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Abstract—Computation offloading is an upcoming approach to
increase battery life of mobile devices overburdened by resource-
consuming applications. In multi-hop networks, computation
offloading poses new challenges since intermediate devices are
required to relay tasks of others along the path to the server.
The decision of a device about whether to offload or not depends
thus on the provided energy of relay devices and on the decisions
of other offloading devices since relay resources need to be shared.
This also implies that for energy minimization, optimal decisions
are topology-dependent. This paper introduces a novel theoretical
framework for energy minimization of computation offloading
in multi-hop wireless networks which formulates the energy
minimization problem as a binary linear problem. Proving its
equivalence to a multi-dimensional knapsack problem allows us
to specify a greedy heuristic, which shows very good performance,
with a maximal deviation of less than 5% from the optimal results.
From simulations and analytical results for different topologies,
we derive under which conditions computation offloading in
multi-hop networks is beneficial.

I. INTRODUCTION

In recent years, mobile devices utilize many computation-

intensive and heavily energy-consuming applications, such as

video processing, voice recognition or gaming. Executing such

applications can be challenging since mobile devices in general

are less resourceful than static devices [1] because of their

lower processor capabilities and limited battery life. In fact,

studies indicate that for users, longer battery life is the most

desired characteristic of mobile devices [2].

A possible solution to extend battery life of mobile devices

is computation offloading [3], i.e., migrating computation-

intensive tasks to a resourceful remote server. For this purpose,

the necessary amount of data to remotely process the tasks is

transmitted to the server.

Computation offloading is usually considered in single-hop

networks where devices are directly connected to the server

to utilize its computation resources. However, coverage in

single-hop networks is limited and transmission may require

high power. Since multi-hop can extend coverage and reduce

required transmission power [4], we consider multi-hop net-

works in the context of computation offloading. Specifically,

we investigate the problem of energy minimization.

A lot of work has already been done on computation

offloading (for a survey, see [3]), including the design of

mechanisms to decide whether and which parts of an ap-

plication to offload. The majority of these works focuses on

energy savings in single-hop networks from a single mobile

device’s point of view. In [2] and [5], settings are investigated

under which computation offloading is beneficial for a mobile

device. Their calculations show that energy savings depend

on the ratio of “communication vs. computation”. Especially

applications with high computational requirements but low

amount of data to be transmitted are suitable. In [6], a timeout

scheme is presented allowing mobile devices to save energy by

offloading parts of their computation. In [7], an analytical solu-

tion is given for minimizing the consumed energy by optimally

configuring the clock-frequency and the rate for transmission

over time. In [8], energy savings for a mobile device are

achieved by deciding which components of a software should

be executed remotely using Lyapunov optimization. In [9], a

policy for energy-optimal remote processing in a client-server

system based on Markov models is proposed.

In comparison, there exists less work on the dynamics

among several mobile devices performing computation off-

loading, resulting e.g. from traffic induced by computation

offloading or the competition for shared resources. In [10],

a game-theoretic mechanism for a computation offloading

system is introduced which models energy and time costs of

each single device based on the decisions of others. In [11],

energy minimization in a computation offloading system is

investigated, where mobile devices can choose between several

servers. While these previous works on multiple devices con-

sider single-hop networks, a multi-hop scenario has only been

considered in a slightly different context of “communication

vs. computation”. In multi-media sensor networks, data can

be compressed at sensor nodes before communicating it to a

central entity in a multi-hop fashion [12], [13].

Compared to single-hop networks, computation offloading

poses new major challenges in multi-hop networks. If a mobile

device decides to offload a computation task to the server,

other mobile devices may have to serve as relay. However,

these relays dispose of limited batteries and have own compu-

tation tasks as well. If a mobile device aims at minimizing its

energy consumption, the optimal decision thus also depends

on the provided resources of relay devices. Moreover, since

several devices might have relay devices in common, such

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Mobile and Wireless
Networks

978-1-4673-6782-0/15/$31.00 ©2015 IEEE 1739



resources have to be shared.

Addressing these issues, the contributions of this paper are

as follows. We introduce a novel theoretical framework for

energy minimization of computation offloading in multi-hop

wireless networks. We formulate the problem as a binary linear

program. By proving its equivalence to a multi-dimensional

knapsack problem, we are able to apply the well-known primal

greedy heuristic for knapsack problems to our problem, which

shows very good performance. We also derive conditions

under which computation offloading in multi-hop networks is

beneficial by comparing numerical and analytical results for

different topologies.

The rest of the paper is organized as follows. We describe

the system model in Section II and introduce the energy

minimization problem in Section III. In Section IV, we provide

an analysis of the optimization problem. We give algorithms

for its solution in Section V and include analytical results for

special topologies in Section VI. Finally, we present numerical

results in Section VII and conclude the paper in Section VIII.

II. SYSTEM MODEL

In this section, we introduce the system model of our

framework for computation offloading in a multi-hop network.

A. Network Model

We consider an ad-hoc wireless multi-hop network con-

sisting of n ≥ 2 mobile devices, labeled as nodes 1 to n.

Additionally, there is a static server connected to a stable

energy supply, which is capable of parallel task processing. We

consider a computation offloading session which takes place in

a small period of time. The location of devices can change in

between different sessions, but is assumed to be fixed during

one computation offloading session. With each computation

offloading session, a routing table for access to the server is

associated depending on the current positions of the nodes

and the channel conditions they face. In such a routing table,

nodes close to the server have direct access to the server, while

other nodes can access the server only via a unique multi-hop

route given in the routing table. A graph is used to represent

the network with fixed routing table, see Figure 1. Since each

node has a unique route to the server, the corresponding graph

is a rooted tree whose root represents the server. The internal

nodes of this tree are called relay nodes and the set of all relay

nodes is called R. By basic tree properties [14], the number

m := |R| of relay nodes satisfies m ≤ n− 1. The leaf nodes

of the tree are called non-relay nodes. We refer to the route Ri

of node i, i = 1, ..., n, to the server as the sequence of relay

nodes on the multi-hop path to the server. All nodes on route

Ri are called node i’s predecessors. The direct predecessor of

node i is called node i’s parent. All nodes for which node i
is a predecessor, are called node i’s successors.

B. Task Model and Decision of Nodes

In one computation offloading session, each node i has a

non-splittable task suitable for computation offloading given

by an amount of Li CPU cycles to be processed. The node

Figure 1. A sample network with 6 nodes in graph representation. Nodes 1,
2 and 3 are relay nodes, i.e., R = {1, 2, 3}. Nodes 4, 5 and 6 are non-relay
nodes. The route from node 6 to the server is R6 = (2, 1), i.e., nodes 2 and
1 are predecessors of node 6. Node 2 is the parent of node 6. Since node 3
has no predecessor node, the route from node 3 to the server is R3 = ∅. The
successors of node 3 are nodes 4 and 5.

can either compute the task locally or, if enough resources

are available at relay nodes, it can use computation offloading

by transmitting the task via multi-hop route Ri to the server

for remote processing. For this, a corresponding amount of

Bi bits necessary for remote processing is sent. The ratio Bi

Li

is application-specific. For exemplary ratios, see [5]. Node i’s
decision is denoted by the binary variable αi with

αi :=

{

1, if node i transmits to the server

0, if node i computes locally.

The vector of all decisions is given by α := (αi)i=1,...,n. We

denote by ST := {i : αi = 1} the set of nodes transmitting

their task to the server and by SC := {i : αi = 0} the set

of nodes computing locally. In one computation offloading

session, after decision-making, the nodes in ST transmit the

tasks to the server using some given scheduling which avoids

interference. The server then processes the tasks in parallel

and sends the result back to the nodes.

C. Energy Consumption for Task Processing and Transmission

For local computing at node i, depending on the processor

speed Mi (in cycles / s) and the processing power PC,i (in

W), the energy per CPU cycle eC,i (in J / cycle) is given by

eC,i =
PC,i

Mi

. (1)

For transmission of node i, let PT,i (in W) be the transmit

power at node i. Let bi be the bandwidth of node i, let |hi|
2

be the channel gain from node i to its parent and let σ2
i be

the noise power at node i. Then, by Shannon’s formula, the

energy per bit eT,i (in J / bit) node i consumes is

eT,i =
PT,i

bi log2

(

1 +
PT,i·|hi|2

σ2
i

) . (2)

If node i computes its task locally, it consumes energy of the

amount

EC,i = eC,iLi. (3)

If node i performs computation offloading, to transmit its own

task to its parent, node i consumes energy of the amount

Ei
T,i = eT,iBi. (4)
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In addition, also any predecessor node j ∈ Ri consumes

energy when relaying node i’s task. Node j’s consumed energy

is given by

Ej
T,i = eT,jBi. (5)

The total energy spent in the network if node i performs

computation offloading is hence given by

ET,i = Ei
T,i +

∑

j∈Ri

Ej
T,i. (6)

As in [10], we neglect the feedback link from server to node,

as the amount of feedback information is small for many

applications.

Each node in the network has limited energy resources. For

one computation offloading session, let Eprov,i (in J) be the

energy node i provides for this session. While the values EC,i

and ET,i result from topology and task, in general Eprov,i can

be arbitrarily chosen. Our framework assumes that each node

provides at least enough energy to handle its own task, i.e.,

Eprov,i ≥ max(EC,i, E
i
T,i) for all i = 1, ..., n. (7)

III. FORMULATION OF ENERGY MINIMIZATION PROBLEM

In this section, we introduce the energy minimization prob-

lem for computation offloading in multi-hop networks. We

start with determining the total energy Enet(α) spent in the

network for local computing and transmission to the server. It

depends on the decisions α of all nodes and can be calculated

by the following linear cost function:

Enet(α) =

n
∑

i=1

(αiET,i + (1− αi)EC,i)

=

n
∑

i=1

αi(ET,i − EC,i) +

n
∑

i=1

EC,i. (8)

Note that the last term
∑n

i=1 EC,i is independent of α.

Hence, when solving the optimization problem with objective

function Enet(α), this constant has no influence on the optimal

decisions and can be neglected for optimization.

To formulate the energy minimization problem, our frame-

work takes into account that the nodes’ limited energy re-

sources impose constraints on possible decisions. For each

leaf node j /∈ R, its limited energy resources only have to be

sufficient for the processing or transmission of its own task.

By assumption (7) this is always the case. For each relay node

j ∈ R, assuming that the node is selfish, it wants to ensure

that its standard choice of local computing is always possible,

regardless of the decisions of its successor nodes. Therefore,

if node j reserves an amount of EC,j for itself, it can spend

Eprov,j − EC,j ≥ 0 for relaying tasks of successor nodes.

The following linear constraint describes that the decisions of

successor nodes are restricted by the energy node j provides:
∑

{i:j∈Ri}

αiE
j
T,i ≤ Eprov,j − EC,j . (9)

Employing the network’s cost function (8) as objective

function and taking into account the energy constraints (9) at

relay nodes, the optimal decisions for energy minimization can

be obtained by solving the following binary linear program:

min
n
∑

i=1

αi(ET,i − EC,i) (10)

s.t.
∑

{i:j∈Ri}

αiE
j
T,i ≤ Eprov,j − EC,j for j ∈ R

αi ∈ {0, 1} for i = 1, ..., n.

Here, the number of constraints corresponds to the number of

relay nodes m = |R| and is hence topology-dependent.

IV. ANALYSIS OF OPTIMIZATION PROBLEM

In this section, we derive properties of problem (10).

A. Feasibility

In contrast to general discrete optimization problems, it is

easy to find a feasible solution of problem (10). The choice “all

nodes compute locally” is always feasible, as can be checked

by inserting α = (0, ..., 0) into (10).

B. Decomposition

Problem (10) is decomposable to specific parts of the

network. We divide the original tree into subtrees, each of

which consists of one child node of the server and all its

successor nodes. For example, the network in Figure 1 is

partitioned into a subtree of nodes 1, 2 and 6 and a subtree of

nodes 3, 4 and 5. Then, problem (10) can be solved on each of

these subtrees separately since only decisions of nodes on the

same subtree are coupled by energy constraints of common

relay nodes.

C. Variable Reduction

Certain variables of problem (10) may directly be fixed to

their optimal values, see [15]. By applying the two rules given

below, the problem size may be reduced in a pre-processing

step before solving problem (10). The structure of the problem

remains the same.

• Rule 1: If any node i has ET,i ≥ EC,i, then the node

should compute locally, because transmitting to the server

would not decrease the consumed energy in the network

and possibly consumes additional energy at relay nodes.

Thus, the optimal decision for such a node i is αi = 0.

• Rule 2: If any relay node j ∈ R consumes his total energy

resources for computing locally, i.e., Eprov,j = EC,j ,

then each successor node i of relay node j has to compute

locally. Thus, for each node i with j ∈ Ri the optimal

decision is αi = 0.

D. Multi-Dimensional Knapsack Formulation

Next, we prove that problem (10) is equivalent to a specific

type of binary linear program, the multi-dimensional knapsack

problem, a well-known NP-hard problem [15], [16].

Proposition 1. After pre-processing, problem (10) is a multi-

dimensional knapsack problem.
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Proof: We turn the minimization problem (10) into its

equivalent maximization problem and we rewrite the energy

constraints of problem (10) to eliminate the index sets {i : j ∈
Ri}. For that purpose, we define trivial coefficients Ej

T,i := 0
for all i, j with j /∈ Ri. Hence, problem (10) is equivalent to

the following problem:

−max

n
∑

i=1

αi(EC,i − ET,i) (11)

s.t.

n
∑

i=1

αiE
j
T,i ≤ Eprov,j − EC,j for j = 1, ...,m

αi ∈ {0, 1} for i = 1, ..., n.

We then apply pre-processing Rules 1 and 2, see Subsection

IV-C. The remaining coefficients satisfy EC,i − ET,i > 0,

Eprov,j −EC,j > 0 and Ej
T,i ≥ 0. Therefore, problem (10) is

a multi-dimensional knapsack problem [15], [16].

V. ALGORITHMS

In this section, we review methods to solve the energy

minimization problem (10) for any type of topology.

A. Global Optimum as Benchmark

Since problem (10) is a binary linear program, an integer

programming solver is applied to find its global solution,

serving as benchmark for the heuristic algorithm shown below.

B. Primal Greedy Heuristic

We apply the well-known primal greedy heuristic for multi-

dimensional knapsack problems [15] to problem (10). In our

context, the idea of this centralized polynomial-time algorithm

is as follows. After pre-processing, we bring the nodes into

decreasing order of some carefully chosen efficiency measure.

Then, starting from the most efficient node, we add one node

at a time to the set of transmitting nodes, but only, if this

does not violate any of the energy constraints at relay nodes.

If an energy constraint is violated, the node is added to the set

of local computing nodes. The critical point of the algorithm

is the choice of the efficiency measure. Our framework uses

an efficiency measure taking into account how much energy

is saved when node i is chosen for transmission and which

portions of energy provided by relay nodes it requires [15]:

effi :=
EC,i − ET,i

∑

j∈Ri

E
j

T,i

Eprov,j−EC,j

. (12)

The primal greedy heuristic for problem (10) is given in

Figure 2. Since problem (10) is decomposable to subtrees, cf.

Subsection IV-B, the algorithm can be performed with local

knowledge on each of these subtrees separately.

VI. ANALYTICAL RESULTS FOR SPECIAL TOPOLOGIES

Next, we investigate the energy minimization problem (10)

for two special topologies, a star and a line topology. The star

topology establishes the connection to computation offloading

in single-hop networks. The line topology reveals the impact

of a non-decomposable topology with maximum number of

relay nodes on the benefit of computation offloading.

1: procedure GREEDY HEURISTIC

2: Input: Problem (10)

3: Pre-process (10) according to Rules 1 and 2

4: Let α1, ..., αñ be the variables not fixed in pre-

processing

5: for i = 1, ..., ñ do

6: Initialize αi := 0
7: effi :=

EC,i−ET,i

∑

j∈Ri

E
j

T,i

Eprov,j−EC,j

8: end for

9: Sort efficiencies effi into decreasing order and save

into vector ord := indices of ordered efficiencies

10: for j = 1, ..., ñ do

11: αord(j) := 1
12: if decision vector α not feasible for (10) then

13: αord(j) := 0
14: end if

15: end for

16: end procedure

Figure 2. Greedy Heuristic

(a) Star Topology (b) Line Topology

Figure 3. Special Topologies

A. Star Topology

A star topology is a tree with a root and n leaves, see Figure

3(a), i.e., a single-hop network. In this case, problem (10) has

no constraints (m = 0). It can thus be decomposed to each

individual node and optimally solved node-wise. The globally

optimal decisions are given by

αi =

{

1, if ET,i < EC,i

0, if ET,i ≥ EC,i.
(13)

The primal greedy heuristic always yields this global optimum,

since all nodes with ET,i < EC,i have effi = +∞.

B. Line Topology

A line topology is a single rooted branch whose nodes

can be labeled according to their hop-distance to the server

from 1 to n, see Figure 3(b). The number of relay nodes

is m = n − 1, which gives the highest possible number of

energy constraints. However, since the tree consists of one

single branch, the energy constraints have a special structure,

which allows to give an analytical result of problem (10) in

case of a homogeneous network, where the energies per node

are equal.

Proposition 2. Consider problem (10) in the case of a line

topology in a homogeneous network, i.e., there are constants

EC, Elink, Eprov with

• EC,i = EC for all i = 1, ..., n

2015 IEEE 26th International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC): Mobile and Wireless
Networks

1742



• Ej
T,i = Elink for all i, j = 1, ..., n with i ≥ j

• Eprov,j = Eprov for all j = 1, ..., n− 1.

Then, the optimal decisions αi, i = 1, ..., n, are given by

αi =

{

1, if i < EC

Elink
and i ≤

Eprov−EC

Elink
+ 1

0, else.
(14)

Proof: In the line topology, predecessors of node i are all

nodes with smaller hop-distance, i.e., nodes 1 to i−1. Hence,

in the homogeneous setting of Proposition 2, the energy ET,i

for transmission from (6) reduces to

ET,i = Ei
T,i +

i−1
∑

j=1

Ej
T,i = Elink +

i−1
∑

j=1

Elink = i · Elink.

(15)

Using (15) and the fact that successor nodes of relay node j,

j = 1, ..., n − 1, are all nodes with higher hop-distance, i.e.,

nodes j + 1 to n, problem (10) becomes

min

n
∑

i=1

αi(iElink − EC)

s.t.

n
∑

i=j+1

αiElink ≤ Eprov − EC for j = 1, ..., n− 1

αi ∈ {0, 1} for i = 1, ..., n.

As discussed in pre-processing Rule 1, in the optimal solution

only nodes with ET,i < EC transmit to the server. By (15),

this is equivalent to i·Elink < EC or i < EC

Elink
. The concept of

dominance, see [15], is now used to prove which variables αi

are nonzero in the optimal solution. Translated to our context,

node i dominates node k if a) node i provides at least as

much energy savings when transmitting to the server as node

k and b) node i needs at most as many energy resources from

any relay node in the network as node k. Both conditions are

satisfied if i ≤ k because a) then the objective values satisfy

iElink−EC ≤ kElink−EC and b) nodes i and k need the same

amount of energy from common relay nodes by homogeneity,

but node i has lower hop-distance to the server than node k
and thus needs energy of fewer relay nodes. Hence, each node

i dominates all nodes k with k ≥ i. This gives a dominance

ordering of the nodes according to their hop-distance to the

server. Starting from node 1, we set αi = 1 for one node

after the other as long as this does not violate any of the

constraints. The tightest constraint is the one of node 1 because

all relay nodes have the same energy available, but node 1
has the highest number of successor nodes. Suppose nodes 1
to i − 1 were already chosen to transmit, i.e., αk = 1 for

k = 1, ..., i − 1. Then, enough energy is available for node i
to transmit if

i
∑

k=2

1 · Elink ≤ Eprov − EC,

or equivalently i− 1 ≤
Eprov−EC

Elink
. To sum up, this yields the

optimal decision vector given in (14).

(a) Minimum total energy Enet spent in network vs. ratio
Bi

Li

(b) Fraction of nodes transmitting task to server vs. ratio
Bi

Li

Figure 4. Optimal and heuristic results of problem (10) for homogeneous
line, random and star topologies

This result illustrates that in a homogeneous line topology,

if not enough energy is available for all nodes to transmit to

the server, at first nodes closer to the server should be selected

for transmission. Note that for topologies consisting of several

parallel lines to the server, problem (10) is decomposable to

each of the lines by Subsection IV-B. Hence, Proposition 2 is

applicable in this case as well. Moreover, one can prove that

the primal greedy heuristic always yields the global optimum

for homogeneous line topologies.

VII. NUMERICAL RESULTS

In this section, we investigate the effect of different topolo-

gies on the optimal result of problem (10). We also evaluate

the greedy heuristic by comparing its solutions to the optimal

results obtained using the solver Gurobi [17]. Our numerical

study includes networks of n = 20 nodes with star, line as

well as random topologies. The results for random topologies

are obtained by simulating 100 random trees. We fix the

following parameters homogeneously for each node i. For

task sizes, as in [10] the number of CPU cycles is set to

Li = 1000Mcycles and the number of bits Bi is variable.
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For energy consumption, we take the best values experimen-

tally obtained in [5], for local computing eC,i = 1
730

J
Mcycle

and for transmission eT,i = 1
860

J
kbyte . This corresponds to

an energy ratio of
eC,i

eT,i
≈ 0.0094 bits

cycle . Concerning energy

resources, we arbitrarily assume that each node spends an

additional 100% of its own required energy for relaying, i.e.,

Eprov,i = 2max(EC,i, E
i
T,i).

Figure 4 shows optimal and heuristic results for line, star

and random topology under varying ratio Bi

Li
. Results of the

greedy heuristic are only shown for random topologies since

the heuristic produces optimal results for star and homoge-

neous line topology. While Figure 4(a) gives the minimum

total energy spent in the network, Figure 4(b) shows the

corresponding fraction of nodes transmitting their task to the

server. For all topologies, when Bi

Li
increases, the energy spent

in the system increases until it reaches a stable point at which
Bi

Li
=

eC,i

eT,i
≈ 0.0094 bits

cycle . At the same time, the fraction of

transmitting nodes decreases, until it reaches a stable point at

which no node is transmitting. This results from the fact that

when transmitting gets more expensive, more and more nodes

will instead compute locally. The stable point is reached when

for all nodes the networks’ energy costs for transmission to the

server are as expensive as for local computing. At this point,

no node transmits its task to the server. For both random and

line topologies, the steps in the graphs of Figure 4(a) reflect

the impact of the relay energy Eprov,i. When not enough relay

energy is left for one node to further perform computation

offloading, it is forced to compute locally, leading to an abrupt

increase of the energy spent.

Our numerical results allow three conclusions. Firstly, the

results on the star topology reflect that in single-hop net-

works, computation offloading noticeably pays off as soon

as Bi

Li
<

eC,i

eT,i
, compare [5]. This is because, if transmitting

to the server is cheaper, all nodes perform computation off-

loading, cf. Subsection VI-A. For multi-hop networks, the

effect of computation offloading becomes particularly apparent

if Bi

Li
≪

eC,i

eT,i
, especially in case of a line topology due to the

high number of hops, cf. Subsection VI-B. Secondly, the effect

of computation offloading strongly depends on the provided

energy Eprov,i, as for higher Eprov,i, the curves for line and

random topology would be flatter. Thirdly, even though the

greedy heuristic for knapsack problems has no performance

guarantee, it shows a very good overall performance in our

scenarios, with a maximal deviation of less than 5% from the

optimal results.

VIII. CONCLUSION

In this paper, we introduced a novel theoretical framework

for the problem of energy minimization of computation off-

loading taking into account challenges of multi-hop networks.

We showed its equivalence to a multi-dimensional knapsack

problem and applied the well-known primal greedy heuristic

for knapsack problems to our problem. The heuristic showed

very good performance, with a maximal deviation of less

than 5% from the optimal results. Our numerical as well as

analytical results revealed that multi-hop networks benefit no-

ticeably from computation offloading for highly computation-

intensive applications with small amount of data to transmit.

Additionally, the outcome is strongly affected by the amount

of energy which nodes provide to relay for others.

While this paper focused on a centralized solution, in

future work, a decentralized algorithm will be developed to

be applicable to ad-hoc networks.
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