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Abstract—We consider the two-user multiple-input multiple-
output X-channel where the transmitters 1, 2 have M1,M2 an-
tennas and the receivers 1, 2 have N1, N2 antennas, respectively,
and study the achievable number of degrees of freedom (DoF)
of this network under the assumption of delayed channel state
information at the transmitters. For this scenario, Kao and
Avestimehr proposed in [1] a transmission scheme, which was
conjectured to achieve the number of DoF of this network under
the assumption of linear encoding strategies at the transmitters.
In our paper, we show that the number of DoF achieved using
this scheme is less than previously reported due to the fact that
the transmitted information symbols are not always decodable
at the receivers. This is shown by performing linear indepen-
dence analysis of the received linear combinations, where new
decodability constraints on the parameters of the transmission
scheme are identified for the region of antenna configurations
where N1 + N2 > max{M1,M2}, M1 + M2 > max{N1, N2}
and min{M1,M2} > min{N1, N2} hold. Based on the identified
constraints, we propose a new transmission scheme, which for
the case where the identified constraints are active, achieves the
number of DoF greater than that achieved by the transmission
scheme proposed in [1], where only the number of decodable
information symbols is transmitted.

I. INTRODUCTION

The number of degrees of freedom (DoF) of the multiple-

input multiple-output (MIMO) X-channel (XC) has been es-

tablished in [2] and [3], where a technique named interference

alignment (IA) was used to achieve the number of DoF. One

of the requirements of IA is the instantaneous channel state

information at the transmitters (CSIT), which is difficult to

ensure in real communication systems. Under independent and

identically distributed (i.i.d.) fading, delays in CSIT make IA

infeasible and the achievable number of DoF reduces to that

achieved in absence of CSIT, which was evaluated in [4].

However, [5] has shown that even under i.i.d. fading,

delayed CSIT can be used to increase the achievable number

of DoF as compared to the case of absence of CSIT. For

multiple-input single-output (MISO) broadcast channel (BC)

with delayed CSIT, [5] evaluated the number of DoF, where

the achievability was based on applying an innovative multi-

phase transmission strategy. The DoF gains were achieved

by retransmitting the previously overheard interference recon-

structed using the delayed CSIT, which provided the receivers

information about the desired information symbols and was

cancelled at the unintended receivers.

The approach of [5] was later applied to the single-input

single-output (SISO) XC with delayed CSIT in [6]–[8], where

gains in the achievable number of DoF compared to the case

of absence of CSIT were reported. The MIMO XC with de-

layed CSIT with the symmetric antenna configurations where

M1 = M2 = M and N1 = N2 = N hold was considered

in [9], where the number of DoF was evaluated except for

the region of antenna configurations of 3/4 < M/N < 2. [1]

conjectured the complete DoF characterization of the MIMO

XC with delayed CSIT, where for the DoF upper bound the

assumption of linear encoding strategies at the transmitters was

used.

In this paper, we perform the decodability analysis of the

number of DoF achieving scheme proposed in [1]. We consider

the antenna configurations where N1 +N2 > max{M1,M2}
and M1+M2 > max{N1, N2} hold, which corresponds to the

case, where in [1] both transmitters are active during the trans-

mission and employ for the transmission the delayed CSIT.

Additionally, we restrict the antenna configurations to satisfy

min{M1,M2} > min{N1, N2}. To perform the decodability

analysis, we study linear independence of the received linear

combinations at the receivers. We show that the information

symbols transmitted using the transmission scheme of [1] are

not always decodable, where we identify new decodability

constraints on the parameters of the transmission scheme of

[1]. Based on the identified constraints, we propose a new

transmission scheme, which for the case where the identified

constraints are active, achieves the number of DoF greater than

that achieved by the scheme proposed in [1], where only the

number of decodable information symbols is transmitted.

The rest of the paper is organized as follows. Section II

describes the system model. In Section III, the transmission

scheme proposed in [1] is introduced and in Section IV, the

decodability analysis is performed. In Section V, we describe

the proposed transmission scheme and give the achieved

number of DoF in Section VI.

II. SYSTEM MODEL

We consider the 2-user MIMO XC depicted in Fig. 1,

where transmitter Txi has Mi antennas and receiver Rxj

has Nj antennas, ∀i, j ∈ {1, 2}. We assume that N1 +
N2 > max{M1,M2}, M1 + M2 > max{N1, N2} and

min{M1,M2} > min{N1, N2} hold. Additionally, without

loss of generality, we assume M1 ≥ M2.

The transmission is performed for the duration of TΣ time

slots, during which each of the transmitters Txi, i ∈ {1, 2},
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Fig. 1. The two-user MIMO XC

intends to communicate two vectors of information symbols

u1i ∈ Cb1i×1 and u2i ∈ Cb2i×1 to Rx1 and Rx2, respectively,

where bji denotes the number of the information symbols to

be delivered from Txi to Rxj , j ∈ {1, 2}. Let xi (t) be the

signal transmitted by Txi in time slot t, 1 ≤ t ≤ TΣ. The

signal received by Rxj in time slot t is defined as

yj (t) = Hj1 (t)x1 (t) +Hj2 (t)x2 (t) + nj (t) , (1)

where Hji (t) ∈ C
Nj×Mi is the channel matrix between Txi

and Rxj in time slot t and nj (t) ∼ CN
(

0, INj

)

. The signal

transmitted by Txi is subject to the average power constraint

of 1
TΣ

TΣ
∑

t=1
E
[

xH
i (t)xi (t)

]

≤ P , where P is the maximum

transmit power at a transmitter.

The entries of the channel matrix Hji (t) , ∀i, j ∈ {1, 2},

are drawn randomly from a continuous distribution and are

i.i.d. across antennas, time slots and across different transmitter

and receiver pairs. We assume that each receiver has the

instantaneous global channel knowledge, i.e. in time slot t,
1 ≤ t ≤ TΣ, each receiver has the access to the sets of chan-

nel matrices {Hji (τ)}tτ=1, ∀i, j ∈ {1, 2}. Each transmitter

obtains the global channel knowledge with a single time slot

delay, i.e. in time slot t, 2 ≤ t ≤ TΣ, it has the access to the

sets of channel matrices {Hji (τ)}
t−1
τ=1, ∀i, j ∈ {1, 2}.

We say that the number of DoF d = 1
TΣ

2
∑

j=1

2
∑

i=1

bji is

achievable in the two-user MIMO XC, if the information

symbol vector uji transmitted from Txi to Rxj , ∀i, j ∈ {1, 2},

is decodable with probability one.

III. TRANSMISSION SCHEME

In this section, we describe the transmission scheme of [1],

in order to perform its decodability analysis in Section IV.

A. Structure of Transmission Scheme

The overall transmission is comprised of three phases,

where phase l, l ∈ {1, 2, 3}, has a duration of Tl time slots,

TΣ =
∑3

l=1 Tl. In phase 1, Tx1 and Tx2 simultaneously

transmit u11 and u12 to Rx1, where Rx1 receives useful signal

and Rx2 overhears interference, which is useful for Rx1. Phase

2 is similar to phase 1, where the transmitters transmit u21 and

u22 to Rx2, while Rx1 overhears interference. In phase 3, the

interference overheard at the unintended receivers in phases

1 and 2 is reconstructed using the delayed CSIT and retrans-

mitted, where the receivers obtain useful information about

the desired information symbols and the known interference

is cancelled.

In our paper, we focus on the antenna configurations of

min{M1,M2} > min{N1, N2}, where in phases 1 and 2 of

the transmission scheme of [1], a special transmission strategy

is applied for the case, where both transmitters have the

numbers of antennas greater than the number of antennas at an

unintended receiver. In our paper, we study the decodability of

the information symbols transmitted using such transmission

strategy by considering the transmission in phase 1 for the

antenna configurations of min{M1,M2} > N2. In our study,

we assume that the interference terms generated at Rx2 in

phase 1 are directly provided to Rx1 without the transmission

in phase 3. We conjecture, that the transmission of the inter-

ference terms in phase 3 can be omitted from the decodability

analysis without loss of generality, since the transmission is

performed through an i.i.d. channel.

According to [1], phase 1 is divided into k transmis-

sion periods, referred throughout the paper as transmission

blocks, where the information symbols transmitted in each

transmission block can be decoded independently from the

information symbols transmitted in other transmission blocks.

The transmission blocks have an equal duration of T = T1/k
time slots, during which bi = b1i/k information symbols

are transmitted by Txi, i ∈ {1, 2}, and q interference terms

are overheard by Rx2. Due to the identical structure of the

transmission blocks, the decodability analysis is performed

only for the first transmission block.

B. Transmission in Phase 1

The transmission of the first transmission block of phase 1

spans the time slots of 1 ≤ t ≤ T , during which Tx1 and

Tx2 transmit the information symbol vectors u1 ∈ Cb1×1 and

u2 ∈ Cb2×1 to Rx1, where b1 = M1T and b2 ≥ N2T
(1) hold.

The overall transmission is split into two parts comprising T (1)

time slots of 1 ≤ t ≤ T (1) and T (2) = T − T (1) time slots

of T (1) +1 ≤ t ≤ T of the transmission block, which will be

referred as part 1 and 2 of the transmission block, respectively.

Part 1: Let us denote the concatenation of the signal

vectors transmitted by Txi, i ∈ {1, 2}, during part 1 of the

transmission block as

x
(1)
i =

[

xi (1)
T · · · xi

(

T (1)
)T
]T

∈ C
MiT

(1)
×1, (2)

where xi (t) ∈ C
Mi×1 is the signal vector transmitted by Txi

in time slot t. Let us denote the information symbol vector,

which is comprised of the first M1T
(1) elements of u1 by

u
(1)
1 ∈ C

M1T
(1)

×1. According to [1], in each time slot, Tx1

transmits a new information symbol of u
(1)
1 from each antenna,

where the transmitted signal vector is described as x
(1)
1 = u

(1)
1 .

Let us denote the concatenation of the random precoding

matrices used by Tx2 in part 1 of the transmission block as

C
(1)
2 =

[

C2 (1)
T · · · C2

(

T (1)
)T
]T

∈ C
M2T

(1)
×b2 , (3)

where C2 (t) ∈ CM2×b2 is the precoding matrix used by Tx2
in time slot t, the entries of which are i.i.d. and are taken



from a continuous distribution. The signal vector transmitted

by Tx2 is calculated as x
(1)
2 = C

(1)
2 u2.

Let H
(1)
ji ∈ CNj×Mi denote the diagonal concatenation of

the channel matrices between Txi and Rxj , ∀i, j ∈ {1, 2}, for

part 1 of the transmission block, which is defined as

H
(1)
ji =







Hji (1) 0

. . .

0 Hji

(

T (1)
)






∈ C

NjT
(1)

×MiT
(1)

,

(4)

where Hji (t) is the channel matrix between Txi and Rxj in

time slot t. The concatenation of the signal vectors received

by Rxj , j ∈ {1, 2}, in part 1 of the transmission block

y
(1)
j =

[

yj (1)
T · · · yj

(

T (1)
)T
]T

∈ C
MjT

(1)
×1 (5)

can then be evaluated as

y
(1)
j = H

(1)
j1 u1 +H

(1)
j2 C

(1)
2 u2 + n

(1)
j , (6)

where yj (t) ∈ CMj×1 is the signal received by Rxj in time

slot t and n
(1)
j ∼ CN

(

0, INjT (1)

)

.

Part 2: Similarly to (2), let x
(2)
i ∈ CMiT

(2)
×1 denote

the concatenation of the signal vectors transmitted by Txi,

i ∈ {1, 2}, in part 2 of the transmission block. Let u
(2)
1 ∈

CM1T
(2)

×1 denote the symbol vector, which is comprised of

the last M1T
(2) elements of u1. The signal vector transmitted

by Tx1 in part 2 of the transmission block is calculated

similarly to part 1 as x
(2)
1 = u

(2)
1 .

According to [1], in part 2 of the transmission block Tx2
retransmits the interference, which was overheard in part 1

by Rx2. Similarly to (3), let us denote the concatenation

of the random precoding matrices used by Tx2 in part 2

of the transmission block as C
(2)
2 ∈ CM2T

(2)
×N2T

(1)

. The

signal vector transmitted by Tx2 can then be evaluated as

x
(2)
2 = C

(2)
2 H

(1)
22 C

(1)
2 u2.

Similarly to (5), let us denote the concatenation of the

signal vectors received by Rxj , j ∈ {1, 2}, in part 2 of the

transmission block as y
(2)
j ∈ C

NjT
(2)

×1. Similarly to (4), let

H
(2)
ji ∈ CNjT

(2)
×MiT

(2)

denote the diagonal concatenation of

the channel matrices between Txi and Rxj , ∀i, j ∈ {1, 2}, for

part 2 of the transmission block. The signal vector received

by Rxj can then be calculated as

y
(2)
j = H

(2)
j1 u

(2)
1 +H

(2)
j2 C

(2)
2 H

(1)
22 C

(1)
2 u2 + n

(2)
j , (7)

where n
(2)
j ∼ CN

(

0, INjT (2)

)

.

The concatenation of all signal vectors received during

the transmission block by Rxj , j ∈ {1, 2}, denoted as

yj =
[

y
(1)
j

T

y
(2)
j

T
]T

∈ CNjT×1 can be evaluated as

yj =

[

H
(1)
j1 0

0 H
(2)
j1

] [

u
(1)
1

u
(2)
1

]

+

[

H
(1)
j2 C

(1)
2

H
(2)
j2 C

(2)
2 H

(1)
22 C

(1)
2

]

u2 + nj ,

(8)

where nj ∼ CN
(

0, INjT

)

.

C. Generation of Interference Terms

Let us consider the signal vector y2 received by Rx2, which

is defined in (8). Since the entries of H
(1)
22 and C

(1)
2 are

distributed independently, the signal of Tx2 will almost surely

span
(

T (1)N2

)

-dimensional space at Rx2. It means there exists

a full rank matrix W2 ∈ CN2T
(2)

×N2T , for which

W2

[

IN2T (1)

H
(2)
22 C

(2)
2

]

= 0N2T (2)×N2T (1) (9)

holds. Without loss of generality, we assume W2 =
[

−H
(2)
22 C

(2)
2 IN2T (2)

]

. By multiplying y2 with W2, Rx2

obtains the vector of q = N2T
(2) interference terms, which is

evaluated as

u1;2 = W2y2 =
[

−H
(2)
22 C

(2)
2 H

(1)
21 H

(2)
21

]

[

u
(1)
1

u
(2)
1

]

, (10)

where the noise term has been omitted since it does not

influence the DoF analysis.

By omitting the noise, we define the vector
[

y1

u1;2

]

= H1

[

u
(1)
1

T

u
(2)
1

T

u2
T

]T

∈ C(N1T+N2T
(2))×1,

(11)

which contains all linear combinations of u1 and u2,

which will be used by Rx1 for decoding, where H1 ∈

C(N1T+N2T
(2))×(M1T+b2) is the effective channel matrix.

From (8) and (10), it follows that H1 has a form of

H1 =







H
(1)
11 0 H

(1)
12 C

(1)
2

0 H
(2)
11 H

(2)
12 C

(2)
2 H

(1)
22 C

(1)
2

−H
(2)
22 C

(2)
2 H

(1)
21 H

(2)
21 0






.

(12)

IV. DECODABILITY ANALYSIS

In this section, we perform the analysis of the decodability

of the information symbol vectors u1 and u2 by Rx1. We sup-

pose that Rx1 obtains the number of the linear combinations

which is equal to the number of the transmitted information

symbols N1T +N2T
(2) = M1T + b2, which is rewritten as

b2 = (N1 +N2 −M1) T −N2T
(1). (13)

In such case, the information symbols are decodable if and

only if the linear combinations obtained by Rx1 are linearly

independent, i.e. H1 is full rank.

T (1) can be chosen by considering the decodability con-

straint of b2 ≤ M2T
(1), which is rewritten as

T (1) ≥
N1 +N2 −M1

M2 +N2
T (14)

using (13). Since b2 is inversely proportional to T (1), in order

to maximize b2, T (1) has to be chosen as a minimum satisfying

(14), which will yield the parameters of the scheme of [1]. The

following example shows that in such case H1 is not always

full rank.

Example: Suppose M1 = M2 = 4, N1 = 6 and N2 = 1,

where according to [1], T = 5, T (1) = 3 and T (2) = 2. In



part 2 of the transmission block, Tx1 transmits M1T
(2) = 8

symbols and Tx2 retransmits N2T
(1) = 3 terms. The length

of y
(2)
1 is N1T

(2) = 12 > M1T
(2) +N2T

(1) = 11, hence the

linear combinations comprising y
(2)
1 are linearly dependent.

The following theorem helps us to identify the constraints

on T (1) which are necessary for H1 to be full rank.

Theorem 1: H1 is rank deficient if

N2 min
{

T, 2T (1)
}

+M1T
(2) < (N1 +N2)T

(2). (15)

Proof: Let us consider the matrix

H′

1 =

[

0 H
(2)
11 H

(2)
12 C

(2)
2 H

(1)
22 C

(1)
2

−H
(2)
22 C

(2)
2 H

(1)
21 H

(2)
21 0

]

,

(16)

which is comprised of the last N1T
(2) +N2T

(2) rows of H1.

We show the rank deficiency of H1 by showing the rank

deficiency of H′

1, which has at most a rank of

rank (H′

1) ≤ (N1 +N2)T
(2). (17)

Using the rank property of horizontally concatenated matri-

ces, we upper bound the rank of H′

1 by the sum of the ranks

of the matrices constituting H′

1 as

rank (H′

1) ≤ rank

(

[

H
(2)
11

T

H
(2)
21

T
]T
)

+

rank
(

H
(2)
22 C

(2)
2 H

(1)
21

)

+ rank
(

H
(2)
12 C

(2)
2 H

(1)
22 C

(1)
2

)

. (18)

The terms constituting the right hand side of (18) can be upper

bounded using the rank property of matrix products as

rank
(

H
(2)
22 C

(2)
2 H

(1)
21

)

≤ N2 min
{

T (1), T (2)
}

, (19)

rank
(

H
(2)
12 C

(2)
2 H

(1)
22 C

(1)
2

)

≤

min
{

N1T
(2),M2T

(2), N2T
(1)

}

. (20)

By inserting (19), (20) in (18) and using the properties of

rank

(

[

H
(2)
11

T

H
(2)
21

T
]T
)

≤ M1T
(2) and (17), one obtains

rank (H′

1) ≤ N2 min
{

T, 2T (1)
}

+M1T
(2), (21)

which, given (15) holds, states that H′

1 and H1 are rank

deficient.

To obtain the conditions which are necessary for H1 to be

full rank, the condition where (15) does not hold is rewritten

as two inequalities involving T (1) as

T (1) ≥
N1 +N2 −M1

N1 + 3N2 −M1
T, (22)

T (1) ≥
N1 −M1

N1 +N2 −M1
T. (23)

In cases where the right hand sides of (22) or (23) are greater

than the right hand side of (14), the information symbols

transmitted using the transmission scheme of [1] are not

decodable, where the exact regions will be given in Section V.

TABLE I
REGIONS OF ANTENNA CONFIGURATIONS WHERE PROPOSED

TRANSMISSION IS APPLIED

min{M1,M2} >

N2

min{M1,M2} >

N1

min{M1,M2} >

max{N1, N2}
Phase 1 Proposed [1] Proposed

Phase 2 [1] Proposed Proposed

To maximize b2 while ensuring the decodability, T (1) has to

be chosen as a minimum satisfying (14), (22) and (23). The

following theorem states the decodability of the transmitted

information symbols.

Theorem 2: Given T (1) is a minimum satisfying (14), (22),

(23), matrix H1 is full rank almost surely.

The proof of Theorem 2 is omitted due to space limitation.

V. PROPOSED TRANSMISSION SCHEME

In this section, we design the proposed transmission scheme

by modifying phases 1 and 2 of the transmission scheme of

[1], where the antenna configurations where the modification

is applied are shown in Table I. The modified transmission in

phase 1 is based on the decodability analysis of Section IV,

where the modified transmission in phase 2 can be performed

similarly by swapping the receiver indices.

According to Section IV, we set T (1) as a minimum

satisfying (14), (22) and (23). Next, we identify three regions

of antenna configurations, where either (14), (22) or (23) are

active.

Region 1: (14) is active. (14) overrides (22) and (23) when

M1 +M2 ≤ N1 + 2N2,

(N1 +N2 −M1)
2 − (M2 +N2) (N1 −M1) ≥ 0 (24)

hold, respectively. To satisfy (14), we choose

T = M2 +N2, T (1) = N1 +N2 −M1,

b2 = M2 (N1 +N2 −M1) . (25)

In Region 1, the parameters of the transmission scheme are

identical to that of [1].

Region 2: (22) is active. (22) overrides (14) and (23) when

M1 +M2 > N1 + 2N2, N1 −M1 ≤ N2 (26)

hold, respectively. To satisfy (22), we choose

T = N1 + 3N2 −M1, T (1) = N1 +N2 −M1,

b2 = (N1 + 2N2 −M1) (N1 +N2 −M1) . (27)

Region 3: (23) is active. (23) overrides (14) and (22) when

(N1 +N2 −M1)
2 − (M2 +N2) (N1 −M1) < 0,

N1 −M1 > N2 (28)

hold, respectively. To satisfy (23), we choose

T = N1 +N2 −M1, T (1) = N1 −M1,

b2 = (N1 +N2 −M1)
2 −N2 (N1 −M1) . (29)

Region 1, 2 and 3 are shown in Fig. 2, where in Region 2

and 3 the information symbols transmitted using the transmis-

sion scheme of [1] are not decodable.



Fig. 2. Region 1, 2 and 3 for the cases of (a) N1 = N2 = N and (b) M1 =
M2 = M .

VI. ACHIEVED NUMBER OF DOF

In this section, we evaluate the number of DoF achieved

using the proposed transmission scheme. For arbitrary antenna

configurations, the achieved number of DoF of the proposed

transmission scheme can be evaluated according to [1], where

in our paper, due to space limitation, we calculate the achieved

number of DoF only for the symmetric antenna configurations

where M1 = M2 = M and N1 = N2 = N hold. In such

case, phases 1 and 2 have identical parameters, where Region

3 is empty and Region 1 and 2 correspond to the regions of

1 < M
N

≤ 3/2 and 3
2 < M

N
< 2, respectively. By choosing

k = 1 and T3 = q

N
, we evaluate the achieved number of DoF

of the proposed transmission scheme using (25) and (27) as

d =







6MN
4M+N

, if 1 < M
N

≤ 3
2 ,

N(6N−M)
5N−M

, if 3
2 < M

N
< 2,

(30)

which for 1 < M
N

≤ 3
2 is identical to that of [1].

In the region of 3
2 < M

N
< 2, we compare the proposed

transmission scheme to the transmission scheme of [1], where

only the number of decodable information symbols is trans-

mitted. For phases 1 and 2, we calculate the number of the

decodable information symbols using the left hand side of

(15) as b1 + b2 = MT + (3N −M)T (1) and the number of

the retransmitted interference terms as q = b1 + b2 − NT =
(M −N)T + (3N −M)T (1). The achieved number of DoF

of [1] in the region of 3
2 < M

N
< 2 is then evaluated as

d =
2N(2M2

−4MN+6N2)
2M2

−3MN+7N2 .

In Fig. 3, we compare the number of DoF achieved using the

proposed transmission scheme to the number of DoF achieved

using the transmission scheme of [1], where additionally the

transmission scheme of [9] is added to the comparison. In the

region of antenna configurations of 3
2 < M

N
< 2, the number

of DoF achieved using the proposed transmission scheme is

greater than that achieved by the schemes of [1] and [9].

1 1.2 1.4 1.6 1.8 2
1.2

1.22

1.24

1.26

1.28

1.3

1.32

1.34

M/N

d N

Upper bound of [1]

Proposed Scheme

Scheme of [1]

Scheme of [9]

Fig. 3. The number of DoF of the symmetrical two-user MIMO XC.

VII. CONCLUSION

The achievable number of DoF of the two-user MIMO

XC with delayed CSIT has been studied. Based on the

linear independence analysis we identified new decodability

constraints on the parameters of the DoF achieving scheme of

[1]. Based on the identified constraints, a new transmission

scheme has been proposed, which for the case where the

identified constraints are active, achieves the number of DoF

greater than that achieved by the scheme of [1], where only

the number of decodable information symbols is transmitted.
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