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Abstract—Random gossiping provides a communication
paradigm for wireless sensor networks so that all sensors can
aggregate messages from the entire network without specifying
a routing tree or a central unit. Random gossiping leads to a
robust aggregation, however, it also causes biased aggregation and
long aggregation time in terms of the number of communications
among sensors. In our previous work, a scheme is proposed to
reduce and even eliminate the aggregation bias and to reduce the
number of communications by introducing indicating headers to
the messages that are communicated in the network. In this
paper, we extend our work assuming a static wireless sensor
network. Exploiting that the topology remains constant in static
networks, we introduce an improved bias cancellation method
which increases the probability to achieve a bias-free aggregation
and an algorithm to reduce the number of communications for
indicating headers. Simulation results show the reduction of both
the number of communications for indicating headers and the
bias in comparison to our previous work.

I. INTRODUCTION

Random Gossiping provides a communication paradigm in

Wireless Sensor Networks (WSNs) without a central unit [1]

[2] [3] [4] [5]. In this communication paradigm, sensors ran-

domly wake up one after another, communicate messages with

their neighbor sensors and switch themselves to sleep mode.

In comparison with routing algorithms where only one central

unit (sensor) acquires all the measurements, sensors in the

network using random gossiping will aggregate measurements

from all the sensors in the entire network.

Random gossiping can be applied to calculate functions in

the network, especially, it achieves enormous success when

applied to achieve consensus in WSNs, where only the arith-

metic mean is asymptotically approached [2] [6] [7]. This

is done by a sensor mixing its own measurement with the

incoming measurements from its neighbor sensors with a

pre-defined mixing parameter. The corresponding convergence

speed can be analyzed by using the network connectivity,

however, a large number of communications are required for

a convergence with a controlled error.

In our previous work [8], we consider the case where

random gossiping is used to compute general divisible func-

tions in wireless sensor networks. The measurements from all

sensors are the input parameters of a divisible function. The

goal of the random gossiping is to communicate aggregated

messages among sensors such that each measurement is in-

cluded once in the aggregated message of any sensor. When

a measurement is included more than once, it results in a

biased aggregation. However, most commonly used divisible

functions are able to reduce or even cancel the bias when the

bias is identified. In [8], the idea of an Indicating Header (IH)

is introduced. The IH is a communication header which marks

at each sensor which measurements have been aggregated in

the current message. Before the messages are communicated

between sensors, the corresponding IHs are exchanged. Bias is

therefore detected when the sensor compares its own current

IH with the ones it receives from its neighbor sensors. The

buffer at each sensor is used to store the previous messages

of the sensor and their corresponding IHs. When a bias is

detected, the sensor tries to construct a bias-elimination set

such that the bias can be canceled [8].

In many WSNs, sensors are deployed and remain at their

locations, which leads to a stable topology of the network. In

the present paper, we extend our work in [8] in two aspects

assuming a static WSN by exploring the fact that the topology

of the WSN does not change. The first aspect is to reduce the

number of communications for sensors to transmit IHs. The

second aspect is to extend the bias cancellation method with

a new bias reduction algorithm using so called multisets. It is

worth to point out that the bias cancellation algorithm can be

generally applied to both static and non-static WSNs.

The remainder of this paper is organized as follows. In

Section II, we give the network model of the WSN discussed in

this paper. In Section III, we shortly review our previous work

in [8] and give the definition of indicating headers. In Section

IV, we propose an algorithm to reduce the transmissions of the

indicating headers. In Section V, the concept of multisets is

shortly explained. In Section VI, the algorithm of reducing

the remaining bias is introduced. Section VII shows the

performance results and Section VIII concludes this paper.

II. NETWORK MODEL

Let V = {v1, v2, · · · , vN} denote the set of sensors in the

WSN consisting of N sensors. Each sensor is associated with

a unique ID. All sensors in the network are assumed to be

homogeneous such that a sensor can only be identified by its

ID.

The connectivity of any two sensors vi ∈ V and vj ∈ V ,
where i 6= j, is defined as aij , where aij = 1 when the two

sensors are connected and 0 otherwise. In this paper, aij is
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solely determined by their geometrical distance dij . Let dc be

the connectivity threshold of the distance such that

aij =

{

1 dij ≤ dc
0 dij > dc .

(1)

Sensor vi can communicate messages with sensor vj directly

if and only if aij = 1. In order to guarantee the connectivity

of the network, i.e., any sensor vi ∈ V can be linked to any

other sensor vj ∈ V via one or multiple sensors in V , the
connectivity threshold dc is lower bounded by D such that

the algebraic connectivity of the graph of the network, which

is defined by the second smallest eigenvalue of the Laplacian

matrix of the graph, is always greater than 0 [7].

Let Ni denote the set of neighbor sensors of sensor vi and
Ni is the number of sensors in Ni. Sensors in Ni have direct

connections to vi, i.e., vj ∈ Ni if and only if aij = 1. In this

paper, we consider a static WSN by assuming that during the

lifetime of the network, the neighbor sensors Ni of every vi
remain fixed. In the remainder of this paper, we enumerate the

sensors in Ni and let vNi

k , k = 1, 2, · · · , Ni denote the k-th
sensor in Ni.

In this paper, the term data is used to indicate the in-

formation generated at sensors by measurement. Let si de-

note the data that sensor vi generates and let the set S =
{s1, s2, · · · , sN} denote the collection of all data in the

network. There are two objectives for the WSN to achieve in

this paper. The first is to compute a function whose parameters

are the data of all sensors, the second is to let all sensors know

the output of the function. Sensors communicate always the

aggregated data which is the output of functions corresponding

to the application that is running in the WSN. Throughout this

paper, we consider a type of functions called divisible func-

tions which can be calculated in divide-and-conquer manner

[9]. Let F denote the set of divisible functions which is defined

by the application running in the WSN. Each divisible function

fl ∈ F has l parameters and the functions f1, f2, · · · , fN form

the set F . For any given partition Π(S) = {S1,S2, · · · ,SL}
of the set S there exists a function gΠ(S) such that

fN (s) = gΠ(S) (fl1(sS1
), fl2(sS2

), · · · , flL(sSL
)) , (2)

where vector sSk
denotes all the data in set Sk and lk, k =

1, 2, · · · , L denotes the number of data in set Sk, k =
1, 2, · · · , L.
Assume that at a certain time, sensor vi has the knowl-

edge of the output of fli(sSi
), where Si ⊂ S. It receives

from its neighbor sensors in Ni their computation outputs

f
l
Ni
1

(s
S

Ni
1

), f
l
Ni
2

(s
S

Ni
2

), · · · , f
l
Ni
Ni

(s
S

Ni
Ni

), where SNi

k denotes

the set of data that is involved in the computation at sensor

vNi

k , s
S

Ni
k

denotes the vector of data in SNi

k and lNi

k de-

notes the number of data in set SNi

k . All the sets, Si and

SNi

k , vNi

k ∈ Ni, are disjoint. Sensor vi computes the function

gΠ
(

fli(sSi
), f

l
Ni
1

(s
S

Ni
1

), f
l
Ni
2

(s
S

Ni
2

), · · · , f
l
Ni
Ni

(s
S

Ni
Ni

)

)

(3)

and the computation output is the new function output of

sensor vi and will be transmitted to its neighbor sensors.

As an example, we assume the data set at sensor vi is Si =
{s1, s2, s3}. Sensor vi has one neighbor sensor vj whose data
set is Sj = {s4, s5}. The function defined by the application

calculates the mean value of the data, i.e., f3(sSi
) = 1/3(s1+

s2 + s3), f2(sSj
) = 1/2(s4 + s5). After sensor vi receives

f2(sSj
) from sensor vj , it calculates the function

gΠ
(

f3(sSi
), f2(sSj

)
)

=
1

3 + 2

(

3f3(sSi
) + 2f2(sSj

)
)

which yields the mean value of the new data set Si =
{s1, s2, s3, s4, s5} at sensor vi.

In this paper, we use the term message to indicate the func-

tion output (aggregated data). One message communication

between two sensors is defined as a successful communication

between the receiving and the transmitting sensors. Given the

same communication range of all the sensors in the WSN, we

assume that the same amount of resources for every message

communication is consumed.

III. RANDOM GOSSIPING WITH INDICATING HEADER

Random Gossiping is a de-centralized communication

paradigm where the message communications are randomly

initiated at a sensor. There is no routing path pre-defined

in the network. In the original random gossiping algorithm

used in the consensus problem, e.g., in [2] and [6], it takes a

large number of message communications until the function

output at each sensor converges to the consensus. In the WSN

considered in this paper, the network achieves convergence

when the two objectives mentioned above are achieved by

using random gossiping applying so called greedy sensors

which are introduced in our previous work [8]. In a WSN with

all greedy sensors, when a sensor initiates communications

with its neighbor sensors, it firstly triggers all its neighbor

sensors to transmit their messages to it. Then it broadcasts its

function output to all its neighbor sensors.

In [8], we discussed the bias problem which is caused by

aggregating duplicated data at a sensor. In the computation (3),

we assume that all the sets Si and S
Ni

k , vNi

k ∈ Ni are disjoint,

i.e., there is no data that is involved in more than one of

the data sets. The aggregated data is then called an unbiased

message. When the condition of the disjoint sets is invalid,

the message is biased. An explanation to the occurrence of

such biased message is that in random gossiping, the initiation

of the message communication between a sensor and its

neighbor sensors are random, therefore, after several message

communications, the data of a sensor can be randomly in-

volved in the aggregated data of more than one other sensor

as long as the network is connected. Different applications

have different sensitivity to the biased data aggregation. For

example, in the application that defines its function as max()
or min() function, biased messages cause no harm to the

results required by the application. However, in applications

whose function is a download function, an averaging function,

a voting function, etc., biased messages strongly jeopardizes

the results required by the application.
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In order to lower the probability resulting in a biased

message in the function output and to reduce the number of

message communications when the network achieves conver-

gence, in [8], the concept of indicating header is introduced.

An indicating header (IH) is a fixed length bit sequence paired

with each message that is generated at sensors. For a WSN

with N sensors, the IH of a message has N bits. The IH

of the current message at sensor vi is denoted by Ii. If

the current message of vi has aggregated the data generated

at sensor vj , j = 1, 2, · · · , N , the j-th bit in Ii, Ii(j) is

marked 1, otherwise 0. Therefore, the IH tells only whether

the corresponding data has been involved without showing its

duplication and a given sensor cannot tell whether its current

message is a biased message or not purely according to the

corresponding IH. An invertible function Θ is defined to map

the set Si to Ii with Ii = Θ(Si) and Si = Θ−1(Ii).
In [8], before sensor vi transmits its actual message to

other sensors, it firstly transmits IH Ii. The message will

only be transmitted if at least one of its neighbor sensors Ni

sends feedback to indicate that Si = Θ−1(Ii) contains new

data in comparison to its own data set. This communication

strategy can reduce the number of message communications.

In [8], it shows that when the length of the IH, i.e., N
bits, is smaller than the length of the message in bits, the

network consumes a smaller number of communications to

achieve convergence. Meanwhile, each sensor can reduce the

possibility of outputting a biased message by using the IH in

combination with the buffer capability of the sensor. We call

this procedure bias cancellation.

We assume that a sensor has buffer to store its previous

messages together with the corresponding IHs. Let ψi de-

note the number of messages stored in the buffer of sensor

vi. The corresponding data sets of the stored messages are

denoted by Svi1 ,S
vi
2 , · · · ,S

vi
ψi
, which can be determined by

applying the function Θ−1 to the corresponding IH, and

Ψvi = {Svi1 ,S
vi
2 , · · · ,S

vi
ψi
} denotes the set of these data

sets. When sensor vi receives a message from a neighbor

sensor vj ∈ Ni, it detects that a biased function output

gΠ
(

fli(sSi
), flj (sSj

)
)

will result if the comparison of the

data set Si = Θ−1(Ii) and the data set Sj = Θ−1(Ij) shows
Si ∩ Sj 6= φ.
If there is a subset Ψviij ⊆ Ψvi , where the subscript ij

indicates that it is used for cancelling the bias raised by Si∩Sj ,
and operation

∐

is applied to all data sets Svil in Ψviij , where
operation

∐

computes either the unions or the set-theoretic

difference of the sets, such that
∐

S
vi
l

∈Ψ
vi
ij

Svil = Si ∩ Sj , (4)

the set Ψviij is called the bias-elimination set E of Si ∩ Sj .
An intuitive explanation of the bias elimination is to con-

struct an aggregated data (message) which is identical to

the aggregated data (message) resulting from the data set

Si ∩ Sj . The bias can then be canceled by subtracting the

corresponding parts in the aggregated messages by exploiting

the properties of divisible functions [8]. Let sSi∩Sj
denote all

data in Si ∩ Sj and lij denote the number of data in it. The

operation
∐

S
vi
l

∈Ψ
vi
ij

Svil can be expressed in iterative fashion

as shown in Fig. 1. The function output flij (sSi∩Sj
) can also

1: SITR := φ
2: for Svil in Ψviij do

3: SITR := SITR
∐

Svil ;

4: end for

Fig. 1. Iterative operation of
∐

be calculated iteratively in such a way that when
∐

applies

the union operation to SITR and Svil , it applies

gΠ
(

flITR(sSITR), flvi
l
(sSvi

l
)
)

, (5)

where lITR is the number of data in SITR. When
∐

applies the

set-theoretic difference operation to SITR and Svil , it applies

g−Π
(

flITR(sSITR), flvi
l
(sSvi

l
)
)

. (6)

The unbiased message of aggregating data in Si and data in

Sj can be achieved by

g−Π
(

gΠ
(

fli(sSi
), flj (sSj

)
)

, flij (sSi∩Sj
)
)

, (7)

where g−Π is the inverse function of gΠ .

For example, the data set of sensor vi is Si =
{s1, s2, s3, s4}. It receives a message flj (sSj

) from sensor

vj , where the data set is Sj = {s3, s4, s5, s6} and lj = 4.
Assume that sensor vi has stored in its buffer 4 messages

whose corresponding data sets are Svi1 = {s1, s2, s3, s4},
Svi2 = {s1, s2, s4}, S

vi
3 = {s2, s4}, S

vi
4 = {s2}. The bias

is detected as Si ∩ Sj = {s3, s4} 6= φ. The bias-elimination

set is Ψviij = {Svi1 ,S
vi
2 ,S

vi
3 ,S

vi
4 } because with the elements of

Ψviij one can construct ((Sv11 − Sv12 ) ∪ Sv13 )− Sv14 = Si ∩ Sj .
If the function defined by the application is to calculate

the mean value, the biased aggregation is performed to the

aggregated data f4(sSi
) = 1/4(s1 + s2 + s3 + s4) and

f4(sSj
) = 1/4(s3 + s4 + s5 + s6) yielding

gΠ
(

fli(sSi
), flj (sSj

)
)

=
1

8
(4f4(sSi

) + 4f4(sSj
))

=
1

8
(s1 + s2 + 2s3 + 2s4 + s5 + s6) .

By applying the algorithm in Fig. 1 to the data set in Ψviij , one
constructs flij (sSi∩Sj

) = 1/2(s3+s4). The unbiased message

is then calculated by

g−Π
(

gΠ
(

fli(sSi
), flj (sSj

)
)

, flij (sSi∩Sj
)
)

=
1

6

(

8gΠ
(

fli(sSi
), flj (sSj

)
)

− 2flij (sSi∩Sj
)
)

=
1

6
(s1 + s2 + s3 + s4 + s5 + s6) .
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IV. REDUCTION OF IH COMMUNICATIONS IN STATIC

WSNS

In [8], the number of message communications is reduced

by transmitting IHs prior to the messages. However, it leads

to a large number of communications for transmitting IHs. In

this paper, we exploit the advantage of a static network to

significantly reduce the number of IH transmissions.

In the considered random gossiping, there are two types of

communications in which a sensor vi ∈ V can participate. In

the first type, sensor vi initiates the message communications

with all its neighbor sensors. In this type, vi firstly triggers

all sensors in Ni to send their messages to vi, vi generates

the function output with all data involved in the received

messages and the message of its own and then broadcasts

the aggregated data to all sensors in Ni. In the second type,

sensor vi belongs to the neighbor sensors of another sensor

which initiates the message communications. In this type, the

message transmission of sensor vi is not a broadcast but only

a point-to-point transmission.

In a static network, the neighbor sensors of every sensor

remain constant in the network. Therefore, it is reasonable

to assume that the neighbor sensors are able to know the

information of the message at sensor vi if sensor vi has not

participated in any communications of the second type after

the previous first type communication initiated by sensor vi.
We propose an algorithm in Fig. 2 to utilize this knowledge

for reducing the number of IH transmissions.

It can be seen from the algorithm shown in Fig. 2 that

the message which sensor vi broadcasts to sensors in Ni

to initiate the message communications contains one bit to

indicate whether there is new data updated in the data set Si
since last type one communication. According to this 1-bit

information, sensors in Ni acquire Ii by either receiving it

from vi if the bit is 1 or by recovering it from the previously

received message if the bit is 0.

V. MULTISET REPRESENTATION

Before introducing the improved bias-cancellation algo-

rithm, we introduce the concept of multiset which provides

a tool to define the bias and the operations related to the

bias-cancellation more conveniently. A multiset includes the

multiplicity of a data in the data set and can this can be used to

handle the multiplicity of a data in the function computations.

A multiset is formally defined as a 2-tuple (A,mA) whereA is

some set and mA is a function which maps the elements in A
to positive natural numbers. For each α ∈ A, the multiplicity,

i.e., the number of occurrences, of α is represented by the

number mA(α). For two multisets (A,mA) and (B,mB), the
summation operation (A,mA) + (B,mB) is defined by

(C,mC) = (A,mA) + (B,mB) ,

where C = A ∪ B and

mC(s) =







mA(s) +mB(s) ∀s ∈ A ∩ B
mA(s) ∀s ∈ A− (A ∩ B)
mB(s) ∀s ∈ B − (A ∩ B)

where s is a set element.

1: vi initiates the message communication;

2: vi broadcasts to sensors in Ni a message indicating the

communication initiation;

3: vi informs sensors in Ni whether it has new data updated

in the date set of Si of vi since last type one communi-

cation;

4: if there is new data updated in the data set of Si of vi
since last type one communication then

5: vi broadcasts Ii to Ni;

6: else

7: sensors in Ni recover Ii which is received from the

previous type one communication initiated by vi;
8: end if

9: for vj in Ni do

10: if message of vj contains data that is new to vi then
11: vj feed backs its Ij to vi;
12: else

13: if message of vi contains data that is new to vj then
14: vj informs vi that it requires message communi-

cation from vi;
15: else

16: vj transmits nothing;

17: end if

18: end if

19: end for

20: vi processes all feedbacks;
21: vi informs sensors in Ni which sensors need to send their

messages;

22: All informed neighbor sensors transmit their messages;

23: vi computes the new aggregated data;

24: if new aggregated data at vi contains new data for sensors

in Ni then

25: vi broadcasts the new Ii;

26: vi broadcasts the new message;

27: end if

Fig. 2. Algorithm to reduce IH communications

The subtraction operation of multiset (A,mA) − (B,mB)
can only be applied when the following two conditions are

fulfilled,

• B ⊆ A and

• ∀α ∈ B, mA(α) −mB(α) ≥ 0 .

Under these two conditions, the subtract operation (C,mC) =
(A,mA)− (B,mB) can be defined such that

(C,mC) = (A,mA)− (B,mB) (8)

where mC(s) =

{

mA(s) s ∈ A− B
mA(s)−mB(s) s ∈ B

and s ∈ C if mC(s) > 0

If in a multiset (A,mA), the occurrence of all elements in

A are 1, the multiset can be written as (A,1), indicating that

all data in A has the multiplicity being 1.
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VI. IMPROVED BIAS CANCELLATION IN STATIC WSNS

In [8], the bias cancellation is applied at sensor vi with

each received message of its neighbor sensors individually. In

this paper, we propose an algorithm for bias cancellation at vi
which jointly processes all incoming messages fromNi. When

sensor vi receives all feedbacks from Ni, i.e., the IHs, it can

calculate the data set of the new aggregated data by comparing

the data of each data set outputted from the function Θ−1.

We assume that after receiving or recovering Ii, sensors in a

subset of Ni, denoted by N s
i , feed back their IHs to vi. In

the following, we denote N s
i as the number of sensors in N s

i

and let v
N s

i

k , k = 1, 2, · · · , N s
i denote the sensors in N s

i whose

data sets are S
N s

i

k , k = 1, 2, · · · , N s
i , respectively.

A biased message may result if vi computes the function

output with all the messages from sensors in N s
i . Let SR

i

denote the data set if all data in S
N s

i

k , k = 1, 2, · · · , N s
i are

aggregated, i.e.,

SR
i = ∪

Ns

i

k=1S
N s

i

k ∪ Si , (9)

where SR
i is termed the reference data set of aggregation at

sensor vi. When represented by a multiset, it is denoted by

(SR
i ,1).

Defining the set Ψ
N s

i

i =
{

S
N s

i

k , k = 1, 2, · · · , N s
i

}

and

the subset Ψ ⊆ Ψ
N s

i

i , we represent every data set Sk ∈

Ψ
N s

i

i with multiset (Sk,mSk
) and calculate the multiset sum

∑

Sk∈Ψ
(Sk,mSk

) + (Si,mSi
), where the output is denoted

by (SΨ ,mSΨ
). For a subset Ω ⊆ Ψvi , we apply the operation

∐

to all sets in Ω yielding (SΩ ,mSΩ
) and the multiset sub-

traction (SΨ ,mSΨ
) − (SΩ,mSΩ

) yielding (SΨ−Ω,mSΨ−Ω
).

If
∑

α∈SΨ−Ω
(m(α) − 1) is the minimum among all pos-

sible subset of Ψvi , the Ω is termed bias-reduction set of

(SΨ ,mSΨ
) and the summation output is termed the remaining

bias of (SΨ ,mSΨ
). Since several data sets are involved to

calculate the function output at sensor vi, it is possible that

m(α)− 1 > 1, α ∈ SΨ−Ω . It is then necessary to further find

a bias reduction set of (SΨ−Ω,mSΨ−Ω
) to further reduce the

remaining bias. This procedure is performed iteratively until

no further bias reduction can be done.

Let b denote the bias-cancellation function to calculate the

remaining bias after all iterations with the input set of data

set Ψ ⊆ Ψ
N s

i

i . The problem of finding the optimal Ψ , which
is denoted by Ψmini , can be formulated as

Ψmin
i = arg min

Ψ⊆Ψ
Ns

i
i

b(Ψ) (10)

s.t. ∪Sk∈ΨSk = SR
i .

In order to solve the problem in (10) efficiently, we firstly

partition all data set in Ψ
N s

i

i and group them according to their

relationship, i.e., a data set is a subset or a superset of another.

Let P denote the set of groups after partitioning and let p de-

note the number of groups in P . Let Pj , j = 1, 2, · · · , p denote
the j-th group in P . In group Pj , let variable nPj

denote the

current number of data sets and let Pj(l), l = 1, 2, · · · , nPj

denote the l-th data set in Pj . All the groups in P are ordered,

i.e., the first data set of a group is a superset of all other data

sets in the group. Let P1 denote the set of the first data sets of

all groups in P . The algorithm in Fig. 3 shows the procedure

to find P1.

1: P1 is initialized to be P1 = {S
N s

i

1 }

2: for S
N s

i

k in Ψ
N s

i

i do

3: join P1 := 0
4: for Sk in P1 do

5: if S
N s

i

k ⊆ Sk then

6: join P1 := 0;

7: Stop current for-loop and start with the next S
N s

i

k ;

8: else

9: if S
N s

i

k ⊃ Sk then

10: join P1 := 1;
11: P1 = P1 − Sk;
12: else

13: join P1 := 1;
14: end if

15: end if

16: end for

17: if join P1 = 1 then

18: P1 = P1 ∪ {S
N s

i

k };
19: end if

20: end for

Fig. 3. Algorithm to find first data set of all groups in P

In P , the number p of groups is set to be the number of

data sets in P1 in the algorithm of Fig. 3. The union of all

data sets in P1 is identical to SR
i , the reference data set of

aggregation at sensor vi. The algorithm in Fig. 4 shows how

to do the partitioning and grouping knowing P1.

For example, the data sets in Ψ
N s

i

i are {S
N s

i

1 , · · · ,S
N s

i

6 },

where S
N s

i

1 = {s1, s2, s3}, S
N s

i

2 = {s2, s3, s4}, S
N s

i

3 =

{s4, s5}, S
N s

i

4 = {s1, s2}, S
N s

i

5 = {s2} and S
N s

i

6 = {s3, s4},

respectively. Set P1 is {S
N s

i

1 ,S
N s

i

2 ,S
N s

i

3 } according to the

algorithm in Fig. 3 and the result of the grouping by us-

ing algorithm in Fig. 4 is P1 = {S
N s

i

1 ,S
N s

i

4 ,S
N s

i

5 }, P2 =

{S
N s

i

2 ,S
N s

i

5 ,S
N s

i

6 } and P3 = {S
N s

i

3 }.
Secondly, we will choose from each group in P one data

set and test whether their union is equivalent to SR
i . If the

equivalence holds, then the current choice is treated as the

candidate for calculating the function output and perform the

bias cancellation. Let C denote the collection of all these

choices of candidates, let nC denote the number of choices

in C where each choice has p data sets chosen from each

group of P . Let Cm,m = 1, 2, · · · , nC denote m-th choice in

C and Cm(l), l = 1, 2, · · · , p denote the l-th data set in Cm.
With the given example above, we have C = {C1, · · · , C4},

where C1 = {S
N s

i

1 ,S
N s

i

2 ,S
N s

i

3 }, C2 = {S
N s

i

1 ,S
N s

i

6 ,S
N s

i

3 }, C3 =

{S
N s

i

4 ,S
N s

i

2 ,S
N s

i

3 } and C4 = {S
N s

i

4 ,S
N s

i

6 ,S
N s

i

3 }, respectively.
Finally, we test the bias cancellation performance of each

choice in C. The bias-cancellation function b is performed for
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1: for S
N s

i

k in Ψ
N s

i

i − P1 do

2: for Pj in P do

3: join group := 0;
4: join group END := 1;
5: for l = 1 to nPj

do

6: if S
N s

i

k = Pj(l) then
7: join group := 0;
8: Stop the current for-loop and go to line 21

9: else

10: if S
N s

i

k ⊂ Pj(l) then
11: join group := 1;
12: else

13: if S
N s

i

k ⊃ Pj(l) then
14: join group := 1;
15: join group end := 0;
16: Stop the current for-loop and go to line 21

17: end if

18: end if

19: end if

20: end for

21: if join group = 1 then

22: if join group END = 0 then

23: S
N s

i

k joins the group Pj at the last position;

24: else

25: S
N s

i

k joins the group Pj at the l-th position;

26: end if

27: end if

28: end for

29: end for

Fig. 4. Algorithm for partitioning and grouping

each Cm ∈ C. The problem in (10) is now transformed to

Ψmin
i = arg min

Cm∈C
b(Cm), (11)

which can be solved by exhaustive search. In comparison to

the search space of the problem in (10) which is 2N
s
i − 1, the

search space in (11) is nC .

After finding the optimal Ψmin
i , sensor vi informs the

corresponding neighbor sensors to transmit their messages. In

comparison to what we proposed in [8], it is possible that only

a subset of sensor vi’s neighbor sensors need to transmit their

messages.

It is worth to point it out that this bias cancellation algorithm

can also be applied to a non-static WSN.

VII. SIMULATION RESULTS

In the simulations, we set the number of sensors in the

network to N = 50. Fig. 5 shows an example of one topology

realization with the communication range indicated by the

circle. In the realization, we randomly deploy 50 sensors in a

1000-by-1000 squared area and guarantee the connectivity of

the network by choosing the communication range as shown

in the figure. Fig. 6 shows the number of neighbor sensors of

each sensor in the realization shown in Fig. 5.
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Fig. 6. Number of neighbor sensors for WSN realization in Fig. 5

In Fig. 7, for the topology realization shown in Fig. 5 and

Fig. 6, the average number of communications for transmitting

IHs (red lines) at each sensor with our algorithm is shown

and compared with full IH communications (black lines) in

[8]. Note that the 1-bit overhead indicating new aggregated

data when sensor initiates message communications with its

neighbor sensors is neglected. As it is shown in the figure, a

huge reduction in IH transmissions is achieved by exploiting

the advantage of a static network and avoiding unnecessary

IH transmissions.

For the topology realization shown in Fig. 5 and Fig. 6, Fig.

8 shows the difference in remaining bias when the network

achieves convergence, denoted by ∆bias, by comparing the

bias reduction resulting from the bias cancellation algorithm

in [8] to the bias resulting from the proposed algorithm in this

work. The results are topology sensitive and dependent on the

sensor deployment.

In Fig. 9 and Fig. 10, we show the performance with

four WSN realizations, denoted by WSN Realization-1 to

WSN Realization-4, respectively. In each realization, we ran-

domly deploy 50 sensors in a 1000-by-1000 squared area
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and increase the communication range of each sensor. For all

four realizations, the minimum communication range with the

guaranteed connectivity is around 150. When we increase the

communication range, the number of neighbor sensors of each

sensor will also increase. The WSN realization-1 with blue

lines in both figures corresponds to the WSN from the results

shown in Fig. 7 and Fig. 8.

In Fig. 9, the dashed lines show the average number of

IH transmissions per sensor applying the full IH transmission

scheme of [8] and the solid lines depict the number of IH

transmissions of the proposed algorithm. When the commu-

nication range is increased, the gain by using the proposed

algorithm in comparison to the algorithm in [8] is reduced

since larger communication range leads to faster convergence

of the network and the number of IH transmissions reduces

for both scheme shown in the Figure. The performance of the

two algorithms merges when the communication range is so

large that the neighbor sensors of each sensor include almost

all sensors in the network.

Fig. 10 shows the additional remaining bias that can be

canceled per each sensor compared to [8]. The proposed
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Fig. 9. Number of IH Communications vs. Communication Range

algorithm outperforms the algorithm in [8] for communication

ranges below 1000. For larger communication ranges, where

the neighbor sensors of each sensor includes almost all sensors

in the network, both algorithms perform equally. It is because

with high probability, a sensor only need to participate once

in a type one or type two communication until the network

converges resulting in no biased messages.

0 500 1000 1500
0

2

4

6

8

10

12

14

 

 

WSN Realization-1
WSN Realization-2
WSN Realization-3
WSN Realization-4

Communication Range

∆
b
ia
s

Fig. 10. ∆bias vs. Communication Range

VIII. CONCLUSION

This paper discusses how to reduce the number of trans-

missions of indicating headers and how to further reduce

the remaining bias in a static WSN using random gossiping.

We propose algorithms exploiting the advantage of a static

network where the neighbor sensors of a sensor remain

constant in the network lifetime. Sensors can remember the

IH information of their neighbor sensors, therefore, when the

neighbor sensors have no new data aggregated, the IH does not

need to be transmitted. Furthermore, a new bias cancellation

algorithm, which can be applied to both static and non-static

WSNs, is proposed such that a sensor can simultaneously
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perform the bias cancellation jointly processing several in-

coming messages. Simulations show both the reduction of IH

transmissions and remaining bias in comparison to the results

in our previous work.
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