
Hussein Al-Shatri, Sabrina Müller and Anja Klein, ”Distributed Algorithm for Energy Efficient
Multi-Hop Computation Offloading,” inProc. IEEE Internation Conference of Communica-
tions, May 2016.

c©2008 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this works must be obtained from the IEEE.

Distributed Algorithm for Energy Efficient

Multi-Hop Computation Offloading

Hussein Al-Shatri, Sabrina Müller and Anja Klein

Communications Engineering Lab, Technische Universität Darmstadt, Merckstrasse 25, 64283 Darmstadt, Germany

{h.shatri, s.mueller, a.klein}@nt.tu-darmstadt.de

Abstract—Computation offloading is a promising approach
for reducing the computational load and extending the bat-
tery lifetime of mobile nodes. A network consisting of several
wireless nodes accessing the cloud in a multi-hop fashion is
considered. In multi-hop networks, offloading a computational
task requires relaying the task by the intermediate nodes along
the path towards the cloud. If the nodes are autonomous and
rational, the intermediate nodes need to be incentivized for
forwarding the tasks of other nodes. In this paper, a distributed
decision algorithm which determines the set of tasks to be
offloaded and the set of tasks to be locally computed for total
energy minimization is proposed. Since a task needs to be
sequentially forwarded by multiple nodes, each of which decides
independently, decision conflicts on forwarding a task can occur.
Accordingly, a novel coordination mechanism is proposed by
which the forwarding nodes resolve their decision conflicts. In
this coordination mechanism, nodes need only to exchange their
forwarding decisions to resolve the conflicts. The results show
that the proposed distributed algorithm achieves a performance
close to the performance of the centralized algorithm.

Index Terms—multi-hop, computation offloading, distributed
decisions, coordination mechanism

I. INTRODUCTION

Last years have witnessed significant advancements in the

hardware and software development of wireless mobile nodes.

However, mobile nodes are battery powered which limits

their capabilities to run highly energy-consuming applications

such as video processing, voice recognition and 3D local-

ization/mapping processing [1], [2]. One emerging solution

to this problem is mobile cloud computing [3], [4]. Mobile

cloud computing aims at migrating the computational tasks

and data storage from the battery powered mobile nodes to the

resource-full cloud servers. A recent study by Cisco Inc. shows

that cloud applications such as video/audio streaming, online

gaming, social networking and online storage will occupy most

of the mobile data traffic by 2019 [5].

One big advantage of computation offloading is that it

relaxes the required storage and computation capabilities of

future mobile nodes while being able to run computationally

intensive applications. If the total network energy minimiza-

tion is a target, a trade-off between offloading and locally

computing tasks is appeared [3], [4]. Basically, the energy for

computing a task is determined by the required number of CPU

cycles whereas the energy for transmitting a task is determined

by the amount of data needed to be transmitted to the cloud.

Both the number of CPU cycles and the amount of transmitted

data, are task-type depended. As a consequence, tasks which

require few CPU cycles but a large amount of transmitted data

for offloading will rather be computed locally. On the contrary,

tasks with a low amount of offloading data are preferably being

offloaded. Because of the scarcity of the radio resources, only

a subset of nodes can offload simultaneously while the rest

should locally compute to head their energy constraints and

the delay constraints of their computation tasks. Thus, smart

offloading decision algorithms need to be developed.

In the last few years, different computation offloading

problems have been investigated. In [6], a node does not

estimate the required execution time for its tasks before taking

the offloading decision, but instead it initially computes the

task locally and if the computation time exceeds a certain

threshold, the node offloads the task to the cloud. The authors

of [7] consider several interdependent tasks and use Lyapunov

optimization to determine which task should be offloaded such

that the execution time constraint is satisfied. In [8] and [9],

the problem of deciding to which server a task should be

offloaded is investigated. [10] considers the cloud architecture

and develops a multi-objective service provisioning scheme to

find a good trade-off between both the network computation

and the nodes’ battery lifetime. In [11], a multi-antenna node

scenario is considered. For every node, the authors optimize

jointly both the precoders and the assigned CPU cycles at the

cloud.

The problem of deciding whether a node should compute

its task locally or offload it to the cloud is considered in

[12], [13]. Both [12] and [13] use game theory to develop

a distributed algorithm where nodes are competing for the

limited transmission resources for offloading their tasks.

As a summary, the above mentioned works consider only

single hop wireless transmission scenarios. However, multi-

hop transmission, where not all nodes have a direct radio link

to the cloud, is of high importance in nowadays systems.

To the best of the authors’ knowledge, distributed multi-

hop computation offloading is not well investigated in the

literature. In [14], we formulate the multi-hop computation

offloading problem as a multi-dimensional Knapsack problem

and we propose a centralized algorithm to find the optimum

node decisions.

This paper focuses on computation offloading in multi-hop

networks. A novel distributed offloading algorithm aiming at

minimizing the total network energy where nodes are modeled

as decision makers is proposed. In multi-hop networks, the

decision of offloading a task does not only depend on the

et1 et2

et3

et4 et5

et6

et7

et8 et9

node
1 node

2
node
3

node
4

node
5

node
6

node
7

node
8

node
9

Cloud

Fig. 1: An offloading tree where each node has a unique

offloading route to the cloud.

corresponding node, but also on all the intermediate nodes

on the path towards the cloud. These intermediate nodes

need to simultaneously decide to forward this task so that

it will successfully be offloaded. However, the intermediate

nodes are energy limited and as well they should decide on

their own tasks. Thus, they shall smartly select a subset of

tasks to be forwarded such that the total network energy is

minimized. Because intermediate nodes decide on forwarding

tasks independently, there can be forwarding decision conflicts

which will be resolved using a novel proposed coordination

mechanism.

The rest of the paper is organized as follows. The next

section describes the system model. Section III introduces

the problem. The proposed algorithm is described in Section

IV. The convergence of the proposed algorithm is analyzed

in Section V. Numerical results are discussed in Section VI.

Finally, the conclusion is drawn in Section VII.

II. SYSTEM MODEL

A network consisting of N wireless nodes having access

to the cloud is considered. Only a subset of the nodes has

direct access to the cloud while other nodes access the cloud

in a multi-hop fashion. Furthermore, the network is assumed

to be always connected and the routing tree is a priori given

in such a way that there is only a single route from each node

to the cloud as shown in Fig. 1. Based on this, the considered

network topology forms a rooted tree with the root and vertices

being the cloud and the nodes, respectively. Let Pn be the set

of predecessor nodes of node n which are all the nodes on

the path between the n-th node and the cloud. Also, let Sn

be the set of successor nodes of node n which are all nodes

branching from the n-th node. Each edge in the tree departs

from a single node to its nearest predecessor node. The radio

links among the nodes have different qualities, i.e., different

pathloss and shadowing effects. Then, the energies needed for

transmitting a certain amount of data through different radio

links are not the same. Accordingly, the amount of energy etn
the n-th node needs for transmitting a single bit to its nearest

predecessor node is depicted next to the tree edges in Fig. 1.

In the considered network, nodes perform simultaneous

computation sessions where in each session, every node is

required to compute an independent task. It is assumed that

the duration of a computation session is arbitrarily small so

that node positions are fixed during this session. It is further

assumed that a task is non-separable and does not have a

hard time constraint. Therefore, the decision of whether to

offload or not is based only on the energy consumption. The

assumption that nodes are allowed to compute only their own

tasks is considered in this paper.

A task n should be either computed locally at the corre-

sponding node n or offloaded to the cloud for computation.

Let Ln be the required number of instructions needed for

computing the n-th task and let Bn be the required number

of bits needed for offloading the n-th task. It is assumed that

the cloud is resource-full and therefore, we do not consider

the cloud computation. Furthermore, the transmission back to

the nodes is not considered.

Concerning task computation, the energy of computing a

task locally depends on the node’s processor. Let ecn be the

compute energy per instruction at the n-th node measured

in Joule per bit. Then, the amount of energy consumed for

computing the n-th task at the n-th node is given by

Ec
n = Lne

c
n. (1)

Concerning task transmission, let hm,n ∈ C be the coefficient

of the channel between the transmit node n and the receive

node m. According to Shannon formula, the transmit power

ptn of the n-th node adapted for achieving the required data

rate Rm at the m-th node is calculated as

ptn =
σ2

|hm,n|
2

(

2Rm − 1
)

(2)

where σ2 is the noise power at the m-th receive node. Then,

the amount of transmit energy per bit the n-th node consumes

is given by

etn =
ptn
Rm

, (3)

with a unit of Joule per bit. Given the number Bn of

transmitted bits required for offloading the n-th task, the

transmission energy of node n for transmitting its task to its

nearest predecessor node is calculated as

Et
n = Bne

t
n. (4)

If the n-th node is not directly connected to the cloud, prede-

cessor nodes in Pn need to forward the n-th task towards the

cloud. Hence, the required energy needed by the predecessor

node m ∈ Pn for forwarding the n-th task is calculated as

Ef
m,n = Bne

t
m. (5)

Finally, every node n has an energy constraint Etot
n in every

computation session which is assumed to be enough for at

least locally computing its task, i.e., Etot
n ≥ Ec

n.

III. PROBLEM STATEMENT

In this section, the computation offloading problem is in-

troduced. Aiming at minimizing the total network energy, the

problem of finding the optimum split of the tasks into two

sets of offloaded tasks and locally computed tasks will be

formulated. To this end, a single computation session where

each node has a single task is considered. Let αn ∈ {0, 1} be

the n-th node’s decision variable, where αn = 0 implies that

node n decides to compute its task and αn = 1 means that

node n decides to offload its task to the cloud. Based on this,

one can formulate the offloading optimization problem as

(

αopt
1 , . . . , αopt

N

)

=

argmin
α1,...,αN

{

N
∑

n=1

(

αn

(

Et
n +

∑

m∈Pn

Ef
m,n

)

+ (1− αn)E
c
n

)}

(6)

subject to

αnE
t
n + (1− αn)E

c
n +

∑

k∈Sn

αkE
f
n,k ≤ Etot

n , ∀n. (7)

The objective function of (6) describes the total energy con-

sumed in the network by either offloading or locally comput-

ing the tasks including the forwarding energy based on the

nodes decision variables αn, ∀n. The total energy constraint

described in (7) states that the total energy consumed by every

node for either offloading or locally computing its task and

the additional energy consumed for forwarding other nodes’

tasks is constrained by the node energy constraint Etot
n . The

optimization problem of (6)–(7) is a binary linear program and

it is inseparable due to the task forwarding terms.

IV. DISTRIBUTED ALGORITHM

A. Overview

The optimization problem of (6)–(7) can be solved using

a centralized algorithm which can be implemented at the

cloud or at a node. To avoid gathering all the network

information into a single unit which requires a large amount of

signaling overhead, a distributed algorithm aiming at solving

the problem of (6)–(7) with nodes acting as decision makers

is of interest.

Before explaining the proposed distributed algorithm, the

required signaling in the network will be introduced. In the

proposed distributed algorithm, a node is periodically informed

of the network topology. More specifically, the n-th node needs
to know both the set Pn of predecessor nodes and the set Sn

of successor nodes. Moreover, a node n knows the transmit

energy etm per bit for all predecessor nodesm ∈ Pn on its path

to the cloud. Finally, nodes have perfect decision information

in the sense that they know the decisions of each other on

their respective tasks of interest, i.e., own tasks and forwarding

tasks. More specifically, a node knows the decisions of other

nodes on its path to the cloud only for the common tasks in

which this node and one or more other nodes need to forward

a task jointly.

Basically, the distributed proposed algorithm consists of two

main steps. In the first step, initial decisions are made where

every node initially decides to offload its own task or not.

If a node decides to offload, it sends a forwarding request

to all its predecessor nodes. Then, all nodes who received

a forwarding request make an initial forwarding decision.

Because a task may need to be forwarded by multiple nodes

and the nodes make their initial forwarding decisions without

cooperating with each other, there could be some forwarding

decision conflicts. In the second step, nodes should change

their forwarding decisions aiming at resolving the decision

conflicts. After resolving the decision conflicts, the forwarding

nodes send back a forwarding acceptance or rejection to the

requesting nodes. Only nodes who get a forwarding acceptance

will offload their tasks whereas the rejected tasks will be

computed locally at the corresponding nodes.

B. Initial Decisions

In a multi-hop network, a node cannot decide for offload-

ing alone unless its predecessor nodes have the ability and

willingness to forward its task to the cloud. Therefore, a node

needs to incentivize its predecessor nodes by rewarding them

for forwarding its task. Before defining the reward, the initial

offloading decisions need to be introduced. Each node first

makes an initial decision on offloading its task. To this end,

the initial offloading decision at the n-th node is calculated as

αini
n =

{

1, if Ec
n > Et

n +
∑

m∈Pn

Ef
m,n

0, otherwise.
(8)

(8) implies that each node prefers offloading only if the total

offloading energy Et
n +

∑

m∈Pn

Ef
m,n including the forwarding

energy is less than the local computing energy Ec
n. It can be

noted that, in finding the initial decisions, the nodes consider

not only their transmit energy but also the forwarding energies

from the predecessor nodes. Therefore, the initial decisions are

beneficial in minimizing the total energy of the whole network

rather than in minimizing their own energy.

If a node n initially decides to offload, it will send a

forwarding request to its predecessor nodes m ∈ Pn together

with a rewarding offer. In other words, if all predecessor nodes

in Pn accept to forward the n-th task, each of them will receive

a reward which is calculated as

Wn = Ec
n − Et

n −
∑

m∈Pn

Ef
m,n. (9)

The reward function described in (9) represents exactly how

much energy can be saved in the network by offloading the

n-th task. Thus, nodes can use only the reward values for

deciding which tasks to offload at best. For instance, the n-
th node receives two forwarding requests and it can afford

forwarding only one of them. Then, it will be beneficial for

the network if the task with the higher reward is forwarded,

which implies that a higher amount of energy will be saved

in the network.

After taking the initial offloading decisions, every node n
calculates its initial remaining energy as

Erest(0)
n = Etot

n −
(

αini
n Et

n +
(

1− αini
n

)

Ec
n

)

, (10)

which will be used in forwarding the successor node tasks. It

can be noted that the distributed initial decisions correspond

to the optimum for the whole network only if there is enough

forwarding energy available at all nodes. Nevertheless, nodes

do not have always enough remaining energy to accept all

forwarding requests. Therefore, finding the set of tasks to be

forwarded for minimizing the total network energy will solve

the problem [14]. It can be pointed out here that the infor-

mation of the remaining energies E
rest(0)
n is not exchanged

among the nodes.

Now, the nodes which receive forwarding requests need to

make initial forwarding decisions. Note that nodes take the ini-

tial forwarding decisions without any exchange of information.

Therefore, forwarding decision conflicts can occur. As will

be described in the next section, nodes resolve their decision

conflicts sequentially and iteratively. Let β
(i)
n,k ∈ {0, 1} be

the forwarding decision variable of the k-th task at the n-

th node in the i-th iteration. β
(i)
n,k = 1 implies that the node

n accepts the k-th node’s request in the i-th iteration whereas

β
(i)
n,k = 0 means that the request of forwarding the k-th task

is rejected by the n-th node in the i-th iteration, with k ∈ Sn.

Accordingly, the node n can decide initially which tasks it

forwards by solving the following optimization problem:

(

β
(0)
n,k

)

k∈Sn

= argmax
{βn,k}k∈Sn

{

∑

k∈Sn

αini
k βn,kWk

}

(11)

subject to
∑

k∈Sn

αini
k βn,kE

f
n,k ≤ Erest(0)

n . (12)

Based on the description in this section, two simple scenar-

ios can be solved distributedly right away. First, a single-hop

network scenario where all nodes are connected directly to the

cloud, i.e., |Pn| = 0, ∀n where |.| denotes the size of a set. In
this case, the optimum offloading decisions are αopt

n = αini
n ,

∀n which implies that every node independently decides for

the least energy consuming option. Second, a two-hop network

scenario where all tasks can be forwarded at most by a single

node, i.e., |Pn| ≤ 1, ∀n. In this case, each of the forwarding

nodes has different set of tasks to be forwarded. Thus, the

forwarding decision of a task k is taken by a single node n
which solves the optimization problem of (11)–(12) for the

optimum decisions βopt
n,k = β

(0)
n,k, k ∈ Sn.

C. Resolving Decision Conflicts

This section discusses general scenarios where tasks can

be forwarded by more than a single node, i.e., |Pn| ≥ 2.
For a task which needs to be forwarded by more than one

node, the forwarding nodes have to simultaneously accept or

reject the forwarding requests. If there is a decision conflict

in forwarding a task, it will not be offloaded and nobody

will get the reward. However, the initial forwarding decisions

are done blindly where every node solves the optimization

problem of (11)–(12) regardless of the other nodes’ decisions.

Therefore, conflicts in forwarding decisions of a task can

always happen and thus, a distributed iterative coordination

mechanism needs to be employed at the nodes to resolve their

forwarding decision conflicts.

As mentioned in Section IV-A, nodes have perfect decision

information which means they know the decisions of each

other in every iteration. Based on this information, a node

can change its decision aiming at resolving its decision con-

flict with other nodes. To this end, an iterative coordination

mechanism is proposed where a node changes its forwarding

decision only by observing the others decisions.

In the proposed coordination mechanism, a node takes an

action, i.e., changes its decision, only if it has both accepted

tasks and rejected tasks under conflict with other nodes.

Because a node takes an action only at the conflicting tasks,

it will not loose anything by taking an action but rather it

may get a reward if a conflict is resolved. Let γ
(i)
n be the

measure of nodes’ unwillingness to forward the n-th task and

it is calculated as

γ(i)
n = |Pn| −

∑

m∈Pn

β(i)
m,n, (13)

where |Pn| represents the total number of nodes needed to

forward the n-th task for offloading and
∑

m∈Pn

β
(i)
m,n represents

the number of nodes who accept forwarding the n-th task in

the i-th iteration. From (13), one can deduce that γ
(i)
n = 0 im-

plies that the n-th task will be offloaded whereas γ
(i)
n = |Pn|

implies that the n-th task will be locally computed. Moreover,

the smaller γ
(i)
n , the higher the chances that the conflict

can be resolved and vice versa. In the proposed mechanism,

nodes take actions iteratively where in every iteration, a node

deselects one of the conflicting accepted tasks, calculates the

new remaining energy and selects one or more conflicting

rejected tasks. Let A
(i)
n and J

(i)
n be the set of conflicting

accepted tasks by the n-th node in the i-th iteration and the

set of conflicting rejected tasks by the n-th node in the i-
th iteration, respectively. Then, a node n takes an action if

both sets A
(i)
n and J

(i)
n are nonempty. Taking an action can

be explained in three steps. Firstly, node n deselects the task

t ∈ A
(i)
n with the highest unwillingness γ

(i)
t . If A

(i)
n contains

more than one task with the maximum γ
(i)
t , the one with the

minimum ratio Wt/E
f
n,t will be deselected. Secondly, node n

recalculates its remaining energy including the energy saved

by deselecting the t-th task, i.e.,

Erest(i)
n = Erest(i−1)

n −
∑

k∈Sn

αini
k β

(i−1)
n,k Ef

n,k + Ef
n,t. (14)

Finally, node n selects a subset of the rejected tasks in

J
(i)
n such that the sum of the ratio Wj/γ

(i)
j is maximized.

Accordingly, the optimization problem is stated as

(

β
(i+1)
n,j

)

j∈Jn

= argmax
{βn,j}j∈Jn







∑

j∈Jn

Wj

γ
(i)
j







(15)

subject to
∑

j∈Jn

αini
j βn,jE

f
n,j ≤ Erest(i)

n . (16)

It can be noted from the optimization problem of (15)–(16)

that when β
(i+1)
n,j = 0, ∀j ∈ J

(i)
n , node n takes no action as

there is not enough energy to select a task in J
(i)
n and thus

the t-th task will remain an accepted task. To avoid cycling,

a node will not deselect the same task twice.

If no node takes an action, the coordination mechanism

stops. Afterwards, the tasks with γ
(I)
n 6= 0 will be rejected

and computed locally where I denotes the index of the last

iteration. By rejecting the task n, the n-th node will compute

locally and thus, it needs to recalculate its initial remaining

energy E
rest(0)
n . If E

rest(0)
n is not enough for forwarding the

tasks the n-th node promised to forward, the algorithm will

start from the beginning with the n-th node initially deciding

to compute, i.e., αini
n = 0.

V. CONVERGENCE ANALYSIS

In the proposed distributed algorithm, nodes make their

initial decisions simultaneously including the offloading and

the forwarding decisions. However, the iterative coordination

mechanism is run sequentially over the forwarding nodes. In

particular, only nodes with nonempty sets A
(i)
n and J

(i)
n will

participate in the coordination mechanism. In the coordination

mechanism, the sizes of the sets A
(i)
n and J

(i)
n for the partic-

ipating nodes are non-increasing. Based on this and because

of the limited remaining energies at the nodes, the number

of actions a node can take is limited and never increases.

Therefore, the coordination mechanism converges.

Because of limited remaining energies at the nodes, nodes

cannot freely select to forward any combinations of the

requested tasks in the set J
(i)
n by deselecting any of the tasks

in the set A
(i)
n . Therefore, the coordination mechanism does

not necessarily resolve all the forwarding conflicts due to the

energy limitation. Therefore, tasks with unresolved conflicts

will be rejected and the corresponding node will compute its

task locally.

VI. NUMERICAL RESULTS

In this section, the performance of the proposed algorithm

is investigated as a function of the ratio Bn

Ln
of the number Bn

of bits of a task to the number Ln of instructions of the same

task. The total network energy is considered as a performance

measure. A scenario consisting of N = 100 nodes is consid-

ered. For the following results, Monte-Carlo simulations with

100 snapshots of different random trees, channel realizations

and numbers of instructions are preformed. Furthermore, the

simulation parameters are carefully tuned such that the trade-

off between offloading and locally computing for the minimum

total energy is not trivial, i.e., the optimum is not simply

the initial decisions of (8) where each node decides for the

least energy option. In every snapshot, a single computation

session is preformed where every node has an independent

non-separable task. The number of instructions of every task

0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

Bn

Ln

/bit per instruction

to
ta
l
n
et
w
o
rk

en
er
g
y
/
µ
J

Distributed
Centralized
local Computing

Fig. 2: Average total network energy versus Bn

Ln
.

is randomly picked from a uniform distribution of the integers

between 1 and 100. For any number of instructions and the

given ratio Bn

Ln
, the corresponding number Bn of bits can

be calculated. Concerning the computing energy, we assume

that nodes have different computing capabilities. Therefore,

the compute energy per instruction eTn , ∀n is drawn from

a uniform distribution between 8 nJoule/instruction and 16
nJoule/instruction. Concerning the transmitting energy, the

channel is modeled as a complex Gaussian channel with a

unit average channel gain. Moreover, the receive noise is

modeled as additive white Gaussian with zero mean and

unit variance. Based on the channel gain in every channel

realization, the transmit energy per bit can be calculated using

(3). It is assumed that half of the nodes, randomly selected,

have energy constraints exactly enough for computing, i.e.,

Etot
n = Ec

n while the other half of the nodes have higher

energy constraints, i.e., Ec
n ≤ Etot

n ≤ 2Ec
n.

To assess the performance of our proposed algorithm,

two benchmark schemes are considered. First, a centralized

algorithm which solves the optimization problem of (6)–

(7) using the Gurobi solver [15] is considered. To see the

advantage of offloading in terms of energy minimization, the

local computing scheme where all nodes compute their tasks

locally is considered as an upper bound of the total network

energy consumption.

Fig. 2 shows the average total network energy as a function

of Bn

Ln
. Since in the local computing scheme all nodes compute

locally, it consumes the same total energy of 57.3 µJ regardless
of the ratio Bn

Ln
. In general, at low Bn

Ln
, it is preferable for

the nodes to offload their tasks as the energy of transmission

is less than the energy of computing. As the ratio Bn

Ln
gets

close to 0.5, the energy of transmission is comparable to the

computing energy and hence, more nodes compute locally.

Furthermore, it can be noticed that the performance of our

proposed distributed algorithm is close to the centralized

algorithm with the highest loss of 15% at Bn

Ln
= 0.1.

Fig. 3 shows the percentage of the number of tasks offloaded

in the network to the total number of tasks as a function of Bn

Ln
.

In the low ratios of Bn

Ln
, a large number of tasks is offloaded

whereas few nodes offload their task at high ratio of Bn

Ln
. Also,

it can be noticed that using our distributed algorithm, less

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Bn

Ln

/bit per instruction

p
e
rc

e
n
ta

g
e
 o

f
o
ff
lo

a
d
e
d
 t
a
s
k
s
/%

Distributed
Centralized

Fig. 3: Percentage of offloaded tasks to the total number of

task versus Bn

Ln
.

nodes will offload their tasks as compared to the centralized

algorithm.

In Fig. 4, the percentage of the number of tasks with

forwarding conflicts to the total number of tasks after the initial

blind forwarding decisions is picked as a function of the ratio
Bn

Ln
. As can be seen in the figure, there is a peak at Bn

Ln
= 0.2

where the number of conflicts reaches 60%. If the ratio Bn

Ln

decreases, less number of bits is required to be transmitted and

the number of conflicts decreases since nodes have enough

energy. If the ratio Bn

Ln
increases, more bits are required to

be transmitted, and thus fewer nodes prefer offloading than

computing.

VII. CONCLUSION

In this paper, a network consisting of several nodes access-

ing the cloud in a multi-hop fashion is considered. In this

scenario, each node has an independent, non-separable compu-

tational task. Aiming at minimizing the total network energy,

each node should decide to either compute its task locally or

to offload it to the cloud. A new distributed algorithm where

the individual nodes are the decision makers is proposed. In

this algorithm, every node decides on its own either to offload

its task or to locally compute it. If it decides to offload, it

has to send a forwarding request to all intermediate nodes in

its path to the cloud. All nodes which receive a forwarding

request blindly make initial forwarding decisions. Moreover,

a new coordination mechanism is proposed to resolve the

decision conflicts. The results show that the performance of

our proposed distributed algorithm is close to the performance

of the centralized algorithm.

ACKNOWLEDGMENT

This work has been performed in the context of the DFG

funded CRC 1053 MAKI – subproject B03. Authors would

like to thank Mousie Fasil for his fruitful comments.

REFERENCES

[1] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy ?” Computer, no. 4, pp. 51–56, April
2010.

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Bn

Ln

/bit per instruction

p
e
rc

e
n
ta

g
e
 o

f
c
o
n
fl
ic

ts
/%

Fig. 4: Percentage of conflicting tasks to the total number of

tasks versus Bn

Ln
.

[2] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches,” Wireless Com-

munications And Mobile Computing, no. 18, pp. 1587–1611, December
2013.

[3] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation
offloading for mobile systems,” Mobile Networks and Applications,
vol. 18, no. 1, pp. 129–140, February 2013.

[4] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, April 2010.

[5] “Cisco visual networking index: Global mobile data traffic
forecast update, 2014–2019,” February 2015. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white paper c11-520862.html

[6] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive computation offloading for
energy conservation on battery-powered systems,” in Proc. International

Conference on Parallel and Distributed Systems, Hsinchu, December
2007, pp. 1–8.

[7] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
no. 6, pp. 1991–1995, June 2012.

[8] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A game theoretic resource
allocation for overall energy minimization in mobile cloud computing
system,” in Proc. ACM/IEEE International Symposium on Low Power

Electronics and Design, Redondo Beach, August 2012, pp. 279–284.
[9] V. Cardellini, V. D. N. Personé, V. Di Valerio, F. Facchinei, V. Grassi,

F. L. Presti, and V. Piccialli, “A game-theoretic approach to computation
offloading in mobile cloud computing,” Mathematical Programming, pp.
1–29, February 2015.

[10] M. Anastasopoulos, A. Tzanakaki, and D. Simeonidou, “Energy-aware
offloading in mobile cloud systems with delay considerations,” in Proc.

IEEE Global Communications Conference, Austin, December 2014, pp.
42–47.

[11] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing.”
[Online]. Available: http://arxiv.org/abs/1412.8416

[12] E. Meskar, T. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communications channel,”
in Proc. IEEE International Conference on Communications, London,
June 2015, pp. 3192–3197.

[13] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
no. 4, pp. 974–983, April 2015.

[14] S. Müller, H. Al-Shatri, M. Wichtlhuber, D. Hausheer, and A. Klein,
“Computation offloading in wireless multi-hop networks: Energy min-
imization via multi-dimensional knapsack problem,” in Proc. IEEE

International Symposium on Personal, Indoor and Mobile Radio Com-

munications, Hong Kong, September 2015, pp. 1907–1912.
[15] I. Gurobi, Gurobi optimizer reference manual. [Online]. Available:

http://www.gurobi.com

