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Abstract—Two-hop energy harvesting communications are
considered. The scenario consists of a source node which wants
to send data to a destination node through a half-duplex amplify-
and-forward relay station. The source node and the relay station
harvest energy from the environment several times and use it
to transmit the data. Our goal is to find the optimal power
allocation that maximizes the throughput at the destination node.
We show that the use of a half-duplex amplify-and-forward relay
station leads to a non-convex optimization problem. Therefore,
to find the optimal power allocation we propose to reformulate
the problem as the difference between two concave functions
(D.C. programming). Moreover, a branch-and-bound algorithm
is tailored to fit the energy harvesting constraints. We show that
the feasible region has to be adapted to facilitate the branching
process. Additionally, we reduce the complexity in the calculation
of the bounds by relaxing the problem into a convex problem
with a linear objective function. Numerical results compare the
performance in different energy harvesting scenarios.

I. INTRODUCTION

Wireless communication devices such as smart phones,

tablets and laptops have a wide range of capabilities that allow

popular applications and services like social networks, web

browsing, video streaming and localization [1], [2]. While

these applications and services increase the user satisfaction,

they lead to a challenge in terms of avoiding the fast depletion

of the device battery. A promising approach to overcome the

problem of extending the battery life is energy harvesting

(EH). The idea behind EH is that the devices can recharge

their battery in an environmentally friendly way using renew-

able resources like sunlight or wind [3]. In EH, the devices

collect energy from the environment and use it afterwards for

transmitting data. This requires a change in the transmission

strategies due to the time varying availability of energy [4].

The design of optimal transmission strategies for EH scenar-

ios has recently attracted a lot of attention [3]–[9]. According

to the available knowledge on the EH process, the strategies

can be classified into offline and online strategies. In the offline

case [4], complete knowledge of the EH process is assumed.

This includes the time when the energy arrives and the amount

of energy that can be collected. On the contrary, in the online

case [5], a stochastic model for the EH process is assumed.

In this paper, we focus on offline approaches in order to find

an upper bound of the achievable rates.

Point to point communications with a single EH trans-

mitter are considered in [4]. For this scenario, the authors

find transmission policies to maximize the amount of data

transmitted in a fixed period of time. Additionally, it is shown

that the maximization of the data transfer within a deadline

is equivalent to the minimization of the completion time for

the transmission of a given amount of data. Similarly, in

[5], a point-to-point scenario is considered. However, in this

case a fading channel is assumed between the source and

destination nodes, and the corresponding offline and online

optimization problems for the maximization of the amount of

data transmitted within a deadline are addressed.

Two-hop EH communications are considered in [6]–[9]. In

[6] it is assumed that only the source node harvests energy

while the relay station has just a single energy arrival. The

authors study the impact of a finite buffer at the relay station

for the storage of data. In [7], two-hop communications with

full-duplex and half-duplex relay stations are studied. In the

full-duplex case, EH is assumed for the source node and the

relay station. However, in the half-duplex case, a simplified

scenario is assumed where only a single energy arrival is

considered at the source node. This scenario is extended in

[8], where two energy arrivals at the source node and the

relay station are considered. The authors derive transmission

policies to maximize the data transmitted from the source

node to the destination node within a deadline. Finally, in

[9], a convex problem is formulated to find offline policies for

parallel relays in the two-hop EH scenario.

In this paper, we consider a two-hop communications sce-

nario where the source node and the relay station harvest

energy several times. The goal is to find the optimal power

allocation which leads to the maximum throughput at the des-

tination node. We assume a half-duplex amplify-and-forward

relay station. In contrast to the afore mentioned approaches, we

show that the consideration of an amplify-and-forward relay

station results in a non-convex expression at the destination

node. Consequently, to find the optimal power allocation, we

propose to rewrite the optimization problem as the difference

between two concave functions. This reformulation fits in a

class of global optimization techniques known as difference

of convex functions (D.C.) programming problems [10], [11].

Inspired by the work of [10], [11], a branch-and-bound algo-

rithm is tailored to fit the EH constraints. We show that in

order to facilitate the branching process, the feasible region

has to be adapted. Furthermore, we reduce the complexity in

the calculation of the lower and upper bounds by relaxing

the D.C. programming problem into a convex problem with a

linear objective function.

The paper is organized as follows. In Section II, the system

model is explained. The formulation of the power allocation

for throughput maximization problem as a D.C. program-
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Fig. 1: Two-hop communication scenario with energy harvest-

ing source node and relay station.

ming problem is presented in Section III. In Section IV, the

branch-and-bound algorithm for EH two-hop communications

is explained. Numerical performance results for different EH

scenarios are presented in Section V and Section VI concludes

the paper.

II. SYSTEM MODEL

In this paper, a two-hop EH communications scenario is

considered. As depicted in Fig. 1, the scenario consists of three

single-antenna half-duplex nodes. The term Sk, k ∈ {1, 2, 3},
is used to label the nodes. In our scenario, the source node

S1 wants to transmit data to the destination node S3. It is

assumed that the link between these two nodes is weak.

Therefore, the nodes cannot communicate directly. To enable

the communication, S2 acts as an amplify-and-forward relay

station and it forwards the data from S1 to S3. For simplicity,

it is assumed that S1 has always data available to transmit to

S3. Moreover, S2 does not have any own data to transmit to

the other nodes.

S1 and S2 are able to harvest energy from the environment

and use it for transmitting data. Consequently, the power

available for transmission at S1 and S2 depends on their

corresponding EH processes. As in [3]–[9], the energy is

harvested in a discrete manner, i.e., an amount of energy

Ei,n, i ∈ {1, 2}, is received by Si at a specific time instant

tn, where n = 1, 2, ..., N is the index of the EH time instants

and N is the total number of EH time instants. These EH time

instants are not necessarily equal for S1 and S2. However, to
simplify the notation and keep one common index, for the

case where only Si harvests energy at the time instant tn, the
harvested energy of Sj , j 6= i, is set to zero, i.e., Ej,n = 0.
We focus on the ideal case where the nodes have all the

knowledge about the EH process in advance. This means an

offline approach is considered where the time instants tn, ∀n,
and the amounts of harvested energy Ei,n, ∀n, are known

by the nodes at the beginning of the EH process. Although

this assumption cannot be completely fulfilled in reality, it

allows us to calculate an upper bound of the performance [3].

It is assumed that at t0, the nodes have not yet harvested

any energy. Furthermore, it is assumed that the nodes are

equipped with batteries which can store an unlimited amount

of energy and that the energy is only available for transmission

after it has been harvested. The received noise at S2 and

S3 is assumed to be independent and identically distributed

(i.i.d.) zero mean additive white Gaussian noise (AWGN) with

variance σ2
2 = σ2

3 = 1. Additionally, the channel coefficients

hi,n ∈ C are assumed to be perfectly known at S2 and S3.

In the following, the system equations for the transmission

from S1 to S3 are presented in the equivalent baseband. As

shown in [4], [5], for each link, an constant transmission power

in the time interval τn = tn+1 − tn between two consecutive

EH time instants tn and tn+1 is optimum. It is assumed that

during the time interval τn, the communication is performed

in two hops of equal duration. Moreover, hi,n is assumed to

be constant during this time interval. First, S1 transmits the

signal x1,n with E[|xi,n|
2] = p1,n to S2. p1,n is the transmit

power of S1. Let y2,n be the received signal at S2. Then, the
received power at S2 is given by

E[|y2,n|
2] = p1,n|h1,n|

2 + 1. (1)

Afterwards, S2 amplifies and retransmits the received signal

to S3. The amplification factor αn ∈ C has to fulfill the power

constraint at S2 given by

|αn|
2(p1,n|h1,n|

2 + 1) ≤ p2,n. (2)

Let y3,n be the received signal at S3. Then the received

signal power at S3 is

E[|y3,n|
2] = |h2,n|

2|αn|
2(p1,n|h

2
1,n|+ 1) + 1. (3)

From (2) and (3), the signal to noise ratio (SNR) at S3 in

the time interval τn is written as

γn =
|h1,n|

2|h2,n|
2p1,np2,n

|h1,n|2p1,n + |h2,n|2p2,n + 1
. (4)

The throughput at S3 in the time interval τn is given by

Bn =
τn
2

log2 (1 + γn) , (5)

where the factor 1/2 comes from the two-hop nature of

the communication. Our goal is to find the optimal power

allocation in order to maximize the throughput at S3 given the

EH processes of S1 and S2. The total throughput at S3 is the

sum of the throughput in each interval and is given by

B =
N
∑

n=1

Bn. (6)

It is assumed that the energy consumption of the nodes is

exclusively due to the transmission of data. Therefore, since

the power can be allocated only after it has been harvested, the

following causality condition must be fulfilled by any feasible

power allocation solution in the time interval τn
n
∑

l=1

τlpi,l ≤

n
∑

l=1

Ei,l. (7)

III. OPTIMIZATION PROBLEM FORMULATION

In this section, the power allocation problem for throughput

maximization is formulated. To simplify the notation, let the

vector p ∈ R
2N×1 contain the power allocation of nodes S1

and S2 such that p = [p1,1, ..., p1,N , p2,1, ..., p2,N ]T. More-

over, let the vector e ∈ R2N×1 contain the cumulative energy

values of S1 and S2, i.e., e = [E1,1, E1,1 + E1,2, ..., E1,1 +
...+ E1,N , E2,1, E2,1 + E2,2, ..., E2,1 + ...+ E2,N ]T.



Additionally, let the matrix T ∈ R
2N×2N be defined as

T =





























τ1 0 · · · 0 0 0 · · · 0
τ1 τ2 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

τ1 τ2 · · · τN 0 0 · · · 0
0 0 · · · 0 τ1 0 · · · 0
0 0 · · · 0 τ1 τ2 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 τ1 τ2 · · · τN





























. (8)

Using (5), (6) and (7) and the notation described above, the

optimization problem can be written as

popt = argmax
p

B(p) (9a)

subject to Tp ≤ e (9b)

p ≥ 02N×1, (9c)

where the inequalities hold element-wise and 02N×1 is a

2N×1 vector of zeros. The constraints given by (9b) and (9c)

correspond to an affine set. However, the objective function

is non-convex with respect to the optimization variables.

The result is that (9) is a non-convex optimization problem

and a closed-form solution cannot be obtained. Nevertheless,

using basic properties of logarithms, the objective function

can be rewritten as the difference of two concave functions.

Consequently, the optimization problem of (9) is reformulated

as a D.C. programming problem. Applying the quotient and

product properties of logarithms, (9a) is rewritten as

B(p) = f(p)− g(p), (10)

where f(p) and g(p) are two concave functions given by

f(p) =
1

2

N
∑

n=1

τn
[

log2(|h1,n|
2p1,n + 1)

+ log2(|h2,n|
2p2,n + 1)

]

, (11)

g(p) =
1

2

N
∑

n=1

τn log2(|h1,n|
2p1,n + |h2,n|

2p2,n + 1). (12)

Using (11) and (12), problem (9) is reformulated as

popt = argmax
p

[f(p)− g(p)] (13a)

subject to Tp ≤ e, (13b)

p ≥ 02N×1. (13c)

IV. BRANCH-AND-BOUND ALGORITHM FOR EH

TWO-HOP COMMUNICATIONS

In this section, the branch-and-bound algorithm for D.C.

programming problems presented in [10] is tailored to consider

the power allocation problem in an EH two-hop communica-

tions scenario. In general, branch-and-bound is an iterative

algorithm which works as follows. A recurrent partitioning

of the feasible region is performed. In each iteration one

partition is considered and the corresponding lower and an

upper bounds of the objective function are calculated. Based

on these bounds, decision rules are applied to decide if the

partition should be further divided. The algorithm stops when

there are no more partitions to examine.

A. Partitioning of the feasible region

According to [10], to facilitate the branching an initial

simplex is constructed from the feasible region. An m-simplex

is a polytope which is the convex hull of its m+1 affinely in-

dependent vertices [10]. Depending on the decision rules, this

initial simplex is partitioned using bisection in each iteration.

The use of bisection ensures that the resulting partitions are

simplices as well. However, the feasible region described by

(13b) and (13c) does not fulfill the definition of a simplex

because the available power in each time interval depends

on the previous power allocations. In the considered scenario,

two nodes harvest energy independently in N time instants.

Therefore, for each node, N power values are calculated.

This means that the dimension of the problem is 2N and the

feasible region is a 2N -dimensional polytope. Consequently,

to construct a simplex, non-feasible power values must be

considered in addition to the feasible region.
The initial simplex must include the complete feasible

region. Hence, we propose to create the initial simplex based

on the maximum power values that can be allocated to the

nodes. If a node saves all the harvested energy and transmits

only during the last interval, the maximum power that can be

allocated to it is calculated using (13b) as 1
τN

∑N

n=1 Ei,n. A

simplex whose vertices are given by the sum of the maximum

power values of all the EH nodes, is guaranteed to include the

complete feasible region. In other words, the 2N + 1 vertices

vl, l = 0, ..., 2N of the initial simplex are calculated as

vl =

{

02N×1 l = 0,

[υl,1, υl,2, ..., υl,2N ]
T

l = 1, ..., 2N,
(14)

where υl,j , j = 1, ..., 2N are the elements in vl which are

calculated as

υl,j =

{

1
τN

∑N

n=1 (E1,n + E2,n) j = l,

0 j 6= l.
(15)

To illustrate the feasible region, let us consider the simplest

case of N = 1. From the constraint of (13b), the maximum

power values for S1 and S2 are given by
E1,1

τ1
and

E2,1

τ1
, re-

spectively. Similarly, from (13c), the minimum power value is

zero for both nodes. The resulting feasible region corresponds

to a rectangle as shown in Fig. 2. The required initial simplex

is calculated using (14) and (15). The result is the triangle

shown in Fig. 2 which contains the complete feasible region.

B. Lower and upper bounds

In this section, the calculation of the lower and upper

bounds of the objective function is presented. As mentioned,

the branch-and-bound algorithm works in an iterative fashion.

In each iteration, a partition of the initial simplex is considered

and the corresponding lower and upper bounds are calculated.

Decision rules are applied to these bounds to decide if the

considered partition should be further divided.



Fig. 2: Example of the feasible region and the initial simplex

in a scenario where N = 1.

In [10], [11] the bounds are calculated by relaxing the D.C.

problem into a linear problem. However, in this approach the

number of constraints increases linearly with the number of

iterations. Therefore, to reduce the complexity in the calcula-

tion of the bounds, we propose to linearize only the objective

function. As a result, (13) is relaxed into a convex problem.

As described in [10], to linearize the objective function, an

artificial variable ξ is included in (13). Moreover, a property

of simplices is used to rewrite the power variables as a function

of the vertices of the considered simplex. It is known that any

point in a simplex can be uniquely represented as a weighted

sum of the vertices [10]. Consequently, any vector p in the

considered simplex can be written as

p =

2N
∑

l=0

wlvl, (16)

where wl, l = 0, ..., 2N are the weighting factors which satisfy
∑2N

l=0 wl = 1. Having in mind that g(p) is a concave function
and using (16), g(p) is lower bounded by

2N
∑

l=0

wlg(vl) ≤ g

(

2N
∑

l=0

wlvl

)

, (17)

where the equality is met at the vertices. To include the

variable ξ, the constraint

ξ − f

(

2N
∑

l=0

wlvl

)

≤ 0, (18)

has to be fulfilled, where (16) is used. Using (16), (17) and

(18) the problem in (13) is relaxed into a convex problem:

(ξopt, wopt
0 , ..., wopt

2N ) = argmax
ξ,w0,...,w2N

(

ξ −

2N
∑

l=0

wlg(vl)

)

(19a)

subject to ξ − f

(

2N
∑

l=0

wlvl

)

≤ 0, (19b)

T

2N
∑

l=0

wlvl ≤ e, (19c)

2N
∑

l=0

wl = 1, (19d)

0 ≤ wl ≤ 1, l = 0, ..., 2N. (19e)

The new optimization variables are the weighting factors wl

and ξ. The solution of (19) leads to the calculation of the

upper bound

ub = ξopt −

2N
∑

l=0

wopt

l g(vl). (20)

However, ub is a non-achievable throughput value because it

is obtained by linearizing the original objective function, i.e.,

(19a) is an outer approximation of (13a).
The lower bound lb is calculated by applying the throughput

function of (13a) to the obtained power vector as

lb = f

(

2N
∑

l=0

wopt

l vl

)

− g

(

2N
∑

l=0

wopt

l vl

)

. (21)

In contrast to ub, lb is an achievable throughput value. It has

to be noticed that in each iteration of the algorithm, the lower

and upper bounds are calculated for the considered simplex.

The largest value of lb among all the simplices leads to the

maximum throughput.

C. Decision rules

In this section, the decision rules used to decide if the

considered simplex should be partitioned, are presented. As

the initial simplex includes non-feasible power values, it is

possible that simplices obtained during branching lie in a

non-feasible region and consequently, lead to non-feasible

solutions. These solutions are ignored and the corresponding

simplices are not further partitioned. The decision rules pre-

sented in the following apply only to feasible solutions of (19).
As lb is an achievable throughput value and since our goal is

to maximize the throughput, the highest lower bound, termed

lbestb , leads to the maximum throughput. The value lbestb is

updated only if for a given simplex, the calculated lb is higher
than the current lbestb . The following decision rules are applied

to the considered simplex in each iteration:

1) If ub < lbestb , the considered simplex is not further

partitioned because the current lbestb exceeds the corre-

sponding ub. This means that the power vector which

leads to the maximum throughput cannot be in the region

determined by the considered simplex.

2) If ub − lbestb > ǫ, where ǫ is the desired tolerance, the

considered simplex is partitioned because it may contain

a power allocation that leads to the maximum throughput.

3) If 0 ≤ ub − lbestb ≤ ǫ, the considered simplex contains

a local maximum given by lbestb . If no other simplex

leads to a higher lower bound, then the current lbestb is

considered as the maximum throughput.

Finally, the branch-and-bound algorithm is summarized as:

1: create the initial simplex ⊲ Eqs. (14) and (15)

2: set lbestb = 0
3: while there are simplices to be inspected do

4: select a simplex and calculate ub ⊲ Eqs. (19) and (20)

5: calculate the corresponding p ⊲ Eq. (16)

6: if a feasible solution is found then

7: calculate the corresponding lb ⊲ Eq. (21)



8: if lb > lbestb then

9: update lbestb and the corresponding pbest

10: end if

11: if ub − lbestb > ǫ then

12: the simplex is partitioned using bisection

13: end if

14: end if

15: end while

16: return Rmax = lbestb and popt = pbest

V. PERFORMANCE RESULTS

In this section, numerical results for the evaluation of the

proposed algorithm are presented. It is assumed that the

amount of harvested energy Ei,n for each node Si in time

instant tn is taken from a uniform distribution with maximum

value Emax and each realization is assumed to be known non-

causally. Moreover, the time intervals τn are assumed to be

equal and the magnitude of the channel gains are assumed to

be one, i.e., |hi,n| = 1, ∀i, n.
Fig. 3 shows the average throughput versus the maximum

amount of harvested energy Emax when N = 3 EH time

instants are considered. In the figure, four cases are compared:

• Equal Energy: The EH processes of S1 and S2 are exactly
the same. Consequently, the amount of harvested energy

in each time instant is equal for both nodes.

• Equal Mean: The EH process of each node is a uniformly

distributed random variable with mean µ1 = µ2 = Emax

2
.

• Double Mean - Relay Station: The EH process of each

node is a uniformly distributed random variable. In this

case, µ1 = Emax

4
and µ2 = Emax

2
.

• Double Mean - Source Node: The EH process of each

node is a uniformly distributed random variable. In this

case, µ1 = Emax

2
and µ2 = Emax

4
.

The results show that the maximum throughput is achieved

when the EH processes of the two nodes are equal. The

reason is that the two-hop communication channel can be

seen as a single overall channel whose capacity in each time

interval depends on P1,n and P2,n simultaneously. Therefore,

the throughput is maximized when the available energies at

the nodes are equal. When only the mean value of the two

EH process is equal, the throughput is reduced compared to

the initial case because in each realization, one of the nodes

is limited compared to the other. The maximum reduction is

observed in the cases where the means are not equal. However,

the throughput achieved when µ2 = 2µ1 is on average equal

to the throughput achieved when µ1 = 2µ2. This means that

the reduction in the throughput due to energy limitation does

not depend on which node is limited, but on the difference

between the maximum energy values of S1 and S2.

VI. CONCLUSIONS

We have investigated a two-hop EH communications sce-

nario with an amplify-and-forward relay station. The source

node and the relay station harvest energy several times and

use it for the transmission of data. We show that the resulting

power allocation problem for throughput maximization is a
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Fig. 3: Average throughput vs. maximum harvested energy for

an EH two-hop scenario and N = 3 EH time instants.

non-convex problem for which a closed-form solution cannot

be found. To overcome this, we reformulate the problem

as a D.C. programming problem and tailor a branch-and-

bound algorithm to find a numerical solution. The results show

that the maximum throughput is achieved when the available

energies at the source node and at the relay station are equal.

Additionally, it is shown that the throughput does not depend

on which node is energy limited, but on the difference between

the EH processes of the nodes.
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