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Abstract—A scenario consisting of several single antenna
source-destination node pairs communicating through multiple
single antenna relays is considered. A two time-slot transmission
scheme is considered. In the first time-slot, the source nodes
transmit to both the relays and the destination nodes. Both
the source nodes and the relays retransmit to the destination
nodes in the second time-slot. As the relays cannot decode
the received signals, an amplify and forward relaying strategy
is assumed. In the present paper, the sum rate maximization
problem is tackled. Due to the two transmissions of the source
nodes and the two receptions of the destination nodes, there are
temporal transmit and receive filters which can be optimized
together with the relays’ coefficients aiming at maximizing the
sum rate. By partially adapting the filters and by introducing
two sets of scaling factors, the sum rate maximization prob-
lem is reformulated as a tri-convex optimization problem. An
iterative algorithm is proposed which maximizes the sum rate

and guarantees a local optimum achievement. The results show
that the proposed algorithm outperforms the previously proposed
interference alignment scheme in all SNRs.

Index Terms—multiuser relay network, sum rate maximiza-
tion, multi-convex optimization.

I. INTRODUCTION

For future multiuser wireless systems, maximizing the sum

rate is the ultimate goal for enhancing the performance and

making best use of the limited resources. These systems are

in general interference-limited and maximizing the sum rate

by optimizing the spatial filters at the source nodes and at the

destination nodes is a well known non-convex problem [1], [2].

Even for scenarios with single antenna nodes, optimizing the

power allocation for maximizing the sum rate is a non-convex

problem [1], [2]. Nevertheless, many contributions in the last

decades dealt with the sum rate maximization problem and

many algorithms for different scenarios have been proposed.

For some special scenarios, a global maximum is achievable

using global optimization methods [3]–[5]. However, these

methods suffer from a high computational complexity which

limits their practicability. Therefore, several problem relax-

ations have been proposed and based on this, algorithms with a

relatively low computational complexity have been found [6].

Due to the problem relaxations, these algorithms in general

do not even guarantee a local maximum achievement of the

original non-convex problem anymore.

Instead of solving the sum rate maximization problem,

other alternative objectives like aligning the interferences or

minimizing the sum mean square error (MSE) at the destina-

tion nodes have been studied. For multiuser relay networks,

optimizing the spatial filters at the nodes and the relays’

coefficients for getting rid of the interferences is a trilinear

problem, i.e., the interference nulling problem is linear in

either the transmit filters at the source nodes, the receive

filters at the destination nodes or the relays’ coefficients.

Accordingly, iterative algorithms which alternatingly optimize

the transmit filters, the receive filters and the relays’ coeffi-

cients for interference nulling have been proposed [7], [8].

Furthermore, the sum MSE is a tri-convex function of the

filters at the source nodes, the destination nodes and the relays.

In other words, the sum MSE function is convex in either

the transmit filters at the source nodes, the receive filters at

the destination nodes or the relays’ coefficients. This property

is exploited to achieve a local minimum sum MSE in [9],

[10]. The relation between the minimum mean square error

(MMSE) and the signal to interference plus noise ratio (SINR)

of an estimated symbol is exploited in [11]–[13]. The receive

filters were designed as MMSE filters whereas the transmit

filters and the relays’ coefficients were optimized to maximize

the sum rate by minimizing the weighted sum MSE. However,

the authors of [11]–[13] did not optimize the transmit filters,

the receive filters and relays’ coefficients with respect to the

sum rate.

In the present paper, a scenario consisting of several node

pairs and multiple relays is considered. All nodes and relays

are equipped with a single antenna each. By fixing certain

filter coefficients at the nodes, the estimated data symbols

at the destination nodes become linear in the other filter

coefficients and the relays’ coefficients. Unfortunately, the sum

rate is a non-concave function of the filter coefficients to be

adapted and the relays’ coefficients. Fortunately, the sum rate

maximization problem can be reformulated as a tri-convex

optimization problem by adding two sets of scaling factors.

In particular, a new term related to the received SINR at a

destination node including a scaling factor is introduced. For

the optimum scaling factor, this new term equals 1 + SINR.
The rest of the paper is organized as follows. The next

Section introduces the system model and the transmission

scheme. Section III states the sum rate maximization problem.

In Section IV, a new expression for the SINR is introduced.

The optimization problem is reformulated and rewritten as a

tri-convex optimization problem in Section V and Section VI,

respectively. An iterative algorithm which maximizes the sum
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Fig. 1: Two time-slot transmission scheme: (a) the source nodes transmit to both the relays and the destination nodes in the

first time-slot, (b) both the source nodes and the relays retransmit to the destination nodes in the second time-slot.

rate is proposed in Section VII. In Section VIII, numerical

results which support the theoretical analysis are discussed.

The conclusions are drawn in Section IX.

II. SYSTEM MODEL AND TRANSMISSION SCHEME

A scenario consisting of K source-destination node pairs

and R one-way relays is considered. A two time-slot trans-

mission scheme is considered where τ denotes the time-slot.

At the first time-slot τ = 1, the source nodes transmit to both

the relays and the destination nodes as shown in Fig. 1a. Both

the source nodes and the relays retransmit to the destination

nodes at the second time-slot τ = 2 as illustrated in Fig.

1b. Every node and relay is equipped with a single antenna

so that it is impossible for a relay to separate the received

signals of the source nodes. Consequently, the amplify and

forward relaying strategy is used. Frequency flat channels are

assumed. The coefficients of the channels between the l-th

source node and k-th destination node, the l-th source node and

r-th relay and the r-th relay and the k-th destination node are

denoted by h
(k,l)
DS , h

(r,l)
RS and h

(k,r)
DR , respectively. All channels

are considered to be constant throughout the transmission

duration and full CSI is assumed to be available at all the

nodes and at the relays. Also, it is assumed that the noise

signals n
(k,τ)
D , k = 1, . . . ,K , τ = 1, 2, and n

(r)
R , r = 1, . . . , R,

at the destination nodes and at the relays, respectively, are i.i.d.

Gaussian noise with zero mean and the same variance σ2.

Let d(l) denote the transmitted data symbol of the l-th source

node. It is assumed that the data symbols are uncorrelated and

that they have equal average energies

E

{∣
∣
∣d

(l)
∣
∣
∣

2
}

= Ed, ∀l. (1)

The coefficient of the transmit filter at the l-th source node in

the τ -th time-slot is denoted by v
(l)
τ . In the first time-slot, the

received signals at the k-th destination node

e
(k)
1 =

K∑

l=1

h
(k,l)
DS v

(l)
1 d(l) + n

(k,1)
D (2)

and the received signal at the r-th relay

e
(r)
R =

K∑

l=1

h
(r,l)
RS v

(l)
1 d(l) + n

(r)
R (3)

are obtained. In the second time-slot, the received signal at

the k-th destination node reads

e
(k)
2 =

K∑

l=1

h
(k,l)
DS v

(l)
2 d(l) +

R∑

r=1

h
(k,r)
DR g(r)e

(r)
R + n

(k)
D , (4)

where g(r) is the complex scaling factor of the r-th relay. Each

destination node k receives twice and it combines the received

signals with the weights u
(k)∗
τ , τ = 1, 2. Consequently, the

estimated data symbol at the k-th destination node reads

d̂(k) = u
(k)∗
1 e

(k)
1 + u

(k)∗
2 e

(k)
2 . (5)

If v
(k)
1 and u

(k)
2 ∀k are fixed, the received data symbol

becomes a linear function of the variables g(r), v
(k)
2 , and u

(k)
1 ,

∀r, k. With the vector

g =
(

g(1)∗, · · · , g(R)∗
∣
∣
∣ v

(1)∗
2 , · · · , v

(K)∗
2

∣
∣
∣u

(1)
1 , · · · , u

(K)
1

)T

(6)

of the variables and the vector

q(k,l) =
(
u
(k)∗
2 v

(l)
1 h

(k,1)
DR h

(1,l)
RS , . . . , u

(k)∗
2 v

(l)
1 h

(k,R)
DR h

(R,l)
RS

∣
∣

0, . . . , 0
︸ ︷︷ ︸

l−1

, u
(k)∗
2 h

(k,l)
DS , 0, . . . , 0

︸ ︷︷ ︸

K−l

∣
∣ 0, . . . , 0
︸ ︷︷ ︸

k−1

, v
(l)
1 h

(k,l)
DS , 0, . . . , 0

︸ ︷︷ ︸

K−k

)T

(7)

of the constants, the estimated data symbol at the k-th desti-

nation node can be written as

d̂(k) =

K∑

l=1

g∗T q(k,l)d(l) + u
(k)∗
2 n

(k,2)
D

+g∗T
(
u
(k)∗
2 h

(k,1)
DR n

(1)
R , . . . , u

(k)∗
2 h

(k,R)
DR n

(R)
R

∣
∣

0, . . . , 0
︸ ︷︷ ︸

K

∣
∣ 0, . . . , 0
︸ ︷︷ ︸

k−1

, n
(k,1)
D , 0, . . . , 0

︸ ︷︷ ︸

K−k

)T
. (8)
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III. PROBLEM STATEMENT

Based on the system model introduced in the previous

section, the received SINR at the k-th destination node is

calculated as

γ(k) (g) =

Edg
∗Tq(k,k)q(k,k)∗Tg

g∗T

(

∑

l 6=k

Edq(k,l)q(k,l)∗T + σ2N(k)

)

g + σ2
∣
∣
∣u

(k)
2

∣
∣
∣

2
, (9)

where N(k) is a diagonal matrix with the first R diagonal

elements being

∣
∣
∣h

(k,r)
DR

∣
∣
∣

2 ∣
∣
∣u

(k)
2

∣
∣
∣

2

, the R + K + k-th diagonal

element being one and the remaining diagonal elements being

zero.

The problem of optimizing g aiming at maximizing the sum

rate with a total energy constraint can be stated as

gopt = argmax
g

{
K∑

k=1

log2

(

1 + γ(k) (g)
)
}

(10)

subject to

g∗TCg = E2, (11)

where C is a R + 2K × R + 2K diagonal matrix with the

first R diagonal elements being the received energies at the

relays, the next K diagonal elements being Ed and the last

K diagonal elements being zero. The transmitted energy E1

in the first time slot is fixed as v
(l)
1 , ∀l are fixed and E2

denotes the energy transmitted in the second time-slot. For

the optimization problem of (10)-(11), the energy constraint

of (11) is a convex set but the sum rate
∑

k

log2
(
1 + γ(k) (g)

)

is not a concave function of g. As a result, the optimization

problem of (10)-(11) is non-convex.

IV. SIGNAL TO INTERFERENCE PLUS NOISE RATIO

The sum rate
∑

k

log2
(
1 + γ(k) (g)

)
is a non-concave func-

tion of g. The main difficulty on reformulating the sum rate

as a multi-concave function is that both the nominator and

the denominator of the SINR are functions of g, see (9). To

overcome this problem, a new term

η(k)
(

g, w(k)
)

=
E
{∣
∣w(k) d(k)

∣
∣
2
}

E

{∣
∣
∣d̂(k) − w(k) d(k)

∣
∣
∣

2
} (12)

which describes the received SINR at a destination node, is

introduced. w(k) is a complex weighting factor. Using the

function

f
(k)
1

(

g, w(k)
)

= E

{∣
∣
∣d̂(k) − w(k) d(k)

∣
∣
∣

2
}

= g∗T

(
∑

l

Edq
(k,l)q(k,l)∗T + σ2N(k)

)

g+ σ2
∣
∣
∣u

(k)
2

∣
∣
∣

2

− Edw
(k)q(k,k)∗Tg − Edw

(k)∗g∗Tq(k,k) + Ed

∣
∣
∣w

(k)
∣
∣
∣

2

,

(13)

which is obtained from (8), η(k)
(
g, w(k)

)
can be rewritten as

η(k)
(

g, w(k)
)

=
Ed

∣
∣w(k)

∣
∣
2

f
(k)
1

(
g, w(k)

) . (14)

If w(k) is fixed, f
(k)
1

(
g, w(k)

)
is a convex function of g

as

(
∑

l

Edq
(k,l)q(k,l)∗T + σ2N(k)

)

is a positive semidefinite

matrix. Taking the generalized derivative of η(k)
(
g, w(k)

)

with respect to w(k) and equalizing it to zero yields

∂η(k)

∂w(k)

!
= 0. (15)

A single stationary point is found by solving (15) for w(k)

and the optimum weighting factor is calculated as

w
(k)
opt =

g∗T

(
∑

l

Edq
(k,l)q(k,l)∗T + σ2N(k)

)

g + σ2
∣
∣
∣u

(k)
2

∣
∣
∣

2

Edq(k,k)∗Tg
.

(16)

By substituting (16) into (14), η
(k)
opt with the optimum weight-

ing factor is calculated as

η
(k)
opt (g) =

g∗T

(
K∑

l=1

Edq
(k,l)q(k,l)∗T + σ2N(k)

)

g+ σ2
∣
∣
∣u

(k)
2

∣
∣
∣

2

g∗T

(

∑

l 6=k

Edq(k,l)q(k,l)∗T + σ2N(k)

)

g + σ2
∣
∣
∣u

(k)
2

∣
∣
∣

2

= 1 + γ(k) (g) . (17)

From (14), the extreme values of η(k)
(
g, w(k)

)
ranging from

zero if w(k) = 0 and 1 if w(k) = ∞. Also, because there is a

single stationary point and it is greater than or equal to one see

(17), η(k)
(
g, w(k)

)
is a concave function with respect to w(k).

We observe that just the denominator of η(k)
(
g, w(k)

)
is a

function of g whereas both the nominator and the denominator

of γ(k) (g) are functions of g.

V. PROBLEM REFORMULATION

Based on the result of (17), the vector of the unknowns g

as well as the weighting vector

w =
(

w(1), . . . , w(K)
)T

(18)

can be jointly optimized for maximizing the sum rate. Based

on this idea, using

f2 (g,w) =

K∑

k=1

log2

(

η(k) (g,w)
)

, (19)

the optimization problem of (10)-(11) can be reformulated as
(

gopt,wopt

)

= argmax
g,w

{f2 (g,w)} (20)

subject to

g∗TCg = E2. (21)

Clearly, the objective function f2 (g,w) is concave with re-

spect to w as η(k)
(
g, w(k)

)
is a concave function of w(k) and
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the logarithm is a concave monotonic increasing function [14].

The objective function f2 (g,w) can be rewritten as

f2 (g,w) =
K∑

k=1

log2

(

Ed

∣
∣
∣w

(k)
∣
∣
∣

2
)

−
K∑

k=1

log2

(

f
(k)
1

(

g, w(k)
))

. (22)

In (22), only the second term depends on g. Although

f
(k)
1

(
g, w(k)

)
with fixed w(k) is a convex function of g,

the function log2

(

f
(k)
1

(
g, w(k)

))

with fixed w(k) is not

necessarily a convex function of g [15]. Hence, a problem

reformulation which will be described in the next section is

needed.

VI. SUM RATE AS A MULTI-CONCAVE FUNCTION

In this section, K additional scaling factors are introduced

and the optimization problem of (20)-(21) is reformulated as

a tri-convex optimization problem. Consider the function

f3 (g,w,m) = ln (2)

K∑

k=1

log2

(

m(k)
)

+
K∑

k=1

log2

(

Ed

∣
∣
∣w

(k)
∣
∣
∣

2
)

−
K∑

k=1

m(k)f
(k)
1

(

g, w(k)
)

, (23)

where

m =
(

m(1), . . . ,m(K)
)T

(24)

is a vector of positive real variables

m(k) > 0, ∀k. (25)

To show the equivalence between f2 (g,w) and f3 (g,w,m),
the first order optimality condition

∂f3
∂m(k)

!
= 0 (26)

with respect to m(k) is investigated. A single stationary point

m
(k)
opt =

1

f
(k)
1

(
g, w(k)

) (27)

is found by solving (26) for m(k). By substituting (27) into

(23), one obtains

f3
(
g,w,mopt

)
= f2 (g,w) + cconst, (28)

where cconst is a constant value. Accordingly, the optimization

problem of (20)-(21) is equivalently stated as

(

gopt,wopt,mopt

)

= argmax
g,w,m

{

f3 (g,w,m)

}

(29)

subject to

g∗TCg = E2. (30)

The optimization problem of (29)-(30) is a non-convex prob-

lem in the vectors g, w and m when they are jointly opti-

mized. However, if w and g are fixed, the objective function

f3 (g,w,m) is concave in m. As described in the previous

section, the objective function f3 (g,w,m) is concave in w if

both g and m are fixed. Furthermore, if both w and m are

fixed, just the last term of (23) is required to be considered as

an objective function. Accordingly, the optimization problem

of (29)-(30) can be reformulated as

gopt = argmin
g

{
g∗TAg − b∗Tg− g∗Tb

}
(31)

subject to

g∗TCg = E2, (32)

where

A =

K∑

k=1

m(k)

(

Ed

∑

l

q(k,l)q(k,l)∗T + σ2N(k)

)

(33)

is a positive semidefinite matrix as the scaling factors m(k),

∀k are positive, see (25), and

b = Ed

K∑

k=1

m(k)w(k)∗q(k,k). (34)

The optimization problem of (31)-(32) is convex as the objec-

tive
(
g∗TAg − b∗Tg− g∗Tb

)
is a convex quadratic function

and the constraint of (32) is a convex set. The structure of the

problem of (31)-(32) is similar to the one of the sum MSE

minimization problem which is solved in [16].

Based on the above discussion, the optimization problem

of (29)-(30) is a convex problem for either g, w or m

individually. This class of optimization problems is known

as multi-convex optimization problems [17]. In multi-convex

optimization, this structure of the problem is exploited and

several tools and techniques are proposed to find a local

optimum as well as the global optimum, for more information

see [17], [18].

VII. ITERATIVE ALGORITHM

In this section, an iterative algorithm which alternately

maximizes the objective function f3 (g,w,m) over either g, w
or m and achieves a local maximum is described. Let ǫ be an

arbitrary small tolerance value. Then, the proposed algorithm

is summarized as follows:

set initial values for w(0) and m(0)

in every iteration i

calculate g(i) given w(i−1) and m(i−1)

⊲ see [16] for solving (31)-(32)

calculate w(i) given g(i) ⊲ using (16)

calculate m(i) given g(i) and w(i) ⊲ using (27)

stop if
∣
∣f3
(
g(i),w(i),m(i)

)
− f3

(
g(i−1),w(i−1),m(i−1)

)∣
∣ ≤ ǫ

This algorithm guarantees a local optimum achievement

[17].

VIII. NUMERICAL RESULTS

In this section, the sum rate per time-slot

C =
1

2

K∑

k=1

log2

(

1 + γ(k) (g)
)

(35)
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Fig. 2: Average sum rate as a function of the pseudo SNR.

is considered as a performance measure. The performance

of the proposed algorithm is calculated as a function of the

pseudo SNR

γPSNR =
E1 + E2

σ2
, (36)

where the fixed coefficients of the transmit filters are chosen

such that the half of the total energy is transmitted in the first

time slot E1 = E2. Moreover, the energy is distributed equally

over the source nodes in the first time-slot. In the following,

a scenario with K = 3 node pairs and R = 2 relays is

considered. This number R = 2 of relays is the minimum one

required for interference alignment (IA) [19]. The channels

between the node pairs and between the nodes and the relays

are modeled as frequency flat i.i.d. Rayleigh fading channels

with average gain one. The IA scheme proposed in [19] where

an arbitrary IA solution is picked and scaled to satisfy the

total energy constraint is considered as a reference scheme.

In this reference scheme, the filters at the node are partially

adapted together with the relays coefficients aiming at nulling

the interferences at the destination nodes.

The average sum rate per time-slot C̄ for many different

channel realizations is depicted as a function of pseudo SNR

in decibels in Fig. 2. As can be seen from Fig. 2, the sum

rate maximization algorithm outperforms the IA scheme for

all pseudo SNRs.

IX. CONCLUSION

The present paper considers the sum rate maximization

problem in multiuser relay networks. By partially adapting

the filters at the nodes and by adding two sets of scaling

factors, the sum rate maximization problem is reformulated

as a tri-convex optimization problem. Simple low complexity

iterative algorithms achieving local maxima can be developed

using this new formulation. The numerical results support the

mathematical analysis and show that the proposed sum rate

maximization scheme outperforms the state of the art at IA

scheme.
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