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Abstract—In this paper, a mechanism is designed based on
game theory which aims at minimizing the transmit power in a
multi-hop wireless broadcast network. There are multiple nodes
in a network and among them, there is a source node which has
a common message for all other nodes. For the sake of energy
efficiency, the source’s message should be forwarded to all nodes
by a collaboration between different nodes in a multi-hop manner.
Minimizing the total transmit power in the network is the goal
of this paper. To this end, the nodes in the network are modeled
as rational players and a mechanism is designed based on a
potential game model. In this game, the action set of each node
changes during the game based on the action of other players.
Besides, it is proposed to exploit the weakly dominant strategy at
the nodes such that the nodes change their actions even if a new
action with the the same cost exists. Simulation results show that
the proposed decentralized mechanism significantly outperforms
other conventional decentralized algorithms. Moreover, when the
network is not dense, our algorithm can outperform centralized
algorithms on average.

I. INTRODUCTION

The number of mobile users has dramatically increased

during the past decade and the problems related to infra-

structureless networks e.g., topology control [1] or minimizing

the transmit power [2] [3], attracted much attention. A wireless

Ad Hoc network is a network composed of a set of wireless

devices which communicate with each other in the absence

of an infrastructure. Depending on the distance between a

transmitter and its receiver, the communication in such net-

works could be done in a single-hop or multi-hop manner.

In a multi-hop transmission, a message initiated by a source

node and intended for a destination node is forwarded by the

nodes located between the source node and the destination

node. Since the wireless mobile devices are battery equipped

with limited energy, minimizing the power consumption in

such devices is an important issue. This issue is challenging

especially when a high amount of data shall be transmitted

by mobile devices, e.g., streaming a high quality video from

a node to all other nodes in its geographical proximity.

The problem in this paper is to minimize the total transmit

power required for distributing a message in a single source

wireless Ad Hoc network. The transmission scheme in such

networks is also called multi-hop broadcast. In a multi-hop

broadcast transmission, the source node distributes its message

to all nodes of the network by the help of some nodes which

forward the source’s message for other nodes. Minimizing

the total transmit power in a multi-hop broadcast network is

known to be an NP-hard problem [4]. The proposed algorithms

for this problem are mainly categorized into centralized [2] [5]

and decentralized [3] [6] algorithms.

One of the very first well-known centralized algorithms

for minimizing the transmit power in a multi-hop broadcast

network is the Dijkstra algorithm proposed in [5]. The Dijkstra

algorithm connects the nodes to the source either directly or

in a multi-hop manner by finding the shortest path (cost) from

a node to the source. The Dijkstra algorithm is simple, but

it is not suitable for wireless networks since it does not take

the broadcast nature of wireless channels into account. In [2],

the authors propose an algorithm called broadcast incremental

power (BIP). This algorithm is iterative and exploits the

broadcast nature of wireless channels in a centralized manner.

It starts with the source node and at each iteration, it connects

one of the nodes of the network to the source, either in a

single-hop or multi-hop manner. Besides the BIP algorithm,

the authors of [2] introduce a so-called sweep operation. The

sweep operation improves the result of BIP by removing

unnecessary transmissions when a node can be served by more

than one transmitter. In this paper, the BIP algorithm along

with the sweep operation is called as BIPSW. Although the

performance of the centralized algorithms such as the BIP and

the BIPSW are good, they rely on a central unit which may

not be available in an Ad Hoc network.

Due to the lack of a central unit in Ad Hoc networks,

finding a decentralized algorithm for minimizing the transmit

power in such networks is important. In [7], the authors

propose a decentralized implementation of the BIP algorithm,

called DynaBIP, but the result of the algorithm is not good

compared to the BIP algorithm. A decentralized algorithm

called broadcast decremental power (BDP) is proposed by the

authors of [6]. In BDP, a cost is defined for a node based on the

required transmit power for a link between a transmitter and a

receiver. The BDP algorithm outperforms the BIP algorithm,

but its performance is not as good as for BIPSW. Recently,

in our previous work in [3], a game theoretical model for this

problem is suggested. In [3], a fixed action set is defined for

the nodes by which the nodes can choose another node in

the network to connect to and get the source’s message. This

action set will be determined prior to the start of the game and

a node can connect to one of the pre-determined nodes during

the game. Although the decentralized algorithms do not require

a central unit and they are more suitable for Ad Hoc networks
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Fig. 1: A sample network. Solid and dashed arrows show current and
possible connections a in broadcast tree, respectively. In this network
node j is a parent node for node i and a child node for S.

than centralized ones, their performance is poor compared to

the well-known centralized algorithms such as BIPSW.
In this paper, a non-cooperative dynamic game is designed

based on the potential game model [8]. In this game, unlike

in [3], the action set of a node varies at each iteration and

adapts itself with respect to the actions of other nodes. In other

words, in [3], the nodes’ decision are restricted, while in this

work, a node could connect to any of the nodes around itself.

Moreover, in this paper using the weakly dominant strategy at

the nodes is proposed, i.e., a node updates its actions if two

transmitters offer the same cost. The game is designed such

that although the nodes rationally decide to minimize their

own costs on each iteration, the total transmit power in the

network will be minimized accordingly. The results show that

our proposed decentralized algorithm not only performs better

than conventional decentralized algorithms, but also when the

network is not dense, it outperforms the BIPSW.
The rest of this paper is organized as follows. Section II

describes the system model. The game elements, properties

and convergence are explained in Section III. Simulation

results are provided in Section IV and finally, Section V

concludes the paper.

II. SYSTEM MODEL

A network composed of N +1 wireless nodes with random

locations is considered; a source node S and a set of N other

nodes denoted by P = {1, . . . , N}. The nodes are equipped

with a single antenna and have transmit power constraint

pmax. The source node has a message for all other nodes and

due to the transmit power constraint at the nodes, the data

should be disseminated in a multi-hop manner. The message

dissemination from the source node to the nodes in P can be

modeled as a graph with a tree structure. In this tree, the source

is the root, the vertices represent the nodes and the edges are

the links between the transmitting nodes in the network and

their respective receivers. This tree is called broadcast tree.

For a single hop point to point transmission in this tree, node

j as a transmitter and node i as a receiver are called the parent

node and the child node, respectively. In a broadcast tree, a

child node has one parent node, but in order to benefit from

the broadcast nature of wireless channel, a parent node may

serve multiple child nodes. The set of child nodes served by

a parent node j is denoted by Mj , see Fig. 1.
The transmission scheme in this network is composed of

two phases. The first phase is for broadcast tree construction

and the second phase is for transmission using the constructed

broadcast tree. This paper focuses on the broadcast tree

construction in the first phase. It is assumed that the trans-

mission in this network takes seconds or minutes. Therefore,

an averaged value for the channel gains is used. The channel

gain between the child node i and parent node j is given by

|hi,j |
2. In order to decode the data sent from its parent node

successfully, a child node requires a minimum signal to noise

ratio (SNR) denoted by γth. The SNR of the transmitted signal

from parent node j and received by child node i is given by

γi =
pTx
j |hi,j |

2

σ2
(1)

in which pTx
j is the transmit power of the node j and σ2 is the

noise power. Therefore, for a unicast transmission, the transmit

power of node j, in order to guarantee at least SNR of γth at

child node i, is calculated as

punii,j =
γthσ2

|hi,j |2
. (2)

In the broadcast tree shown in Fig. 1, the weight of the edge

between a parent node j and child node i is equal to punii,j .

A node can be a parent of another node if they are in each

other’s neighborhood. Let Ni be the set of neighboring nodes

for node i, then, node j is in Ni if the required unicast power

between them is less than pmax, i.e.,

Ni =

{

j

⏐

⏐

⏐

⏐

j ∈ P ∪ {S} , punii,j ≤ pmax

}

. (3)

The transmit power of a parent node is adjustable based on

the required unicast powers of its child nodes. The multicast

transmit power of a parent node is dominated by the highest

required unicast power of its child nodes and is given by

pTx
j (Mj) = max

i∈Mj

{

punii,j

}

. (4)

The goal of this paper is to minimize the total transmit power

in the network

pnet =
N+1
∑

j=1

pTx
j (5)

where pTx
N+1 represents the transmit power of the source.

III. PROPOSED MECHANISM USING POTENTIAL GAME

In this section, the game theoretic algorithm is presented.

The game is designed in a way that minimizing the cost at

each individual node minimizes the total transmit power of

the network introduced in (5).

A. Game Properties

The considered game is characterized by a set P of rational

players which are the nodes in the network except the source.

The game is played iteratively such that at each iteration, a

node makes decision, given the decision of the other nodes.

Different iterations of the game are shown by parameter t.

The action of player i ∈ P shown by ai ∈ A
(t)
i , is to choose

a node in its neighborhood as its parent node, where A
(t)
i

represents the action set of the i-th player at iteration t. The set

of joint actions of the players is denoted by A(t) =
∏N

i=1 A
(t)
i .



The action profile of the game a = (a1, . . . , aN ) ∈ A(t) is a

vector which contains the actions of all players and a−i ∈

A(t) represents the actions of all players except the i-th one.

Based on the action profile of the game, a non-negative cost

will be assigned to each player, i.e., Ci(ai,a−i) : A(t) →

R
+ ∪ {0} in which R

+ represents positive real numbers. A

non-cooperative dynamic game is designed for this network

as G = (P, {A
(t)
i }i∈P , {Ci}i∈P).

Game G is child-driven, that is, a node as child selects a

parent with minimum cost. In this game, defining a proper

action set for the nodes is of high importance. The action set

must be defined in a way to ensure that the resulting graph

is a tree, rooted at the source. A cycle must not occur during

the iterations of this non-cooperative game where the nodes

individually decide to minimize their own cost, regardless of

what the others do. When a cycle occurs in a tree, a part of the

network loses the connections to S. Based on the definition in

[9], a cycle occurs in a rooted tree when a node connects to

one of its ancestors. The ancestors of a node in a tree are the

nodes which are on the route from S to the node. Therefore,

node j could be a parent for node i at iteration t, if node i is a

neighbor and it is not one of the node j’s ancestors at iteration

t−1. This means that the action set of a node depends on the

state of the broadcast tree [10] resulting from the actions of

other nodes taken in previous iterations.

Let R
(t)
j be the set of nodes which are on the route from

S to node j at iteration t. For instance, in Fig. 1, node j just

has node S on its route to source, i.e., R
(t)
j = {S}. Then, the

action set of node i at iteration t is defined as

A
(t)
i ) =

{

j

⏐

⏐

⏐

⏐

j ∈ Ni,R
(t−1)
j �= {}, i /∈ R

(t−1)
j

}

(6)

in which R
(t−1)
j �= {} denotes a non-empty set, that is, node j

as a parent node for node i must be connected to the broadcast

tree.

In order to benefit from the broadcast nature of the wireless

channel, the nodes will be incentivized to choose a common

parent. To this end, the Marginal Contribution (MC) principle

[11] is used to assign the cost to the child nodes. Using MC,

the cost of a node depends on the node’s effect on its parent

node’s final transmit power. More precisely, the cost of a child

node i when ai = j is defined as

Ci(j, a−i) = pTx
j (Mj)− pTx

j (Mj \ {i}). (7)

Based on (7), a positive cost will be assigned from parent

node j to the child in Mj which has the highest required

unicast power and the cost of the rest of the children in

Mj will be zero. The assigned positive cost is equal to the

difference between the highest and second highest required

unicast powers in Mj .

The best response of a player to the action of other players is

to choose a parent with minimum cost, i.e.,

ai = argmin
ai∈A

(t)
i

Ci(ai,a−i), ∀i ∈ N . (8)

The Nash Equilibrium (NE) is considered as the solution

concept of this game. An action profile a
∗ ∈ A is a NE if

Ci(a
∗
i ,a

∗
−i) ≤ Ci(ai,a

∗
−i), ∀i ∈ N , ai ∈ Ai. (9)

The NE in (9) is defined based on a weakly dominant strategy

[11]. With this strategy, a player updates its action if a new

action with either lower or equal cost exists. Clearly, by using

a weakly dominant strategy, a player may not gain by updating

its action. Nevertheless, as system designer we proposed this

strategy at the nodes because updating the action to a weakly

dominant action by a node changes the state of the broadcast

tree. Since the action set of the nodes varies based on the

state of the broadcast tree, this may help the game to reach to

a better result.

B. Convergence and Discussions

In this subsection it is shown how using weakly dominant

strategy guarantees reaching a better result compared to strictly

dominant strategy.

Definition: A game G is an exact potential game [8] if there

exists a function Φ : A → R, called potential function, such

that for every i ∈ N , ai ∈ Ai and a′i ∈ Ai,

C(a′i,a−i)− C(ai,a−i) = Φ(a′i,a−i)− Φ(ai,a−i). (10)

Theorem 1: The proposed game is an exact potential game

with potential function Φ =
∑N+1

j=1 pTx
j where pTx

j is defined

in (4).

Proof: Based on theorem 1, the potential function of

the game is equal to the total transmit power in the network

presented in (5) , i.e., Φ = pnet. The function Φ can be written

as

Φ =

N+1
∑

j=1

pTx
j = pTx

j + pTx
k +

N+1
∑

m=1,m�={j,k}

pTx
m . (11)

Suppose that node i in a transition changes its action from

ai = j to a′i = k, see Fig. 1. Based on the concept introduced

in (9), in the following, (10) is verified for different cases that

a node changes its action.

Case 1 (0 < Ci(k,a−i) < Ci(j, a−i)): In this case, the

costs of node i when it is connected to either parent node

j or parent node k are positive. It means that in both cases,

i.e., when node i ∈ Mj and when node i ∈ Mk, the highest

required unicast power among the children of parent node j
and parent node k belongs to child node i. The transmit power

of parent nodes j and k are dominated by node i and are equal

to punii,j and punii,k , respectively. The costs of node i when it is

connected to parent node j or parent node k are equal to

Ci(j, a−i) = punii,j − pTx
j (Mj \ {i}) (12)

and
Ci(k, a−i) = punii,k − pTx

k (Mk) , (13)

respectively. When node i leaves set Mj , the transmit power

of node j decreases from punii,j to pTx
j (Mj \ {i}) and by

joining set Mk, the transmit power of node k increases from

pTx
k (Mk) to punii,k . Therefore, for these two actions, Φ in (11)

can be rewritten as

Φ(j,a−i) = punii,j + pTx
k (Mk) +

N+1
∑

m=1,m �={j,k}

pTx
m (14)

and



Φ(k, a−i) = pTx
j (Mj \ {i}) + punii,k +

N+1
∑

m=1,m�={j,k}

pTx
m . (15)

Using (12) – (15), the difference in potential function is

Φ(k, a−i)−Φ(j,a−i)

= pTx
j (Mj \ {i})) + punii,k − punii,j − pTx

k (Mk)

= Ci(k, a−i)− Ci(j, a−i),

which shows that the condition in (10) holds.

Case 2 (0 = Ci(k, a−i) < Ci(j,a−i)): In this case,

(13) equals zero but (12) and (14) hold. Moreover, since

Ci(k, a−i) = 0, then punii,k ≤ pTx
k (Mk), i.e., even if node

i joins set Mk, the power of k remains the same and when

i ∈ Mk the potential function is equal to

Φ(k, a−i) = pTx
j (Mj \ {i}) + pTx

k (Mk) +
N+1
∑

m=1,m�={j,k}

pTx
m . (16)

Using (16), (14) and (12) we find

Φ(k, a−i)−Φ(j,a−i)

= pTx
j (Mj \ {i})− punii,j

= Ci(k, a−i)− Ci(j, a−i),

which confirms that (10) is valid for this case.

Case 3 (0 < Ci(k, a−i) = Ci(j, a−i)): In this case, since

the costs of node i when either i ∈ Mj or i ∈ Mk are the

same, the difference in the cost of node i is zero. Therefore

(12) and (13) are equal and

punii,j − pTx
j (Mj \ {i}) = punii,k − pTx

k (Mk) . (17)

Considering (17), by using (14) and (15), yields

Φ(k, a−i)−Φ(j, a−i)

= pTx
j (Mj \ {i})) + punii,k − punii,j − pTx

k (Mk) = 0,

which shows that the difference in the potential function of

the game, as well as the difference of the node i’s cost, is

zero. Therefore (10) holds.

Case 4 (Ci(k, a−i) = Ci(j, a−i) = 0): In this case, the

cost of node i is zero in both cases of staying in the set Mj

or joining the set Mk. It means the node i has no effect on

the transmit powers of parent nodes j and k. Therefore by

leaving the set Mj and joining the set Mk, not only the cost

of node i does not change, but also no change occurs in Φ.

In the first two studied cases, the transition from parent node

j to parent node k is a strictly dominant strategy for node i.
The latter two cases are based on weakly dominant strategy. In

all cases, (10) holds. Therefore, game G with the cost function

defined in (7) is an exact potential game.

Theorem 2: Starting with an initial tree, after some itera-

tions, the Game G converges to a NE and the total transmit

power in the network monotonically decreases.

Proof: Based on Theorem 1, since G is an exact potential

game, the existence of a NE is guaranteed [11]. Moreover,

based on (9), when a node updates its action, the cost of

the node either reduces or remains the same. Since the game

G is an exact potential game, the potential function of the

game, i.e., Φ, has the same behavior as the cost function.

Therefore, Φ is a monotonically decreasing function. Since the

total transmit power in the network is bounded from below,

by starting from an initial broadcast tree, the game converges

after some iterations to a state which is a NE of the game.

Based on Theorems 1 and 2, not only the total transmit

power in the network in (5), i.e., Φ, is exactly aligned with

the best response strategy of a node defined in (8), but also

Φ is a monotonically decreasing function with guaranteed

convergence. In other words, with the proposed mechanism,

regardless of the decision made by a node at an iteration,

Φ never increases. Hence, by defining a proper strategy for

the players, which here is exploiting the weakly dominant

strategy, along with a proper definition of the action set, which

here is defining a variable action set, it would be possible

to further reduce the total transmit power of the network by

means of more iterations. More precisely, although in a weakly

dominant transition, the cost of the node remains the same, by

defining a variable action set, new action sets will be available

for other nodes in the network. Since theorem 2 guarantees that

the broadcast tree will never go to a state with higher transmit

power than its current state, therefore, if a node reduces its

cost by its new action set, then, the total transmit power in

the network decreases accordingly.

In practice, when there are multiple weakly dominant ac-

tions available for a node, the node randomly chooses an action

which is different from its current action. To terminate the

game, since the number of neighboring nodes is limited, a

predefined number which is less than N could be considered

for each node as the maximum number of iterations. When this

number is reached and there is no strictly dominant action, the

nodes stop updating their actions.

IV. SIMULATION RESULTS

For the simulations, randomly deployed nodes in a square

region of 500m×500m are considered. The number of nodes

varies between 8 and 24 and the maximum transmit power

of a node is set to pmax = 20 dBm. The simulation is based

on the Monte Carlo method and at each network realization,

the source node will be chosen randomly. The realizations of

the network is considered that based on (3), the nodes have

at least one neighbor in their neighborhood. The channel is

based on a path-loss model such that |hi,j |
2 = 1/dα in which d

represents the distance between nodes i and j and α shows the

attenuation exponent considered as α = 3. The Benchmarks

to our proposed algorithm are the BIP and BIPSW algorithms

[2] as well as the game theoretic algorithm introduced in [3]

which have been described in Sec. I. The minimum required

SNR at the receiving nodes is considered as γth = 10 dB

and the noise power is set to -90 dBm. The broadcast tree

is initialized based on a distributed implementation of the

Dijkstra algorithm explained in [3]. The total transmit power

in the network is considered as the performance measure.

Fig. 2 shows the total transmit power as a function of the

number of nodes in the network. Our proposed algorithm

performs relatively better than all benchmarks. The Dijkstra

algorithm does not consider the broadcast nature of wireless
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Fig. 2: Total transmit power in the network for different algorithms.

channel and it cannot perform well in such networks. More-

over, in the BIP algorithm there are unnecessary transmissions

which results in a poorer performance than of our algorithm.

Comparing with BIPSW algorithm, the performance of our

proposed algorithm is better when the network is sparse.

When the network becomes denser, the performance of the

BIPSW becomes better. This is due to the fact that in a dense

network, more information about the links and connections

are available for BIPSW as a centralized algorithm compared

to our proposed algorithm which naturally considers one hop

information at a node for decision making. Hence, BIPSW

reaches to a better result in dense networks. Moreover, the

proposed algorithm outperforms the algorithm in [3]. The

reason, on one hand, is because of variable action sets of the

nodes which adapt to the state of the game. On the other hand,

as discussed in Sec. III, having a weakly dominant strategy

along with a proper design of a potential game helps to benefit

from the definition of variable action set.

Fig. 3 shows the convergence of the proposed algorithm

when there are 10 nodes in the network. As also proved in

Sec. III, the total transmit power in the network monotonically

decreases and converges after some iterations, depending on

the number of nodes operating in the network. The benefit

of considering the weakly dominant strategy, i.e., updating

the action to an action with the same cost, can be clearly

observed in this figure. Without considering this strategy, the

game stops after two iterations. By considering the weakly

dominant strategy, a node updates its action to a weakly

dominant state at iteration three. Although this action has no

effect on the network’s total transmit power, i.e., from iteration

two to iteration three, it changes the action set of other nodes

and gives them the opportunity to reduce their cost at the next

iterations. This leads to a lower total transmit power for the

network, here at iteration four.

V. CONCLUSION

In this paper, a game theoretical mechanism for the min-

imum power broadcast tree problem is proposed based on

potential game model. Variable action sets are defined for the

nodes in the network and using the weakly dominant strategy
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Fig. 3: Benefit of exploiting weakly dominant strategy for the
proposed algorithm. There are 10 nodes in the network.

at the nodes is proposed. It is proved that by this mechanism,

when the nodes in the network minimize their own costs, the

total transmit power in the network is minimized, accordingly.

The proposed decentralized algorithm outperforms both the

BIP and the BIPSW centralized algorithms, especially when

the network is not dense.
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