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Abstract—Wireless sensor networks are able to perform an
aggregation of the data generated by sensors. In networks where
no gateway or no central sensor is specified, gossiping algorithms
are used such that sensors in the whole network can aggregate
messages from all other sensors. In the gossiping algorithm, the
bias problem limits the quality of the aggregation results and
the lack of message identification results in large aggregation
time. In this paper, we reveal the possibility of eliminating
or reducing the bias at the sensors by using the concept of

the divisible functions that are generally applied in a sensor
network and by using the memory of the sensors. Furthermore,
we show how the aggregation time can be reduced by using
different communication strategies for sensors communicating
with their neighbors. Simulation results show the reduction of
the aggregation bias at sensors as well as a higher speed of the
aggregation in the network.

I. INTRODUCTION

Wireless sensor networks (WSNs) are application-oriented
networks where sensors measure data from the physical world
and generate messages for aggregation [1]. A basic goal of
WSNs is to aggregate messages of all sensors and perform
functions on them [2], [3]. One way of doing this is to set
up a sink or gateway and then build a routing tree rooted at
the sink and branched out to all sensors [4]. In routing-based
WSNs, sensors receive messages from other sensors, perform
computations to all the messages and forward the computation
output to other sensors along the route.

An alternative solution which eliminates a central sink
in the network is to use random gossiping where sensors
aggregate the messages based on the communications between
sensors and their neighbor sensors [5]. Examples can be
found in swarming and consensus applications which have
been thoroughly discussed recently [5], [6]. In this paper,
we consider the random gossiping algorithm with which
sensors are randomly waked up to exchange messages with
its neighbor sensor(s). In consensus problems, the goal of
random gossiping is to asymptotically approach the average
value of the measurements at each sensor [5], [7]. In [8],
random gossiping with broadcasting is applied in a WSN with
sparse samples at sensors to aggregate the messages of the
whole network at each sensor.

In this paper, we are focusing on the idea that all sensors
are capable of aggregating the messages of the entire network.
We base this idea on the applications with a type of functions
which have been studied in [2] and are referred to divisible
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functions. Divisible functions can be calculated distributively
at the sensors in the network and they include some most
common functions we are applying in a WSN, e.g. summation,
averaging, max, min, histogram, etc.. Moreover, in [9], the
authors argue that the summation function can be applied to
calculate any function with appropriate pre-and-post process-
ing. Therefore, the divisible functions can in a more general
way calculate any function in WSNs, in a distributed way.

A problem in gossiping based communication paradigms
is the bias of the aggregation at each sensor. The messages
from certain sensors may be aggregated many times more
than those from other sensors, as the messages exchanged
between sensors in the gossiping algorithm are identity-less
and the communication and aggregation are always based on
local information, i.e., the information of a sensor and its
surrounding neighbor sensors. What is more, in a random
topology WSN, certain sensors may be located in a position
where messages from other sensors are easily repeatedly
aggregated. The bias problem in gossiping also results in a
long aggregation (convergence) time and a large number of
communications between sensors.

In this paper, we propose methods to reduce the bias of
the aggregation by using messages that sensors may store in
their buffers and to lessen the number of communications that
are required to finish the aggregation by introducing limited
redundant bits when sensors wake up and communicate with
its neighbors. The effect of introducing such redundant bits is
also considered.

In Section II, we give the network model as well as the
notations. In Section III, we shortly discuss the divisible func-
tions and some of their properties. In Section IV, we propose
two different ways to reduce the bias of the aggregation and
the aggregation time. Section V shows performance results and
compares the ideas we propose to the conventional random
gossiping approach. Section VI concludes this paper.

II. NETWORK MODEL AND NOTATIONS

We consider a WSN with N randomly deployed sensors.
The set of sensors is denoted by V = {v1, v2, · · · vN}. In
this paper, whether there is a connection between two sensors
is determined by their distance. Let dij denote the distance
between sensors vi and vj and let dc be a distance threshold. If
dij ≤ dc, sensors vi and vj are connected, else not. Ni denotes
the set of neighbor sensors of vi, i.e., the set of sensors having
connections to vi.

Throughout this paper, we use the term data to indicate
the information generated at sensors by measurements. Sensors
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perform computations to the data they generated and received
from other sensors and generate messages which indicate
the bit-sequence output from computations, i.e., there may
be data from several sensors in one message. The messages
will be transmitted and received by sensors. We use the term
aggregation of messages to indicate that the computations are
performed to the data in the messages. The data is also referred
to parameters of functions in the context of divisible functions.

III. DIVISIBLE FUNCTIONS AND BIAS OF THE

AGGREGATION

In this section, we discuss the divisible functions and the
bias of the aggregation in gossiping. It will be shown how the
bias of the aggregation can be removed based on the concept
of the divisible functions.

We denote the data generated at sensor vi by si. An appli-
cation in WSNs corresponds to a set F of divisible functions
[2]. Each divisible function fl ∈ F has l parameters and the
functions f1, f2, f3 · · · form the set F . Let Si, i = 1, · · · , L
denote disjoint non-empty sets whose elements are chosen
from the parameter sets S = {s1, s2, · · · sK}, i.e., Si ⊂ S.
Let vector sSi

denote the parameters given in Si and vector
s denotes all parameters in S. One property of divisible
functions is that for the parameter set S and any partition
Π(S) = {S1, S2, · · · , SL} of it there exists a function gΠ(S)

such that

fK(sS) = gΠ(S)(fl1(sS1
), fl2(sS2

), · · · flL(sSL
)), (1)

where li, i = 1, · · · , L denotes the number of parameters
in subset Si, i = 1, · · · , L. With this property, the divisible
functions in WSNs can be calculated in a divide-and-conquer
fashion [2].
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Fig. 1: Network examples to illustrate the bias of the aggregation

In random gossiping, sensors wake up themselves and are
waked-up by neighbor sensors randomly. In examples such
as the consensus problem, the identities of the data are not
preserved because they cannot be distinguished after applying
functions to them. An example illustrating the bias problem is
shown in Fig. 1a. After sensor A and sensor B exchangingmes-
sages, both sensors have aggregated messages containing data
sA and sB . Afterwards, sensor B may exchange messages with
sensor C and both will aggregate messages containing data sA,
sB and sC . When sensor A and sensor B exchange messages
for the second time, sensor A will receive an aggregated
message containing sA, sB and sC which is further aggregated
with its own message which already contains {sA, sB}. The
aggregation at sensor A will be biased since it is performed to
the data multiset {sA, sB, sA, sB, sC}. Another reason which
may cause a bias of the aggregation may be loops in the
network topology as shown in Fig. 1b. Even without the same
pair of sensors communicating multiple times, a sensor may

aggregate duplicated data due to the richly connected network
topology.

In [10], it is shown that in consensus problems where
only the average values is of interest in the whole network,
the idea of topology control could be applied to balance
the communication cost, e.g. energy consumption and the
aggregation time, with bias tolerance. However, bias reduction
is not considered in [10].

In this paper, we use the concept of divisible functions
to reduce and even in some cases eliminate the bias. For two
sensors vC and vR, let SC and SR be their sets of parameters of
functions flC and flR , respectively, where flC and flR belong
to the divisible function set F . We denote sSC

and sSR
as the

parameters in SC and SR, respectively. If SC ∩ SR 6= φ, the
aggregation

f(lC+lR)(sSC
, sSR

) = gΠ({SC ,SR})(flC (sSC
), flR(sSR

)) (2)

is biased. Define a set ΨCR = {S1, S2, · · ·Sψ} where ψ is the
number of parameter sets in ΨCR. In order to eliminate the
bias in (2), sensors vC and vR apply the operation ∐ to the
parameter set in set ΨCR, where the operation ∐ applies either
the unions ∪ or the intersections ∩ to the sets, such that

SB = ∐ψi=1Si = SC ∩ SR. (3)

It shall be noted that, although sensors vC and vR both have
the bias aggregation given in (2), they may have different sets
ΨCR. A toy example to illustrate the operation ∐ is given as
follows. Assume that sensor vC with the parameter set SC =
{s1, s2, s3} is communicating with sensor vR whose parameter
set is SR = {s3, s4}. The bias exists due to SC∩SR = {s3}. If
there is a set ΨCR = {S1, S2, S3} with S1 = {s1}, S2 = {s2}
and S3 = {s1, s2, s3}, the operation ∐ to get SB is ∐3

i=1Si =
(S1∪S2)∩S3. For the general case, the operation of ∐ getting
SB from ΨCR is given by the pseudo code in Fig. 2.

1: Soutput = S1; i = 2;
2: while Soutput 6= SB do
3: if Si ∩ Soutput = φ then
4: Soutput = Si ∪ S;
5: else
6: if Si ⊂ Soutput then
7: Soutput = Soutput ∩ Si;
8: end if
9: end if
10: i = i+ 1;
11: if i > ψ then
12: i = 1;
13: end if
14: end while

Fig. 2: The operation of ∐

We further define SA = SC \ SB . The aggregation

flC (sSC
) = gΠ({SA,SB})(flA(sSA

), flB (sSB
)) (4)

is followed with a function g−Π({SC ,SB}) such that

flA(sSA
) = g−Π({SC ,SB})(flC (sSC

), flB (sSB
)). (5)

The unbiased aggregation of the parameters in SC and SR is
therefore achievable by

f(lA+lR)(sSA
, sSR

) = gΠ({SA,SR})(flA(sSA
), flR(sSR

)). (6)

IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June  2013, Darmstadt, Germany



We name the set ΨCR as the bias-elimination set of param-
eter set SC ∩ SR. Instead of proving the general existence
of the function g−Π({SC ,SB}), in this paper, we exemplify
g−Π({SC ,SB}) for several functions mentioned in [2].

1) In application which calculates the mean of the mes-
sages, the output flA(sSA

) can be calculated by

flA(sSA
) = g−Π({SC ,SB})(flC (sSC

), flB (sSB
))

=
lCflC (sSC

)− lBflB (sSB
)

lC − lB
, (7)

hence the unbiased aggregation f(lA+lR)(sSA
, sSR

) is

f(lA+lR)(sSA
, sSR

) =
lAflA(sSA

) + lRflR(sSR
)

lA + lR
. (8)

2) When the sum function is to apply to the messages, we
simply have

flA(sSA
) = flC (sSC

)− flB (sSB
) , (9)

and

f(lA+lR)(sSA
, sSR

) = flA(sSA
) + flR(sSR

) . (10)

IV. GOSSIPING OF SENSORS WITH INDICATING HEADERS

In this section, we propose methods for gossiping based
WSNs for bias reduction or elimination and for reducing the
aggregation time. For that purpose, we introduce an extra
header which will be paired with each message and will
be exchanged prior to the transmission of each application
message.

For a WSN with N sensors, the indicating header of an
aggregated message is an N -bit message field and is denoted
by Ii, where the subscript i indicates the relation to sensor
vi. If the current message of sensor vi has aggregated the
data generated from the measurement at sensor vj , the j-
th bit in Ii, Ii(j) is marked 1, otherwise 0. The indicating
header will only represent whether the corresponding data has
been aggregated without showing the duplication, therefore,
it corresponds to the parameter set Si which is introduced
in Section III before (1). We define an invertible function Θ
which maps the parameter set Si to the indicating header Ii,
i.e., Ii = Θ(Si) and Si = Θ−1(Ii). Due to the existence of
the biased aggregation, the parameter set Si does not tell how
many times the data from a certain sensor has been aggregated,
but only which data has been aggregated.

In this paper, we assume when two sensors vi and vj
are waked up to exchange messages, they first exchange the
indicating headers of their messages and decide whether a
transmission on a direction, i.e., vj to vi or vi to vj is needed.
Sensor vj will only transmit its message to vi if Ij and Ii

indicate that Sj 6⊆ Si, i.e., vj has aggregated data that vi has
not. After sensor vj sending its message to sensor vi, vi will
update its indicating header as

I
′
i = Θ (Si ∪ Sj) (11)

= Θ
(

Θ−1 (Ii) ∪Θ
−1 (Ij)

)

.

The same procedure is applied when sensor vi transmits its
message to sensor vj . The gossiping algorithm stops in the
network when Ii(j) = 1 for j = 1 · · ·N and i = 1 · · ·N .

In the following, we discuss two different properties of
sensors leading to a reduction of aggregation bias and time.
Firstly, we consider that sensors can memorize previously
received messages and the concept of the divisible functions
discussed in Section III which can be applied to reduce or
eliminate the bias. Secondly, we consider that sensors may
follow different strategies with which they communicate with
their neighbors, which can be used to decrease the aggregation
time.

1) Bias reduction through memorizing: First, we consider
a sensor’s ability to memorize the previous received messages.
This considers that real sensors have buffers which can store
an amount of messages together with their indicating headers.
For a finite length buffer, the input-output strategy of the buffer
is First-In-First-Out (FIFO).

At a certain time instant t, the newest message in the buffer
of sensor vi is the current message whose indicating header is
Ii. When sensor vi receives a message from sensor vj , it uses
the indicating header Ii of its own newest message and the
indicating header Ij of the received message to check the bias
of the aggregation, SB = Si∩Sj = Θ−1(Ii)∩Θ−1(Ij). If SB
is non-empty, sensor vi uses the messages in its buffer to find
the bias-elimination set Ψij of SB . Sensor vi applies exhausted
search method to test all combinations of the messages in its
buffer. For a set of parameter sets given by a combination,
sensor applies the operation given in Fig. 2. If the operation
outputs the bias parameter set SB , the given combination is
then a bias-elimination set.

If sensor vi cannot find the bias-elimination set Ψij , sensor
vi will then ignore the bias and perform a biased aggregation.
In this case, the biased aggregation will be propagated when
sensor vi communicates with other sensors.

In order to quantify the bias for measuring the performance
after aggregation of messages in the whole WSN, we define
ri as an aggregation recorder at sensor vi. ri is a vector
with integer elements of length N where the j-th entry in ri

indicates how many times parameter sj has been aggregated
in the newest message of sensor vi. Therefore, vector ri and
the indicating-header Ii have the following relation:

Ii(j) =

{

1 if ri(j) > 0
0 if ri(j) = 0 .

(12)

We define the matrix R which is a vertical stack of ri, i =
1, 2, · · · , N when the gossiping algorithm stops in the network.
The bias of the aggregation in the WSN is denoted by b and
is defined as the normalized summation of all elements of the
matrix R, i.e.,

b =
1

N2

N
∑

i=1

N
∑

j=1

R(i, j) . (13)

With this definition, when there is no bias, i.e., all entries in
R are 1, the bias is b = 1.

2) Time reduction through message exchange strategies:
Secondly, we consider a sensor’s ability to use different
strategies of exchanging messages with its neighbors. We apply
two communication strategies which are mentioned in [5], [7]
when a sensor wakes up. Note that [5], [7] focus on consensus
problems to compute the average value in a WSN and do not
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work on gossiping for general function computations based
on message exchanges with indicating headers. In the first
strategy, when a sensor vi wakes up, it exchanges messages
with one neighbor sensor vj ∈ Ni. In the second strategy,
the awake sensor wakes up all its neighbor sensors in Ni and
perform time-division based messages exchanges with all of
them. We name the first type of sensors the humble sensors
and the latter type of sensors the greedy sensors.

The goal of both strategies is to avoid unnecessary com-
munications in order to reduce the total number of communi-
cations in the network. When sensor vi wakes up, it triggers
all sensors in Ni to transmit their indicating-headers to vi.

• If sensor vi is a humble sensor, it chooses the sensor vl
whose indicating header results in a maximum mutual
difference in the parameter sets Si and Sl, i.e.,

vl = arg max
vj∈Ni

IiXORbIj , (14)

where XORb performs the bit-element XOR operation
and sums all elements in the resulting sequence.

• If sensor vi is a greedy sensor, we deploy the protocol
that sensor vi is firstly a greedy listener such that it
receives all messages from sensors in Ni in a time-
division mode. Then it switches to a greedy speaker
and broadcasts the aggregated messages such that
all sensors in Ni can update their parameter set by
receiving the message from vi.

From the point of view of a practical sensor network, it is also
important to consider in both strategies how long a sensor has
to stay awake before the aggregation finishes in the network
because a larger awake time will drain the battery of sensors
faster and hence decrease their lifetime. However, this aspect
is not considered in this paper and is left for future works.

V. PERFORMANCE RESULTS

In simulations, we randomly deploy N = 20 and N = 30
sensors in a two-dimensional square area, respectively. The
communication range dc of each sensor is defined such that
the network remains connected. To do so, we use the concept
of connectivity introduced in [10] with the Laplacian matrix of
the network and its second smallest eigenvalue λ2 to adjust dc
such that λ2 > 0 which guarantees that no sensor or no group
of senors is isolated from the rest of the sensors, respectively.

1) Buffer size of sensors vs. the bias: The probabilities of
finding a bias-elimination set increases with increasing buffer
size of the sensor memory.

In Fig. 3, we depict the relation between the bias of the
aggregation and the buffer size. As it is shown, both greedy and
humble sensors can reduce or even eliminate the bias of the
aggregation by increasing the memory size of sensors. In order
to zoom in the performance of the greedy and humble sensors
in the figure, we do not depict the bias performance of the
standing gossiping algorithm. The bias for standard random
gossiping approach without memory is up to b = 1010 on
average for both N = 20 and N = 30, respectively. With
the same buffer size, greedy sensors result in larger bias in
comparison to humble sensors. An explanation for this is that
the message which neighbor sensors in Ni receive from sensor
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Fig. 3: Buffer size versus bias, solid lines for N = 20, dashed lines
for N = 30

vi in the greedy case contains the parameters aggregated from
all sensors among vi∪Ni. Therefore, more buffer is required to
find the bias-elimination set. Furthermore, it is shown that with
more sensors in the network which results in more neighbor
sensors in Ni, a larger buffer size is required at each sensor
to find the bias-elimination set.

2) Number of Communications in different strategies: In
papers regarding consensus problems using random gossiping,
the convergence speed of aggregation is determined by a factor
which captures the bias between the aggregation output and the
true average [10]. In this paper, we assume that there are no
sensors leaving or new sensors joining the network throughout
the aggregation. With the indicating header, each sensor has
the knowledge about how many parameters it has already
aggregated. When all sensors have indicating headers whose
entries are all one, the gossiping is finished. Therefore, we
measure the convergence speed as the number of total number
of communications of messages of all sensors.
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Fig. 4: Comparison of the numbers of communications required until
the gossiping stops

In Fig. 4, we compare the numbers of communications
required until the gossiping stops in the network, i.e., the
indicating headers for messages at all sensors are all ones.
This is done for the cases using indicating headers for greedy
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sensors (blue curves) and humble sensors (red curves). For
comparison, also the performance of the Standard random Gos-
siPing (Standard GP) discussed in [5] is shown. The abscissa
in Fig. 4 is the number of message communications that are
performed in the network. The ordinate gives the probability
that the aggregation has been finished for all sensors in the
network. Significant improvements can be witnessed by using
indicating header before sensors exchanging the messages.

3) The effect of the indicating headers: In previous simu-
lations, the additional communications for sensors exchanging
the indicating headers have been neglected under the assump-
tion that the message length in bits is much larger than N .
In this part of simulations, we demonstrate the effect to the
number of communications when the transmissions of the
indicating-header are considered. We denote by η the ratio
between the bit length of indicating-header and the length
of the messages, with the assumption that all aggregations
will result in the same message length in bits [11]. By
adding the number of communications for exchanging the
indicating headers times η to the number of communications
for exchanging the messages, we can include the effect of
indicating headers into our results.
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Fig. 5: Effect of indicating headers with humble sensors. From left
to right, η = 0%, 5%, 10%, 15%, 20%, 25%, 30%

In Fig. 5, we demonstrate the effect of indicating headers
with different η when sensors are humble. Similar results can
be seen in Fig. 6 when sensors are greedy. Both figures show
that the gain in reducing the number of communications when
considering the effect of indicating header can still be obtained
even with larger η. Furthermore, the greedy sensor strategy
is more efficient in terms of aggregation due to its faster
spreading of messages within vi ∪ Ni for every vi.

VI. CONCLUSION

In this paper, we considered the scenario where sensors in
a wireless sensor network are aggregating messages from all
other sensors using gossiping. We discussed how the concept
of divisible functions can reduce the bias of the aggregation.
Furthermore, we enable sensors to use messages in the memory
to eliminate the bias. Two possible communication strategies
have been investigated, greedy and humble. We introduced the
concept of indicating header with which faster aggregation in
the WSN can be achieved. Simulation results showed faster

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

 

 

greedy sensors

standard GP

Number of message communications

P
ro
b
ab
il
it
y
o
f
fi
n
is
h
in
g
ag
g
re
g
at
io
n

η

Fig. 6: Effect of indicating headers with greedy sensors. From left
to right, η = 0%, 5%, 10%, 15%, 20%, 25%, 30%

aggregation and significantly reduced bias in comparison to
standard gossiping.
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