving several mobile
stations. We examine the two cases, with or without several half-
duplex amplify-and-forward relays assisting the transmission. A
sum power constraint at the base stations and at the relays are
assumed. The applicability of our approach to the individual
power constraints case is also shown. Finally, we show that the
proposed multiconvex formulation of the sum-rate maximization
problem is applicable to many other wireless systems in which
the estimated data symbols are multiaffine functions of the system
variables.

Index Terms—Sum rate maximization, interference,
multiconvex function, amplify-and-forward relay.

I. INTRODUCTION

S EVERAL sophisticated solutions have been studied for
future cellular systems aiming at improving both the

uplink and downlink data rates. For instance, introducing mul-
tiple antennas at both base stations (BSs) and mobile sta-
tions (MSs) greatly increases the achievable rates [1]–[3].
Furthermore, employing relays in these systems extends the
coverage and enhances the performance [4], [5]. However,
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interference is still the main performance limiting factor in cel-
lular systems. The transmission rate, especially when the MSs
are located at the cell edges, is greatly influenced by the inter-
cell interferences. For instance for a cell edge MS, the received
interference signal in the downlink can be severe and even of
a comparable strength as the useful signal, which degrades the
achieved rate significantly. To enhance the performance in cel-
lular systems, smart spatial signal processing techniques at the
BSs and the MSs, and also at the relays if they are employed
in the system, need to be found. Apart from joint processing
techniques which require data exchange among the cooperating
parties, we focus on distributed signal processing techniques
which require only the exchange of channel state informa-
tion. If relays are exploited for interference mitigation, they
can apply the distributed zero forcing technique which fully
cancels the interference in the network [4]–[7]. However, this
technique requires a large number of relays and relay antennas.
Furthermore, cooperative relaying techniques known usually as
distributed beamforming were studied extensively in the last
few years [8]–[11]. Using the distributed beamforming tech-
niques, higher performances can be achieved by increasing the
number of relays. As compared to the distributed beamforming
techniques which only adapt the signal processing at the relays,
cooperation among the relays, BSs and MSs yields more possi-
bilities of interference reduction and it is the main focus in this
paper.

Before discussing the sum rate, we first briefly review two
interference reduction techniques which have been studied
extensively, i.e., interference alignment (IA) and sum mean
square error (MSE) minimization. IA is achieved by aligning
all the interferences in a smaller subspace of the received sig-
nal space while keeping the useful signal subspace interference
free [12], [13]. IA has received great attention in the last few
years [14]–[18]. Basically, the IA problem has the nice property
that it is a multi-affine problem. A function is called multi-
affine if there exists a partitioning of the set of variables into
disjoint non-empty subsets such that the function is affine for
each of these subsets of variables. Similarly, multi-convex and
multi-concave functions can be defined by replacing the prop-
erty of being affine by convex and concave, respectively [19],
[20]. Because of the multi-affinity of the IA problem, it can
be tackled by alternatively solving several linear subproblems
[14], [16]. For instance, the IA problem is a multi-affine prob-
lem if relays are employed. Firstly, the filters of the BSs are
optimized with fixed relay processing matrices and fixed fil-
ters at the MSs. Secondly, the relay processing matrices are
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optimized with fixed filters at the BSs and MSs. At the third
step, the filters of the MSs are optimized with fixed filters at
the BSs and fixed relay processing matrices. However, since IA
ignores the received noise, it performs poorly at low and mod-
erate signal to noise ratios (SNRs) [21]. On the other hand,
optimizing the spatial filters at the BSs and the MSs, as well
as the processing matrices at the relays if they are employed,
for minimizing the sum MSE always achieves a compromise
between interference reduction and noise reduction. It can be
noted that only in some special cases, the sum MSE function
has a convex structure [22]. In general, the sum MSE is not
a convex function. However, it is a convex function of either
the filters at the BS, the filters at the MSs or the relay pro-
cessing matrices alone. This multi-convex structure of the sum
MSE function also allows alternating minimization algorithms
to achieve a stationary point [23]–[26]. Furthermore, it is worth
to mention here that minimizing the sum bit error rate (BER) is
an alternative objective to minimizing the sum MSE [27].

Because IA does not take noise reduction into account,
it performs well only in the interference dominant regime.
Furthermore, minimizing the sum MSE does not necessarily
imply achieving the maximum sum rate as they are different
objectives. If one considers maximizing the aggregate bit rates
at the end users as a target, then sum rate maximization is a rea-
sonable objective. Therefore, directly maximizing the sum rate
is a promising goal for efficiently utilizing the limited avail-
able system resources [28]. If the interference is treated as noise
and some power constraints are considered, the sum rate max-
imization problem is a non-convex optimization problem [29],
[30]. This non-convexity of the sum rate maximization problem
holds even if we optimize over either the filters at the BSs only,
the filters at the MSs only or the relay processing matrices only.
Therefore, iterative alternating optimization algorithms cannot
be directly implemented here.

In the last decade, a lot of progress has been made in finding
efficient sum rate maximization algorithms. Algorithms from
global optimization theory are proposed for finding the global
maximum of the sum rate [31]–[33]. Nevertheless, these algo-
rithms suffer from high computational complexity which limits
their practicality to small scenarios only. Unlike the compu-
tationally expensive global optimization algorithms, relatively
low complexity suboptimum algorithms have also received
great attention. Basically, the special structure of the sum rate
function can be exploited to achieve a near optimum sum rate.
In [34], an interference broadcast channel is considered. Instead
of maximizing the sum rate, the authors maximizes the product
of the SNRs at the MSs. Rather than optimizing the filters at
the BS and the MSs all together, it is shown that the problem
can be simplified to three subproblems, which are not neces-
sarily convex. Each subproblem aims at optimizing either the
transmit powers, the BS filters or the MS filters. Geometric
programming is employed for approximating the solution of
the non-convex subproblems. In [35], some auxiliary variables
are used to simplify the sum rate maximization problem in a
broadcast channel. The authors introduce new variables to the
problem such that the multiple constraints can be equivalently
written as a single constraint. The sum rate function can be writ-
ten as the sum of a concave function and a convex function [31],

[36]. Accordingly, the authors of [36] linearly relax the con-
vex term and solve the resulting problem iteratively. In [37],
we consider a simple scenario of single antenna nodes and
relays and propose a simplified formulation of the sum rate
maximization problem.

Some authors also exploit the minimized MSE to maximize
the sum rate. From the information theory perspective, Guo
et. al. have found that there is a linear relationship between the
derivative of the mutual information and the minimum MSE
for Gaussian channels [38]. Moreover, it is shown in [39] that
this relationship holds for any wireless system with linear fil-
ters. Considering a broadcast channel scenario, the relationship
between the derivative of the mutual information and the min-
imum MSE can be exploited by designing the receive filters
such that the MSE at the receivers is minimized. In this case, the
MSE will be a function of the transmit filters [40]. Accordingly,
the sum rate maximization problem for optimizing the trans-
mit filters can be formulated as a minimization of the sum
of log-MSEs. An approximate solution of this new formula-
tion is found using geometric programming [41]. Designing the
receive filters to minimize the MSE and optimizing the remain-
ing variables to maximize the sum rate is also considered in
[42]. It is shown that by relaxing the sum rate maximization
problem and adding some auxiliary variables, a successive con-
vex approximation approach can be applied [42]. The authors
show that the successive convex approximation algorithm con-
verges always to a KKT point. For a broadcast channel scenario,
the receive filters are designed aiming at minimizing the MSE
and by adding some auxiliary variables, the sum rate maxi-
mization problem is reformulated as a biconvex optimization
problem of the transmit filter and the added auxiliary vari-
ables [40]. Note that a biconvex function is a multi-convex
function with two partitions [19]. This work is extended to
many different scenarios such as MIMO interference channels
[43], interfering broadcast channels [44], and relay interference
channels [45].

In the present paper, we aim at formulating the sum rate max-
imization problem as a multi-convex problem so that it can
be efficiently solved by iterative algorithms. We specifically
consider the downlink transmission in a cellular scenario with
BSs serving multiple MSs, although the same approach can be
applied to the uplink transmission as well. The transmission
from the BSs to the MSs takes place either through several non-
regenerative relays or directly without relays. First, we focus
on describing our approach for a two-hop transmission scheme
where relays are employed. Then, we show that the approach
can also be applied to other wireless systems by taking the
single-hop transmission scheme without relays as an example.
The key idea of our approach is to replace the signal to inter-
ference plus noise ratio (SINR) at a MS by a new term whose
maximal value is found to be 1+SINR. Using this new term, we
formulate a multi-concave objective function. We will show that
this objective function has the same structure as the sum rate
function and, therefore, maximizing this objective function is
equivalent to maximizing the sum rate function. The weighted
MSE approach [40], [43]–[45] uses the same objective as our
approach, which is the sum rate maximization. However, we
propose a new formulation different from the weighted MSE.
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Our new formulation is equivalent to the sum rate formulation
for all possible values of the system variables if the auxiliary
variables are optimized whereas the weighted MSE formula-
tion is equivalent to the sum rate function only at the points
where the receive filters are designed as minimum MSE fil-
ter. These two different formulations lead to different problem
decompositions. From the numerical results, we observed that
our proposed algorithm performs better as compared to the
weighted MSE algorithm at moderate and high SNRs as will
be shown in Section VI.

The rest of this paper is organized as follows. In the next
section, a two-hop transmission scenario and a single-hop trans-
mission scenario are described. In Section III, the two-hop
transmission is first investigated and based on it, the multi-
convex formulation of the sum rate is derived. An iterative sum
rate maximization algorithm is proposed in Section III-E. To
show that our idea is quite general and fits in many scenar-
ios, we derive the multi-convex problem formulation for the
single-hop transmission in Section IV. A few additional aspects
are discussed in Section V and the performance of the pro-
posed algorithm is shown in Section VI. In Section VII, the
conclusions are drawn.

II. SYSTEM MODEL

A. Two-Hop Interference Broadcast Scenario

In this paper, we will consider two related scenarios, i.e., a
two-hop interference broadcast scenario and a single-hop inter-
ference broadcast scenario. The former will be described here,
and the latter will be described in Section II-B.

A downlink cellular scenario consisting of K cells is con-
sidered. Each cell contains a BS with NB antennas, and M

MSs with NM antennas each. We first assume that the direct
channels between the BSs and the MSs are relatively weak
due to the radio environment so that they can be neglected.
To enable the communication between the BSs and the MSs,
R half-duplex relays with NR antennas each are deployed in
the scenario. The transmission takes place in two subsequent
time slots as illustrated in Fig. 1. In the first time slot, the
BSs transmit to the relays. In the second time slot, the relays
retransmit a linearly processed version of what they received in
the first time slot to the MSs. The channels between the com-
munication parties are assumed to remain constant during the
transmission. Throughout this paper, we restrict our discussion
to the case where each MS receives a single desired data sym-
bol from the corresponding BS. Accordingly, each BS transmits
simultaneously M complex valued data symbols with M ≤ NB.

Let k ∈ {1, . . . , K }, m ∈ {1, . . . , K M}, and r ∈ {1, . . . , R}

denote the indices of the BSs, the MSs, and the relays, respec-
tively. Then, the data symbol transmitted by the corresponding
BS for the m-th MS is denoted by d(m) ∈ C and all the data
symbols transmitted by the k-th BS are denoted by the vector
d(k) ∈ C

M . For each BS k, the transmitted data symbols are pre-
processed by a linear transmit filter denoted by V(k) ∈ C

NB×M .
The signal vector transmitted by the k-th BS reads

s
(k)
B = V(k)d(k). (1)

Fig. 1. A K cell scenario with K BSs, R relays and K M MSs. The transmis-
sions in the first and the second time slot are illustrated by the dotted and solid
arrows, respectively.

The received signal vector at the r -th relay is

e
(r)
R =

K
∑

k=1

H
(r,k)
RB s

(k)
B + n

(r)
R , (2)

where H
(r,k)
RB ∈ C

NR×NB denotes the channel matrix between

the k-th BS and the r -th relay, and n
(r)
R ∈ C

NR×1 represents the
noises at the different antennas of the relay, which are assumed
to be independently identically distributed (i.i.d.) Gaussian with
zero mean and variance σ 2. It is assumed that the number NR of
antennas at a relay is not large enough to spatially separate the
received signals, i.e., NR < K M . Therefore, the amplify and
forward relaying protocol is considered. The r -th relay linearly
processes its received signals with the matrix G(r) ∈ C

NR×NR

and the transmitted signal of the r -th relay is denoted by

s
(r)
R = G(r)e

(r)
R . (3)

Furthermore, the received signal vector at the m-th MS is

e
(m)
M =

R
∑

r=1

H
(m,r)
MR s

(r)
R + n

(m)
M , (4)

where H
(m,r)
MR ∈ C

NM×NR denotes the channel matrix between

the r -th relay and the m-th MS, and n
(m)
M ∈ C

NM×1 repre-
sents the noises at the MS, which are also assumed to be i.i.d.
Gaussian with zero mean and variance σ 2. Then the m-th MS
can linearly post-process its received signal vector e

(m)
M using a

linear receive filter u(m) ∈ C
NM×1 to obtain the estimated data

symbol as
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d̂(m) = u(m)He
(m)
M

= u(m)H

(

R
∑

r=1

K
∑

k=1

H
(m,r)
MR G(r)H

(r,k)
RB V(k)d(k)

+

R
∑

r=1

H
(m,r)
MR G(r)n

(r)
R + n

(m)
M

)

, (5)

where (·)H denotes the Hermitian of a matrix.
Suppose the duration of each time slot is normalized to one,

it is assumed that the transmitted data symbols are uncorrelated
and they have the same average power

E

{

∣

∣

∣
d(m)

∣

∣

∣

2
}

= Pd, (6)

for all m = 1, . . . , K M where E {·} denotes the expectation.
The sum power constraint is suitable as it is related to the total
interference caused by the considered network. The sum power
constraint at the BSs is given by

K
∑

k=1

tr
(

E
{

s
(k)
B s

(k)H
B

})

≤ PB. (7)

The sum power constraint at the relays is given by

R
∑

r=1

tr
(

E
{

s
(r)
R s

(r)H
R

})

≤ PR. (8)

B. Single-Hop Interference Broadcast Scenario

The second scenario we consider is similar to the one
described in Section II-A, except that the direct channels
between the BSs and MSs are assumed to be usable and no
relays are deployed. Accordingly, the channel between the BSs
and MSs is an interfering broadcast channel [44]. The MSs
receive signals directly from the BSs within a single time slot
as illustrated in Fig. 2. Therefore, the received signal vector at
the m-th MS reads

e
(m)
M =

K
∑

k=1

H
(m,k)
MB s

(k)
B + n

(m)
M , (9)

where H
(m,k)
MB ∈ C

NM×NB denotes the channel matrix between
the m-th MS and the k-th BS. Similar to (5), the estimated data
symbol at the m-th MS is calculated as

d̂(m) = u(m)H

(

K
∑

k=1

H
(m,k)
MB V(k)d(k) + n

(m)
M

)

. (10)

Furthermore, only the power constraint (7) at the BSs is rel-
evant for the single-hop scenario. It shall be pointed out here
that our approach can be applied to the general scenario where
both direct and relay links are considered. In [37], we applied
our approach to a scenario consisting of K source-destination
pairs and R single antenna relays. Both direct and relay links
are considered.

Fig. 2. A K cell scenario with K BSs and K M MSs.

III. TWO-HOP TRANSMISSION SCHEME

A. Problem Formulation

To simplify the notations for the rest of this paper, we
will partition the system variables into three disjoint sets with
the variables being kept in a certain order for plugging them
in a function argument, namely the tuple of the transmit
filters

V =
(

V(1), . . . , V(K )
)

, (11)

the tuple of the relay processing matrices

G =
(

G(1), . . . , G(R)
)

, (12)

and the tuple of the receive filters

U =
(

u(1), . . . , u(K M)
)

. (13)

In this section, we formulate the sum rate maximization prob-
lem for the two-hop interference broadcast scenario described
in Section II-A. Using the notations introduced above, it can be
observed from (5) that the estimated data symbol d̂(m) at the
m-th MS is a multi-affine function of the tuple V of the trans-
mit filters, the tuple G of the relay processing matrices, and the
receive filter u(m). Let v(k,m) denote the m-th column of V(k).
Then, (5) can be rewritten as

d̂(m) = u(m)H
(

q(m)d(m) + z(m)
)

, (14)

where

q(m) =

R
∑

r=1

H
(m,r)
MR G(r)H

(r,k)
RB v(k,m) (15)

is the effective useful link of the m-th MS including the relays
and the transmit filter vector v(k,m). Let ϒ (m) be an M × M

diagonal matrix where all the diagonal elements are ones
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except for the m-th diagonal element being zero. The received
interference plus noise at the m-th MS is given by

z(m) =

R
∑

r=1

H
(m,r)
MR G(r)H

(r,k)
RB V(k)ϒ (m)d(k)

+

R
∑

r=1

H
(m,r)
MR G(r)

∑

l �=k

H
(r,l)
RB V(l)d(l)

+

R
∑

r=1

H
(m,r)
MR G(r)n

(r)
R + n

(m)
M . (16)

The first term and the second term of (16) represent the received
intra-cell and inter-cell interference, respectively. The last two
terms of (16) describe the noises received by the m-th MS,
including the noise retransmitted by the relays. Based on this,
the receive SINR at the m-th MS can be written as

γ (m) =
Pd

∣

∣u(m)Hq(m)
∣

∣

2

E
{

∣

∣u(m)Hz(m)
∣

∣

2
} , (17)

and thus, the sum rate is calculated as

C (V,G,U) =

K M
∑

m=1

log2

(

1 + γ (m)
)

, (18)

which is a function of the tuples of variables V, G, and U. For
the considered two-hop transmission scheme, the sum rate max-
imization problem for optimizing the transmit filters, the relay
processing matrices and the receive filters with the sum power
constraints at the BSs and at the relays can be stated as

(

Vopt,Gopt,Uopt
)

= argmax
(V,G,U)

{C (V,G,U)} (19)

subject to

Pd

K
∑

k=1

tr
(

V(k)V(k)H
)

≤ PB (20)

and

R
∑

r=1

tr

(

G(r)

(

Pd

K
∑

k=1

H
(r,k)
RB V(k)V(k)HH

(r,k)H
RB

+ σ 2INR

)

G(r)H

)

≤ PR, (21)

where the constraints of (20) and (21) follow from (7) and (8),
respectively. The sum power constraint of (20) at the BSs is a
convex set of the transmit filters. For fixed V(k), ∀k, the matrix

Pd

K
∑

k=1
H

(r,k)
RB V(k)V(k)HH

(r,k)H
RB + σ 2INR is positive definite, and

thus, (21) is a convex set of G(r), ∀r . Similarly, (21) is a convex
set of V(k), ∀k for fixed G(r), ∀r . Based on this, the sum power
constraint of (21) at the relays is a biconvex set of the transmit
filters and the relay processing matrices. However, the objec-
tive function – the sum rate function – is not a concave function

of the system variables V, G, and U because the system vari-
ables appear in both the nominator and the denominator of the
SINR expression, see (17). Therefore, the optimization problem
of (19)–(21) is a non-convex problem.

As individual power constraints are frequently assumed in
the literature, we now also show how the problem can be for-
mulated assuming individual power constraints per BS and per
relay. The individual power constraints at the k-th BS and r -th
relay are

Pdtr
(

V(k)V(k)H
)

≤ P
(k)
B , (22)

and

Pdtr

(

G(r)

K
∑

k=1

H
(r,k)
RB V(k)V(k)HH

(r,k)H
RB G(r)H

)

+ σ 2tr
(

G(r)G(r)H
)

≤ P
(r)
R , (23)

respectively. Similar to the sum power constraints of (20) and
(21), the individual power constraint at each BS k forms a con-
vex set, see (22), and the individual power constraint at each
relay r forms a biconvex set, see (23). Therefore, replacing the
sum power constraints of (20) and (21) by the individual power
constraints of (22) and (23) does not change the convexity of
the considered optimization problem and so our approach is
valid for individual power constraints as well. Throughout this
paper, we assume the sum power constraints at the BSs and at
the relays if not mentioned otherwise. However in Section VI,
we will also present numerical results for the case of individual
power constraints.

B. Signal to Interference Plus Noise Ratio

With a closer look at the structure of the sum rate function
of (18), one can observe that the achieved rate at a MS is a
logarithmic function of 1+SINR. Basically, the main difficulty
of handling the SINR function of (17) is that both its nomina-
tor and denominator are functions of the system variables, see
(15) and (16). In order to reformulate the optimization problem
of (19)–(21) as a multi-convex optimization problem, a term
related to the SINR is introduced in the following proposition.

Proposition 1: Let w(m) ∈ C be a scaling factor which scales
the m-th transmitted data symbol d(m). Then, the function

η(m)
(

w(m)
)

=
E

{

∣

∣w(m)d(m)
∣

∣

2
}

E
{

∣

∣d̂(m) − w(m)d(m)
∣

∣

2
} (24)

has a single maximum being equal to 1 + γ (m), where γ (m) is
defined in (\ref{eq:SINR}).

Proof: Using the function

g
(

V,G, u(m), w(m)
)

= E

{

∣

∣

∣
d̂(m) − w(m)d(m)

∣

∣

∣

2
}

= Pd

∣

∣

∣
u(m)Hq(m) − w(m)

∣

∣

∣

2
+ E

{

∣

∣

∣
u(m)Hz(m)

∣

∣

∣

2
}

, (25)
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(24) can be written as

η(m)
(

w(m)
)

=
Pd

∣

∣w(m)
∣

∣

2

g
(

V, G, u(m), w(m)
) . (26)

Since d̂(m) described in (5) is a multi-affine function of V, G,
and u(m), the function g

(

V,G, u(m), w(m)
)

described in (25)

is a multi-convex function of V, G and u(m) for a fixed w(m).
By calculating the general derivative of η(m) with respect to
w(m) and setting the result to zero, two stationary points can be
calculated as

w
(m)
0 = 0 (27)

and

w
(m)
opt =

Pd
∣

∣u(m)Hq(m)
∣

∣

2
+ E

{

∣

∣u(m)Hz(m)
∣

∣

2
}

Pdq(m)Hu(m)
. (28)

By substituting (27) and (28) in (26), the values of η(m) at w
(m)
0

and w
(m)
opt , respectively, are calculated as

η(m)(w
(m)
0 ) = 0 (29)

and

η(m)(w
(m)
opt ) =

Pd
∣

∣u(m)Hq(m)
∣

∣

2
+ E

{

∣

∣u(m)Hz(m)
∣

∣

2
}

E
{

∣

∣u(m)Hz(m)
∣

∣

2
}

= 1 + γ (m). (30)

Considering the fact that the function η(m) described in (24) is
non-negative and

lim
|w(m)|→∞

η(m) = 1, (31)

the function η(m) must achieve its maximum at w
(m)
opt . �

The nice property of η(m) is that just its denominator is a
function of the system variables V, G, and u(m), whereas for
γ (m), as defined in (17), both the nominator and the denomina-
tor are functions of the system variables.

C. Problem Reformulation

In the previous section, it has been shown that the term η(m)

is equivalent to the received SINR at the m-th MS when the
scaling factor w(m) is optimized using (28). Let

w =
(

w(1), . . . , w(K M)
)T

(32)

be a vector of the scaling factors and let the elements of wopt be
chosen as (28). Then, the function

f2hop (V,G,U, w) =

K M
∑

m=1

log2

(

η(m)
)

(33)

is equivalent to the sum rate function of (18) in the sense that
both have the same local and global maxima if w = wopt holds.

To show the concavity of f2hop with respect to the tuples V, G
and U, using (26), (33) can be rewritten as

f2hop (V,G,U, w) =

K M
∑

m=1

log2

(

Pd

∣

∣

∣
w(m)

∣

∣

∣

2
)

−

K M
∑

m=1

log2

(

g
(

V,G, u(m), w(m)
))

.

(34)

In (34), just the second term includes the system vari-
ables. Although the function g

(

V,G, u(m), w(m)
)

is a multi-

convex function of V, G and u(m) when w(m) is fixed,
log2

(

g
(

V,G, u(m), w(m)
))

is not necessarily convex [46].
Accordingly, we aim at finding a new equivalent objective
function which is linear in g

(

V,G, u(m), w(m)
)

such that we

can exploit the fact that g
(

V,G, u(m), w(m)
)

is a multi-convex
function of the system variables.

D. Multiconvex Problem Formulation

In this section, the optimization problem of (19)–(21) is
reformulated as a multi-convex optimization problem. Let

t =
(

t (1), . . . , t (K M)
)T

(35)

be a vector of additional scaling factors. Then, the function

b2hop (V,G,U, w, t) =

K M
∑

m=1

(

log2

(

Pd

∣

∣

∣
w(m)

∣

∣

∣

2
)

+ log2

(

t (m)
)

−
t (m)

ln (2)
g

(

V,G, u(m), w(m)
)

)

(36)

is obviously a concave function of t. By taking the first order
derivative of b2hop with respect to t (m) and setting the result to
zero, the optimum scaling factor t (m) is calculated as

t
(m)
opt =

1

g
(

V,G, u(m), w(m)
) . (37)

Substituting (37) in (36) yields

b2hop
(

V,G,U, w, topt
)

= f2hop (V,G,U, w) −
K M

ln (2)
. (38)

From (38), it can be concluded that the new objective function
b2hop (V,G,U, w, t) is equivalent to the sum rate function in
the sense that they both have the same global and local max-
ima if the optimum scaling factors in w and t are chosen.
Moreover, the function b2hop (V,G,U, w, t) has a single maxi-
mum at w = wopt if V, G, U, and t are fixed, and the function
b2hop

(

V,G,U, wopt, t
)

is
• a concave function of t if V, G, U, and w are fixed because

the logarithm is a concave monotonically increasing func-
tion,

• a concave function of V if t, G, U, and w are fixed because
g

(

V,G, u(m), w(m)
)

is a convex function of V,
• a concave function of G if t, V, U, and w are fixed because

g
(

V,G, u(m), w(m)
)

is a convex function of G, and
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• a concave function of U if t, V, G, and w are fixed
because g

(

V,G, u(m), w(m)
)

, ∀ m is a convex function
of U.

Accordingly, the sum rate maximization problem of (19)–(21)
can be equivalently formulated as a multi-convex optimization
problem stated as

(

Vopt,Gopt,Uopt, wopt, topt
)

= argmax
(V,G,U,w,t)

{

b2hop (V,G,U, w, t)
}

(39)

subject to

Pd

K
∑

k=1

tr
(

V(k)V(k)H
)

≤ PB (40)

and

Pd

R
∑

r=1

tr

(

G(r)

K
∑

k=1

H
(r,k)
RB V(k)V(k)HH

(r,k)H
RB G(r)H

)

+ σ 2
R

∑

r=1

tr
(

G(r)G(r)H
)

≤ PR. (41)

This problem is a multi-convex problem of V, G, U, and t.
The vectors w and t of the scaling factors can be optimized

using (28) and (37), respectively. With fixed scaling factors,
just the last term of (36) is relevant for optimizing the system
variables and thus, the optimization problem (39)–(41) can be
stated as

(Vmin,Gmin,Umin)

= argmin
(V,G,U)

{

K
∑

k=1

M
∑

m=1

t (m)

ln (2)
g

(

V,G, u(m), w(m)
)

}

(42)

subject to

Pd

K
∑

k=1

tr
(

V(k)V(k)H
)

≤ PB (43)

and

Pd

R
∑

r=1

tr

(

G(r)

K
∑

k=1

H
(r,k)
RB V(k)V(k)HH

(r,k)H
RB G(r)H

)

+ σ 2
R

∑

r=1

tr
(

G(r)G(r)H
)

≤ PR, (44)

where w and t are fixed whereas V, G and U are the opti-
mization variables. As described previously in Section III-B,
the function g

(

V,G, u(m), w(m)
)

is a multi-convex function

of V, G, and u(m) for fixed w(m). Moreover, the power con-
straints of (43) and (44) are a convex set and a biconvex set,
respectively. Based on this, the optimization problem of (42)–
(44) is a multi-convex problem for fixed w and t. By taking
the general derivative of g

(

V,G, u(m), w(m)
)

with respect to

u(m) and setting the result to zero, the optimum receive filter is
calculated as

u
(m)
min =

(

Pdq(m)q(m)H + E
{

z(m)z(m)H
})−1

· Pdw
(m)∗q(m). (45)

By substituting (15), (16) and (25) in (42), the problem (42)–
(44) is a convex quadratically constrained quadratic problem for
optimizing V with fixed G, U, w, and t. Tools from quadratic
optimization can be applied to find the optimum transmit
filters [47]. Similarly, with fixed V, U, w, and t, the opti-
mization problem (42)–(44) can be solved for the tuple G of
the relay processing matrices using the conventional quadratic
optimization tools.

In our previous work [37], we also introduce auxiliary vari-
ables for reformulating a sum rate maximization problem, but
for a simple scenario of single antenna nodes and relays. In
[37], the problem is simplified by fixing part of the Tx/Rx filter
coefficients. The fixed part of the the Tx/Rx filter coefficients
is fixed such that the simplified sum rate maximization prob-
lem can be reformulated as a convex optimization problem of
the non-fixed Tx/Rx filter coefficients and the relay coefficients
for given auxiliary variables. Because only part of the variables
are optimized in [37], the iterative algorithm will not solve
the original sum rate maximization problem. On the contrary,
the optimization problem of (42)–(44) is a multi-convex prob-
lem, i.e., a non-convex problem, of V, G and U, and it cannot
be solved in a single step as in [37], but rather by alternating
optimization.

E. Iterative Algorithm

In this section, an iterative algorithm which alter-
nately maximizes the multi-concave objective function
b2hop (V,G,U, w, t) by sequentially optimizing V, G, U, w

and t is described. Let ǫ be an arbitrarily small tolerance value.
Then, the proposed algorithm can be summarized as follows:

1: set arbitrary initial values for w(0) and t(0)

2: set feasible initial values for V(0) and G(0)

⊲ chosen such that the constraints of (40) and (41) hold
3: in each iteration i

4: calculate U(i) given w(i−1), V(i−1) and G(i−1)

⊲ using (45)
5: calculate V(i) given w(i−1), t(i−1), U(i) and G(i−1)

⊲ using quadratic optimization tools [48]
6: calculate G(i) given w(i−1), t(i−1), U(i) and V(i)

⊲ using quadratic optimization tools [48]
7: calculate t(i) given w(i−1), V(i), G(i) and U(i)

⊲ using (37)
8: calculate w(i) given V(i), G(i) and U(i) ⊲ using (28)
9: stop if

∣

∣b2hop
(

V(i),G(i),U(i), w(i), t(i)
)

−b2hop
(

V(i−1),G(i−1),U(i−1), w(i−1), t(i−1)
)
∣

∣ ≤ ǫ

Based on this iterative algorithm, each step finds a global
maximum of a convex subproblem with respect to either V,
G, U, w or t. Therefore, after each iteration of the above algo-
rithm, the value of the objective function b2hop (V,G,U, w, t)
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is non-decreasing. Furthermore, based on the fact that the
objective function b2hop (V,G,U, w, t) is continuous and reg-
ular and the constraint sets of (40)–(41) are compact, our
proposed algorithm converges to a stationary point according
to Theorem 4.1(c) in [49].

One may notice that our approach has some similarities with
the weighted MSE approach [40], [43]–[45] since both of them
aim at sum rate maximization and the optimum receive filter
given in (45) is a scaled version of the minimum MSE filter.
However, two major differences between the two approaches
shall be pointed out. Firstly, we introduce a new variable w(m)

which can be optimized such that the function η(m)(w(m))

defined in (24) can replace 1 + γ (m) in the sum rate function of
(18). Because of this difference in the formulation, the multi-
convex problem (42)–(44) is decomposable into five convex
subproblems which are different from the four subproblems
resulting from the weighted MSE formulation. In other words,
the domain of our objective function is larger than the domain
of the weighted MSE objective function, and thus, the two algo-
rithms will in general converge to different stationary points
even if they are identically initialized. Secondly, due to the new
variable w(m), our multi-concave function of (36) is equiva-
lent to the sum rate function of (18) for any arbitrary values
of the system variables V, G and U with optimized auxiliary
variables. On the contrary, the weighted MSE approach designs
the receive filters U as minimum MSE filters such that 1+SINR
can be replaced by 1/MSE. Therefore, the weighted MSE objec-
tive function is equivalent to the sum rate function of (18) only
when the receive filters are designed as minimum MSE filters.

IV. SINGLE-HOP TRANSMISSION SCHEME

A. Problem Formulation

In this section, we will show that the proposed multi-convex
formulation of the sum rate and the iterative algorithm can
be applied to the single-hop interference broadcast scenarios
described in Section II-B as well.

From (10), one can observe that d̂(m) is a bi-affine function,
i.e., a multi-affine function with two partitions [19], of the tuple
V of transmit filters and the receive filter u(m). Then (10) can
be rewritten as

d̂(m) = u(m)H
(

q(m)d(m) + z(m)
)

, (46)

where

q(m) = H
(m,k)
MB v(k,m) (47)

is the effective useful link corresponding to the m-th MS
including the transmit filter vector v(k,m), and the effective
interference plus noise received at the m-th MS is

z(m) = H
(m,k)
MB V(k)ϒ (m)d(k)

+
∑

l �=k

H
(m,l)
MB V(l)d(l) + n

(m)
M . (48)

In (48), the first term and the second term represent the received
intra-cell interference and the received inter-cell interference,

respectively. The noise at the m-th MS is described by the last
term of (48).

Substituting (47) and (48) into (17), the receive SINR at
the m-th MS can be calculated. Then, the sum rate can be
calculated as

C (V,U) =

K M
∑

m=1

log2

(

1 + γ (m)
)

(49)

and the sum rate maximization problem can be formulated as
(

Vopt,Uopt
)

= argmax
(V,U)

{C (V,U)} (50)

subject to

Pd

K
∑

k=1

tr
(

V(k)V(k)H
)

≤ PB. (51)

Similar to the two-hop scenario discussed in Section III-A, this
problem is non-convex.

B. Multiconvex Problem Formulation

For the single-hop transmission, the function
g

(

V, u(m), w(m)
)

described in (25) can be redefined using (46).
The multi-concave objective function can be written as

b1hop (V,U, w, t) =

K M
∑

m=1

(

log2

(

Pd

∣

∣

∣
w(m)

∣

∣

∣

2
)

+ log2

(

t (m)
)

−
t (m)

ln (2)
g

(

V, u(m), w(m)
)

)

. (52)

Based on this, the sum rate maximization problem can be
formulated as a multi-convex optimization problem stated as

(

Vopt,Uopt, wopt, topt
)

= argmax
(V,U,w,t)

{

b1hop (V,U, w, t)
}

(53)

subject to

Pd

K
∑

k=1

tr
(

V(k)V(k)H
)

≤ PB. (54)

This problem is a multi-convex optimization problem of V and
U if the optimum w and t are a priori chosen. As described
in Section III-D, the optimization problem of (53)–(54) can be
solved alternatingly over V, U, w, and t. The iterative algorithm
can be summarized as follows:

1: set arbitrary initial values for w(0) and t(0)

2: set feasible initial values for V(0)

⊲ chosen such that the constraint of (54) holds.
3: in every iteration i

4: calculate U(i) given w(i−1) and V(i−1) ⊲ using (45)
5: calculate V(i) given w(i−1), t(i−1) and U(i)

⊲ using quadratic optimization tools [48]
6: calculate t(i) given w(i−1), V(i) and U(i) ⊲ using (37)
7: calculate w(i) given V(i) and U(i) ⊲ using (28)
8: stop if

∣

∣b1hop
(

V(i),U(i), w(i), t(i)
)

−b1hop
(

V(i−1),U(i−1), w(i−1), t(i−1)
)
∣

∣ ≤ ǫ
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V. FURTHER DISCUSSIONS

The key idea of the algorithm proposed in this paper is to
maximize the multi-concave objective function, i.e., the func-
tion b2hop of (36) or the function b1hop of (52), which is
equivalent to the sum rate function in the sense that they have
the same maxima. It can be observed from the analysis in the
previous sections that the new objective function must be a
multi-concave function of the system variables as long as the
function g described in (25) is a multi-convex function. This
only requires that each estimated data symbol d̂(m) is a multi-
affine function of the system variables. Therefore, we may
conclude that for a system in which the estimated data sym-
bols are multi-affine functions of the system variables, the sum
rate maximization problem can be equivalently formulated as a
multi-convex optimization problem. Examples of such systems
include the MIMO interference networks, the uplink of MIMO
cellular networks, multiuser relay networks, etc.

Concerning the computational complexity of the proposed
algorithm, alternatingly optimizing the tuples of the filters
and the auxiliary variables can efficiently solve the multi-
convex optimization problem. Specifically, the optimum scal-
ing factors w and t can be computed in closed form using
(28) and (37), respectively, given the tuples of the filters U,
V, and G if relays are employed. Using (45), the tuple of
the receive filters U can also be computed in closed form.
Although updating the tuple of the transmit filters V, as well
as the tuple of the relay processing matrices G if relays are
employed, is a quadratic optimization problem, it can be readily
solved using standard convex optimization tools. A quantitative
complexity comparison with the weighted MSE minimization
algorithm [44] based on simulation results will be shown in
Section VI.

Furthermore, the proposed algorithm can be implemented
at a central unit. If no relays are employed, the central unit
shall collect the downlink estimated channel state information
(CSI) from the MSs, compute Vopt and Uopt, and feed the results
back to the BSs and the MSs. If a single relay is employed, the
relay can play the role of the central unit. Especially in time
division duplex systems, the reciprocity of the channels can be
exploited so that the channels between the relay and the MSs
can be estimated at the relay. If multiple relays are employed,
the CSI is required to be exchanged among the relays.

Moreover, our proposed algorithm will do the best for any
scenario regardless of the placement or the number of the
relays. From an implementation point of view, one can set a
minimum received SNR threshold such that the relays which
are far away from a certain cell will not be considered for
forwarding the useful signals of this cell.

In this paper, we only considered the case where each MS
receives a single desired data symbol from the corresponding
BS. If more than one data symbol is desired by each MS, one
can expect that the estimated data symbols at a MS are super-
posed by correlated noise. If this correlation of the noise is
ignored and the received data symbols are decoded symbol-
wise, a lower bound of the sum rate can still be obtained using
the proposed algorithm. However, this is beyond the scope of
this paper and would need further investigations.

Fig. 3. Average sum rate per time slot as a function of the SNR γSNR in dB for
scenarios with M = 1 and no relays.

VI. NUMERICAL RESULTS

We first compare the performances of the proposed sum rate
maximization algorithm with the weighted MSE minimization
algorithm [44] and the IA algorithm [14]. A cellular scenario
with K cells, M = 1 MS per cell, and no relays is considered,
where the single-hop transmission scheme is applied to trans-
mit a single data symbol from each BS to the corresponding
MS. The case with K = 3 cells and NB = NM = 3 antennas
at each BS and MS as well as the case with K = 4 cells and
NB = NM = 4 antennas at each BS and MS are both inves-
tigated. An individual power constraint PB/K is assumed for
each BS and the SNR is defined as γSNR = PB

Kσ 2 . I.i.d. complex
Gaussian channels with the average channel gain being normal-
ized to one are assumed. Fig. 3 shows the achieved sum rates
of the three considered algorithms averaged over 100 randomly
generated channels. The proposed sum rate maximization algo-
rithm and the weighted MSE minimization algorithm terminate
if the absolute difference of the achieved sum rates in two
consecutive iterations is less than 10−3 or if the number of iter-
ations exceeds 100. It can be observed that both the proposed
sum rate maximization algorithm and the weighted MSE mini-
mization algorithm outperform the IA algorithm at low SNRs
as expected. Furthermore, for the considered scenarios the
proposed sum rate maximization algorithm is able to achieve
higher sum rates on average as compared to the weighted MSE
minimization algorithm, especially at high SNRs.

In the following, we will investigate the convergence and the
complexity of the proposed sum rate maximization algorithm in
the three-cell scenario introduced above. To make sure that the
performance advantage of the proposed algorithm does not only
hold for a small number of iterations, we compare the achieved
sum rates of the proposed algorithm and the weighted MSE
minimization algorithm at an intentionally chosen high SNR
of 50 dB for up to 100,000 iterations. The results are depicted
in Fig. 4. We can observe that our algorithm converges notably
faster than the weighted MSE minimization algorithm in this
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Fig. 4. Average sum rate versus the number of iterations at the SNR γSNR =

50 dB for a scenario with K = 3, M = 1, NB = NM = 3, and no relays.

TABLE I
COMPLEXITY COMPARISON

scenario. The computational complexity of the two algorithms
is compared in Table I. For a fair and meaningful comparison,
we record the sum rate achieved by the proposed algorithm after
100 iterations at the SNR of 30 dB and the CPU time it takes,
which is compared with the CPU time that the weighted MSE
minimization algorithm takes to achieve the same sum rate. The
results clearly show that the proposed algorithm needs not only
fewer iterations, but also less CPU time as compared to the
weighted MSE minimization algorithm.

Next, the performance of the proposed sum rate maximiza-
tion algorithm is evaluated in a cellular scenario with K = 2
cells, M = 3 MSs per cell, NB = 3 antennas at each BS, R = 4
relays, and NR = NM = 2 antennas at each relay and MS.
The two-hop transmission scheme is applied. Concerning the
channel model, we employ an i.i.d. complex Gaussian chan-
nel model with the average channel gain being normalized to
one. To assess the performance of our proposed algorithm, two
reference schemes are considered. Firstly, an IA algorithm is
considered where the tuple V of the transmit filters, the tuple
U of the receive filters, and the tuple G of the relay processing
matrices are alternatingly optimized to minimize the total inter-
ference leakage in the system. The considered IA algorithm is a
direct extension of the interference leakage minimization algo-
rithm proposed in [14] to a multiuser relay scenario. The second
reference scheme is the sum MSE minimization algorithm
which minimizes the sum MSE by alternatingly optimizing V,
G, and U [23]–[26].

Firstly, the achieved sum rate is considered as a performance
measure. The performance is plotted as a function of the pseudo
SNR which is defined as the ratio of the sum transmit power of

Fig. 5. Average sum rate per time slot as a function of the pseudo SNR γPSNR
in dB for a scenario with K = 2, M = NB = 3, R = 4, and NR = NM = 2.

all the BSs and relays to the noise variance σ 2, i.e.,

γPSNR =
PB + PR

σ 2
. (55)

Fig. 5 shows the performances of the three considered algo-
rithms averaged over 100 channel snapshots. It can be seen from
Fig. 5 that the IA algorithm performs poorly as compared to
the other two algorithms at low to moderate pseudo SNRs. On
the one hand, the IA algorithm does not consider noise reduc-
tion. On the other hand, the IA algorithm does not intend to
improve the received powers of the useful signals when mini-
mizing the interferences. That is to say, the IA algorithm does
not maximize the received SNRs at the MSs. In the pseudo
SNR region shown in Fig. 5, both the sum MSE minimization
and the sum rate maximization algorithms achieve superior per-
formance as compared to the IA algorithm. However, the sum
rate maximization algorithm outperforms the sum MSE min-
imization algorithm on average. This shows that minimizing
the sum MSE does not necessarily achieve high sum rates. At
high pseudo SNRs, interferences become more harmful. As IA
aims at perfectly nullifying all the interferences, the sum rates
achieved by the IA algorithm increase approximately linearly
with the pseudo SNRs and the slope is related to the achieved
degrees of freedom (DoFs). Furthermore, if the sum MSE min-
imization and the sum rate maximization algorithms are able to
find the global optima, all three curves should have the same
slope at high pseudo SNRs. However, as the total available
power increases, the feasible region described by the constraint
sets of (20) and (21) enlarges and this complicates the search
for a good stationary point for both the sum MSE minimization
and the sum rate maximization algorithms. As a result, both
algorithms cannot achieve the same DoFs as the IA algorithm.

Next we will take a closer look at the convergence of the
proposed sum rate maximization algorithm. In Fig. 6, the
approximated probability density of the sum rates achieved by
the proposed sum rate maximization algorithm, the sum MSE
minimization algorithm, and the IA algorithm at a pseudo SNR
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Fig. 6. Probability density of the average sum rate per time slot at the pseudo
SNR γPSNR = 30 dB for a scenario with K = 2, M = NB = 3, R = 4, and
NR = NM = 2.

of 30 dB are shown. One can observe that the IA algorithm
sometimes achieves a high sum rate, but the average perfor-
mance remains low. This implies that the SNR at each MS may
vary across a wide range depending on the channel realization.
The performance of the sum MSE minimization algorithm is
more stable than that of the IA algorithm because the received
useful signal powers are forced close to the transmit signal pow-
ers, i.e., the gains of the useful links are close to one. Finally, the
proposed sum rate maximization algorithm achieves the high-
est average sum rate with the smallest variance among the three
considered algorithms in this case. For a randomly given chan-
nel realization, the algorithm converges, with high probability,
to a solution which achieves a sum rate in the range between
14 bits per channel use and 17 bits per channel use. However,
for some channel realizations, the algorithm may also converge
to solutions achieving a sum rate of about 13 bits per channel
use or 18 bits per channel use. The reason is that the sum rate
maximization algorithm is not guaranteed to achieve a global
maximum. In fact, alternatingly adapting the sets of optimiza-
tion variables may result in that one or several users are turned
off. In our simulation results for instance, it may happen that
zero, one, or even two of the six MSs are turned off depend-
ing on the pseudo SNR and the channel realizations. Because
of this, the IA algorithm can even outperform the proposed sum
rate maximization algorithm at very high pseudo SNRs.

Fig. 7 shows the average sum rate versus the number of iter-
ations of the considered algorithms for the first 50 iterations
at a pseudo SNR of 30 dB. Since sum rate maximization is
not the objective of the IA algorithm, it only achieves a rela-
tively low sum rate. The average sum rate achieved by the sum
MSE minimization algorithm slowly increases with the num-
ber of iterations. As compared to the sum MSE algorithm, the
proposed sum rate maximization algorithm not only converges
faster, but also converges to a higher sum rate on average. The
main reason is that the auxiliary variables w and t are adapted
in every iteration to help maximizing the sum rate.

Fig. 7. Average sum rate versus the number of iterations at the pseudo SNR
γPSNR = 30 dB for a scenario with K = 2, M = NB = 3, R = 4, and NR =

NM = 2.

VII. CONCLUSION

In this paper, the sum rate maximization problem in cellular
networks is considered. It is shown that by adding two sets of
auxiliary variables, this problem can be formulated as a multi-
convex optimization problem. The property of multi-convexity
in the new formulation makes it possible to find a stationary
point using an efficient iterative algorithm. The new proposed
multi-convex formulation is not limited to our considered sce-
nario, but it can be applied to many multiuser wireless system
in which the estimated data symbols are multi-affine functions
of the system variables.
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