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D 17

Darmstädter Dissertation





I

Kurzfassung

Mobilfunknetze sind heutzutage allgegenwärtig. Die große Popularität mobiler Kom-

munikation und die schnelle Verbreitung moderner Endgeräten haben in den letzten

Jahren zu einer stetig wachsenden Beliebtheit von mobilen Datendiensten geführt.

Um die steigende Kapazitätsnachfrage zu bedienen, müssen Netzbetreiber ihre Netz-

infrastruktur ausbauen, was zu einem Anstieg der Investitionskosten führt. Gleich-

zeitig führt der technische Fortschritt zu immer komplexeren Systemen und zu der

Notwendigkeit, mehrere Mobilfunknetze unterschiedlicher Technologien gleichzeitig zu

betreiben, wodurch der Aufwand für die Netzsteuerung stark ansteigt und sich in

erhöhten Betriebskosten der Netzbetreiber niederschlägt. Um wettbewerbsfähig zu

bleiben, sind Netzbetreiber daher zu Kostensenkungen gezwungen, ohne dabei die Netz-

und Dienstqualität zu verringern.

Selbstorganisierende Netze (SONs) werden als Schlüsseltechnologie für zukünftige Mo-

bilfunknetze betrachtet. Sie haben im Gegensatz zu herkömmlichen Mobilfunknetzen

die Fähigkeit, viele Aufgaben aus dem Bereich Betrieb und Steuerung automatisch und

autonom mit qualitativ hochwertigen Ergebnissen auszuführen. Von der Einführung

von SONs wird daher erwartet, dass einerseits die Effizienz von Mobilfunknetzen

zunimmt und damit die Netzkapazität steigt und so die zunehmenden Investitions-

kosten relativiert werden. Andererseits werden autonome Funktionen den benötigten

Aufwand für die derzeit hauptsächlich manuell ausgeführten Aufgaben aus Betrieb

und Steuerung reduzieren und die Betriebskosten senken. Allerdings stellen die hohe

Komplexität und die verteilte Struktur von Mobilfunknetzen insbesondere im Zusam-

menhang mit hohen Anforderungen an Echtzeitfähigkeit und Zuverlässigkeit von SONs

große Herausforderungen an die Entwicklung von Algorithmen für den automatischen

Betrieb von Mobilfunknetzen dar. SONs erfordern daher neue Ansätze und Konzepte

für den automatischen Betrieb von Mobilfunknetzen.

Diese Arbeit erforscht die automatische Anpassung eines zellularen Mobilfunknetzes

an schwankende Kapazitätsanforderungen durch die adaptive Zuweisung von Funk-

ressourcen. Dazu wird ein hierarchisches Konzept mit zwei Ebenen vorgeschlagen.

Das Konzept trennt die Anpassung des Netzes an die Kapazitätsanforderungen von

der Ressourcenzuweisung an einzelne Nutzer und reduziert damit die Komplexität der

Netzanpassung soweit, dass ein effizienter automatischer Betrieb in Echtzeit möglich

wird. Für die Ressourcenzuweisung an einzelne Nutzer in der zweiten Ebene werden

bestehende Verfahren verwendet. Die automatische Anpassung des Netzes findet in

der ersten Ebene statt. In diesem Zusammenhang wird ein neues Netzmodell, das
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zellzentrische Netzmodell, vorgeschlagen. Das Modell stellt den Zusammenhang zwi-

schen der Kapazität einer Zelle und der Ressourcenallokation der Zelle in Form von

Zellbandbreite und Sendeleistung her und berücksichtigt die Verteilung und die Ka-

pazitätsanforderungen der Nutzer, anstatt die Nutzer einzeln zu modellieren, wie in

bisherigen Netzmodellen üblich. Es abstrahiert damit von einzelnen Nutzern und be-

trachtet ganze Zellen, so dass die Modellkomplexität stark verringert wird und effiziente

selbstorganisiernde Ansätze möglich werden. Außerdem werden der Einfluss der Umge-

bung auf die Signalausbreitung und die Interferenz durch andere Zellen berücksichtigt,

so dass das Modell eine hohe Genauigkeit aufweist.

Das zellzentrische Netzmodell wird verwendet, um verschiedene Optimierungspro-

bleme für die automatische Kapazitätsoptimierung in SONs aufzustellen. Die Op-

timierungsprobleme haben verschiedene Optimierungsziele und erreichen die Ka-

pazitätsoptimierung mit Hilfe einer Anpassung der Zellbandbreiten oder der Sendeleis-

tungen oder der gleichzeitigen Anpassung von beidem. Für die Lösung der Opti-

mierungsprobleme werden Algorithmen mit zentraler und mit verteilter Implemen-

tierung vorgeschlagen. Zentrale Algorithmen sind im Allgemeinen für die Simulation

und die Analyse geeignet. Verteilte Algorithmen sind von großer Bedeutung für SONs,

da sie aufgrund der verteilten Implementierung der Struktur von Mobilfunknetzen

gerecht werden und damit effizient umgesetzt werden können und robust gegenüber

Störungen sind.

Für die Validierung der vorgeschlagenen Ansätze zur automatischen Kapazitätsop-

timierung und zur Leistungsevaluation der Ansätze wird ein Simulationsansatz mit

Szenarien mit sogenannten Hotspots in der Kapazitätsnachfrage vorgestellt. Der Si-

mulationsansatz wird verwendet, um die grundsätzliche Anwendbarkeit und Eignung

der Ansätze für die automatische Kapazitätsoptimierung von zellularen Mobilfunknet-

zen zu untersuchen und um ihre Stärken und Schwächen zu identifizieren. Die Unter-

suchungen vergleichen den Stand der Technik mit den vorgeschlagenen neuen Ansätzen,

zeigen, welcher Optimierungsansatz in welchen Szenarien die beste Leistung erzielt und

verdeutlichen den Einfluss des Diensttyps.

Schließlich wird ein Ansatz zur Ableitung eines Simulationsszenarios, das auf einem

realen Netz basiert und mit Hilfe von Messungen des Zelldurchsatzes gewonnen wird,

vorgestellt. Die vorgeschlagenen Ansätze zur automatischen Kapazitätsoptimierung

werden auf ein mit Hilfe dieses Ansatzes gewonnenes reales Szenario angewendet und

im Hinblick auf ihre Anwendbarkeit in der Praxis untersucht. Die Simulationsergeb-

nisse bestätigen die Erkenntnisse aus den Untersuchungen in den Hotspot-Szenarien

und bestätigen die Praxistauglichkeit der Ansätze. Um eine detaillierte Analyse

durchzuführen, wird das reale Szenario im Hinblick auf Bereiche, in denen Hotspots in
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der Kapazitätsnachfrage auftauchen, untersucht. Die vorgeschlagenen Ansätze zur au-

tomatischen Kapazitätsoptimierung werden speziell für diese Bereiche betrachtet und

es wird gezeigt, dass die vorgeschlagenen Ansätze lokal in Gegenden mit inhomogener

Kapazitätsnachfrage erhebliche Gewinne erzielen.
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Abstract

Mobile radio networks are ubiquitous nowadays. The large popularity of mobile com-

munication and the fast proliferation of advanced mobile devices have lead to a signif-

icant increase in the use of mobile data services. Network operators, therefore, have to

extend the capacity of their networks in order to meet the increasing capacity demand,

causing high capital expenditures (CAPEX). At the same time, technical progress leads

to increasingly complex networks and to the need to operate several networks of differ-

ent technologies in parallel, causing high effort in operation and management of mobile

communication networks, which leads to high operational expenditures (OPEX). As

a consequence, in order to stay economically competitive, network operators need to

lower costs without sacrificing network and service quality.

Self-organizing networks (SONs) are considered a key technology for future mobile ra-

dio networks. In contrast to conventional mobile radio networks, they are able to carry

out a wide range of tasks in the field of operation and management in an automatic

and autonomous way and with a high level of sophistication. SONs, thus, promise

to increase the efficiency of mobile radio networks, leading to higher capacity of the

network and counteracting the increase in CAPEX. The autonomous operation further-

more reduces the effort required to carry out operation and management tasks which

are currently done mostly manually and, therefore, lowers OPEX. The high complex-

ity and the distributed structure of mobile radio networks, on the other hand, pose in

connection with the high demands on real-time capability and reliability of SONs great

challenges on the development of algorithms for the automatic operation of mobile ra-

dio networks. As a consequence, SONs require new approaches and concepts in order

to enable the automatic operation of mobile radio networks.

In this thesis, the automatic adaptation of a cellular mobile radio network to varying

capacity demands by adapting the radio resource allocation is investigated. For this

purpose, a hierarchic concept with two planes of hierarchy is proposed. The concept

separates the capacity demand adaptation of the network from the resource allocation

to individual users and reduces the complexity of the network adaptation to an extent

that allows efficient automatic operation in real time. For the allocation of resources

to individual users, as done in the lower plane, existing methods are applied. The

automatic adaptation of the network is carried out in the upper plane. In this context,

a new network model, the cell-centric network model, is proposed. It models the

relation between the capacity of a cell and the resource allocation of the cell in terms

of cell bandwidth and transmit power and considers the distribution of the users and

their capacity demands, instead of modeling the individual users, as it is done in current
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network models. This way, the model abstracts from individual users and considers

whole cells, such that the modeling complexity is reduced significantly, making efficient

self-organizing approaches possible. Furthermore, interference from other cells and the

influence of the environment on signal propagation are considered, such that the model

achieves high accuracy.

Using the cell-centric network model, different optimization problems for the auto-

matic capacity optimization for SONs are developed. The optimization problems have

different optimization goals and achieve the capacity optimization by allocating cell

bandwidth, transmit power or both, cell bandwidth and transmit power, jointly. For

the solution of the optimization problems, different algorithms with central as well as

distributed implementations are proposed. Central algorithms are in general suited

for simulation and analysis purposes. Distributed algorithms are of practical relevance

for SONs since their implementation corresponds to the structure of mobile radio net-

works, such that they can be implemented efficiently and provide robustness against

failure.

For verification of the proposed automatic capacity optimization approaches for SONs

and for performance evaluation of the approaches, a simulation approach with scenarios

with capacity demand hotspots is presented. Using this simulation approach, the

proposed automatic capacity optimization approaches for SONs are investigated in

order to gain insight into their behavior and in order to identify their strengths and

weaknesses. The simulations are used to compare the state of the art with the proposed

new approaches, show which capacity optimization approach performs best with the

different distributions of the capacity hotspots and illustrate the influence of the service

type.

Finally, an approach for the derivation of a real-world simulation scenario that is based

on a real network and obtained using throughput measurements is presented. The

proposed approaches for automatic capacity optimization are applied to a real-world

scenario obtained using this approach and are evaluated with respect to their perfor-

mance in practical application. The simulation results confirm the findings from the

simulations in the hotspot scenarios and verify the applicability of the approaches in

practice. For a more detailed analysis, the real-world scenario is investigated with

respect to the areas in which the capacity hotspots appear. The performance of the

proposed automatic capacity optimization approaches for SONs are investigated specif-

ically for these hotspot areas and it is shown that the proposed approaches are able to

achieve significant capacity gains locally in areas of inhomogeneous capacity demand.
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Chapter 1

Introduction

1.1 Self-organizing Cellular Mobile Radio Net-

works

In recent years, mobile communication has become truly ubiquitous. Significant tech-

nological development has led to advanced devices, such as smartphones, PC data

cards and USB modems, for example, that provide easy access to the internet and to

other data services. New operational concepts and software development platforms

for smartphones enable a large crowd of developers to mobile application development

and boost the invention of new services and new applications. All of these develop-

ments together have caused mobile communication to fully merge into private as well

as business life, such that mobile communication now belongs to everyday life.

Modern communication systems provide great flexibility with respect to the bit rate

requirements of data services. As a consequence, data services are manifold and while

some require the transmission of only few bytes, several others require high transmission

volumes and high transmission speeds. Popularity and availability of data services on

modern user equipment and the great variety of data services cause a strong increase of

the throughput demanded by the users from the network, such that network operators

are forced to invest in their infrastructure in order to extend the capacity of their

networks, which causes increasing capital expenditures (CAPEX) [vLE+08].

At the same time, infrastructure complexity of mobile radio networks increases due to

the use of advanced transmission technologies with a multitude of tunable parameters

with complex dependencies, and due to the simultaneous operation of several networks

based on different technologies, such as 2nd generation (2G), 3rd generation (3G) and

Long Term Evolution (LTE) [3GP11b], for example. As a consequence, complexity

of maintenance, operation and optimization increases, such that more and more man-

power is required for the in general manually carried out operation and management

tasks and in order to assure efficient and reliable operation of the network, which leads

to increasing operational expenditures (OPEX) [Leh07a,vLE+08].

While expenditures of the network operators rise due to increasing CAPEX and in-

creasing OPEX, revenues stagnate under the influence of competition and new billing
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models, such as flat-rates, for example. Operators, thus, feel the pressure to reduce

costs and look for new ways to cut CAPEX as well as OPEX without reducing the

reliability of their networks and the quality of the services [vLE+08].

A major role, in this context, plays the surrounding in which mobile radio networks op-

erate. It is characterized by inhomogeneous capacity demand distributions and strong

dynamics of the capacity demand resulting from, for example, rush hour traffic or

events such as concerts or sports tournaments. The capacity demand dynamics in

connection with the inhomogeneous capacity demand distribution offer much room for

optimization, which is, however, very complex and tedious due to the large number of

users and base stations (BSs) of cellular radio networks. As a consequence, it has been

found in recent years that dynamic, autonomously operating processes are required in

order to adapt cellular mobile radio networks to the large capacity demand variations

they experience. Since such processes run autonomously and are carried out automat-

ically in a self-organizing manner, a network containing functionality of the described

nature is called a self-organizing network (SON) [Moi06,vLE+08].

Due to their self-organizing capabilities, SONs are considered a key technology to en-

able further development of mobile communication technology while assuring economic

success. They are expected to be able to reduce the need for costly human interac-

tion in many areas of operation and management of the network and, thus, to lead

to a strong reduction of the operator’s OPEX. Furthermore, the optimization gains

achieved by the introduction of self-organizing functionality are expected to exceed

the gains obtainable with the current, mostly manual, optimization methods. Spectral

efficiency and capacity of the network are, consequently, expected to increase and will

reduce the number of sites required to provide coverage and capacity, which decreases

the CAPEX of the network operator. The introduction of SONs is, therefore, con-

sidered a key factor in achieving significant cost reductions while increasing network

performance [Moi06,vLE+08].

Self-organizing functionality is relevant for different fields in the area of operation and

management of cellular radio networks. Depending on the respective operation and

management task, the following fields of self-organizing functionality are identified

[Moi06,vLE+08]:

• self-configuration, which is the process of automatically determining parameters

for the initial configuration or a reconfiguration of a BS,

• self-optimization, which is the process of automatically adjusting parameters in

order to adapt the network to changing operating conditions and environments,
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• self-healing, which is the process of automatically resolving coverage and capacity

problems resulting from failures.

Hence, self-organizing functionality is envisioned for application in a wide range of

tasks of operation and management of cellular radio networks. Great care and thorough

investigation is required in the development of self-organizing functionality since major

network parameters are affected to an extent that may be critical for reliable and stable

operation of the network.

Apart from reliability and stability, which are required for all self-organizing approaches

equally, there exist different requirements concerning spatial and temporal aspects de-

pending on the field of self-organizing functionality. Figure 1.1 classifies the different

fields of self-organizing functionality with respect to execution speed. The figure shows

that especially for self-healing, tight temporal constraints apply since coverage or ca-

pacity holes arising due to failures have to be resolved as soon as possible in order to

assure high service quality. The temporal constraints on self-optimizing functionality

are more relaxed, they depend on the speed at which capacity demand dynamics, such

as rush-hour traffic, for example, evolve. For self-optimizing functionality, the temporal

requirements, thus, range between several minutes and few hours. Self-configuration

functionality has the most relaxed temporal requirements. Here, the desired time until

self-configuring infrastructure can be fully included in normal operation is the deciding

factor, it can be up to several hours, depending on the requirements of the network

operator.

10
0

10
2

10
4

t in s

seconds minutes hours

self-optimization

Figure 1.1. Temporal aspects of self-organizing functionality.

The spatial classification of the different fields of self-organizing functionality is shown

in Figure 1.2. The figure illustrates to which spatial extent the self-organizing function-

ality influences the network. For self-configuring functionality, influence may be local

since it may affect only a single BS. On the other hand, the configuration of a new BS
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or the reconfiguration of an existing BS may force further BSs to adjust their configu-

rations, such that self-configuring functionality may also have influence on a cluster of

BSs. Self-healing, on the other hand, cannot be carried out by a single BS. Instead, a

cluster of several BSs is required in general in order to resolve capacity and coverage

holes caused by failure of a single BS. Thus, self-healing affects a cluster of cells. Also

for self-optimizing functionality, several BSs will be adjusted in order to optimize a

small area of a cellular network. Furthermore, also the optimization of large parts of

a network may be required since certain phenomena that trigger the optimization of a

network, such as rush-hour traffic, for example, take place at the same time in different

places of the network. Thus, self-optimizing approaches will have influence on a cluster

of cells or on even larger areas.
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Figure 1.2. Spatial aspects of self-organizing functionality.

Note that above spatial and temporal classifications are of great relevance for self-

organizing functionality. Any approach that does not comply with both, temporal and

spatial requirements of the respective field of self-organizing functionality, is likely to

fail when applied in SONs since it will not be able to successfully complete the assigned

operation and management task in a self-organizing way.

1.2 Automatic Capacity Optimization of Cellular

Radio Networks

Several goals exist in the field of self-optimization, such as optimizing service qual-

ity, handover (HO) performance, call admission performance or network capacity, for
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example [JBT+10,LSJB10]. The optimization of the network capacity is of great rele-

vance since the network capacity correlates with the income of the network operator,

such that network operators seek to maximize the capacity of their networks.

This thesis investigates the automatic optimization of the network capacity of the

downlink for SONs. The capacity optimization is achieved by adapting the capacity

that is delivered by the network to the inhomogeneously distributed capacity demand

such that at all times and all places, only as much capacity as required is delivered.

The resource allocation of the cells in terms of cell bandwidth and transmit power are

well suited to adapt the capacity that is delivered by the network, such that in this

thesis, cell bandwidth and transmit power are the parameters that are adapted in order

to optimize the network. In this section, an introduction to capacity optimization in

cellular mobile radio networks is given. The focus of the introduction is put on the

aspects that are critical for automatic capacity optimization for SONs.

The capacity that is delivered by a cellular radio network depends on the capacity of

the individual radio links and is influenced by multiple factors. These factors can be

divided into the group of propagation conditions related factors and the group of service

related factors, as illustrated by Figure 1.3. The propagation conditions related factors

have great impact on the network capacity since they determine the signal quality at

the receiver, which is the deciding factor for the capacity of a radio link. Among the

propagation conditions related factors is the mobile radio channel, which determines

the attenuation of the radio signal and which is composed of a path loss component

and fading components. While fading is usually considered to be random, the path

loss is determined by the distance between transmitter and receiver [Rap02]. As a

consequence, the layout of the network with the number of BSs and the locations of the

BSs as well as the distribution of the users have influence on the propagation conditions,

since they together determine the distances between transmitters and receivers.

The service related factors influence the capacity of a cellular radio network since

they decide how the radio resources are used. Most important in this context is the

scheduling, which carries out the allocation of the resources to the individual users.

Scheduling can be channel adaptive, such that the channel fluctuations caused by

fading can be exploited to maximize the network capacity. At the same time, however,

Quality Of Service (QoS) requirements, which depend on the service type, have to be

considered and may require actions that counteract capacity maximization [CL01]. As

a consequence, also the service type has influence on the network capacity of cellular

radio networks.

In addition, inter-cell interference (ICI) exists in cellular radio networks. It arises due to

the reuse of resources and is an inherent effect in cellular radio networks. ICI is of great
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Figure 1.3. Influencing factors of the network capacity in cellular radio networks.

relevance in the context of network capacity optimization since it causes interrelations

between the cells and between the influencing factors of the network capacity. These

interrelations are very complex and make cellular radio networks very complex systems

and the optimization of the capacity of cellular radio networks a very challenging task.

Furthermore, ICI has influence on the signal quality and, thus, on the network capacity.

The influencing factors of ICI are the same as for the network capacity [Rap02].

As a consequence, the challenge in capacity optimization is the large complexity arising

from the existence of ICI. Mathematical optimization is usually applied for capacity

optimization of cellular radio networks since, given an adequate model of the network,

mathematical optimization problems are capable of dealing with the great complexity

arising in capacity optimization of cellular radio networks. Thus, the development of

adequate models of the network is a key aspect in the context of capacity optimiza-

tion of cellular radio networks. This is especially true in connection with automatic

capacity optimization for SONs since certain requirements concerning execution speed

of automatic capacity optimization algorithms for SONs have to be fulfilled, according

to Section 1.1 and Figures 1.1 and 1.2. Furthermore, the network model largely deter-

mines the complexity of an optimization problem and the methods that are suited to

solve the optimization problem and, thus, affects efficiency and speed of an automatic

capacity optimization algorithm.

Another important aspect in the context of automatic capacity optimization for SONs

is the practical implementation of the automatic capacity optimization algorithms.

Distributed implementation approaches are in this context of special relevance due to
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the distributed nature of a cellular radio network and since they provide advantages

in terms of robustness and reliability compared to central implementations. Note that

the network model used in the capacity optimization of cellular radio networks also has

great influence on implementation related issues of automatic capacity optimization for

SONs since it may facilitate or complicate or even inhibit a distributed implementation.

1.3 State of the Art

This section introduces previous works that constitute the technical background of this

thesis. The section discusses the development of cellular radio network optimization

and the step to the change of paradigm in operation and management of cellular radio

networks that lead to SONs and it reviews the literature relevant for this thesis.

Early mobile radio networks were circuit switched networks based on frequency division

multiple access (FDMA) and time division multiple access (TDMA). First works for

the capacity optimization of such networks investigate the allocation of frequencies to

the cells in order to achieve optimum static network configuration [Hal80,Gam86]. The

adaptation of circuit switched networks to changing capacity demands is done using

dynamic channel allocation techniques and channel borrowing techniques that intend

to shift frequencies from cells with low traffic load to cells with high traffic load. A

wide overview of dynamic channel allocation schemes and channel borrowing schemes

for circuit switched cellular mobile radio networks is given in [KN96].

With the emergence of code division multiple access (CDMA) based 3G cellular mobile

radio networks, and with the migration to multiple services with different data rates

and different QoS requirements, the number of parameters that had to be controlled

increased. Optimization complexity increased accordingly, requiring new approaches

and tools to enable and support manual interaction [EGJ+03, NDA06, Gee08]. Fur-

thermore, CDMA based networks have to be actively managed due to the short term

variations of the operating conditions. For this, parameters from the areas of ad-

mission control, power control, load control, neighbor cell list and packet scheduling

have to be adapted such that key performance indicators (KPIs) [LWN02] are held

at certain levels. This adaption was initially carried out manually. In the course of

competition among network operators, however, process automation became a key el-

ement and the manually carried out optimization using KPIs was automated, called

auto-tuning [LWN02]. In the context of this process, automatic tuning of radio resource

management (RRM) [LWN02] parameters using fuzzy logic and reinforcement learning,

for example, was introduced, implementing the automation of a part of the traditional
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tool-based planning and optimization process [LWN02, DAD+05, NAD06, NADN06].

Further approaches for automated optimization were investigated in the MONOTAS

project, where simulation based optimization for 3G and 4th generation (4G) net-

works was considered. The project aimed at dramatically decreasing the optimiza-

tion cycle time of typically several months by using simulations in the optimization

loop [ABB+08]. In the Celtic Gandalf project, techniques for the automation of man-

agement tasks in systems applying several different mobile radio technologies were

investigated [SAD+05].

With the convergence of mobile systems and internet protocol (IP) networks and the

resulting evolution of fully packet-switched 4G systems, first and foremost LTE, and

based on the promising results obtained in previous research on auto-tuning, a shift

of paradigm in operation and management of cellular radio networks took place. The

new paradigm of optimization and management of cellular mobile radio networks envi-

sions SONs, which are networks that widely automate configuration and optimization

of their infrastructure in a self-organizing way, circumventing classical planning and

optimization [PB05, SPI05, BBD+05]. This vision was adopted by industry organi-

zations, such as the next generation mobile networks (NGMN) Alliance, by research

groups, such as FP7 SOCRATES, and by standardization groups, such as the 3rd

Generation Partnership Project (3GPP), for example. Each of them developed their

own concept and vision of SONs, but due to the mutual dependence and cooperation

between industry, research and standardization, the individual concepts and visions

show only minor deviations [Leh07b, vLE+08, 3GP11b]. Much effort has been spent

to establish frameworks containing requirements, assessment criteria and use cases

that are indispensable for definition, development and evaluation of SON functional-

ity [3GP11a,Leh08,ALS+08,S+08a,S+08b,S+08c].

Among the use cases specified by [3GP11a, Leh08, S+08b], the one treating inter-cell

interference coordination (ICIC) is the relevant one for this thesis. ICIC refers to the

coordination of the radio resource allocations of different cells such that ICI can be

controlled and that the network can offer good QoS while providing high network ca-

pacity. Thus, ICIC is inherently a problem of radio resource allocation and good ICIC

increases the network capacity. Currently, scheduling based approaches are usually

applied in order to achieve ICIC. Channel aware scheduling [LZ06] usually schedules

resource blocks with low attenuation and low interference and, thus, achieves ICIC to a

certain extent [SCR05,SV08,FCS07]. More sophisticated methods reduce interference

by applying beamforming or using several BSs to support a single user, thus imple-

menting virtual multiple input multiple output (MIMO) [Nec08, PB09]. All of these

approaches, however, rely on measurements of the instantaneous interference and on es-

timates of the transmission channel. Due to short scheduling intervals and fast channel
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variations, which are in the order of milliseconds, the effort required to distribute infor-

mation on interference and channel conditions is significant and causes much signaling

traffic. Furthermore, obtaining up-to-date and accurate information about interference

and channel conditions is a big challenge, due to the fast changes [Nec08,GKGO07].

Much research has been carried out to overcome the challenge of large signaling traffic

and to reduce the effect of inaccurate and outdated knowledge on channel and interfer-

ence conditions. In [BBP05,AYM06], the signaling effort is reduced by considering the

spatial positions of the users and identifying the interferers with the most significant

impact. Only the resource allocations of these so-called dominant interferers are coor-

dinated, leading to good results and greatly reduced signaling traffic. Also the resource

allocation itself can be structured in order to achieve ICIC as in [FHL+98, LS99], for

example, where resources are allocated in a certain order which is chosen such that the

probability that neighbored cells use the same resources is low if the cells are not fully

loaded and use the available spectrum only partially. Another approach is the shaping

of the transmit power profile either over time or over space such that different slots or

beams, respectively, are affected differently by interference. This way, slots or beams,

respectively, can be assigned according to the amount of interference each user can tol-

erate [TVZ04,VTZZ06,CQ99]. A comparable approach is pursued in [LL06,ZTH+10],

which introduce a super frame that extends over several scheduling periods. For each

super frame, transmit power limits are set which have to be observed by the scheduling

process, such that ICI can be controlled.

1.4 Problem Statement

Despite the existing approaches for ICIC summarized in Section 1.3, it is believed that

further capacity gains can be achieved by self-organizing functionality [3GP11a,Leh08,

S+08b]. Thus, automatic capacity optimization for SONs is a current research topic

of high interest. This section summarizes the research that is required for automatic

capacity optimization for SONs. The specific aspects of the research are as follows:

• Automatic capacity optimization for SONs adapts the network to inhomogeneous

capacity demand distributions, as introduced in Section 1.2. The corresponding

effects develop over timescales of minutes and occur in large areas that may

contain many cells, according to Section 1.1. As a consequence, new modeling

approaches of cellular radio networks are required in order to be able to model

large parts of a network and in order to consider time intervals of several minutes
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or even hours while keeping complexity low. At the same time, these new mod-

eling approaches should consider the QoS requirements of the individual users in

order to be able to provide good QoS to the users.

• The automatic capacity optimization for SONs has to coexist with current state

of the art scheduling, which assigns the resources allocated to a cell to the users

of the cell. Ideally, not only coexistence is desired, but a contribution of the auto-

matic capacity optimization to achieve improved ICIC. For this purpose, a new

concept that coordinates the new automatic capacity optimization approaches

for SONs and the scheduling of resources to the users is required.

• Specific approaches for automatic capacity optimization for SONs are required.

Depending on the capacity optimization goal and on the parameters that are

manipulated to achieve the capacity optimization, several different approaches are

required. It is favorable to consider implementational aspects in the development

of approaches for automatic capacity optimization for SONs such that efficient

algorithms for the implementation of the approaches can be established.

• Implementations of the approaches for automatic capacity optimization for SONs

resulting in optimization algorithms have to be established. In this context, two

different fields can be distinguished. One field concerns algorithms that are suited

for simulation and analysis purposes. These algorithms should allow the simu-

lation and analysis of the automatic capacity optimization approaches for SONs

as well as the state of the art scheduling based approaches in order to be able

to make comparisons. The second field concerns the practical implementation in

real systems. Suited algorithms are preferably of distributed nature. Note that

in order to obtain analysis results that are valid for practical implementation, the

distributed algorithms should obtain solution that are the same or at least very

close to the solutions obtained with the central algorithms.

• Finally, analysis of the different approaches for automatic capacity optimization

for SONs have to be carried out and the new automatic capacity optimization

approaches for SONs have to be compared to the state of the art scheduling based

approaches. A fundamental analysis that generally asses behavior, performance

and stability of the different capacity optimization approaches has to be carried

out using realistic scenarios. Additionally, the investigation of the capacity op-

timization approaches in real-world scenarios is required in order to be able to

assess the performance that can be expected in practice. For this purpose, an

approach for obtaining real-world scenarios based on measurement data has to

be established and the capacity optimization approaches have to be evaluated in

the real-world scenario.
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1.5 Contributions and Overview

This section introduces the solutions developed in this thesis for the problems stated

in Section 1.4. It summarizes the main contributions and gives an overview of the

thesis. The contributions are addressed in the order of appearance in the thesis and

according to the order of presentation of the aspects of Section 1.4. In particular, the

main contributions are as follows:

• Chapter 2 presents a new model for the downlink of cellular radio networks which

focuses on the cells rather than on individual users. It is, thus, called cell-centric

network model and is capable of greatly reducing the modeling complexity, such

that large numbers of cells and long time intervals can be considered efficiently.

At the same time, the model is capable of considering the QoS requirements of

the individual users, which is important to be able to assure good QoS of the

users. The cell-centric network model considers ICI and the dependencies among

the cells as well as the effect of the environment on the signal propagation, such

that the model achieves high accuracy.

• Chapter 2 furthermore introduces a hierarchic concept for the coordination of

capacity optimization approaches and scheduling. The concept enables both

approaches to complement each other, such that ICIC is enhanced. Furthermore,

it provides the possibility to consider state of the art scheduling based approaches

as well as new approaches for automatic capacity optimization for SONs.

• Chapter 3 introduces several approaches for automatic capacity optimization for

SONs by defining different optimization problems that are capable of maximizing

the network capacity in terms of the number of users or the network through-

put. According to Section 1.2, the optimization is achieved by allocating cell

bandwidth or transmit power or cell bandwidth and transmit power jointly.

• Chapter 4 presents different algorithms that solve the optimization problems

proposed for automatic capacity optimization for SONs. Central implementations

suitable for analysis and simulation purposes are presented as well as distributed

implementations that are intended for implementation in practice.

• Chapter 5 analyses and evaluates the approaches for automatic capacity opti-

mization for SONs using simulations. It proposes a simulation approach for

performance evaluation in scenarios with inhomogeneous capacity demand. The

simulation approach is used to generally investigate the behavior and the per-

formance of the approaches for automatic capacity optimization for SONs and
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to compare the results with the state of the art scheduling based approaches.

Furthermore, an approach for deriving measurement based real world scenar-

ios is presented and applied for performance analysis of the proposed capacity

optimization approaches in practical implementation.

Chapter 6 concludes the thesis. It summarizes the content and the achievements of the

thesis and presents an outlook on related further research.
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Chapter 2

The Cell-centric Network Model

2.1 Motivation

Automatic capacity optimization for SONs reacts to effects that occur in large areas

containing many cells and that develop over long time intervals of minutes or even

hours, as discussed in Section 1.1. According to Section 1.4, new low complexity

modeling approaches of cellular radio networks are required in order to be able to

efficiently optimize and simulate large parts of a network over long time intervals. At

the same time, the accuracy of the modeling approach must be high, which means that

influencing factors on the network performance, the dependencies between the cells of

the network and the QoS requirements of the users have to be considered.

This chapter presents a new network model that fulfills above requirements. The focus

of the model is on the cells, rather than on the individual users. As a consequence of

this cell-centric view, a network can be modeled with very low complexity compared

to the usual user-centric modeling. Thus, efficient approaches for automatic capacity

optimization and the simulative verification of such approaches are enabled. The model

describes the relation between the resources transmit power and cell bandwidth on one

side and the performance metrics cell throughput and number of supported users on

the other side. The respective modeling equations can be obtained by two different

approaches, as shown by Figure 2.1. The theoretical approach is based on analytical

derivations. It requires some simplifying assumption and is used in special scenarios and

for the detailed description of the cell-centric network model. The practical approach

uses measurements to obtain the modeling equations. It is generally applicable, such

that it is preferably used for practical application.

In both cases, the model achieves high accuracy since ICI and the relations between

the cells are regarded and since the effect of the environment on the radio propagation

is considered, either by the environment model and the user distribution, as for the

theoretic approach, or by the measurement data, as for the practical approach. Also,

the distribution of the users and the individual QoS requirements of the users are

regarded. The model is, therefore, suited for the application in automatic capacity

optimization for SONs. Furthermore, it allows to develop approaches that can be

efficiently combined with the scheduling of resources to the users in the cells.
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Figure 2.1. Theoretical and practical approach of the cell-centric network model for
obtaining the modeling equations.

The chapter is structured as follows. Section 2.2 introduces a concept that allows

the combination of automatic capacity optimization approaches with the scheduling

of resources to the users in the cells. General considerations concerning the system

and the environment and their modeling are presented in Section 2.3. Section 2.4

derives the cell-centric network model analytically using the theoretical approach. The

practical approach of the model for implementation in practice is presented in Section

2.5 and the main areas of application of the cell-centric network model are introduced

in Section 2.6. Several parts of this chapter have been originally published by the

author in [HK08,HKS08,HKG09b].

2.2 Coordination of Automatic Capacity Optimiza-

tion and Scheduling

Automatic capacity optimization is capable of making resource allocation decisions

considering several cells and their interactions. This way, automatic capacity opti-

mization has influence on ICIC, such that in order to assure the success of automatic

capacity optimization, it has to be coordinated with the scheduling of resources to the

users in the cells. This section presents a hierarchic concept that coordinates automatic

capacity optimization approaches and scheduling.

The hierarchic concept for the coordination of automatic capacity optimization ap-

proaches and scheduling consists of two planes. The upper plane contains the auto-
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matic capacity optimization approaches that consider the whole network and which

react to changes in the environment that require the optimization of the network, such

as rush-hour traffic, for example. The lower plane considers only single cells and con-

tains the cell scheduling. The concept is hierarchic because the approaches of the upper

plane establish limits and requirements concerning the allocation of resources that have

to observed by the scheduling of the lower plane.

Using this hierarchic concept, different effects with different temporal and spatial prop-

erties can be treated separately in the different planes and appropriate approaches can

be developed. Clearly, the automatic capacity optimization approaches of the upper

plane can react to effects such as rush-hour traffic, for example, that develop over time

intervals of minutes or hours and that require a fundamental adjustment of the net-

work. The high complexity arising from the need to consider large areas of a network,

cf. Section 1.1, can be reduced using appropriate approaches and models since the

treated effects develop slowly. In the lower plane, the network is adapted to effects

such as fast fading, which require action in short time intervals in the order of millisec-

onds. Here, the quick variations of the channel are challenging, due to the hierarchic

concept, however, the view of the approaches of the second layer can be limited to a

single cell such that the complexity of the task is limited.

The hierarchic concept furthermore enables the consideration and comparison of state

of the art scheduling based approaches for network capacity optimization and new

automatic capacity optimization approaches for SONs in simulations. This is achieved

by considering coordination of the bandwidth allocations of the cells. The bandwidth

allocations of two cells are in this thesis referred to as being coordinated if the two

cells do not use the same frequencies. ICI can, thus, be avoided between two cells that

coordinate their bandwidth allocations. The coordination of bandwidth allocations,

however, requires the consideration of several cells in the allocation of resources to the

cells, which is only possible with new capacity optimization approaches for SONs. As a

consequence, with the consideration of coordinated bandwidth allocations in connection

with the hierarchic concept, the new capacity optimization approaches for SONs are

considered. Assuming no coordinations in the bandwidth allocations, the network is

adapted exclusively by the action of the schedulers of the cells, such that state of the

art scheduling based approaches are modeled.

2.3 System and Environment

In Section 1.2, different aspects from the system and the environment in which the

system is placed are introduced as the main influencing factors of the capacity of
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cellular radio networks. These factors are also for the cell-centric network model of

this chapter of primary importance. This section discusses the influencing factors of

the capacity of cellular radio networks in more detail and introduces how they are

considered in the cell-centric network model.

Network capacity can be measured in terms of the total network throughput, for ex-

ample. With user index n, Ni the number of users in cell i and Nc the number of

cells in the scenario, the total network throughput Rnw is given by the sum of the user

throughputs R
(i)
u,n of all users of the network according to

Rnw =

Nc
∑

i=1

Ni
∑

n=1

R(i)
u,n. (2.1)

The user throughput depends on the signal quality at the receiver [Sha48]. The signal

quality greatly depends on ICI, which occurs in cellular radio networks since the same

frequencies are used by several cells in order to be able to provide high capacity. The

reuse distance D expresses the degree of frequency reuse. It gives the distance between

two cells that use the same frequencies and decreases if more cells use the same fre-

quencies since then, cells that use the same resources are located closer. Thus, ICI

increases with the decreasing reuse distance [Rap02]. With the assumption that ICI

can be modeled by a Gaussian process, as it is valid in unsynchronized multi-carrier

transmission, according to [ADSK03], the user bit rate R
(i)
u,n of user n of cell i depends

on the user bandwidth B
(i)
u,n and on the Signal to Interference plus Noise Ratio (SINR)

γ
(i)
n at the receiver of user n of cell i and is given by [Sha48]

R(i)
u,n = B(i)

u,n · log2

(

1 + γ(i)
n

)

. (2.2)

In practice, adaptive modulation and coding (AMC) [GC97,GC98], which adapts the

modulation scheme and the coding rate to the SINR at the receiver using a discrete

number of different Modulation and Coding Schemes (MCSs), creates a stepwise con-

tinuous relation between SINR γ
(i)
n and the user bit rate R

(i)
u,n. If the number of different

MCSs is sufficiently large, (2.2) is approached [MNK+07].

The SINR γ
(i)
n at the receiver depends on the transmit power Ptx,i of cell i, the noise

power PN at the receiver, the ICI power P
(i)
I,n received by user n of cell i and the

attenuation a
(ii)
n of the mobile radio channel from the BS of cell i to user n of cell i

according to

γ(i)
n =

Ptx,i

a
(ii)
n

· 1

PN + P
(i)
I,n

. (2.3)

With the attenuation a
(ij)
n from the BS of cell j to user n of cell i and factor β

(ij)
n ∈

{0, . . . , 1}, which specifies the overlap of the bandwidth of user n of cell i with the
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bandwidth of cell j, the ICI power P
(i)
I,n received by user n of cell i is defined by

P
(i)
I,n =

∑

j 6=i

Ptx,i

a
(ij)
n

· β(ij)
n . (2.4)

The attenuation a
(ij)
n is composed of the path loss apl

(

d
(ij)
n

)

, the shadow fading com-

ponent asf and the fast fading component aff . In logarithmic scale, attenuation a
(ij)
n is

given by

a(ij)
n = apl

(

d(ij)
n

)

+ asf + aff . (2.5)

The pathloss apl

(

d
(ij)
n

)

depends on the distance d
(ij)
n between the BS of cell j and the

user n of cell i and is modeled by an exponential pathloss model with a propagation

coefficient α larger than two, as it is implemented in the Hata pathloss model [Hat80,

Rap02], for example. In this thesis, the Urban Macro Scenario model from the 3GPP

Spatial Channel Model (SCM) is used to determine the pathloss apl

(

d
(ij)
n

)

in dB for

a distance d
(ij)
n in meters. With a0 the attenuation in dB for a distance d

(ij)
n of one

meter, the pathloss model of the 3GPP Urban Macro Scenario is given by [3GP09]

apl

(

d(ij)
n

)

= a0 + α · 10 log10

(

d(ij)
n

)

. (2.6)

Shadow fading is a random process that results from environmental effects, such as

shadowing through hills and buildings, for example. The shadow fading attenuation

asf in dB is a realization of the random variable (RV) asf . The probability density

function (pdf) of asf is assumed to be lognormal with zero mean and variance σ2
sf in

dB and is given by [Rap02]

fasf
(asf) =

1

σsf

√
2π

· e−
a2
sf

2σ2
sf . (2.7)

Fast fading accounts for strong amplitude fluctuations resulting from multi-path prop-

agation. It is a random process, too. The fast fading attenuation aff is a realization of

the Rayleigh distributed RV aff with pdf [Mol03]

faff
(aff) =

aff

σ2
ff

· e−
a2
ff

2σ2
ff , σ2

ff =
1

2
. (2.8)

The network layout and the distribution of the users determine the distances d
(ij)
n be-

tween transmitters and receivers and, thus, have significant effect on the path loss
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apl

(

d
(ij)
n

)

. The locations of the BSs and their sector configuration and antenna con-

figuration is assumed to be given, as well as the distribution of the users over the

complete considered area. Furthermore, the cell borders are assumed to be known and

fixed. With these information, the position of the users over the cell area of a cell i

is a RV. With r and ϕ radius and angle relative to a reference point, for example the

position of BS i, the density p
(i)
r,ϕ (r, ϕ) of the users over the cell area of cell i can be

determined for each cell i. In this thesis, it is assumed that p
(i)
r,ϕ (r, ϕ) is given.

In packet switched networks, the scheduler allocates radio resources to the users and

has great effect on the capacity of the cell. Different scheduling strategies can be

pursued, priority can be given to certain users or groups of users or fairness among the

users can be aimed at, for example. Two basic scheduling strategies are Fair Resource

(FR) scheduling and Fair Throughput (FT) scheduling [Fer10]. In FR scheduling, the

scheduler allocates on average the same amount of resources in terms of bandwidth,

for example, to each of the users. Depending on the signal quality at the receiver,

the users achieve different user throughputs, according to (2.2). In FT scheduling, the

scheduler assures that each user achieves in average the same user bit rate. According

to (2.2), this requires that more resources are scheduled to users with low SINR at the

receiver. In any case, the user bandwidth B
(i)
u,n of (2.2) is given by the average sum of

the bandwidth that is allocated to user n of cell i per time unit.

Furthermore, advanced scheduling approaches are capable of exploiting the chan-

nel fluctuations caused by fast fading in order to maximize the cell throughput

[CL01, VTL02, LCS03]. One popular approach is Proportional Fair (PF) schedul-

ing [Kel97, LZ06], for example, which allocates resources to the user which has the

highest ratio of instantaneous SINR to average SINR [LZ06]. Assuming the subcarri-

ers to be independent, the analysis of PF scheduling can be simplified by considering

a single subcarrier and extending the results to all other subcarriers. Further simplifi-

cation of the analysis is possible if the shadow fading process is assumed to vary much

slower than the fast fading process. Since with this assumption, the scheduling strat-

egy can be treated as selecting for each subcarrier the user which has the highest fast

fading channel power gain gff = a2
ff . Using these assumptions, order statistics [Dav81]

can be applied to derive the cumulative distribution function (cdf) of the fast fading

channel power gain g
(i)
pf due to PF scheduling of cell i. Assuming fast fading to be

Rayleigh distributed with pdf of (2.8), the fast fading channel power gain gff follows

an exponential distribution [PP02] and the cdf of fast fading channel power gain due

to PF scheduling yields [Dav81]

F
g

(i)
pf

(

g
(i)
pf

)

=



1 − e
−

g
(i)
pf

2σ2
ff





Ni

. (2.9)
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With the assumption that the slow fading process varies much slower than the fast

fading process, it can furthermore be concluded that PF scheduling is a FR approach,

since it allocates the same amount of resources to all users because the same fast fading

process is assumed for each of the users.

2.4 Theoretic Derivation

This section presents the theoretic derivation of the cell-centric network model. Section

2.4.1 defines the cell-centric equivalents to SINR γ
(i)
n and interference P

(i)
I,n at the receiver

of a single user. A stochastic approach that allows to consider user-specific effects,

such as the user positions, the propagation conditions to the user positions and the

interference conditions at the user positions in a cell-centric model is presented in

Section 2.4.2. Using this stochastic approach, the cell throughput a cell can achieve for

a given cell bandwidth or, vice versa, the bandwidth a cell requires in order to support

all its users with a certain QoS are derived. Sections 2.4.3 and 2.4.4 use these results to

derive characteristic representations of the relation between the resource allocation of

a cell and the cell performance for channel non-adaptive FR scheduling. Sections 2.4.5

and 2.4.6 show how to incorporate different scheduling strategies into the presented

model and Section 2.4.7 extends the cell-centric network model to fractional reuse

system designs. Section 2.4.8 finally discusses inherent inaccuracies that may arise in

the model.

2.4.1 Power Ratio and Average ICI Power

Establishing a model with focus on the cells of a network, rather than on the users,

requires the definition of some basic parameters, which are conventionally linked with

individual users, for whole cells. Furthermore, certain assumptions have to be estab-

lished in order to assure that the minimum QoS requirements of the individual users are

observed in a cell-centric network model. This section provides all necessary definitions

and introduces the required assumptions.

In the cell-centric network model, an equivalent to the SINR γ
(i)
n at the receiver of the

user is required in order to be able to asses the transmit power allocation of the cell with

respect to noise and ICI. For this purpose, the power ratio Γi of cell i is introduced.

The Power ratio Γi expresses the situation of a cell concerning transmit power, ICI

power and noise power and has to be representative for the whole cell considering all
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its users. It is, therefore, defined using the average ICI power P̄I,i of all users of cell i

and is given by

Γi =
Ptx,i

P̄I,i + PN

. (2.10)

The SINR γ
(i)
n at the receiver of a user of (2.3) and the power ratio Γi from (2.10)

are related by a user specific factor ψ
(i)
n , that accounts for the attenuation a

(ii)
n and

the difference between the ICI power P
(i)
I,n at the receiver of the user of (2.4) and the

average ICI power P̄I,i, according to

γ(i)
n = ψ(i)

n · Γi . (2.11)

In order to model ICI without knowing the exact allocation of frequencies to the cells,

the average transmit power Ptx,j of a cell j over the system bandwidth Bsys is considered

in the determination of ICI power. The ICI power a cell i receives then depends on its

cell bandwidth Bi. With this in mind, the relative cell bandwidth βi is defined by

βi =
Bi

Bsys
. (2.12)

According to above considerations, (2.12) specifies the ratio of the transmit power Ptx,j

of an interfering cell j that is received by cell i as ICI over the frequencies cell i uses.

Furthermore, the average channel gain gij is introduced, it is defined as the expected

value of the channel gain from BS j over the cell area of cell i according to

gij =

Si
∫

0

2π
∫

0

p
(i)
r,ϕ (r, ϕ)

aij (r, ϕ)
dϕ dr . (2.13)

With βi and gij from (2.12) and (2.13), respectively, and Si the radius of cell i in terms

of the distance from the BS to the most remote point within the cell area, the average

ICI P̄I,i of all users of cell i is determined by calculating the expected value of the ICI

over the cell area of cell i according to

P̄I,i =
Si
∫

0

2π
∫

0

∑

i6=j

Ptx,j

aij (r,ϕ)
· βi · p(i)

r,ϕ (r, ϕ) dϕ dr

=
∑

i6=j

Ptx,j · βi ·
Si
∫

0

2π
∫

0

p
(i)
r,ϕ(r,ϕ)

aij(r,ϕ)
dϕ dr

=
∑

i6=j

Ptx,j · βi · gij .

(2.14)

Variable P̄I,i of (2.14) is a measure for the strength of ICI considering the whole cell

and, thus, expresses the interference situation of the cell.

In a cell-centric network model, user-specific parameters cannot be directly obtained or

optimized for. As a consequence, an approach for dealing with user-specific parameters
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has to be established. This concerns in particular the treatment of QoS requirements,

which are commonly expressed as user specific parameters. In order to be able to

consider user-specific QoS requirements, the so called Scheduler Assumption is made.

It states that with sufficient resources allocated to a cell, all QoS requirements of all

users can be met by the cell. Thus, the determination of the amount of resources that

are sufficient to fulfill the QoS requirements of the users is an important aspect of the

cell-centric network model. It depends on the QoS requirements of the users, such

that in the cell-centric network model, the number of required resources is determined

depending on the minimum required user bit rate. All QoS definitions in the cell-centric

network model are, therefore, always expressed in terms of minimum user bit rate.

Note that the downlink of a cellular radio system is considered throughout this thesis.

In the uplink, however, the fundamental relations that are represented by the model

do not change since the same users share resources as in the downlink. The difference

between up- and downlink is in the determination of ICI, which comes in the uplink

from the users, rather than from the BSs. Considering this difference together with

the fact that in the uplink, the interferers are moving and adapting (2.4) and (2.14)

accordingly, the cell-centric network model can also be applied to the uplink of cellular

radio networks.

Concerning the denomination of variables throughput this chapter, the cell indices are

used as sub index with any variable that relates to a cell. In variables that relate to

individual users, cell indices will be carried as super index in parentheses. Variables

with tildes denote given targets and variable with primes denote measurements or

values obtained from measurements.

2.4.2 Achieved Cell Throughput and Required Cell Band-

width

In the scope of the cell-centric network model, a cell-centric equivalent of the relation

between link capacity and user bandwidth, as it is used in user-centric approaches and

given by (2.2) is required. This cell-centric equivalent of (2.2), consequently, relates

cell bandwidth and cell throughput. This section presents a stochastic approach to

obtain this relation.

Since the position of the users within the cell area is a RV, according to Section 2.3,

the cell throughput Ri that is achieved by cell i is a RV, too. It depends on the sum
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of the bit rates R
(i)
u,n achieved by the users of cell i and is given by

Ri =

Ni
∑

n=1

R(i)
u,n . (2.15)

The same way, the cell bandwidth Bi that is required by a cell i to support its users

with a certain QoS is a RV. It depends on the sum of the bandwidths B
(i)
u,n required

by the users and yields

Bi =

Ni
∑

n=1

B(i)
u,n . (2.16)

In order to find a relation between cell bandwidth Bi and cell throughput Ri, the

stochastic properties of the RVs are required.

The first step in obtaining the stochastic properties of cell bandwidth Bi and cell

throughput Ri is the derivation of the pdfs f
R

(i)
u,n

(

R
(i)
u,n

)

and f
B

(i)
u,n

(

B
(i)
u,n

)

of achieved

user bit rate R
(i)
u,n and required user bandwidth B

(i)
u,n, respectively. For this purpose,

the relation between user bit rate R
(i)
u,n, receiver SINR γ

(i)
n and user bandwidth B

(i)
u,n,

as introduced in Section 2.3, has to be considered. Let R
(i)
u,n = g

(

B
(i)
u,n, γ

(i)
n

)

denote

this relation and assume that its inverse γ
(i)
n = g−1

(

B
(i)
u,n, R

(i)
u,n

)

exists, which is true

if the relation is monotonic and which can be assumed to hold for such a relation.

Furthermore, it is assumed that the pdf f
γ
(i)
n

(

γ
(i)
n

)

of the SINR γ
(i)
n is known. The pdf

f
R

(i)
u,n

(

R
(i)
u,n

)

of the user bit rate R
(i)
u,n achievable by user n of cell i with bandwidth B

(i)
u,n

and the pdf f
B

(i)
u,n

(

B
(i)
u,n

)

of the bandwidth required by user n of cell i to achieve a bit

rate of R
(i)
u,n, respectively, can then be obtained using RV transformation [Hän01,PP02]

and yield

f
R

(i)
u,n

(

R(i)
u,n

)

= f
γ
(i)
n

(

g−1
(

B(i)
u,n, R

(i)
u,n

))

·

∣

∣

∣

∣

∣

∣

∂g−1
(

B
(i)
u,n, R

(i)
u,n

)

∂R
(i)
u,n

∣

∣

∣

∣

∣

∣

(2.17)

f
B

(i)
u,n

(

B(i)
u,n

)

= f
γ
(i)
n

(

g−1
(

B(i)
u,n, R

(i)
u,n

))

·

∣

∣

∣

∣

∣

∣

∂g−1
(

B
(i)
u,n, R

(i)
u,n

)

∂B
(i)
u,n

∣

∣

∣

∣

∣

∣

. (2.18)

Setting g
(

B
(i)
u,n, γ

(i)
n

)

equal to the Shannon bound of (2.2), (2.17) and (2.18) results in

f
R

(i)
u,n

(

R(i)
u,n

)

= f
γ
(i)
n



2

R
(i)
u,n

B
(i)
u,n − 1



 · 2
R

(i)
u,n

B
(i)
u,n ln (2)

1

B
(i)
u,n

(2.19)

f
B

(i)
u,n

(

B(i)
u,n

)

= f
γ
(i)
n



2

R
(i)
u,n

B
(i)
u,n − 1



 · 2
R

(i)
u,n

B
(i)
u,n ln (2)

R
(i)
u,n

B
(i)2
u,n

. (2.20)
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Note that (2.19) and (2.20) are applicable for systems that dispose of a large number

of MCSs, such as LTE, for example [3GP11b,MNK+07]. In other systems, the relation

of (2.2) might not be approached, depending on the applied MCSs, such that other

relations than (2.2) may have to be applied to (2.17) and (2.18), cf. Section 2.3.

Now, the pdfs of cell throughput Ri and cell bandwidth Bi are derived. According

to (2.15) and (2.16), both are sums of other RVs. Assuming all RVs R
(i)
u,n and B

(i)
u,n

to be independent and identical distributed [PP02], which can be assumed for channel

non-adaptive FR and FT scheduling, the Central Limit Theorem (CLT) [PP02] can

be applied. As a consequence, both, achieved cell throughput Ri and required cell

bandwidth Bi, are Normal distributed with pdfs

fRi
(Ri) ∼ N

(

µRi
, σ2

Ri

)

, (2.21)

fBi
(Bi) ∼ N

(

µBi
, σ2

Bi

)

. (2.22)

Mean and variance of (2.21) and (2.22) depend on mean and variance of (2.17) and

(2.18), respectively, and are given by

µ{R,B}i
=

Ni
∑

n=1

µn
R

(i)
u,n,B

(i)
u,n

o , σ2
{R,B}i

=
Ni
∑

n=1

σ2
n

R
(i)
u,n,B

(i)
u,n

o . (2.23)

In order to avoid the calculation of µn
R

(i)
u,n,B

(i)
u,n

o and σ2
n

R
(i)
u,n,B

(i)
u,n

o for each user separately,

it is assumed that the density p
(i)
r,ϕ (r, ϕ) holds for each user of cell i, i.e. that p

(i)
r,ϕ (r, ϕ)

gives for each user the probability to appear at location (r, ϕ). This may not hold

in practice, because different users preferably sojourn in different areas, but from the

point of view of resource use, however, it is a valid assumption. As a consequence

of this assumption, pdfs derived for a single user of a cell hold in general for each

user of the cell. Different QoS requirements of the users can then be considered by

calculating mean µ
B

(i)
u |R(i)

u =1
and variance σ2

B
(i)
u |R(i)

u =1
of the bandwidth required by a

user to transmit one bit/s and by multiplying them with the QoS target R̃
(i)
u,n of user

n of cell i, such that (2.23) yields

µBi
=

Ni
∑

n=1

R̃(i)
u,n · µ

B
(i)
u |R(i)

u =1
σ2

Bi
=

Ni
∑

n=1

R̃(i)2

u,n · σ2

B
(i)
u |R(i)

u =1
. (2.24)

The same way, different amounts of bandwidth for different users can be realized by

calculating mean µ
R

(i)
u |B(i)

u =1
and variance σ2

R
(i)
u |B(i)

u =1
of the user bit rate achievable for

one Hertz of user bandwidth and by multiplying them with the bandwidth target B̃
(i)
u,n

of user n of cell i. Thus, (2.23) can be rewritten to

µRi
=

Ni
∑

n=1

B̃(i)
u,n · µ

R
(i)
u |B(i)

u =1
σ2

Ri
=

Ni
∑

n=1

B̃(i)2

u,n · σ2

R
(i)
u |B(i)

u =1
. (2.25)
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Since with this method, the calculation of µn
R

(i)
u,n,B

(i)
u,n

o and σ2
n

R
(i)
u,n,B

(i)
u,n

o for each user sep-

arately is avoided, also the pdfs for user specific variables, such as SINR γ
(i)
n , achieved

user bit rate R
(i)
u,n and required user bandwidth B

(i)
u,n, for example, are no longer re-

quired for each user separately. Instead, only the pdfs for calculating mean µ
B

(i)
u |R(i)

u =1

and variance σ2

B
(i)
u |R(i)

u =1
of the bandwidth required by a user to transmit one bit/s as

well as mean µ
R

(i)
u |B(i)

u =1
and variance σ2

R
(i)
u |B(i)

u =1
of the user bit rate achieved for one

Hertz of user bandwidth are required. As a consequence, pdfs that are originally user

specific, such as f
γ
(i)
n

(

γ
(i)
n

)

, f
R

(i)
u,n

(

R
(i)
u,n

)

and f
B

(i)
u,n

(

B
(i)
u,n

)

, for example, are now user

independent and are, therefore, used without user index in the following.

With these considerations, the pdf of the SINR, which is required in above derivations

and was up to now assumed to be known, can be derived conveniently. An important

prerequisite for this derivation is a closed form representation of the distribution of

users over the cell area, which is available only in special cases. The uniform user

distribution is such a special case. It is widely used in the analysis of cellular systems

and also made here. Furthermore, the cells are assumed to be of circular shape, such

that the user position pdf yields

p(i)
r,ϕ (r, ϕ) =

r

πS2
i

, 0 < r < Si , 0 < ϕ < 2π. (2.26)

Assuming unidirectional antennas, such that the pathloss depends on the distance

between BS and user equipment (UE) exclusively, the angular dependence in p
(i)
r,ϕ (r, ϕ)

is not required and integration over ϕ leads to p
(i)
r (r) = 2r

S2
i

, 0 < r < Si. Using this pdf

and considering the height hi of BS i and a pathloss model in a RV transformation,

the pdf f
a
(ii)
pl

(

a
(ii)
pl

)

of the pathloss is obtained. Slow fading can be considered to be

independent of the pathloss, such that according to (2.5), the pdf fa(ii)

(

a(ii)
)

of the

total signal attenuation in logarithmic scale is obtained by a convolution of the pdf

f
a
(ii)
pl

(

a
(ii)
pl

)

of the pathloss in logarithmic scale and the pdf fasf

(

a(i)
)

of the shadow

fading in logarithmic scale and yields

fa(ii)

(

a(ii)
)

=

a
(ii)
pl,max
∫

a
(ii)
pl,min

f
a
(ii)
pl

(

a
(ii)
pl

)

· fasf

(

a(ii) − a
(ii)
pl

)

da
(ii)
pl . (2.27)

Note that fast fading should not be considered in the total signal attenuation since it

is covered by the Scheduler Assumption of Section 2.4.1 and actually treated by the

algorithms of the lower plane of the hierarchic concept for the coordination of automatic

capacity optimization and scheduling of Section 2.2.

The major challenge in the derivation of the pdf of the SINR consists in obtaining the

pdf of the ICI power. In fact, the analytical derivation could not be carried out if the
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pdf of the ICI was determined analytically exact. In order to be able to continue the

analytical approach, ICI power is, therefore, assumed to be equal to P̄I,i of (2.14) and

independent of the position within the cell area. This assumption is clearly a source

of inaccuracy, but it is reasonable since P̄I,i is the expected value of the ICI. With this

assumption, the SINR γ(i) is given by γ(i) = g
(

a(ii)
)

=
Ptx,i

10
a(ii)
10

· 1
P̄I,i+PN

and the pdf of

the SINR yields

fγ(i)

(

γ(i)
)

= fa(ii)

(

g−1
(

γ(i)
))

·
∣

∣

∣

∣

∂g−1(γ(i))
∂γ(i)

∣

∣

∣

∣

= fa(ii)

(

10 · log10

(

Ptx,i

PN+P̄I,i

1
γ(i)

))

·
∣

∣

∣
− 10

γ(i)·ln(10)

∣

∣

∣

= fa(ii)

(

10 · log10

(

Γi

γ(i)

))

· 10
γ(i)·ln(10)

,

(2.28)

with g−1
(

γ(i)
)

the inverse of g
(

a(ii)
)

. Defining x = 2
R

(i)
u

B
(i)
u − 1 and using (2.28), the

pdf f
R

(i)
u

(

R
(i)
u

)

of the achieved user bit rate and the pdf f
B

(i)
u

(

B
(i)
u

)

of the bandwidth

required by a user can be determined in close analogy to the derivations at the beginning

of this section, yielding

f
R

(i)
u

(

R
(i)
u

)

= f
(i)
γ (x) · 2

R
(i)
u

B
(i)
u ln (2) 1

B
(i)
u

= 5c2
S2

i (x) ln(10)
· e

c22
4c3

+c2(10·log10(
Γi
x )−a0) · 2

R
(i)
u

B
(i)
u ln (2) 1

B
(i)
u

(

erf

(

c2+2c3

“

10·log10(
Γi
x )−a

(i)
pl,min

”

2
√

c3

)

−erf

(

c2+2c3

“

10·log10(
Γi
x )−a

(i)
pl,max

”

2
√

c3

))

(2.29)

and

f
B

(i)
u

(

B
(i)
u

)

= f
(i)
γ (x) · 2

R
(i)
u

B
(i)
u ln (2) R

(i)
u

B
(i)2
u

= 5c2
S2

i (x) ln(10)
· e

c22
4c3

+c2(10·log10(
Γi
x )−a0) · 2

R
(i)
u

B
(i)
u ln (2) R

(i)
u

B
(i)2
u

(

erf

(

c2+2c3

“

10·log10(
Γi
x )−a

(i)
pl,min

”

2
√

c3

)

−erf

(

c2+2c3

“

10·log10(
Γi
x )−a

(i)
pl,max

”

2
√

c3

))

,

(2.30)

respectively. Full formulae of the derivation of f
R

(i)
u

(

R
(i)
u

)

and f
B

(i)
u

(

B
(i)
u

)

can be

found in Appendix A.1.

Mean and variance of the achieved user bit rate R
(i)
u and the bandwidth B

(i)
u required

by a user are functions of the power ratio Γi, as can be seen from (2.29) and (2.30),

respectively. Consequently, also mean µRi
and variance σ2

Ri
of achieved cell throughput
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Ri as well as mean µBi
and variance σ2

Bi
of the required cell bandwidth Bi are func-

tions of the power ratio Γi. It is important to keep this in mind, since for reasons of

readability, the dependence on the power ratio is not explicitly stated in the formulae

throughput this thesis.

For the verification of the modeling approach and for the assessment of the effect of

assuming location independent ICI, the analytically obtained pdfs of user bit rate R
(i)
u

and achieved cell throughput Ri are compared with empirically obtained pdfs. For

the determination of the empirical pdfs, Monte Carlo (MC) simulations in a scenario

with seven cells in a regular hexagonal grid, cf. Figure 2.2, are applied. The six outer

Figure 2.2. Scenario for modeling approach verification.

cells j serve as sources of interference. For the center cell i , i 6= j, user positions

are created randomly according to user position pdf p
(i)
r,ϕ (r, ϕ). The assumption of

position independent ICI power over the cell area, as it was made for the derivation

of (2.28), is not required with the MC simulations such that the user bit rates at

the user positions are calculated using the correct ICI power resulting at each user

position. The empirical pdfs are determined from the achieved user bit rates that were

calculated with the correct ICI power such that the error of the modeling approach

resulting from the assumption of position independent ICI power can be assessed by

comparing analytical and empirical pdfs. The parameters for the verification can be

taken from Table 2.1.

Figure 2.3(a) compares the analytical pdf to the empirical pdf of the achieved user

bit rate R
(i)
u of a single user of cell i. Figure 2.3(b) compares the analytical model

of the achieved cell throughput Ri for Ni = 5 simultaneously active users to the
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Table 2.1. Parameters for model approach verification.

Parameter Value
Number of cells 7
Cell radius S 250 m
Reuse distance D 750 m
Height of the BSs 32 m
Height of the UEs 1.5 m

User position probability p
(i)
r,ϕ (r, ϕ) uniform

Carrier frequency 1.9 GHz
Propagation model 3GPP Urban Macro
Shadow fading variance σ2

sh 8 dB
Interferer transmit Power Ptx,j 33 dBm
Noise PSD -167 dBm

Hz

empirically obtained pdf of the achieved cell throughput. The figures show that for

uniform user distribution, the presented analytical approach with the assumption of

location independent ICI leads to only small errors compared to the true pdfs. It can

also be seen that even for a small number of users, the assumption of a Gaussian pdf

resulting from the CLT leads to a good approximation of the achieved cell throughput.
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Figure 2.3. Empirical and analytical pdfs of achieved user bit rate R
(i)
u and achieved

cell throughput Ri.

Note that the assumption of location independent ICI within a cell is general not

required with the cell-centric network model, but necessary for the specific analytical

derivation of the pdf of the SINR of (2.28), as it is exemplarily described in this Section.
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2.4.3 PBR-Characteristic

According to (2.29) and (2.30), a relation between user bit rate R
(i)
u , user bandwidth

B
(i)
u and power ratio Γi exists. As a consequence, also a relation between cell throughput

Ri, cell bandwidth Bi and power ratio Γi exists. The relations are characteristic to

a cell since according to the derivations of Section 2.4.2, cell specific factors such as

user distribution, environment and interference situation are regarded by the relation.

This section exploits the mentioned relation between Ri, Bi and Γi to establish a

model called Power-Bandwidth-Rate (PBR)-Characteristic, which links the resource

allocations of a cell in terms of transmit power or power ratio Γi, respectively, and

cell bandwidth Bi with the performance of a cell in terms of cell throughput Ri. The

number Ni of users in the cell is assumed to be constant.

Since the PBR-Characteristic relates the resource allocation of a cell with the achieved

cell throughput, the derivation is based on the achieved cell throughput Ri as defined

by (2.21). The achieved cell throughput is a RV, according to Section 2.4.2, such

that different cell throughputs are achieved with different probabilities. This gives the

opportunity to define outage probability and outage capacity at cell level consistently

with their definition at link level as it is done in information theory [TV05]. Defining

outage probability at cell level as the probability that outage occurs among the users

of a cell i, i.e. that at least one user of cell i cannot meet its QoS requirements, outage

probability is expressed by the probability that the achieved cell throughput is lower

than a given minimum throughput R0,i which is required to fulfill the QoS requirements

of all users of cell i. According to this definition and with the error function

erf (x) =
1√
2π

∫ x

0

e−
y2

2 dy (2.31)

and the Standard Normal cdf Φ (x) = 1
2

+ erf (x) [PP02], the outage probability pout,i

of cell i at cell level is given by

pout,i = P (Ri < R0,i)

= Φ
(

R0,i−µRi

σR,i

)

.
(2.32)

Outage capacity at cell level is, consequently, defined as the cell throughput Ri that can

be supplied by cell i if a certain target cell outage probability p̃out has to be observed.

Thus, with Φ−1 (·) the inverse of the Standard Normal cdf, outage capacity at cell level

is defined by
R̃i = {R |P (Ri < R) = p̃out}

= Φ−1 (p̃out) σRi
+ µRi

.
(2.33)

The definitions of outage probability at cell-level and outage capacity at cell-level are

illustrated in Figure 2.4.
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Figure 2.4. Illustration of the definition of outage probability and outage capacity at
cell level.

For the further derivation of the PBR-Characteristic, the definition of mean and vari-

ance of the achieved user bit rate of (2.25) are used in (2.33) which yields

R̃i = Φ−1 (p̃out)

√

Ni
∑

n=1

σ2

R
(i)
u,n

+
Ni
∑

n=1

µ
R

(i)
u,n

= Φ−1 (p̃out)

√

Ni
∑

n=1

B̃
(i)2
u,n · σ2

R
(i)
u |B(i)

u =1
+

Ni
∑

n=1

B̃
(i)
u,n · µ

R
(i)
u |B(i)

u =1

= Φ−1 (p̃out)

√

Ni
∑

n=1

B̃
(i)2
u,n · σ

R
(i)
u |B(i)

u =1
+ µ

R
(i)
u |B(i)

u =1

Ni
∑

n=1

B̃
(i)
u,n .

(2.34)

Assuming FR scheduling, each user is in average allocated the same bandwidth Bi

Ni
and

(2.34) can be further simplified to

R̃i = Φ−1 (p̃out)
√

Ni · B2
i

N2
i

· σ
R

(i)
u |B(i)

u =1
+Ni · Bi

Ni
· µ

R
(i)
u |B(i)

u =1

= Φ−1 (p̃out) · Bi√
Ni

· σ
R

(i)
u |B(i)

u =1
+Bi · µR

(i)
u |B(i)

u =1
.

(2.35)

Since µ
R

(i)
u |B(i)

u =1
and σ

R
(i)
u |B(i)

u =1
are functions of Γi, according to Section 2.4.2, (2.35)

expresses the characteristic relation of transmit power in terms of power ratio Γi,

cell bandwidth Bi and cell throughput in terms of outage capacity R̃i at cell level

for a given number of users Ni. Thus, (2.35) is the PBR-Characteristic. Figure 2.5

shows the PBR-Characteristic resulting from (2.35) and based on the derivations of

Section 2.4.2 for Ni = 5 users and for the parameters of Table 2.1. The figure relates

all resource allocations in terms of transmit power or power ratio Γi, respectively,

and cell bandwidth Bi with performance values in terms of cell throughput or cell
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outage capacity R̃i, respectively. It can be used, for example, to determine all resource

allocations that enable the cell to achieve a certain cell throughput.
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Figure 2.5. Cell throughput in terms of outage capacity R̃i at cell level in Mbit/s as
a function of power ratio Γi and cell bandwidth Bi for Ni = 5 users, uniform user
distribution and FR scheduling.

2.4.4 PBN-Characteristic

The PBR-Characteristic of Section 2.4.3 is valid in situations where the number of

users is fixed and the average user bit rate depends on the resource allocation of the

cell. If a fixed average user bit rate is demanded, however, the number of users that can

be supported by the cell depends on the resource allocation of the cell. This relation

cannot be modeled by the PBR-Characteristic, such that a different characteristic

relation, which relates the resource allocation of a cell in terms of transmit power or

power ratio Γi, respectively, and cell bandwidth Bi with the number of users that can

be supported by the cell, is needed. This relation, which is called Power-Bandwidth-

Number-of-Users (PBN)-Characteristic, is derived in this section. In contrast to the

previous section, the number Ni of users is now variable and the average user bit rate

R̄
(i)
u is constant.

For the derivation of the PBN-Characteristic, the average user bit rate R̄
(i)
u is defined

by

R̄(i)
u =

R̃i

Ni

. (2.36)
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Resolving (2.36) for R̃i and substituting it in (2.35) yields

Ni · R̄(i)
u = Φ−1 (p̃out) · Bi√

Ni
· σ

R
(i)
u |B(i)

u =1
+Bi · µR

(i)
u |B(i)

u =1

N
3
2
i · R̄(i)

u = Φ−1 (p̃out) · Bi · σR
(i)
u |B(i)

u =1
+
√
Ni · Bi · µR

(i)
u |B(i)

u =1
.

(2.37)

Setting M =
√
Ni, (2.37) can be solved for Ni using Cardano’s method for solving

cubic equations [BSMM08] which yields

Ni = (u+ v)2 ,

u = 3

√

−q +
√

q2 + p3 , v = 3

√

−q −
√

q2 + p3 ,

p = −
Bi·µ

R
(i)
u |B

(i)
u =1

3R̄
(i)
u

, q = −
Φ−1(p̃out)·Bi·σ

R
(i)
u |B

(i)
u =1

2R̄
(i)
u

.

(2.38)

Equation (2.38) gives the relation between the resource allocation of the cell in terms of

cell bandwidth and transmit power or power ratio Γi, respectively, and the performance

of the cell in terms of number of users that can be supported with average user bit rate

R̄
(i)
u . Thus, (2.38) is the PBN-Characteristic. Figure 2.6 shows the PBN-Characteristic

resulting from (2.38) and based on the derivations of Section 2.4.2 for an average user

bit rate R̄
(i)
u of 100 kbit/s and for the parameters of Table 2.1. The figure relates all

resource allocations in terms of transmit power or power ratio Γi, respectively, and cell

bandwidth Bi with performance values in terms of the number of users that can be

supported by the cell. It can be used to determine resource allocations that are suited

to support a certain number of users with a fixed average user bit rate, for example.
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Figure 2.6. Number Ni of users that can be supported by the cell as a function of power
ratio Γi and cell bandwidth Bi for average user bit rate R̄

(i)
u of 100 kbit/s, uniform user

distribution and FR scheduling.
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2.4.5 Adaptive Fair Resource Scheduling

As addressed in Section 2.3, advanced scheduling strategies for wireless networks are

able to maximize the cell throughput while considering fairness constraints and are,

thus, attractive for mobile radio networks [VTL02,LCS03]. This section shows how to

extend the previous derivations such that advanced scheduling strategies can be con-

sidered in the cell-centric network model. PF scheduling [Kel97,LZ06] will be treated

exemplarily in this section, which belongs to the group of FR scheduling strategies,

according to Section 2.3.

PF scheduling leads to a power gain gpf , according to Section 2.3. This scheduling

power gain scales the SINR multiplicatively. In order to consider scheduling in the

derivations of Section 2.4.2, the pdf of the SINR γ
(i)
pf = γ(i) · g(i)

pf after PF scheduling is

required. For this purpose, the cdf of γ
(i)
pf is derived yielding

F
γ
(i)
pf

(

γ
(i)
pf

)

= P
(

γ(i) · g(i)
pf < γ

(i)
pf

)

= P

(

g
(i)
pf <

γ
(i)
pf

γ(i)

)

=
∞
∫

0

γ
(i)
pf

γ(i)
∫

0

f
γ(i),g

(i)
pf

(

γ(i), g
(i)
pf

)

dg
(i)
pf dγ

(i) .

(2.39)

In (2.39), the joint pdf f
γ(i),g

(i)
pf

(

γ(i), g
(i)
pf

)

of SINR and scheduling power gain can

be separated into two independent pdfs since fast fading can be considered to be

independent of pathloss, slow fading and user distribution, which are the RVs that

influence the SINR γ. Thus, (2.39) can be rewritten as

F
γ
(i)
pf

(

γ
(i)
pf

)

=
∞
∫

0

fγ(i)

(

γ(i)
)

γ
(i)
pf

γ(i)
∫

0

f
g

(i)
pf

(

g
(i)
pf

)

dg
(i)
pf dγ

(i)

=
∞
∫

0

fγ(i)

(

γ(i)
)

F
g

(i)
pf

(

γ
(i)
pf

γ(i)

)

dγ(i) .

(2.40)

The pdf f
γ
(i)
pf

(

γ
(i)
pf

)

of the SINR after PF scheduling is given by the derivative of (2.40),

such that with the cdf F
g

(i)
pf

(

g
(i)
pf

)

of the PF power gain gpf as given by (2.9), the pdf
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of the SINR after PF scheduling is given by

f
γ
(i)
pf

(

γ
(i)
pf

)

=
∂F

γ
(i)
pf

“

γ
(i)
pf

”

∂γ
(i)
pf

=
∞
∫

0

fγ(i)

(

γ(i)
)

∂F
g
(i)
pf

 

γ
(i)
pf

γ(i)

!

∂γ
(i)
pf

dγ(i)

=
∞
∫

0

fγ(i)

(

γ(i)
)

Ni

2σ2γ(i) · e
−

γ
(i)
pf

2σ2γ(i)

(

1 − e
−

γ
(i)
pf

2σ2γ(i)

)Ni−1

dγ(i) .

(2.41)

Replacing in the derivations of Section 2.4.2 the pdf of the SINR γ(i) as given by (2.28),

for example, by (2.41) extends the cell-centric network model to consider PF scheduling

in the derivation of the pdf f
R

(i)
u

(

R
(i)
u

)

of achieved user bit rate and in the derivation

of the pdf f
B

(i)
u

(

B
(i)
u

)

of required user bandwidth. The further steps in the derivation

of the cell-centric network model concerning the derivation of the pdfs of achieved cell

throughput Ri and required cell bandwidth Bi are as described in Section 2.4.2.

One aspect in this context, however, requires further discussion. In Section 2.4.2, the

assumption of independent users was made, which is valid in the case of independent

scheduling. For PF scheduling, however, this cannot be assumed since the users are

dependent due to the comparison of their fast fading channel gains, cf. Section 2.3.

Therefore, the assumption of independent users has to be considered a simplification

in the case of PF scheduling.

In order to verify the approach for considering PF scheduling in the cell-centric network

model and in order to investigate the effect of the simplifying assumption concerning the

independence of the users, the approach of Section 2.4.2 with the scenario from Figure

2.2 and the parameters from Table 2.1 is applied. The analytical pdfs of achieved user

bit rate R
(i)
u and achieved cell throughput Ri are compared to the respective empirically

obtained pdfs in Figures 2.7(a) and 2.7(b). The figures show that the achieved user

bit rate is adequately modeled. Concerning the achieved cell throughput, it can be

seen that the analytical model is not exact but a good approximation of the true pdf.

Comparing Figure 2.7(b) with the achieved cell throughput for channel non-adaptive

FR scheduling of Figure 2.3(b) shows that the fit of the analytical curve is less accurate

for PF scheduling than for channel non-adaptive FR scheduling as in Section 2.4.2,

which is due to the simplifying assumption of independent users.

Since PF scheduling belongs to the group of FR scheduling strategies, (2.35) and (2.38)

are also valid for PF scheduling to determine PBR- and PBN-Characteristic, respec-

tively. PBR- and PBN-Characteristic for PF scheduling are shown in Figure 2.8(a) and
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Figure 2.7. Empirical and analytical pdfs of achieved user bit rate R
(i)
u and achieved

cell throughput Ri for PF scheduling.

Figure 2.8(b) for Ni = 5 users and average user bit rate R̄u of 100 kbit/s, respectively,

and for the parameters of Table 2.1. They have the same meaning as for channel non-

adaptive FR scheduling and are read the same way. However, due to the scheduling

strategy, which exploits the channel variations to maximize the cell throughput, higher

performance is achieved compared to channel non-adaptive FR scheduling, cf. Figure

2.5 and 2.6.
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(a) Cell throughput.
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(b) Number of users.

Figure 2.8. Cell throughput in terms of outage capacity at cell level R̃i in Mbit/s and
the number Ni of users that can be supported by the cell, both as a function of power
ratio Γi and cell bandwidth Bi and for uniform user distribution and PF scheduling.
The cell throughput is shown for Ni = 5 users, the number of users is shown for an
average user bit rate R̄u of 100 kbit/s.
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2.4.6 Fair Throughput Scheduling

In systems applying FR scheduling, the bit rate a user achieves depends on the user

position, according to Section 2.4.2. Some services, however, require a constant bit

rate in order to work properly. FT scheduling is a scheduling strategy that is capable

of achieving this [Fer10]. It allocates resources to the users such that fairness among

the users of a cell with respect to the user bit rate is achieved. This section presents

the proper approach in order to consider FT scheduling strategies in the cell-centric

network model.

Assuming FT scheduling, the average user bit rate R̄
(i)
u is achieved by each user of a cell.

Depending on the user position, however, different user bandwidths are required. The

amount of resources that are allocated to a user is the result of the scheduling process.

As a consequence, the definitions of PBR- and PBN-Characteristic in connection with

FT scheduling is based on the required cell bandwidth as defined in (2.22).

Before continuing with the derivation of PBR- and PBN-Characteristic for FT schedul-

ing, the pdf of the bandwidth B
(i)
u required by a user and the pdf of the required cell

bandwidth Bi, as they were derived in Section 2.4.3, have to be verified. For this

verification, the approach of Section 2.4.2 with the scenario from Figure 2.2 and the

parameters from Table 2.1 is applied. The analytical pdfs of required user bandwidth

B
(i)
u and required cell bandwidth Bi are compared to empirically obtained pdfs, as

shown by Figure 2.9(a) and 2.9(b). The figures show that the cell-centric network
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Figure 2.9. Empirical and analytical pdfs of the required user bandwidth B
(i)
u and the

required cell bandwidth Bi for FT scheduling.
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model is applicable for FT scheduling. Note that no channel adaptive scheduling strat-

egy is assumed, such that the assumption of independent users is valid.

As in section 2.4.3, outage probability and outage bandwidth can be defined based on

the required cell bandwidth Bi. Using the definition of outage probability pout,i at cell-

level from Section 2.4.3 as the probability that outage occurs among the users of cell i,

i.e. that at least one user of cell i cannot meet its QoS requirements, outage probability

pout,i at cell-level in connection with FT scheduling is defined as the probability that

more cell bandwidth is required in order to fulfill the minimum QoS requirements of

the users of cell i than a certain minimum bandwidth B0,i. Thus, outage probability

pout,i of cell i at cell-level in connection with FT scheduling is defined by

pout,i = P (Bi > B0,i)

≃ 1 − Φ
(

B0,i−µBi

σBi

)

(2.42)

Outage bandwidth at cell-level in connection with FT scheduling is, consequently, the

bandwidth that is required if a certain target cell outage probability p̃out has to be

observed, it is defined by

B̃i = {B |P (Bi > B) = p̃out}
≃ Φ−1 (1 − p̃out) σBi

+ µBi
.

(2.43)

The definitions of outage probability at cell-level and outage bandwidth at cell-level

for FT scheduling are illustrated in Figure 2.10.

Figure 2.10. Illustration of the definition of outage probability and outage capacity for
FT scheduling at cell level.
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Using in (2.43) the definition of mean and variance of the bandwidth required by a

user of (2.24) yields

B̃i = Φ−1 (1 − p̃out)

√

Ni
∑

n=1

σ2

B
(i)
u,n

+
Ni
∑

n=1

µ
B

(i)
u,n

= Φ−1 (1 − p̃out)

√

Ni
∑

n=1

R̃
(i)2
u,n · σ2

B
(i)
u |R(i)

u =1
+

Ni
∑

n=1

R̃
(i)
u,n · µ

B
(i)
u |R(i)

u =1

= Φ−1 (1 − p̃out)

√

Ni
∑

n=1

R̃
(i)2
u,n · σ

B
(i)
u |R(i)

u =1
+ µ

B
(i)
u |R(i)

u =1

Ni
∑

n=1

R̃
(i)
u,n .

(2.44)

Note that (2.44) looks similar to (2.34), but since FT scheduling is considered, the

user bit rates targets R̃
(i)
u,n are now given in place of the user bandwidth targets B̃

(i)
u,n.

Assuming fairness among the users with respect to the achieved user bit rate, the bit

rate of each user is equal to bit rate target R̃
(i)
u and (2.44) can be further simplified to

B̃i = Φ−1 (1 − p̃out) ·
√

Ni · R̃(i)2
u · σ

R
(i)
u |B(i)

u =1
+Ni · R̃(i)

u · µ
R

(i)
u |B(i)

u =1

= Φ−1 (1 − p̃out) ·
√
Ni · R̃(i)

u · σ
R

(i)
u |B(i)

u =1
+Ni · R̃(i)

u · µ
R

(i)
u |B(i)

u =1
.

(2.45)

Resolving (2.45) for the user bit rate target R̃u yields

R̃(i)
u =

B̃i

Φ−1 (1 − p̃out) ·
√
Ni · σR

(i)
u |B(i)

u =1
+Ni · µR

(i)
u |B(i)

u =1

, (2.46)

such that (2.46) relates the resource allocation in terms of transmit power or power ratio

Γi, respectively and the cell bandwidth Bi with the user bit rate target R̃
(i)
u that can

be achieved by each user. It is, thus, the PBR-Characteristic for FT scheduling. Note

that the PBR-Characteristic for FT scheduling differs from the PBR-Characteristic for

FR scheduling, since with FT scheduling, the PBR-Characteristic gives the user bit

rate that can be achieved by each user, while with FR scheduling, the cell throughput

that can be achieved is given.

In order to obtain the PBN-Characteristic for FT scheduling, (2.45) is resolved for Ni

by setting M =
√
Ni yielding

Ni =

(

−p

2
+
√

p2

4
− q

)2

,

p =
Φ−1(1−p̃out)·σ

R
(i)
u |B

(i)
u =1

µ
R

(i)
u |B

(i)
u =1

, q = − B̃i

R̃
(i)
u ·µ

R
(i)
u |B

(i)
u =1

.

(2.47)

The PBN-Characteristic for FT scheduling of (2.47) does not differ qualitatively from

the PBN-Characteristic for FR scheduling. In both cases, the number of users that

can be supported by the cell under the conditions of the allocated resources is given.
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Using (2.46) and (2.47), PBR- and PBN-Characteristic for FT scheduling are plotted

in Figure 2.11(a) and Figure 2.11(b) for Ni = 5 users and user bit rate R̃u of 100 kbit/s,

respectively, and for the parameters of Table 2.1. The PBR-Characteristic relates the

resource allocation in terms of transmit power or power ration Γi, respectively, and

the cell bandwidth Bi with the achievable user bit rate target R̃
(i)
u for a given number

of users, the PBN-Characteristic has the same meaning as the PBN-Characteristics

from previous sections and is read the same way. Note, however, the difference in the

achieved performance, compared to FR scheduling, which is due to the fact that users

with low receive signal quality are allocated more bandwidth than users with high

receive signal quality in order to achieve fairness in bit rate, which results in a lower

overall cell performance.
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(a) User bit rate.
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(b) Number of users.

Figure 2.11. Achievable user bit rate target R̃
(i)
u in Mbit/s and the number Ni of

users that can be supported by the cell, both as a function of power ratio Γi and cell
bandwidth Bi for uniform user distribution and FT scheduling. The achievable user
bit rate target is shown for Ni = 5 users, the number of users is shown for a user bit
rate R̃u of 100 kbit/s .

2.4.7 Fractional Frequency Reuse

Cellular systems are attractive for terrestrial radio communication since they are able

to provide high capacity due to the reuse of frequencies. At the same time, however, ICI

increases with decreasing reuse distance, cf. Section 2.3. Thus, the increase of capacity

by decreasing the reuse distance leads to increasing ICI in cellular radio networks.

Fractional frequency reuse [KN96] has been developed in order to mitigate this effect.

This section discusses the application of the cell-centric network model to systems using

fractional frequency reuse designs and presents the required extensions of the model.
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Fractional frequency reuse counteracts ICI at the cell borders by dividing each cell

into several areas. Higher frequency reuse distances are used in areas that are closer

to the cell borders while lower frequency reuse distances are applied in the cell center

[Hal83,KN96, XW10]. Thus, the overall ICI is lowered. The application of the cell-

centric network model to systems using fractional frequency reuse designs is achieved

by treating each area of a cell as a separate cell. Throughout this section, a fractional

frequency reuse design that uses two areas per cell, inner and outer area, is considered,

but the approach is generally valid and can easily be adapted to designs using arbitrary

numbers of areas per cell.

For the application of the cell-centric network model to fractional frequency reuse

systems, the relative size of the inner area of cell i is termed ρin,i. The relative size of

the outer area of cell i is, consequently, given by 1 − ρin,i. The relative sizes of inner

and outer area are applied to the cdf of the SINR of a single user to divide the users

between inner and outer area, according to the idea of fractional frequency reuse to

reduce ICI for users that suffer from high ICI. This allows the definition of a SINR

threshold

γ
(i)
th =

{

γ
∣

∣P
(

γ(i) < γ
)

= 1 − ρin,i

}

(2.48)

which determines if a user belongs to inner or outer area. With this threshold, the pdf

of the SINR of the inner area can be determined as a conditional pdf [PP02] from the

pdf of the SINR of the whole cell according to

fγ(i,in)

(

γ(i,in)
)

= fγ(i)

(

γ(i)
∣

∣

∣
γ(i) > γ

(i)
th

)

=
f

γ(i)(γ(i))
ρin,i

, γ(i) > γ
(i)
th .

(2.49)

The same way, the pdf of the SINR of the outer area can be determined as a conditional

pdf from the pdf of the SINR of the whole cell by

fγ(i,out)

(

γ(i,out)
)

= fγ(i)

(

γ(i)
∣

∣

∣
γ(i) ≤ γ

(i)
th

)

=
f

γ(i)(γ(i))
1−ρin,i

, γ(i) ≤ γ
(i)
th,i .

(2.50)

The derivations from Section 2.4.2 can now be continued with the pdfs of (2.49) and

(2.50), respectively, instead of the pdf fγ(i)

(

γ(i)
)

of the SINR of the whole cell. Thus,

inner and outer area of the cell can be treated as two individual cells in the cell-centric

network model and PBR- and PBN-Characteristics can be determined for both areas

separately as described in the previous sections. Note that the power ratios Γi,in and

Γi,out of inner and outer area of cell i, respectively, may have different values, since

different frequency reuse factors, different environmental conditions and different user

distributions in general hold for inner and outer area.
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Above presentation has been chosen because it directly relates to the idea of fractional

frequency reuse to improve signal quality in areas that are exposed to high ICI. Alter-

natively, and more conveniently, the relative sizes of inner and outer area can be applied

directly to the cdfs of achieved user bit rate R
(i)
u and required user bandwidth B

(i)
u .

Following the approach of above, the user bit rate threshold R
(i)
u,th and user bandwidth

threshold B
(i)
u,th to determine if a user belongs to inner or outer area yield

R
(i)
u,th =

{

R
∣

∣

∣
P
(

R
(i)
u < R

)

= 1 − ρin,i

}

B
(i)
u,th =

{

B
∣

∣

∣
P
(

B
(i)
u < B

)

= ρin,i

} (2.51)

and the respective pdfs of the achieved user bit rate of inner and outer area are given

by

f
R

(i,in)
u

(

R
(i,in)
u

)

=
f
R

(i)
u

“

R
(i)
u

”

ρin,i
, R

(i)
u > R

(i)
u,th

f
R

(i,out)
u

(

R
(i,out)
u

)

=
f
R

(i)
u

“

R
(i)
u

”

1−ρin,i
, R

(i)
u ≤ R

(i)
u,th ,

(2.52)

the pdfs of the bandwidth required by a user for inner and outer area yield

f
B

(i,in)
u

(

B
(i,in)
u

)

=
f
B

(i)
u

“

B
(i)
u

”

ρin,i
, B

(i)
u ≤ B

(i)
u,th

f
B

(i,out)
u

(

B
(i,out)
u

)

=
f
B

(i)
u

“

B
(i)
u

”

1−ρin,i
, B

(i)
u > B

(i)
u,th .

(2.53)

With (2.52) and (2.53), the calculations to obtain the pdfs of achieved user bit rate

and required user bandwidth do not have to be carried out for inner and outer area

individually, as they would have to if the threshold for dividing the users between inner

and outer area of (2.48) was applied to the pdf of the SINR, but only once for the whole

cell.

2.4.8 Sources of Inaccuracies

The cell-centric network model is a complex model that combines several factors which

influence the relation between resource allocation and cell performance. It reduces the

number of variables and enables efficient treatment of a cellular network compared

to user-centric models. However, the cell-level focus with the abstraction from indi-

vidual users requires some far-reaching assumptions. This section recalls the leading

assumptions and discusses if and how the assumptions may cause inaccuracies.

Section 2.4.2 makes the assumption in the derivation of the pdf of the SINR γ
(i)
n that

ICI is independent of the position within a cell. This assumption is necessary in order
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to be able to continue the analytical derivation of the model but it is also simplifying

and introduces inaccuracy. The inaccuracy introduced by this assumption depends on

the distance of the considered cell to the source of interference. For the evaluation

of the introduced inaccuracy, the scenario from Figure 2.2 with the parameters from

Table 2.2 is applied. The average ICI power P̄I,i is assumed to be independent of the

Table 2.2. Parameters for the investigation of the error introduced by the assumption
of position independent ICI power.

Parameter Value
Number of cells 7
Number of users Ni 5
Height of the BSs 32 m
Height of the UEs 1.5 m

User position probability p
(i)
r,ϕ (r, ϕ) uniform

Carrier frequency 1.9 GHz
Propagation model 3GPP Urban Macro
Shadow fading variance σ2

sh 8 dB
Transmit Power Ptx,j 33 dBm
Noise PSD -167 dBm

Hz

Scheduling strategy FT

User bit rate target R̃
(i)
u 100 kbit/s

Cell outage probability pcell 0.05

position and equal to the true value of the ICI power at the center of a cell. With

B
(emp)
i the bandwidth that is required by the center cell obtained empirically using the

MC approach of Section 2.4.2 and with B
(ana)
i the bandwidth that is required by the

center cell obtained analytically using (2.45), the relative error eBi
of the required cell

bandwidth introduced by the assumption of position independent ICI power can be

determined according to

eBi
=
B

(ana)
i

B
(emp)
i

− 1 . (2.54)

Figure 2.12 shows the relative error eBi
as a function of reuse distance D for different

relations r between the reuse distance D and cell radius S, both as illustrated in Figure

2.2, defined by

r =

(

D√
3 · S

)2

. (2.55)

The Figure shows that using the analytic approach with the assumption of position

independent ICI power, the required cell bandwidth is under estimated. The reason is

that the average ICI power P̄I,i is assumed to be equal to the true ICI power at the cell

center, independent of the position. Since in the cell center, ICI is weaker than at the

cell border, the required cell bandwidth is under estimated. Furthermore, it can be seen
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Figure 2.12. Relative error eBi
of the bandwidth required by a cell due to the assump-

tion of position independent ICI power as a function of reuse distance D.

from Figure 2.12 that if the distance between the interfering cells and the considered

cell is large compared to the size of the cell, the introduced error is small. In practice,

however, interferers are more likely to be located closely, since high system capacity

requirements demand low reuse distances D, such that the assumption of position

independent ICI power may lead to significant errors. Note that with FT scheduling,

the users at the cell borders require more bandwidth than users in the cell center. At

the same time, the assumption of position independent ICI power is most inaccurate for

the users at the cell border. As a consequence, the error introduced by the assumption

of position independent ICI power has more impact with FT scheduling than with FR

scheduling, such that this analysis can be considered a worst case analysis.

Note, however, that the mostly analytical derivations of the previous sections are in-

tended to introduce the cell-centric network model and to describe the intentions and

the functioning of the model. For practical implementation, an approach based on

measurements, which is presented in Section 2.5, is recommended. In this practical

approach, ICI is contained in the measurements, such that the true ICI is considered.

The assumption of position independent ICI is, thus, not required with the practical

approach, such that the discussed inaccuracies are not relevant in practice.

The second central assumption is the independence of the individual users. In the

previous sections, it has become clear that this property in principle exists. Depending

on the scheduling strategy, however, the property may be lost. Especially channel

adaptive scheduling approaches can be expected to establish some degree of dependence

between the users of a cell. In these cases, the assumption of independent users has to be

considered a simplification which potentially introduces inaccuracies to the cell-centric

network model. In Section 2.4.5, it could be shown that for the case of PF scheduling
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and uniform user distribution, the inaccuracies are of minor effect. This, however,

cannot be generalized. Instead, the effect of this assumption has to be investigated

separately for each scheduling strategy that destroys the property of independence

among the users. This also holds for the approach for practical implementation of the

model, as it will be presented in Section 2.5. Section 2.4.5 shows with Figures 2.7(a)

and 2.7(b) how the effect of a scheduling strategy can be assessed, for example.

2.5 Implementation Aspects

Section 2.4 introduces the cell-centric network model using the theoretical approach.

This approach is used since it enables a full description and easy understanding of

the model. On the other hand, however, it requires an analytical description of the

user distribution and establishes assumptions that impose barriers for practical imple-

mentation. This section presents approaches that focus specifically on the practical

implementation of the cell-centric network model and do not require an analytical de-

scription of the user distribution. In particular, Section 2.5.1 presents an approach

for the determination of the achieved cell throughput and the required cell bandwidth

based on measurements. Section 2.5.2 discusses the determination of the average ICI

power based on measurements.

2.5.1 Measurement Based Determination of Achieved Cell

Throughput and Required Cell Bandwidth

The theoretic derivation of the cell-centric network model from Section 2.4 is based on

an analytical description of the distribution of the users over the cell area. In practice,

however, the true distribution will be hardly known and an analytical description is in

general not possible. This section presets an alternative approach for the determination

of achieved cell throughput and required cell bandwidth, that is not based on an an

analytical description of the user distribution and is, therefore, applicable in practice.

Recalling the derivations from Section 2.4.2, it becomes clear that the distribution of

the users over the cell area in terms of position pdf p
(i)
r,ϕ (r, ϕ) is required to obtain mean

and variance of the achieved user bit rate R
(i)
u and the required user bandwidth B

(i)
u ,

respectively, which are required to determine the achieved cell throughput Ri and the

required cell bandwidth Bi, respectively, cf. (2.21), (2.22) and (2.23). An approach to

become independent of the analytical user position pdf p
(i)
r,ϕ (r, ϕ), is the approximation
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of the mean values and variances of achieved user bit rate and required user bandwidth

from SINR measurements taken by the users of the cell.

For this purpose, a set S
(i)
u =

{

γ
(i)′

k

}

of K SINR measurements γ
(i)′

k of the users of

cell i is collected at cell i. Since the SINR values have to be related to the transmit

power of the cell and the overall interference situation, the value Γ
(i)′

0,k of the power

ratio at the time of measurement is determined by the BS of cell i and stored with the

measurements. Using (2.2) and considering Γ
(i)′

0,k and the current value Γi of the power

ratio, the set can be transformed into a set R
(i)
u =

{

R
(i)′

u,k

}

of achieved user throughput

values and a set B
(i)
u =

{

B
(i)′

u,k

}

of required user bandwidth values that are valid for the

current interference situation according to

R
(i)′

u,k = 1 · log2

(

1 +
γ

(i)′

k

Γ
(i)′

0,k

· Γi

)

, B
(i)′

u,k =
1

log2

(

1 +
γ
(i)′

k

Γ
(i)′

0,k

· Γi

) . (2.56)

With sufficient measurements in set S
(i)
u , which implies K ≫ Ni, the distribution of

the users over the cell area is well approximated by the set of measurements, and mean

and variance of the achieved user bit rate R
(i)
u and the bandwidth B

(i)
u required by

a user can be estimated based on the set of measurements. Since one Hertz of user

bandwidth is considered in the determination of R
(i)
u and one bit/s is considered in the

determination of B
(i)
u , according to (2.56), estimates of mean µ

B
(i)
u |R(i)

u =1
and variance

σ2

B
(i)
u |R(i)

u =1
of the user bandwidth required to achieve a user bit rate of one bit per

second as well as mean µ
R

(i)
u |B(i)

u =1
and variance σ2

R
(i)
u |B(i)

u =1
of the user bit rate achieved

for one hertz of user bandwidth, as they are used in (2.24) and (2.25), can be obtained

by [KK98,PP02]

µ̂n
R

(i)
u ,B

(i)
u

o = 1
K

K
∑

k=1
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(i)
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u =1,B
(i)
u |R(i)

u =1
o

. (2.57)

The estimates from (2.57) can be used to determine the pdf of the achieved cell through-

put Ri and the pdf of the required cell bandwidth Bi using (2.21) and (2.22) together

with (2.24) and (2.25).

With (2.57), the proposed measurement based approach provides a way to use the cell-

centric network model without an analytical description of the distribution of users over

the cell area, which is an important prerequisite for the practical implementation and
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application of the cell-centric network model. Note that furthermore, this approach

regards the exact strength of the interference at each location of measurement in the

cell, since the approach is based on SINR measurements at the locations of the mobile

terminals. The assumption of location independent ICI is, thus, not required with

the measurement based approach. Instead, the interference situation is considered in

detail. The same way, the effect of the environment of the users on signal propagation is

inherently considered in detail. Thus, the accuracy of the measurement based approach

depends exclusively on the number K of measurements that are considered.

Note that the measurements should not be measurements of the instantaneous SINR

but average values, such that fast fading is not considered. The reason is that fast fading

is considered by the Scheduler Assumption of Section 2.4.1 and treated in the lower

plane of the hierarchic concept for the coordination of automatic capacity optimization

and scheduling of Section 2.2. Furthermore, the scheduling gain is considered this way

if the effective average SINR, which includes the scheduling gain, is determined based

on the user bandwidth and the achieved user bit rate.

2.5.2 Measurement Based Determination of the Average ICI

Power

In the theoretic derivation of the cell-centric network model from Section 2.4, the aver-

age ICI power P̄I,i is determined based on an analytical description of the distribution

of the users over the cell area, cf. (2.14). Again, the true distribution will be hardly

known in practice and an analytical description is in general not possible. This Section

presents approaches for the estimation of the average ICI power that do not require an

analytical description of the user distribution.

The easiest approach for the estimation of the average ICI power is to take measure-

ments from a single location in the cell, preferably from the location of the BS. In this

approach, changes in the interference are reflected by changes in the average ICI power,

while at the same time, the measurements are obtainable with little effort concerning

hardware and signaling. Thus, the approach can be implemented easily and at low cost.

The drawback of this approach, however, is its inaccuracy, since the distribution of the

interference over the cell area is not regarded. As a consequence, detected changes in

the average ICI power can be of no relevance if no users are affected, while significant

changes in the interference perceived by the users may not be detected by observing the

average ICI power if it is measured at a single location. The same considerations apply

concerning the height at which the measurements are taken. Measurements taken at
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the height of the antenna, for example, enable to monitor ICI from several BSs. On

the other hand, many users might not receive ICI from that many BSs, such that the

collection of the measurements from a location close to the ground might be more

adequate.

In order to alleviate this problem, the average ICI power P̄I,i can be estimated as

the average of interference measurements collected from the users. If the number of

interference measurements is sufficiently large, the distribution of the users and the

interference over the cell area is approximated and the average of the interference mea-

surements approaches (2.14). Thus, the approach assures that the overall interference

situation is regarded by the average ICI power. Depending on the mobile radio tech-

nology, suited measurement could be standardized, such that no additional signaling is

needed. Otherwise, additional signaling effort would be caused since the interference

measurements have to be transmitted from the UEs to the BSs. Even if the SINR

measurements, which are collected for the approach of Section 2.5.1, are used to obtain

interference measurements, additional signaling is involved since additional informa-

tion, such as the total signal attenuation, for example, is required to determine the

interference strength from SINR measurements.

Furthermore, mixtures between the two proposed approaches are possible. For exam-

ple, interference measurements could be collected from several fixed locations in the

cell. Depending on the number of measurement locations and their positions with

respect to the user distribution, a trade-off between signaling effort and accuracy is

made.

2.6 Areas of Application

This section introduces the application of the model and the use of PBR- and PBN-

Characteristics in different areas of operation and management of cellular networks.

The strength of the cell-centric network model is the abstraction from individual users

since this greatly reduces the modeling effort. A consequence of this abstraction,

however, is that individual users cannot be regarded by the model. The decision which

user will not be served in case that the resources allocated to a cell are insufficient, for

example, is not possible with the cell-centric network model. Note, however, that at

the same time, user distribution, environment and interference situation are considered.

The model, thus, provides a low complexity view of the network without neglecting

the different QoS-requirements of the users, which makes the model and PBR- and
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PBN-Characteristics attractive for all tasks that focus on the cells and their resource

allocations.

In this context, an important application of the cell-centric network model and PBR-

and PBN- Characteristics is the evaluation of the state of the cells of the network from

the point of view of cell performance. This can be done by using (2.32) or (2.42),

respectively, to determine the cell outage probability pout,i of a cell i for the current

resource allocation in terms of cell bandwidth Bi and cell transmit power or power

ratio Γi and for the current operating conditions. Doing this with every cell allows to

determine the operating state of the network and allows to locate areas where action

has to be taken and to decide which optimization action has to be taken. Section 3.1

relies on this approach in order to establish self-organizing behavior of the proposed

automatic capacity optimization approaches for SONs.

Additionally, not only the current resource allocation of a cell can be used in the cell-

centric network model in order to determine the state of the cell. Also possible future

resource allocations can be verified with respect to the performance of a cell in terms of

cell throughput Ri or the number Ni of users that can be supported by the cell they are

expected to lead to, or with respect to the outage probability pout,i they are expected to

lead to, for example. This way, PBR- and PBN-Characteristic can be used for finding

resource allocations for the cells that lead to good performance of the network. PBR-

and PBN-Characteristics are, therefore, also relevant in the optimization of cellular

radio networks. Chapter 3 applies the cell-centric network model and PBR- and PBN-

Characteristics for capacity optimization in cellular radio networks.
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Chapter 3

Automatic Capacity Optimization

3.1 Introduction and Self-organizing Approach

Communication networks are set in a dynamically evolving environment where new

users appear and existing users vanish. The behavior of the users concerning type of

the requested services and usage of the services vary over time and lead to further

dynamics. This is especially true for cellular mobile radio networks, in which due to

the mobility of the UEs, significant variations in the distributions of the users amplify

the addressed effects.

For reliable and efficient operation of cellular mobile radio networks and for the maxi-

mization of the network capacity, dynamic approaches, which allocate at all times and

all places only as many resources to each of the cells of the network as currently re-

quired, are therefore needed. This section proposes approaches for automatic capacity

optimization of cellular radio networks that aim for this goal. The approaches allocate

resources to the cells such that the capacity of the network is maximized. The focus

on the allocation of resources to the cells, instead of the users, allows to consider large

areas of a network, or even complete networks, with relatively low complexity. The

proposed approaches are, therefore, applicable in the upper plane of the hierarchic con-

cept for coordination of automatic capacity optimization and scheduling of Section 2.2.

The resources that are considered in the automatic capacity optimization approach of

this chapter are cell bandwidth and cell transmit power, according to Section 1.2.

The cell-centric network model of Chapter 2 provides a model of a cellular radio network

regarding the key factors that determine how many resources a cell needs, which makes

the cell-centric network model well suited for automatic capacity optimization. As a

consequence, the automatic capacity optimization approaches of this chapter use PBR-

and PBN-Characteristics to define mathematical optimization problems that optimize

cellular radio networks by means of adjusting the resource allocation of the cells. Such

optimization problems can be solved automatically, and using the cell-centric network

model for identifying the need for optimization action, as proposed in Section 2.6, an

autonomous and self-organizing approach is established.

Furthermore, the coordination of the bandwidth allocations of different cells is an im-

portant aspect in order to control ICI and a key aspect for the implementation of
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automatic capacity optimization approaches for SONs, according to Section 2.2. Co-

ordination was neglected in the discussion of the cell-centric network model but has

to be considered in the allocation of resources. Section 3.2 discusses this aspect and

extends the current modeling to consider the coordination of the bandwidth allocations

of the cells. Section 3.3 introduces the capacity optimization goals aimed for in this

chapter and Section 3.4 discusses the resource allocation techniques considered for the

automatic capacity optimization approaches with regard to establishing optimization

problems for resource allocation. Section 3.5 investigates how the different resource al-

location techniques achieve the concentration of capacity at locations of high capacity

demand. Section 3.6 finally combines optimization goals and resource allocation tech-

niques to obtain specific optimization problems for automatic capacity optimization.

Parts of this work have been originally published by the author in [HKG09a,HKG09b].

Note that the cell bandwidth values that result from the automatic capacity optimiza-

tion discussed in this chapter refer to the bandwidth that should be allocated to each

of the cells in order to optimize the network capacity. In multi-carrier transmission

schemes, however, bandwidth can be allocated only in discrete parts of one or several

subcarriers. In this thesis, the allocation of specific frequencies or subcarriers to the

cells is not considered and has to be carried out separately. Different approaches for the

allocation of subcarriers can be found in the literature, such as in [AvK+01,HKG08]

and references therein, for example.

Throughout this chapter, the transmit power allocation is usually represented by the

power ratios Γi, since it simplifies expressions and links directly to the equations of

the cell-centric network model, which are defined in dependence of the power ratio Γi.

Furthermore, the power ratio Γi depends on the cell bandwidths and on the transmit

powers, such that Γi is usually denoted as a function of either of them or both.

3.2 Coordination of Bandwidth Allocations

In the allocation of resources to the cells, the aspect of coordination of the bandwidth

allocations of different cells is of great importance. With the hierarchic concept of

Section 2.2, furthermore, the coordination of the bandwidth allocations determines if

state of the art scheduling based approaches or new automatic capacity optimization

approaches for SONs are considered. This section discusses the coordination of the

bandwidth allocations and extends the modeling approach of this thesis to consider

the coordination of bandwidth allocations.
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In this thesis, the bandwidth allocation of two cells is referred to as being coordinated if

the cells use orthogonal sets of frequencies. Using coordinated bandwidth allocations,

ICI can be controlled. Regarding ICI and the interference relation between different

cells, cellular radio networks can be described by a so-called interference coupling gain

matrices G that is defined using the average channel gain gij of (2.13) by

[G]i,j = gij . (3.1)

Thus, matrix G express how strong the influence of interference is between the cells.

Applying a threshold Tcoup to matrix G, it can be used to identify cells that potentially

interfere strongly, such that their bandwidth allocations need to be coordinated in order

to mitigate ICI. Using G and threshold Tcoup, the binary coordination matrix C, that

identifies cell pairs that have to coordinate their bandwidth allocations, is defined

according to

[C]i,j =

{

1 if [G]i,j > Tcoup

0 else
. (3.2)

The effective interference coupling that exists between the cells considering the coor-

dination of the bandwidth allocations is determined from coupling gain matrix G and

coordination matrix C. With 1Nc×Nc a matrix of dimension Nc×Nc with ones in every

element, the effective interference coupling is given by matrix

[E]i,j = [G]i,j ·
(

1Nc×Nc − [C]i,j

)

. (3.3)

For the approaches of this chapter, it is convenient to use the Neighborhood Group

(NG) concept. In this concept, two cells i and j are defined to be neighbors if their

interference coupling gain is above threshold Tcoup, such that they have to coordinate

their bandwidth allocations in order to mitigate ICI. With this definition, coordination

matrix C expresses the neighbor relations of all cells of a network. The NG is defined

as a set {i1, i2, . . .} of cells that are all mutual neighbors such that set G of all NGs is

defined by

G =
{

{i1, i2, . . .}
∣

∣

∣
[C]il,im = 1

}

, l,m = 1, 2, . . . . (3.4)

In the special case of a regular hexagonal scenario [ZK01], an alternate definition of

the set G of all NGs is possible. With reuse distance D and with d (il, im) the distance

between the BSs of cell il and cell im, the set G of all NGs is defined by

G = {{i1, i2, . . .} |d (il, im) < D} , l,m = 1, 2, . . . . (3.5)

In any case, set G can be expressed by the binary NG matrix N, in which each row

represents one NG and each column represents a cell of the network. The elements of

the matrix are equal to one if the cell represented by the column is contained in the
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NG represented by the row and zero otherwise. With Nng the number of NGs, N has

dimensions Nng ×Nc.

Note that the NG concept is also valid considering cells with more than one sector.

In this case, each sector has to be considered separately and the NGs are formed by

sectors with mutual neighbor relations.

3.3 Optimization Goals

The optimization of cellular radio networks can have different goals, as stated in Section

1.2. This section introduces specific capacity optimization goals since the focus of thesis

is on capacity optimization, according to Section 1.2. In particular, Section 3.3.1

presents the optimization goal of the network throughput, Section 3.3.2 presents the

optimization goal of the total number of users that can be supported by the network.

3.3.1 Network Throughput

With the cell throughput as it is given by (2.35) and as it can be determined by

multiplying (2.46) with the number Ni of users of the cell, respectively, and with

b = (B1, B2, . . . , BNc)
T the vector of the cell bandwidths Bi and Γ = (Γ1,Γ2, . . . ,ΓNc)

T

the vector of the power ratios Γi, the total network throughput is given by the sum of

the cell throughputs of all cells according to

Rnw (b,Γ) =

Nc
∑

i=1

R̃i (b,Γ) . (3.6)

According to the cell-centric network model and to the definitions of the PBR-

Characteristic, the cell throughput is a function of the cell bandwidths Bi and the

transmit powers Ptx,i. The network throughput is, thus, a function of the cell band-

widths and the transmit powers, too.

Using (3.6) as objective function without further constraints in a maximization problem

favors cells that can exploit resources more efficiently than other cells. While this leads

to high network throughput, low service quality may result in some cells. In order to

assure minimum QoS requirements, a constraint concerning the average user bit rate

R̄
(i)
u of (2.36) achieved by the cells according to

R̄(i)
u (b,Γ) ≥ Ru,min (3.7)

has to be introduced, which is also a function of the cell bandwidths and the transmit

powers.
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3.3.2 Total Number of Users

The capacity of a communication network can also be expressed in terms of the number

of users that can be supported with a certain QoS. At first thought, the maximization

of the number of users may seem irrelevant for the operation of a cellular mobile radio

network since in practical operation of a cellular mobile radio network, the number

of users in each cell is given externally by the distribution of the users. This may be

true in conditions of low to medium load, in situations with high load, however, this

optimization goal becomes relevant in order to avoid or limit the amount of users that

cannot be supported.

The number of users that can be supported by a cell can be determined from the cell-

centric network model using (2.38) and (2.47), respectively. The total number of users

that can be supported by the whole network is given by the sum of the numbers of

users of the cells according to

Nnw (b,Γ) =
Nc
∑

i

Ni (b,Γ) . (3.8)

Also the total number of users that can be supported by the network is a function of

the cell bandwidths and the transmit powers.

Using (3.8) without further constraints in a maximization problem leads to solutions

that, again, favor cells which are able to support its users more efficiently than others.

This causes a mismatch between the distribution of the users and the configuration of

the network. In order to obtain a resource allocation tailored to the user distribution,

a constraint that forces the solution to observe the user distribution is required. With

ρrel,i the amount of users that request service from cell i relative to the total number

of users, the constraint is given by

Ni (b,Γ) = ρrel,i ·Nnw (b,Γ) . (3.9)

Note that no constraint concerning the observation of minimum QoS requirements is

formulated explicitly. Instead, the minimum QoS requirement is considered implicitly

by setting the average user bit rate R̄
(i)
u in (2.38) and the user bit rate target R̃

(i)
u in

(2.47) equal to the minimum QoS requirement Ru,min.

3.4 Resource Allocation Techniques

This section discusses the allocation of the resources cell bandwidth and transmit

power for capacity optimization of cellular radio networks. Each of the resources has
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its specific effects in capacity optimization and its individual feasibility requirements.

Section 3.4.1 treats the allocation of cell bandwidth and all related aspects. The

allocation of transmit power to the cells with its related aspects is treated in Section

3.4.2. Section 3.4.3 discusses different approaches for a joint allocation of transmit

power and cell bandwidth.

3.4.1 Cell Bandwidth Allocation

This section treats the allocation of bandwidth to the cells. It is assumed that the

transmit powers of the cells are given and fixed. The capacity optimization of the

network is achieved exclusively by adjusting the cell bandwidths.

Cell bandwidth allocation is well suited for capacity optimization of a cellular radio

network since more cell bandwidth enables a cell to provide more capacity. With co-

ordinated bandwidth allocations, any bandwidth allocation to a cell has effect on the

bandwidth allocations of nearby cells, due to the application of the frequency reuse

concept, which requires to observe the reuse distance. Feasibility requirements in the

allocation of cell bandwidth consider this and require that the cell bandwidth alloca-

tions are achievable with the total available system bandwidth at any place and any

time. In this context, the coupling gain threshold Tcoup and the frequency reuse distance

D, respectively, play an important role since they significantly affect the flexibility in

cell bandwidth allocation.

In order to be able to reliably express and observe feasibility requirements of the cell

bandwidth allocations, the NG concept of Section 3.2 is used. Within each NG, no

frequency can be reused, according to the definition of NGs of Section 3.2. Thus, the

sum of the allocated cell bandwidths in each NG must not exceed the total system

bandwidth Bsys such that every cell bandwidth allocation has to observe the constraint

∑

i∈{i1,i2,...}
Bi ≤ Bsys ∀ {i1, i2, . . .} ∈ G . (3.10)

Using the NG matrix N of Section 3.2, the constraint of (3.10) can be conveniently

expressed by

Nb ≤ Bsys . (3.11)

Since ICI increases with the cell bandwidth, according to (2.14), the power ratio de-

creases for larger cell bandwidths. As a consequence, there exists a relation between

power ratio Γi and cell bandwidth Bi. The plot of this relation will in the following be
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called a trace. Plotting traces of the cell bandwidth allocation leads to the light grey

lines as shown in Figure 3.1. The traces relate the power ratio values and the corre-

sponding cell bandwidth allocations. Figure 3.1 shows the traces of the cell bandwidth

allocation for the scenario from Figure 2.2 with the parameters of Table 2.1 and for

transmit powers Ptx,i of the center cell between 27 dBm and 39 dBm in steps of 3 dBm.

It can be seen that the larger the transmit power of cell i, the more on the right is the

trace. Consequently, the larger the transmit power of interfering cells, expressed by

the average ICI power P̄I,i of cell i, the more on the left would be a trace. Note that

the traces are plotted over a PBR-Characteristic and a PBN-Characteristic. The cell

throughput values of the PBR-Characteristic and the values of number of users from

the PBN-Characteristic that are below the traces are the performance achieved by the

cell for the respective cell bandwidth allocation.
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Figure 3.1. Relation between cell bandwidth Bi and the corresponding power ratio
Γi plotted as light grey lines over a PBR-Characteristic and a PBN-Characteristic
assuming PF scheduling. The different curves are valid for different cell transmit power
strengths.

It is interesting to point out that the traces of Figure 3.1 fully illustrate the behavior

of the cell bandwidth allocation. In particular the bandwidth allocations of other cells

do not influence the traces since ICI strength is independent of the bandwidth of the

interfering cells, according to (2.14).

3.4.2 Transmit Power Allocation

Also the transmit power can be used to adjust the capacity of a cell since according

to (2.2), the receiver SINR γ
(i)
n influences the capacity of a radio link. This section

focuses on the capacity optimization of a cellular radio network by the allocation of
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transmit power to the cells. Two different approaches are proposed. One directly

allocates transmit power to the cells. The second approach first allocates power ratio

values, which are subsequently used to determine the corresponding transmit powers

of the cells. The cell bandwidth allocation is assumed to be given and fixed.

The separate consideration of transmit power by itself, however, is not meaningful in

the allocation of transmit power. Instead, ICI has to be taken into account and the

relation of transmit power to interference power has to be regarded. In the cell-centric

network model, the power ratio Γi is an adequate figure of merit for this purpose.

It takes at cell-level the meaning of the receiver SINR γ
(i)
n concerning a single user.

Thus, the cell transmit power allocation requires a constraint concerning the minimum

acceptable power ratio Γmin,i for each cell. Furthermore, the transmit power has to be

limited to the maximum transmit power Pmax. With Γmin = (Γmin,1,Γmin,2, . . . ,ΓNc)
T

the vector of the minimum power ratios Γmin,i and with p = (Ptx,1, Ptx,2, . . . , Ptx,Nc)
T

the vector of transmit power Ptx,i and using the definition of the power ratio of (2.10),

the constraints required for transmit power allocation are given by

Γ (b,p) ≥ Γmin

p ≤ Pmax .
(3.12)

As an alternative to the immediate allocation of transmit power, it is also possible to

allocate power ratios to the cells. The transmit powers can subsequently be determined

from the power ratios. With n = (PN, PN, PN, . . .)
T the Nc × 1 vector of the receiver

noise power, INc the identity matrix of size Nc with ones on its diagonal and zeros

elsewhere and using (2.10) with the matrix formulation P̄I = diag (β)Ep of (2.14) and

resolving it for p, the transmit powers are determined by

p (b,Γ) = (INc − diag (Γ) diag (β)E)−1 diag (n)Γ . (3.13)

Allocating power ratio values and determining the transmit powers in a second step is

in particular attractive since it allows to exploit certain mathematical properties, as it

will be shown below.

In the allocation of power ratios, however, the interdependencies between the cells are

not considered immediately. Instead, ICI is taken into account only in the following

step, the determination of transmit powers from the power ratio values. Infeasible

power ratio allocations, however, result in negative transmit powers, which are not

meaningful in practice. Therefore, the feasibility of the power ratio allocation has to

be considered and assured in the allocation of power ratios.
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For this purpose, a transmit power vector p is called feasible if all its elements are

non-negative. With spectral radius ρ (X) of a square matrix X, which is defined as the

largest magnitude of the eigenvalues λl of X according to [Var10]

ρ (X) = max
l

{|λl|} , (3.14)

this holds true for an expression of the structure of (3.13) if the vectors and matrices

of the expression are non-negative and if

ρ (diag (Γ) diag (β) E) < 1 (3.15)

holds [Var10,SWB06,SWB09]. Equation (3.15) and a maximum power constraint based

on (3.13) are, thus, the constraints required in the allocation of power ratios.

Plotting the traces of transmit power allocation and power ratio allocation over a PBR-

or a PBN-Characteristic results in straight horizontal lines that run in parallel to the

Γi-axis. Due to the feasibility requirement of (3.15), the traces stop at certain power

ratios, depending on the cell bandwidth of cell i and on the transmit powers of the

interfering cells. Interestingly, the endpoints of the traces of transmit power allocation

and power ratio allocation are given by the traces of cell bandwidth allocation of Figure

3.1 since the points on the traces of cell bandwidth allocation represent the maximum

Γi that is achievable for the cell bandwidth Bi with respect to the resource allocations

of the interfering cells. Thus, the traces of the cell bandwidth allocation mark the

feasible region for transmit power allocation and power ratio allocation.

3.4.3 Joint Power and Bandwidth Allocation

The generalization of transmit power allocation and cell bandwidth allocation is the

joint allocation of both, cell bandwidth and transmit power. This is in principle achiev-

able by combining the constraints of Section 3.4.1 and Section 3.4.2 in a single opti-

mization problem with both, cell bandwidths b and transmit powers p or power ratios

Γ, respectively, as optimization variables. In the scope of algorithm development, how-

ever, the simple combination of the two previous allocation techniques result in very

complex optimization problems, that may be impossible to transform into exact and ef-

ficient algorithms. As a consequence, this section proposes two alternative approaches

that both allocate transmit power and cell bandwidth jointly but at the same time

allow efficient algorithm development, as it will be shown in Section 4.2.5.

The idea behind the approaches is to avoid implementation complexity by keeping

certain parameters constant. The first approach requires the definition of a fixed power
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ratio Γ̃i for each cell. Power ratio Γ̃i is considered as a target that has to be achieved by

the resource allocation, such that this power ratio target is considered as a constraint

to the resource allocation yielding

Γi = Γ̃i. (3.16)

The joint resource allocation is carried out by allocating cell bandwidths to the cells.

Due to the fixed power ratios, the cell bandwidths Bi implicitly result in a certain

transmit power allocation which is determined using (3.13). Due to the variable cell

bandwidths, however, the feasibility of the fixed power ratio targets has to be observed

in the optimization problem and the constraint of (3.15) has to be regarded. Further-

more, the total system bandwidth has to be observed using the constraint of (3.11) and

the transmit power has to yield a maximum value, which can be assured by introducing

a maximum power constraint based on (3.13).

Plotting the traces of the joint resource allocation with fixed power ratios Γi over a

PBR- or a PBN-Characteristic results in straight vertical lines running in parallel to

the Bi-axis. As for transmit power and power ratio allocation, the feasibility constraint

of (3.15) terminates the traces, such that as before, the endpoints of the traces of the

joint resource allocation with fixed power ratios Γ̃i are given by the traces of the cell

bandwidth allocation as in Figure 3.1, for example.

The second approach for the joint allocation of cell bandwidth and transmit power

assumes a constant transmit power per subcarrier or, more general, a constant transmit

power spectral density (PSD)

ρtx,i =
Ptx,i

Bi

. (3.17)

Joint resource allocation is carried out by assuming a fixed PSD target ρ̃tx,i and allo-

cating cell bandwidths. The transmit power allocation results from the cell bandwidth

allocation according to

Ptx,i = ρ̃tx,i · Bi . (3.18)

The allocation is feasible if the constraint on the allocated cell bandwidths of (3.11) is

observed and if the required transmit power resulting from (3.18) does not exceed the

maximum transmit power Pmax yielding

Ptx,i ≤ Pmax . (3.19)

Note that the system modeling has to be modified with this approach. Since the

transmit power is no longer independent of the cell bandwidth when specifying PSDs

instead of transmit powers, ICI experienced in a cell is no longer independent of the
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bandwidth allocation of other cells. Substituting (2.14) in (2.10) and considering (3.17)

resolved for Ptx,i in the both equations yields

Γi =
ρtx,i · Bi

∑

i6=j

ρtx,j ·Bj · βi · gij + PN
(3.20)

and with the definition of βi from (2.12)

Γi =
ρtx,i

∑

i6=j

ρtx,j · Bj

Bsys
· gij + PN

Bi

(3.21)

follows. It can be seen from (3.21) that all transmit powers in (2.10) turn into their

PSDs in (3.21). This also holds for the average interference power P̄I,i, which turns into

PSD ρ̄I,i =
∑

i6=j

ρtx,j ·βj ·gij, considering (2.12). Note that ρ̄I,i is defined using the relative

cell bandwidth βj of the interfering cell. As a consequence, the specification of PSDs

instead of transmit powers requires to generally work with PSDs instead of transmit

powers in the cell-centric network model. Furthermore, the relative cell bandwidth of

the interfering cell has to be used instead of the relative cell bandwidth of the considered

cell in the determination of ICI power, according to (3.21).

3.5 Principles of Operation of Capacity Optimiza-

tion

For the further discussion and for the interpretation of performance results, a deeper

understanding of how the different resource allocation techniques achieve to shift capac-

ity and to concentrate capacity at locations of higher capacity demands is fundamental.

This section discusses the principles of operation of capacity optimization of each of

the resource allocation techniques and draws conclusions concerning the importance of

coordination of the bandwidth allocations for each of the resource allocation techniques.

The allocation of resources changes the capacity of a cellular network by two different

effects. One is controlling and adjusting interference, which enables to increase user

SINR in cells with high capacity demand and to decrease user SINR in cells with low

capacity demand. User throughput changes with user SINR, such that this mechanism

is capable of shifting and concentrating capacity. It comes into effect especially in the

allocation of transmit power and works with coordinated bandwidth allocation as well

as with uncoordinated bandwidth allocations.
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For the allocation of cell bandwidth, which assumes a fixed transmit power allocation,

this mechanism does not apply since ICI increases with allocated cell bandwidth, ac-

cording to (2.14). Thus, a cell that uses more bandwidth to be able to provide more

capacity has to accept higher ICI. In the case of cell bandwidth allocation, capacity

can, therefore, be shifted only if a lightly loaded cell leaves bandwidth to a heavily

loaded cell. This is the second mechanism that is capable of shifting and concentrating

capacity and it requires the coordination of the bandwidth allocations, otherwise a

leaving of cell bandwidth by one cell to another cell is not possible. As a consequence,

the allocation of cell bandwidth is applicable for network throughput maximization in

inhomogeneous capacity demand scenarios only with coordinated bandwidth alloca-

tions.

Similar considerations apply for the joint resource allocation techniques. Assuming

fixed transmit PSD, ICI in a cell depends on the cell bandwidth of the interfering

cells, according to Section 3.4.3, and the first mechanism comes into effect, leading to

more cell bandwidth and higher user SINR in cells with high capacity demand. Joint

resource allocation with fixed PSD, therefore, works with coordinated as well as with

uncoordinated bandwidth allocations. Concerning the joint resource allocation with

fixed power ratios, a situation similar to the situation of the allocation of cell bandwidth

applies since due to the fixed power ratios, capacity can be shifted only by shifting cell

bandwidth from lightly loaded cells to heavily loaded cells, with requires coordinated

bandwidth allocations. As a consequence, also the joint resource allocation technique

with fixed power ratios in connection with uncoordinated bandwidth allocations is not

applicable for network throughput maximization.

Another important aspect concerning the principles of operation of the different re-

source allocation techniques is that the resource allocation techniques that work with

the adaptation of transmit power or user SINR, respectively, are resource allocation

techniques that affect larger areas in the concentration of capacity at a certain location.

More illustratively, it can be said that they draw capacity from a larger area to con-

centrate it at one point. In contrast to that, resource allocation techniques that rely on

the shifting of cell bandwidth only influence the neighbors, according to the definition

of neighbored cells from Section 3.2, of a cell. These resource allocation techniques are,

consequently, limited to a few closely located cells to draw capacity from and affect

only a small area of the network.



3.6 Optimization Problems 61

3.6 Optimization Problems

In Section 3.3, optimization goals with the respective objective functions and required

constraints are discussed. Section 3.4 introduces different resource allocation tech-

niques to achieve the optimization goals and discusses feasibility requirements and

resulting constraints. This section combines optimization goals and resource allocation

techniques to obtain specific optimization problems for the capacity optimization of

cellular radio networks.

The optimization problems are built by combining the objective function and its con-

straint from the optimization goals of Section 3.3 with the constraints of the resource

allocation techniques of Section 3.4. The general definition of objective functions and

constraints as functions of the cell bandwidth and the transmit powers are adapted for

each optimization problem to reflect only the relevant dependencies. Tables 3.1 and

3.2 list the optimization problems, detailed discussion of the optimization goals and

the resource allocation techniques can be found in Sections 3.3 and 3.4.

Furthermore, each of the optimization problems can in principle be carried out with

or without coordination of the bandwidth allocations such that either state of the art

scheduling based approaches or new automatic capacity optimization approaches for

SONs are considered, cf. Section 2.2. According to the considerations on the principles

of operation of the different resource allocation techniques of Section 3.5, however,

the network throughput optimization approaches that allocate cell bandwidth and the

network throughput optimizing approach with fixed power ratios Γi are not applicable

with uncoordinated bandwidth allocations.
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Table 3.1. Optimization problems for capacity optimization, part 1.

Resource allocation Optimization goal
technique Network throughput Number of users
Cell bandwidth allo-
cation

b∗ = arg maxb {Rnw (b,Γ (b))}
s.t. R̄

(i)
u (b,Γ (b)) ≥ Ru,min

Nb ≤ Bsys

(3.22)

b∗ = arg maxb {Nnw (b,Γ (b))}
s.t. Ni (b,Γ (b)) = ρrel,i ·Nnw (b,Γ (b))

Nb ≤ Bsys

(3.23)

Transmit power allo-
cation

Γ∗ = arg maxΓ {Rnw (Γ)}
s.t. R̄

(i)
u (Γ) ≥ Ru,min

ρ (diag (Γ) diag (β) E) < 1
p (b,Γ) ≤ Pmax

(3.24)

Γ∗ = arg maxΓ {Nnw (Γ)}
s.t. Ni (Γ) = ρrel,i ·Nnw (Γ)

ρ (diag (Γ) diag (β) E) < 1
p (b,Γ) ≤ Pmax

(3.25)

p∗ = (INc − diag (Γ∗) diag (β) E)−1 diag (n)Γ∗ p∗ = (INc − diag (Γ∗) diag (β) E)−1 diag (n)Γ∗
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Table 3.2. Optimization problems for capacity optimization, part 2.

Resource allocation Optimization goal
technique Network throughput Number of users
Joint resource alloca-
tion with fixed power
ratios Γi

b∗ = arg maxb {Rnw (b)}
s.t. R̄

(i)
u (b) ≥ Ru,min

Nb ≤ Bsys

ρ
(

diag
(

Γ̃
)

diag (β) E
)

< 1

p
(

b, Γ̃
)

≤ Pmax

(3.26)

b∗ = arg maxb {Nnw (b)}
s.t. Ni (b) = ρrel,i ·Nnw (b)

Nb ≤ Bsys

ρ
(

diag
(

Γ̃
)

diag (β) E
)

< 1

p
(

b, Γ̃
)

≤ Pmax

(3.27)

p∗ =
(

INc − diag
(

Γ̃
)

diag (β∗) E
)−1

diag (n) Γ̃ p∗ =
(

INc − diag
(

Γ̃
)

diag (β∗) E
)−1

diag (n) Γ̃

Joint resource alloca-
tion with fixed trans-
mit PSDs ρtx,i

b∗ = arg maxb {Rnw (b,Γ (b))}
s.t. R̄

(i)
u (b,Γ (b)) ≥ Ru,min

Nb ≤ Bsys

ρ̃tx,i · Bi ≤ Pmax

P ∗
tx,i = ρ̃tx,i · B∗

i

(3.28)

b∗ = arg maxb {Nnw (b,Γ (b))}
s.t. Ni (b,Γ (b)) = ρrel,i ·Nnw (b,Γ (b))

Nb ≤ Bsys

ρ̃tx,i ·Bi ≤ Pmax

P ∗
tx,i = ρ̃tx,i ·B∗

i

(3.29)
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Chapter 4

Algorithms for Automatic Capacity

Optimization

4.1 Introduction

An important aspect in the field of mathematical optimization is the solution of the

optimization problems. Also in the scope of this thesis, algorithms that solve the opti-

mization problems for capacity optimization derived in Chapter 3 have to be developed.

Different types of algorithms concerning the implementation of the algorithms exist.

Central algorithms are carried out by a single instance and need to have all data

available at that instance. Central approaches are, therefore, of interest for simulation,

for example. In practical cases, however, a central solving approach may be prohibitive

due to reasons of complexity or robustness or due to the structure or architecture of the

considered system. In these cases, a distributed implementation, in which the solution

of the problem is not found by a single instance but by several instances jointly, is

of interest. Also for cellular radio networks, which are highly distributed systems, a

distributed implementation of self-organizing functionality is very attractive.

This chapter focuses on both of the above addressed aspects of algorithm development.

Section 4.2 presents central solving approaches that are relevant for simulation and

analysis. Section 4.3 derives distributed implementations that do not require a central

instance and that are relevant for practical implementation. Section 4.4 proposes a

concept that makes the application of both, central and distributed solving approaches,

possible and increases the robustness of networks using self-organizing functionality.

4.2 Central Algorithms

4.2.1 Introduction

Central solving approaches for optimization problems in cellular radio networks are rel-

evant especially for analysis purposes since they can be used conveniently in simulations
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and to provide performance references. Depending on the properties of optimization

problems, different approaches for the solution of mathematical optimization problems

exist. For continue valued problems, such as those of Section 3.6, convex optimization

is very attractive since for convex optimization problems, the optimum solution can be

identified reliably and efficiently [BV08].

In order to solve the optimization problems established in Chapter 3 with convex solv-

ing techniques, the problems have to be convex in a mathematical sense. To this end,

each of the optimization problems is discussed in this section with respect to convex-

ity. Where necessary, reformulations to equivalent optimization problems or convex

approximations of the optimization problems are introduced. For this purpose, Sec-

tion 4.2.2 introduces convex optimization and the mathematical properties of convex

optimization problems. Concerning the discussion of the optimization problems, rea-

soning and reformulations are similar for the optimization goals of network throughput

maximization and maximization of the number of users that can be supported, but

different for the different resource allocation techniques. The remainder of this sec-

tion is, therefore, structured according to the resource allocation techniques, such that

Section 4.2.3 treats the cell bandwidth allocation, Section 4.2.4 discusses the transmit

power allocation and Section 4.2.5 considers the joint allocation of cell bandwidth and

transmit power. Note that in some cases in the discussion, a purely mathematical proof

of convexity is very complicated due to the complex derivation and the non-linearities

of the cell-centric network model. In these cases, more illustrative descriptions are em-

ployed to show convexity. The discussions of this section are made using the example

of FR scheduling but the results are applicable also to other scheduling strategies.

4.2.2 Convex Optimization

This section introduces convex optimization and presents the corresponding mathe-

matical properties. In particular, the mathematical properties that are required are

convexity of the objective function and convexity of the domain of the optimization

problem, which is the set of valid solutions defined by the constraints [BV08].

Concerning a function f (x), it is said to be convex if

f (θx1 + (1 − θ) x2) ≤ θf (x1) + (1 − θ) f (x2) , 0 ≤ θ ≤ 1 , (4.1)

holds [BV08], which includes linear relations. If f (x) is twice differentiable, the equi-

valent second order condition is given by [BV08]

∇2f (x) ≥ 0 . (4.2)



4.2 Central Algorithms 67

Concerning a set C, convexity requires that all points on a line between any two points

x1, x2 ∈ C have to be part of set C, as expressed by

θx1 + (1 − θ) x2 ∈ C , 0 ≤ θ ≤ 1 . (4.3)

Since the domain of the optimization problem is a set defined by the constraints of the

optimization problem, the set is convex if all inequality constraints of the optimization

problem are convex functions. Thus, the inequality constraints of a convex optimization

problem have to fulfill (4.1). Equality constraints have to be affine sets, which means

that all points on a line through two points x1, x2 ∈ C have to be part of set C

yielding [BV08]

θx1 + (1 − θ)x2 ∈ C , θ ∈ R . (4.4)

Optimization problems fulfilling these requirements and having inequality constraints

that are bounded above can be minimized using convex optimization techniques. If

maximization is desired, the negative objective function can be minimized. Note,

however, that in this case, the negative objective function has to be convex, which

means that the objective function is said to be concave. For the exact definition of

concavity, the inequality signs in (4.1) and (4.2) have to be reversed. Figure 4.1 shows

an illustration of a convex and a concave function.

(a) Convex function. (b) Concave function.

Figure 4.1. Illustration of a convex and a concave function.

Another important property in the context of convex optimization is log-convexity. A

function is called log-convex if the logarithm of the function is convex [BV08]. Log-

convexity is of great relevance since it provides a convenient way in the transformation

of optimization problems to equivalent convex optimization problems and since it in-

creases the number of relations and functions that can be used in convex problems.
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4.2.3 Cell Bandwidth Allocation

This section discusses the convexity of the cell bandwidth allocation capacity opti-

mization problems of (3.22) and (3.23). Concerning the constraint on the NG sum

bandwidth in the allocation of cell bandwidth of (3.11), the discussion is easy since

it is linear and, thus, convex, according to Section 4.2.2. Concerning the other con-

straint and the objective function, the discussion is more complex since the average

ICI power P̄I,i depends on the cell bandwidth Bi, according to (2.14), such that the

relation between cell bandwidth Bi and cell throughput R̃i from (2.35) as well as the

relation between cell bandwidth Bi and number Ni of users that can be supported by

a cell from (2.38) are non-linear.

For the discussion of convexity, it is pointed out that network throughput and total

number of users are linear combinations of cell throughput and the number of users

that can be supported by a cell, respectively. Thus, network throughput and total

number of users are convex functions if cell throughput and number of users supported

by a cell are convex functions [BV08]. The detailed mathematical proof of convexity

of cell throughput and the number of users that can be supported by a cell, however,

is complicated due to the complex derivation and construction of the corresponding

relations. As a consequence, a more illustrative approach is taken to identify convexity.

For this, the following considerations are made. As stated above, the relation between

cell bandwidth Bi and cell throughput R̃i is linear. With increasing cell bandwidth,

however, ICI increases, according to (2.14), which decreases the cell throughput. The

decrease in cell throughput monotonically grows with higher ICI power and, therefore,

with increasing cell bandwidth. As a consequence, the relation between cell bandwidth

Bi and cell throughput R̃i is bent downwards, such that the second derivative of the

cell throughput with respect to the cell bandwidth is smaller than zero, which fulfills

the definition of a concave function.

Thus, the network throughput is a concave function of the cell bandwidth since it is the

sum of several concave functions of the cell bandwidth. For the same reason, the first

constraint of (3.22), which assures that minimum QoS levels are observed, is concave,

too. Multiplying with minus one and moving the minimum user bit rate Ru,min to the

left side yields

Ru,min − R̄(i)
u (b,Γ (b)) ≤ 0 , (4.5)

which is a convex constraint as required according to Section 4.2.2. The cell bandwidth

allocating network throughput maximization as stated (3.22) can, therefore, be solved

using convex optimization techniques.
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In order to verify above reasoning, Figure 4.2(a) shows the traces of cell bandwidth

allocation from Figure 3.1(a) as a representation of the relation between cell bandwidth

and cell throughput for a single cell and for the parameters of Table 2.1 and for different

transmit powers Ptx,i of the center cell between 27 dBm and 39 dBm in steps of 3 dBm.

In this representation, the curves are called BR-Characteristics. The figure is obtained

by relating the cell bandwidth values with the cell throughput values that are lying

below the traces in Figure 3.1(a). It can be seen that the cell throughput is a concave

function of the cell bandwidth.

The considerations concerning the increasing ICI for increasing cell bandwidth also

apply for the number of users that can be supported by a cell. The relation between

number of users that can be supported and allocated cell bandwidth additionally has a

component that increases more than proportionally since the cell bandwidth required

to support a certain number of users increases in one of the summands of (2.45) only

with the square root of the number of users, which is less than proportional. This effect

bends the relation between cell bandwidth and number of users to give it a convex form,

while the ICI power depending of the cell bandwidth bends the relation into a concave

form. The concave effect is stronger the more power is allocated to interfering cells

and the larger the average channel gain gij is. The determination which effect prevails

depends on the exact parameters. Due to the square root relation and assuming target

cell probabilities p̃out with practical relevance, however, the convex influence is very

small such that the concave effect can be expected to prevail.

Figure 4.2(b) shows the BN-Characteristics obtained from the traces of cell bandwidth

allocation over the PBN-Characteristic of Figure 3.1(b) and, thus, for the scenario from

Figure 2.2 with the parameters of Table 2.1 and for different transmit powers Ptx,i of

the center cell between 27 dBm and 39 dBm in steps of 3 dBm. It can be seen that in

the considered cases, the concave effect clearly prevails, making convex optimization

techniques suitable for the cell bandwidth allocating maximization of the total number

of users.

4.2.4 Transmit Power Allocation

The transmit power allocating capacity optimization problems of (3.24) and (3.25)

cannot be directly shown to be a convex optimization problem due to the feasibility

constraint of the power ratio allocation of (3.15) and the maximum power constraint

based on (3.13). In order to be able to apply convex techniques, the problem has to be

transformed to an equivalent problem. This section presents the derivation of a convex

equivalent of the optimization problem.
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(b) BN-Characteristics.

Figure 4.2. BR- and BN-Characteristics for PF scheduling, obtained from the traces
of the cell bandwidth allocation of Figure 3.1.

For the equivalent problem, it is considered that the spectral radius ρ (X (ω)) of a

matrix X (ω) is log-convex if the elements of X (ω) are log-convex functions in ω,

according to [SWB06, SWB09]. With this in mind, the modified power ratio Γ̆i is

introduced and defined by

Γ̆i = ln (Γi) . (4.6)

Rewriting the power ratio feasibility constraint of (3.15) using the modified power ratio

yields

ρ
(

diag
(

eΓ̆
)

diag (β) E
)

< 1 (4.7)

which is log-convex since eΓ̆ is a log-convex function in Γ̆. Furthermore, it can be

shown that the transmit power as defined in (3.13) is also log-convex under these

conditions [SWB06, SWB09]. Thus, the modified power ratio conveniently enables

the convex formulation (4.7) of the power ratio feasibility constraint and a convex

formulation of the maximum power constraint of (3.12).

The introduction of the modified power ratio requires the reformulation of the trans-

mit power allocating capacity optimization problems of (3.24) and (3.25) such that

the modified power ratio Γ̆i is the optimization variable. For the discussion of convex-

ity of objective function and QoS constraint of the transformed network throughput

maximization problem, a strictly mathematical way of showing convexity is not easily

available due to the complex construction of the cell-centric network model. A differ-

ent approach is, therefore, taken. For this, (2.11) is used with (4.6) resolved for the

modified power ratio Γ̆i in (2.2), which yields

R(i)
u,n = B(i)

u,n · log2

(

1 + ψ(i)
n · eΓ̆i

)

(4.8)
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Considering (2.11), it can be seen from (4.8) that a linear relation between user bit

rate R
(i)
u,n and modified power ratio Γ̆i results for large SINR values. Large parts of

the users of a cell have high SINR, and since in the cell-centric network model, all

users of a cell are considered jointly, the relation between modified power ratio Γ̆i and

network throughput can be approximated to be linear. The same considerations apply

in the context of the number of users that can be supported, such that also the relation

between modified power ratio and total number of users that can be supported can be

approximated to be linear.

For the verification of above reasoning, Figure 4.3 shows PR- and PN-Characteristics

for the scenario from Figure 2.2 with the parameters of Table 2.1 and for different cell

bandwidths Bi of the center cell between 2 MHz and 10 MHz in steps of 2 MHz. It

can be seen that the figure confirms the proposed linear approximations. Note that

feasibility requirements are not regarded in Figure 4.3, some part of the curves for

larger values of Γ̆i may, therefore, be infeasible, depending on the resource allocations

of the remaining cells.
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Figure 4.3. PR- and PN-Characteristics for PF scheduling.

As a consequence from above discussion, the objective functions and the remaining

constraints of both, the network throughput optimization and the optimization of

the number of users that can be supported, can be approximated by a convex prob-

lem formulation. To this end, a linear approximation of the cell throughput around
(

Γ̆ref,i, Rref,i

)

with slope ∆Ri

R′
i

(

Γ̆i

)

= Rref,i + ∆Ri
·
(

Γ̆i − Γ̆ref,i

)

(4.9)

and a linear approximation of the number of users that can be supported by a cell
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around
(

Γ̆ref,i, Nref,i

)

with slope ∆Ni

N ′
i

(

Γ̆i

)

= Nref,i + ∆Ni
·
(

Γ̆i − Γ̆ref,i

)

(4.10)

are defined. Using (4.9) and (4.10) in the optimization problems for maximum network

throughput and maximum number of users that can be supported, respectively, yields

the convex approximations of (3.24) and (3.25)

Γ̆∗ = arg maxΓ̆

{

Nc
∑

i=1

R′
i

(

Γ̆i

)

}

s.t.
R′

j(Γ̆j)
Nj

≥ Ru,min

ln
(

ρ
(

diag
(

eΓ̆

)

diag (β) E
))

< 0

ln
(

p
(

b, eΓ̆
))

≤ ln (Pmax) ,

(4.11)

and

Γ̆∗ = arg maxΓ̆

{

Nc
∑

i=1

N ′
i

(

Γ̆i

)

}

s.t. N ′
j

(

Γ̆j

)

= Nrel,j ·
∑

i

N ′
i

(

Γ̆i

)

ln
(

ρ
(

diag
(

eΓ̆
)

diag (β) E
))

< 0

ln
(

p
(

b, eΓ̆

))

≤ ln (Pmax) ,

(4.12)

respectively. The optimum transmit powers are obtained from the optimum modified

power ratios Γ̆∗ according to

p∗ =
(

INc − diag
(

eΓ̆∗
)

diag (β) E
)−1

diag (n) eΓ̆∗

. (4.13)

4.2.5 Joint Power and Bandwidth Allocation

This section discusses the convexity of the joint allocation of cell bandwidth and trans-

mit power. Two different approaches for this are proposed in Section 3.4.3. The ap-

proach for the joint resource allocation of (3.26) and (3.27), which assume fixed power

ratios, lead to optimization problems that are very similar to the power allocating op-

timization problems of (3.24) and (3.25), respectively. The difference is, however, that

the joint allocation is achieved by means of a cell bandwidth allocation, according to

Section 3.4.3. As a consequence, the objective function of the joint resource allocation

is a function of the cell bandwidth, according to (3.26) and (3.27), which prohibits to

use the approach for convex reformulation taken in Section 4.2.4 since it would destroy

the concave shape of the objective functions.
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In order to be able to solve the joint resource allocation optimization problems effi-

ciently, a different approach is, therefore, taken. This approach assumes that the fixed

power ratio targets Γ̃i are feasible and result in transmit powers p that observe the

maximum transmit power limit Pmax at all times. With this assumption, the power ra-

tio feasibility constraint and the maximum transmit power constraint can be neglected

in the optimization problems of (3.26) and (3.27) such that they can be rewritten to

b∗ = arg maxb {Rnw (b)}
s.t. R̄

(i)
u (b) ≥ Ru,min

Nb ≤ Bsys

(4.14)

and
b∗ = arg maxb {Nnw (b)}

s.t. Ni (b) = Nrel,i ·Nnw (b)
Nb ≤ Bsys ,

(4.15)

respectively.

The optimization of the network throughput of (4.14) is a linear optimization problem,

as can be seen considering (2.35) and (2.46). Concerning the optimization of the

number of users that can be supported from (4.15), a non-linear effect is contained due

to the multiplication of the standard deviation with the term 1√
Ni

and
√
Ni, respectively,

according to (2.37) and (2.46). Due to the square root relation and assuming values

with practical relevance for the target cell outage probability p̃out in these expressions,

however, the non-linear part is negligible compared to the linear part, such that a linear

approximation is possible. This can also be seen in the BN-Characteristics for fixed Γi

and for the scenario from Figure 2.2 with the parameters of Table 2.1 and for power

ratio targets Γ̃i of the center cell between 110 dB and 130 dB in steps of 5 dB as shown

in Figure 4.4 for PF and FT scheduling. As a consequence, also the optimization of the

number of users that can be supported can be approximated by a linear optimization

problem.

An important prerequisite for this approach, however, is the proper choice of the power

ratio targets Γ̃i. Feasible power ratio targets whose corresponding transmit powers ob-

serve the maximum transmit power can be obtained by assuming maximum transmit

power and the total system bandwidth for each cell. The corresponding power ratios

are determined using (2.10) and the lowest achieved power ratio is selected as target

power ratio Γ̃i for all cells. This selection constitutes a lower bound for feasible power

ratio targets and assures a feasible transmit power allocation. Alternatively, a general

approach that determines the power ratio targets in an iterative way is possible. The

steps of this iterative algorithm consist in choosing initial targets, solving the optimiza-

tion problems of (4.14) or (4.15), respectively, and choosing new power ratio targets if

feasibility or maximum power constraint are violated.
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Figure 4.4. BN-Characteristics for constant power ratio and for PF scheduling and FT
scheduling.

The presented approach for joint power and bandwidth allocation is very attractive

since the linear optimization problems arising from the approach of this section can be

solved very efficiently, as can be concluded regarding complexity considerations of linear

optimization problems [Van01] and the structure of the optimization problems arising

in the scope of this thesis. Additionally, solving algorithms for linear optimization

problems can be implemented in a distributed way, as will be shown below. The

constant power ratios furthermore allow to define and to implicitly observe minimum

signal quality for all users.

For the joint resource allocation approaches of (3.28) and (3.29), which assume a fixed

PSD ρ̃tx,i, convex formulations could not be established. Convex solving techniques

can still be used for the solution of the optimization problems, the identified solutions,

however, in general depend on the initial starting point and are in general suboptimum.

The approach is still attractive, since the allocated cell bandwidth is considered in the

transmit power allocation, leading to larger power ratio values for cells that require

more resources, which is reasonable with respect to capacity optimization goals.

4.3 Distributed Algorithms

4.3.1 Introduction and General Approach

Cellular radio networks are highly distributed systems due to their cellular structure.

Current technical evolution and current standards, such as LTE and System Architec-

ture Evolution (SAE) [3GP11b], for example, account for this fact in the system design
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and aim for mostly distributed systems with possibly flat hierarchy that need as little

central entities as possible. Also self-organizing functionality has to consider the trend

toward distributed implementations.

In the development of distributed implementations, the pursued optimization goals of

network throughput maximization and maximization of the number of users have to

be evaluated in a practical context. As addressed in Section 3.3.2, the number of users

as well as the relative distribution of the users is given in practice. In this context, the

goal of maximizing the number of users while observing the relative user distribution,

as it is defined in Section 3.3.2, is achieved by accepting the new users and adjusting

the resource allocation accordingly to serve the new users. This is possible as long as

the corresponding optimization problem is feasible and assuming that users enter the

system one by one or in small groups. Once all resources are allocated, every additional

user will make the problem infeasible and cannot be served.

As a consequence, Section 4.3 focuses on the development of distributed algorithms

that solve the problem of maximizing the network throughput. The optimization prob-

lems of Tables 3.1 and 3.2 are considered, but their reformulations of Section 4.2 are

used for all derivations. The basis for all further discussion of this section is made in

Section 4.3.2 with an introduction to linear network throughput optimization. Section

4.3.3 introduces an algorithm for the distributed implementation of linear optimization

problems using the cell-centric network model. This algorithm can be used to solve

any arising linear optimization problem, such as the joint resource allocation problems

from Section 4.2.5, for example. The algorithms can also be extended by an iterative

approach to solve nonlinear optimization problems, as proposed in Section 4.3.4. Sec-

tion 4.3.5 presents a distributed algorithm for transmit power allocation, such that the

capacity optimization approaches can be implemented in a fully distributed way.

4.3.2 General Linear Network Throughput Optimization

In this section, a general linear formulation of the cell bandwidth allocating network

throughput optimization problem is derived. This derivation is relevant for the cell

bandwidth allocating capacity optimization problems of (3.22) and (3.23) and the joint

resource allocating approaches from table 3.2 since they are based on the allocation of

cell bandwidth.

An optimization problem with affine objective function and affine constraints is called

a linear optimization problem or short a linear program (LP). If the only inequality
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constraints of a LP are nonnegativity constraints of the optimization variables, it is

called a standard form LP. With x, c ∈ Rl, b ∈ Rm and A ∈ Rm×l, the standard form

LP is defined by [BV08]
x∗ = arg maxx cTx

s.t. Ax = b

x ≥ 0 .
(4.16)

Every general LP can be transformed into standard form by introducing so-called slack

variables [BV08].

Regarding the considerations of Section 4.2.5 and selecting the target power ratios Γ̃i

accordingly, the joint resource allocation problem with fixed power ratios of (4.14) is

a LP. The following discussion is, therefore, made exemplarily for the optimization

problem of (4.14). With ǫi the cell spectral efficiency given by

ǫi =
R̃i

Bi

, (4.17)

which can be obtained from the PBR-Characteristic and expresses how much through-

put cell i can provide for target power ratio Γ̃i and for one Hertz of cell bandwidth,

the optimization problem of (4.14) is rewritten as

b∗ = arg maxb

Nc
∑

i=1

ǫiBi

s.t. ǫi

Ni
Bi ≥ Ru,min

Nb ≤ Bsys .

(4.18)

The minimum cell bandwidth Bmin,i = Ru,min
Ni

ǫi
required by cell i to observe the mini-

mum QoS requirements of the users can be allocated to each cell prior to the network

throughput optimization. The first constraint of (4.18) can then be neglected if the

already allocated minimum cell bandwidths are considered in the second constraint.

With bmin = (Bmin,1, Bmin,2, . . . , Bmin,Nc)
T the vector of the minimum cell bandwidths

Bmin,i and with bng,min =
(

Bng,min,1, Bng,min,2, . . . , Bng,min,Nng

)T
the vector of the sums

Bng,min,k of the minimum bandwidths Bmin,i required by the cells of NG k given by

bng,min = Nbmin , (4.19)

the optimization problem of (4.18) can be simplified to

b∗ = arg maxb

Nc
∑

i=1

ǫiBi

s.t. Nb ≤ Bsys − bng,min .

(4.20)

The optimization problem of (4.18) or (4.20), respectively, can also be used in iterative

solving strategies for non-linear optimization problems since it can be obtained from

linearization. It is, therefore, also of relevance for nonlinear cell bandwidth allocation

problems and generally for other non-linear allocation problems that are based on cell

bandwidth allocation, as it will be shown in Section 4.3.4.
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4.3.3 Distributed Simplex Algorithm

Under the condition that feasible power ratio targets Γ̃i are chosen, an easy and efficient

algorithm that solves the linear optimization problem of (4.20) can be developed. It is

based on the simplex algorithm [Zem71,Van01], which is an efficient iterative algorithm

for obtaining the optimum solution of a LP. This section introduces the simplex algo-

rithm and its distributed implementation and applies the distributed implementation

to network throughput optimization approaches for cellular radio networks using the

cell-centric network model. As prerequisite, it is assumed that the power ratio target

is known to each cell, such that each cell can determine its cell spectral efficiency ǫi.

Two different methods of the simplex algorithm exist, the full tabloid method and the

revised method. The latter works with a reduced data structure and, thus, usually

exhibits better performance, compared to the full tabloid method, especially in sparse

systems. A distributed implementation of the revised simplex, however, is complicated

[Yar01]. As a consequence, the focus in this section is put on the full tabloid method,

which can easily be converted into a distributed implementation.

The full tabloid simplex method works with so-called dictionaries. The starting dic-

tionary is obtained from the LP, it is the linear system of equations composed of the

objective function and the constraints resolved for the slack variables. With si ≥ 0

the slack variables [BV08] and nij = [N]i,j the elements of the binary NG matrix N of

Section 3.2, the dictionary of the LP of (4.20) is given by

z = ǫ1B1 +ǫ2B2 + . . . +ǫNcBNc

s1 = Bsys − Bng,min,1 −n11B1 −n12B2 . . . −n1NcBNc

s2 = Bsys − Bng,min,2 −n21B1 −n22B2 . . . −n2NcBNc

...
...

...
...

. . .
...

sNng = Bsys − Bng,min,Nng −nNng1B1 −nNng2B2 . . . −nNngNcBNc

. (4.21)

The variables on the left side of (4.21) are called basic variables, the variables on the

right side are referred to as non-basic variables. Non-basic variables are set to zero

initially [Van01].

Due to the construction of the starting dictionary, only non-basic variables are con-

tained in the objective function initially. As a consequence, the objective function

is equal to zero at the beginning of the simplex algorithm. In every iteration of the

algorithm, one variable is moved from the set of non-basic variables to the set of basic

variables and one variable is moved from the set of basic variables to the set of non-basic

variables. In order to find the optimum solution, the simplex algorithm determines in
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each iteration the non-basic variable that has the largest positive coefficient in the ob-

jective function and will result in the largest increase of the optimization objective. If

no variable with positive coefficient in the objective function is found, the optimum so-

lution is reached. Otherwise, the variable with the largest positive coefficient is moved

to the set of basic variables. The variable that is moved from the set of basic variables

to the set of non-basic variables is the variable that constraints the maximum value of

the new basic variable most, considering the values of the other basic variables. In all

equations of the dictionary including the objective function, the new basic variable is

then substituted by a function of the non-basic variables. Thus, the dictionary changes

with every iteration [Van01].

The choices of the variables that move between the sets of basic and non-basic variables

are usually referred to as row choice and column choice. The term column choice refers

to the choice of the non-basic variable that moves to the set of basic variables, since the

non-basic variables stand in the columns of the dictionary. Row choice consequently

denominates the choice of the basic variable that moves to the set of non-basic variables,

since basic variables stand in the rows of the dictionary. The idea of the distributed

implementation of the full tabloid simplex method is that the column choice can be

distributed over several nodes carrying out the column choice locally in only a part

of the dictionary and broadcasting the results to all nodes, which allows each node to

determine if it found the non-basic variable with the largest coefficient. The node that

found the non-basic variable with the largest coefficient carries out the row choice and

broadcasts the chosen basic variable to all other nodes. Finally, all nodes update their

partial dictionary such that the next iteration can begin. [Yar01,Yv09].

This distributed approach can be applied to a cellular radio network. For reasons of

simplicity, it is assumed that each BS serves as a node for the distributed execution

of the simplex algorithm. The local column choice of each node is in this case carried

out only across the sectors of the BS and the largest ǫi is broadcast. Each node

compares the incoming broadcasts with the maximum ǫi of its own sectors, the node

that finds to have the maximum ǫi in one of its sectors has won the column choice and

makes the row choice. For this purpose, the node has to know about the minimum

bandwidth requirements of all sectors that are neighbors to the sector with the largest

ǫi, according to the definition of neighbored cells from Section 3.2. Note that the

required local knowledge is limited to the neighbors of the sector with the largest ǫi,

since rows of the dictionary that represent NGs to which the sector with the largest ǫi

does not belong are not eligible as row choice since they do not affect the bandwidth

allocation to the sector with the maximum ǫi. The row choice is signaled to all nodes,

the nodes adjust their part of the dictionary and the next iteration begins.
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As it can be seen from this description, the distributed implementation of the simplex

algorithm in a cellular radio network requires signaling between the nodes. Note that

concerning the information about other sectors of other nodes, which is required by

each node to be able to make the row choice, only local information is required. For

the row choice, however, the broadcast of information to all nodes is required. In this

context, setting the number of optimization nodes equal to the number of BSs causes

much signaling traffic overhead and is not practical. Instead, it is desirable to have

a clearly lower number of optimization nodes, since this will reduce signaling traffic

significantly. Each node then represents several BSs, collects the required data from

these BSs and their sectors and carries out the necessary operations.

General investigations on efficiency and on the optimum number of optimization nodes,

i.e. the tradeoff between signaling and computational complexity, are carried out in

[HS94, Yar01]. The investigations show that the distributed implementation of the

simplex algorithms is capable of achieving good performance also for several tens or

even more than one hundred optimization nodes. Setting the number of BSs that are

represented by each optimization node to several tens, large parts of a cellular radio

network of hundreds of BSs can be optimized with the distributed implementation of

the simplex algorithm.

4.3.4 Sequential Linear Programming

Efficient solving techniques also exist for non-linear convex optimization problems, such

as interior point methods, for example. The barrier method [BV08] is an example of an

interior point method. Compared to the simplex algorithm, interior point methods can

be more efficient than the worst case performance of the simplex algorithm. Especially

for large problems, interior point methods are computationally attractive [Van01,BV08]

and are, therefore, relevant algorithms for the central implementation of the optimiza-

tion problems of Section 4.2. The distributed implementation of interior point methods,

however, is usually not as easily possible as for the simplex method, cf. Section 4.3.3.

Consequently, alternative approaches for solving non-linear convex optimization prob-

lems are of interest in the scope of this thesis. This section proposes Sequential Linear

Programming (SLP) for the solution of non-linear convex optimization problems for

automatic capacity optimization of cellular radio networks.

SLP is an iterative approach that exploits the advantages of LPs and their solving

techniques for the solution of non-linear optimization problems. The idea of SLP is

to linearize the objective function and the constraints around a reference point and
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to solve the resulting LP. This solution is used to determine a new reference point,

around which the non-linear problem is linearized again and the resulting LP is solved

to once again determine the next reference point. The algorithm finishes if the solutions

of the LP obtained from the linearizations converge. Thus, the algorithm iteratively

approaches a local optimum. If the optimization problem is convex, SLP approaches

the global optimum.

In this thesis, the non-linear network throughput optimization problems based on the

allocation of cell bandwidth of (3.22), (3.23) and (3.26) to (3.29) are considered for

the application of SLP. The problems are linearized by assuming that the power ratios

resulting from the bandwidth allocation b(l−1) of iteration l−1 are constant for iteration

l. The resulting LP is solved using the simplex algorithm, obtaining the optimum cell

bandwidth allocation b∗(l)
of iteration l. The cell bandwidth allocation b(l) of iteration

l is determined from the cell bandwidth allocation b(l−1) of the previous iteration and

the optimum cell bandwidth allocation b∗(l)
of the current iteration according to

b(l) = (1 − ρslp)b
(l−1) + ρslp · b∗(l)

, 0 ≤ ρslp ≤ 1 . (4.22)

Parameter ρslp plays an important role for the algorithm and has to be chosen carefully.

It has two opposite effects on the performance of the algorithm. The smaller ρslp is

chosen, the slower the algorithm converges. On the other hand, the accuracy of the

result increases with smaller ρslp. As a consequence, a compromise between speed and

quality of the result has to be found. Figure 4.5 shows exemplary performance results

of SLP applied to a cellular network with 21 cells and the remaining parameters from

Table 2.1 and for different values of ρslp. The relation between speed of convergence

and ρslp is shown in Figure 4.5(a), the inverse relation between ρslp and accuracy of

the solution is shown in Figure 4.5(b), which shows the MSE in terms of the difference

between two consecutive iterations.

4.3.5 Distributed Power Allocation

The capacity optimization problems of (3.24) to (3.27) require a second step that

determines the optimum cell transmit powers using (3.13) and based on the optimum

power ratios from the previously solved optimization problem, cf. Section 3.4.2. This

section presents for this second step a distributed approach, such that the automatic

capacity optimization can be implemented fully distributed.

Much research has been carried out in the field of transmit power allocation to single

users, for example in [Zan92a,Zan92b,FM93,GZ94, JK00]. Using the cell-centric net-

work model, these approaches can be applied to the allocation of transmit power to the
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Figure 4.5. Exemplary performance results of SLP applied to a cellular network with
21 cells. The relations between speed of convergence and ρslp as well as the relation
between accuracy of the solution in terms of MSE between consecutive iterations and
ρslp are shown.

cells of a cellular radio network. In this section, the Distributed Power Control (DPC)

algorithm suggested by [FM93] in the formulation of [JK00,ZK01] is applied to solve the

determination of the transmit power allocation from the power ratios as it is required

in (3.24) to (3.27).

The algorithm proposed by [FM93] is an iterative algorithm that requires only local

knowledge about channel gains for the determination of the transmit powers. With

M, N ∈ RNc×Nc and Γ̌ = Γ∗ for (3.24) and (3.25) and Γ̌ = Γ̃ for (3.26) and (3.27),

respectively, and according to the formulation of [JK00] observing the nomenclature

used in this thesis, an iterative approach that solves (3.13) is given by

p(l+1) = M−1Np(l) + M−1diag (n) Γ̌ . (4.23)

It can be shown that the algorithm of (4.23) converges if M and N are chosen such

that for the spectral radius ρ (M−1N) < 1 holds [ZK01].

In accordance with [ZK01] and in order to apply this approach to the cell-centric model

and to solve (3.13), the definitions M = INc and N = diag
(

Γ̌
)

diag (β)E are chosen.

With this definitions and due to the constraints of the optimization problem carried out

previously, the requirement ρ (M−1N) < 1 is fulfilled, cf. (3.24) to (3.27). Regarding

the matrix formulation of (2.14) given by P̄I = diag (β)Ep, (4.23) can be rewritten to

p(l+1) = INcdiag
(

Γ̌
)

P̄
(l)
I + INcdiag (n) Γ̌ (4.24)
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Considering a single row of the linear system of equation of (4.24) and resolving (2.10)

for P̄I,i, (4.24) can be further simplified according to

P
(l+1)
tx,i = Γ̌iP̄

(l)
I,i + PNΓ̌i

= Γ̌i

(

P
(l)
tx,i

Γi
− PN

)

+ PNΓ̌i

= Γ̌i

Γi
P

(l)
tx,i .

(4.25)

It can be seen from (4.25) that the presented distributed power allocation algorithm

requires at each cell i only measurements of the power ratio Γi. Thus, the optimum

transmit power of each cell can be achieved in a distributed way and without any

coordination between the cells and using only local measurements. Note that due to

the constraints of the previously solved optimization problem, the maximum power

constraint is observed by the transmit power allocation obtained with this algorithm,

cf. (3.24) to (3.27). General investigations on convergence speed and extensions of the

presented approach to increase convergence speed can be found in [JK00,ZK01].

4.4 Local Approach

Cellular radio networks are set in a heterogeneous environment. As a consequence, in

some areas covered by the network, such as urban areas or areas containing large roads,

for example, large capacity demand inhomogeneities will be present while in other areas,

such as rural areas, for example, only little dynamics will happen. This section presents

a concept that allows the separate treatment of local areas with automatic capacity

optimization approaches for SONs.

Based on the observations of different capacity demand inhomogeneities in different

areas, the network can be divided into areas in that automatic capacity optimization

will provide high gains and into areas in which automatic capacity optimization will

have little effect, compared to a static resource allocation. The areas of high effect

of automatic capacity optimization are in general limited by areas of low effect of

automatic capacity optimization.

A concept of great practical relevance for automatic capacity optimization approaches

for SONs can be derived from these considerations. This concept envisions static re-

source allocations for all areas for that low performance gain from automatic capacity

optimization is expected. Thus, rural areas with little population or areas covered with

forests, for example, will be served with static resource allocations. As a consequence,

the areas in which automatic capacity optimization is expected to achieve high gains,
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such as cities and areas with large traffic infrastructure, for example, are islands iso-

lated from each other by areas with static resource allocations. Within each of these

islands, any of the algorithms of this chapter can be applied. Since the islands are

expected to be small compared to the total network, even the application of central

algorithms may be of relevance. Furthermore, the separation of the islands that apply

automatic capacity optimization approaches for SONs by areas with static allocations

increases the robustness of SONs since it assures that possible problems resulting from

the automatic capacity optimization are limited to a local extent.
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Chapter 5

Performance Analysis

5.1 Introduction

In order to validate the developed automatic capacity optimization approaches and

in order to gain insight into their behavior and performance, simulations are carried

out. In this thesis, two different simulation approaches are employed. Section 5.2

carries out a functional analysis that uses simple and unambiguous scenarios in order

to obtain insight into the general behavior of the proposed approaches and in order to

achieve a deeper understanding of the functioning of the resource allocation techniques

in connection with capacity optimization in inhomogeneous scenarios. Additionally,

Section 5.3 carries out a real-world analysis that uses measurement data to construct a

complex real-world scenario that is used to assess the performance gain of the capacity

optimization approaches that can be expected in real-world application.

Throughout this chapter, the assumption of uncoordinated bandwidth allocations

treats the state of the art scheduling based approaches for the adaptation of the net-

work to changing capacity demands, as discussed in Section 2.2. Assuming coordinated

bandwidth allocations, the proposed automatic capacity optimization approaches for

SONs are considered, according to the hierarchic concept for coordination of automatic

capacity optimization and scheduling of Section 2.2. As a consequence, the compari-

son of state of the art scheduling based approaches and automatic capacity optimiza-

tion approaches for SONs is carried out by comparing the performance achieved with

uncoordinated bandwidth allocations to the performance achieved with coordinated

bandwidth allocations.

5.2 Functional Analysis

For the functional analysis and for the investigation of the general behavior of the

capacity optimization approaches, a simple and clear simulation approach with appro-

priate scenarios that enables proper and unambiguous interpretation of the simulation

results is required. Section 5.2.1 proposes a simulation approach and suited scenarios

that allow to relate scenario properties with the behavior of the different approaches
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and, thus, enable clear and unambiguous interpretation of the results. The evaluation

of the approaches and resource allocation techniques of Chapter 3 is carried out us-

ing this simulation approach and the simulation results are presented with focus on

different aspects: Section 5.2.2 compares state of the art scheduling based approaches

with the new automatic capacity optimization approaches for SONs, Section 5.2.3 dis-

cusses the effect of different scheduling strategies on the performance of the capacity

optimization approaches, Section 5.2.4 investigates the performance of the different ca-

pacity optimization approaches with respect to the distribution of the inhomogeneous

capacity demand and in Section 5.2.5, the QoS performance of the different capacity

optimization approaches is evaluated.

5.2.1 Simulation Approach and Scenarios

The crucial point in connection with resource allocating capacity optimization is the

ability of the capacity optimization approaches to adjust the resource allocation of the

network to inhomogeneous user distributions and inhomogeneous capacity demands.

This depends strongly on the capabilities of the resource allocation techniques to match

the resource allocation to the capacity demand distribution. This section proposes a

simulation approach and suited scenarios to assess and investigate the performance

of capacity optimization approaches in cellular networks with inhomogeneous capac-

ity demand distribution and to assess the abilities of the different resource allocation

techniques to match the different inhomogeneous capacity demand distributions.

In order to consider inhomogeneous capacity demand distributions, so-called hotspot

(HS) scenarios are used. In HS scenarios, areas with increased capacity demand, so-

called hotspots, exist, such that the cells in HSs, which are called HS cells, experience

higher capacity demand than the other cells. The increased capacity demand in the

HS cells is assumed to result from an increased number of users that request service.

This way, an inhomogeneous user distribution is regarded. The strength of a HS can

be measured in terms of the number Nhs of users of the HS cells and the number N0

of users of the non-HS cells. For this purpose, the HS strength ρhs defined by

ρhs =
Nhs

N0

(5.1)

is introduced. Note that for the maximization of the number of users, the specifica-

tion of ρhs is sufficient since the actual number of users in HS cells and non-HS cells

result from the optimization. In network throughput maximization, however, the cell

throughputs result from the optimizations, such that the total number of users in the

scenario has to be specified additionally.
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In practice, different situations concerning the distribution and the size of the HSs arise

and require different capabilities of the capacity optimization approaches. Large HSs

consisting of clustered HS cells require algorithms that are able to shift capacity over

a distance of several cells towards the HS cells. For the optimization of a scenario with

several small and distributed HSs, however, the algorithms should draw capacity from

cells within a short distance from the HSs, such that only few cells that are located

close to the HS cells are affected.

As a consequence of these considerations, the three different scenarios of Figure 5.1

have been identified as relevant for simulations. The Single HS Scenario of Figure

5.1(a) contains only a single HS cell. It is suited to generally investigate the capability

of a resource allocation technique to cope with inhomogeneous capacity demand dis-

tributions and its ability to shift capacity to a HS. The Cluster HS Scenario of Figure

5.1(b) models a bigger HS that expands over several neighbored cells. It allows to

show the ability of a resource allocation technique to shift capacity over the distance of

several cells. The third scenario is the Multi HS scenario of Figure 5.1(c) with several

small and distributed hotspots. With this scenario, the ability of a resource allocation

technique to concentrate capacity from neighbored cells can be evaluated. The scenar-

ios of Figure 5.1 can be considered as basic scenarios and, therefore, as building blocks

of complex scenarios, such that complex scenarios can be broken down into a weighted

combination of the basic scenarios of Figure 5.1.

(a) Single HS Scenario. (b) Cluster HS Scenario. (c) Multi HS Scenario.

Figure 5.1. Simulation scenarios for functional analysis.

Behavior and performance results of all capacity optimization approaches are studied

for each of the scenarios of Figure 5.1 separately and the ability and properties of

each capacity optimization approach and the respective resource allocation techniques

concerning the shift of capacity over large and short distances is evaluated indepen-

dently. Considering a complex scenario that contains several of the basic scenarios and

assuming that the basic scenarios are spatially separated, conclusions concerning the

performance of a capacity optimization approach and the respective resource allocation

technique in the complex scenario can be drawn based on the results obtained for the

basic scenarios and considering the construction of the complex scenario from the basic

scenarios.
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The size of the scenarios used in the simulations is 39 cells. A wrap-around technique

[ZK01] which wraps the scenarios around a torus is applied, such that each cell appears

as if it was placed in the middle of the scenarios, which avoids border effects. The

simulation parameters are summarized in Table 5.1, they are typical for LTE-based

cellular radio networks in an urban environment. The total number of users is chosen

Table 5.1. Simulation parameters for functional analysis.

Parameter Value
Cell radius Si 250 m
Number NC of cells 39
Reuse distance D for coord. bandwidth allocations 3Si

Height of the BSs 32 m
Height of the UEs 1.5 m
Capacity demand distribution HS scenarios

User position probability p
(i)
r,ϕ (r, ϕ) over the cell area uniform

Carrier frequency 1.9 GHz
Propagation model 3GPP Urban Macro
Shadow fading variance σ2

sh 8 dB
Noise PSD -167 dBm

Hz

System bandwidth Bsys 10 MHz
Minimum user bit rate Ru,min 100 kbit

s

Target cell outage probability p̃out 0.05
Scheduling strategies PF, FT
Total number of users for throughput max. (uncoord., FT) 780
Total number of users for throughput max. (all others) 1950
Minimum power ratio with transmit power allocation 100 dB
Maximum power ratio with transmit power allocation 150 dB

Target power ratio Γ̃i for coord. bandwidth allocations 127 dB

Target power ratio Γ̃i for uncoord. bandwidth allocations 115 dB
Maximum transmit power Pmax 46 dBm

such that the capacity optimization problems of Chapter 3 are feasible in the scenarios

of Figure 5.1 and with the parameters of Table 5.1. The simulation results of this

chapter are presented such that they can be compared also for different total numbers of

users. The target power ratios Γ̃i are chosen using the non-iterative approach presented

in Section 4.2.5.

According to the reuse distance D for coordinated bandwidth allocations as given by

Table 5.1, the HS in the Cluster HS scenario consists of three HS cells, since this

corresponds to a NG, according to Section 3.2. This way, the Cluster HS scenario

represents a challenging user distribution for the capacity optimization approaches

since the cells of the HS cannot reuse any resources. Concerning the Multi HS scenario,



5.2 Functional Analysis 89

also 3 HS cells exist for reasons of comparability. The distance between the HS cells is

equal to the reuse distance D, such that also in the Multi HS scenario, a challenging

user distribution exists, since the HS cells interfere with each other.

The PBR- and PBN-Characteristics required by the capacity optimization approaches

are determined from measurements collected in a homogeneous scenario and using the

approaches for practical implementation proposed in Section 2.5. The simulations are

done such that the HS strength ρhs is varied and the capacity optimization is carried

out for the different HS strengths. Performance results are shown in terms of the

spectrum efficiency of the network as a function of ρhs. For the maximization of the

number of users, the spectrum efficiency ǫNnw of the network in bits/s/Hz/cell given by

ǫNnw =
Nnw (b,Γ) · R̄(i)

u

Bsys ·Nc
(5.2)

is used. For network throughput maximization, the spectrum efficiency ǫRnw of the

network in bits/s/Hz/cell given by

ǫRnw =
Rnw (b,Γ)

Bsys ·Nc

(5.3)

is used. All capacity optimization approaches from Chapter 3 are considered and

used with coordinated bandwidth allocations as well as uncoordinated bandwidth al-

locations, if applicable according to the considerations of Section 3.5. The central

algorithms from Section 4.2 are used to solve the capacity optimization problems. For

all scenarios, the performance of a static homogeneous resource allocation [ZK01] with

reuse distance D is determined as reference. In the static scenario, the cell bandwidth

Bi = Bsys

3
and the transmit power Ptx,i = Pmax is allocated to each cell.

According to the definition of the cell-centric network model of Chapter 2, the resource

allocations obtained using the cell-centric network model observe the minimum QoS

requirement Ru,min of the users. Also the solving algorithms of chapter 4 observe the

minimum QoS requirement of the users. Prerequisite to both, however, is that the SINR

measurements collected for the determination of PBR- and PBN-Characteristics, as

proposed in Section 2.5, represent the interference situation of the users of the cell. The

interference situation of the users, however, depends on the resource allocations of the

cells, such that the adaptation of the resource allocations of the cells in order to optimize

the network may change the interference situation of the users. The measurements may

then no longer represent the actual interference situation of the users, such that the

cell-centric network model can get inaccurate and the minimum QoS provided by the

cells can be affected. As a consequence, the performance of the cells with respect to
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the QoS of the users has to be evaluated in order to asses the influence of the network

adaptation on the QoS of the users.

The evaluation of the QoS of the users requires the consideration of individual users.

In order to verify the capacity optimization results especially with respect to the user

QoS requirements, MC simulations are carried out. For this purpose, realizations of

the user distributions are generated for each cell according to the user position prob-

ability p
(i)
r,ϕ (r, ϕ) and the number Ni of users of the cell. Considering the propagation

model and the scheduling strategy, the user bit rate R
(i)
u,mc,n achievable for each of the

users is determined given the resource allocation resulting from the previously carried

out capacity optimization. The MC simulations are, thus, carried out at user level,

considering each user individually and determining the QoS of each user. This way,

violations of minimum QoS requirements can be identified and the reliability of the

proposed capacity optimization approaches with respect to assuring minimum QoS

requirements can be assessed.

The minimum QoS of the users of a cell is determined according to the definition of cell

outage probability pout,i in the cell-centric network model of (2.32) and (2.42). With

these definitions, the minimum QoS requirement is observed if a fraction of at most

p̃out of the users achieve bit rates that are below the minimum user bit rate Ru,min.

Thus, the p̃out-percentile R
(i)
u,mc,p̃out

of the user bit rates R
(i)
u,mc,n obtained in the MC

simulations as given by

R
(i)
u,mc,p̃out

=
{

Ru,mc

∣

∣P
(

R(i)
u,mc < Ru,mc

)

= p̃out

}

(5.4)

is evaluated for each cell in order to verify the different capacity optimization ap-

proaches with respect to the QoS of the users.

Throughout this chapter, the expression of observing minimum QoS requirements of

the users denotes that the p̃out-percentile R
(i)
u,mc,p̃out

of the user bit rate is equal to or

larger than the minimum user bit rate Ru,min. For the actual evaluation of the QoS

performance, the average R̄
(i)
u,mc,p̃out

of the p̃out-percentile R
(i)
u,mc,p̃out

of the user bit rate

over all cells, defined by

R̄u,mc,p̃out =
1

Nc

Nc
∑

i=1

R
(i)
u,mc,p̃out

, (5.5)

is used to asses the QoS performance considering the whole network. The worst case

QoS performance in the network is evaluated using the minimum Řu,mc,p̃out of the p̃out-

percentile R
(i)
u,mc,p̃out

of the user bit rate over all cells, as given by

Řu,mc,p̃out = min
i

{

R
(i)
u,mc,p̃out

}

. (5.6)
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5.2.2 Comparison of Capacity Optimization Approaches

This section evaluates the performance of the different capacity optimization ap-

proaches in order to generally investigate their behavior in scenarios with inhomo-

geneous capacity demand. The Single HS scenario is applied for this purpose since

it provides a simple capacity demand distribution that allows a clear interpretation

of the results. The simulation results are, furthermore, applied to compare state of

the art scheduling based approaches with automatic capacity optimization approaches

for SONs. The analysis is carried out separately for the different optimization goals.

First, the maximization of the total number of users that can be supported is investi-

gated. Subsequently, the approaches for the maximization of the network throughput

are evaluated.

Note that for sake of simplicity and clearness of presentation, only results for PF

scheduling are shown in this section. The findings for FT scheduling, however, do not

differ qualitatively. Section 5.2.3 contains the corresponding performance results for

FT scheduling.

Maximum Total Number of Users

In the maximization of the number of users in HS scenarios, the applied optimization

problems in general always have a solution since the total number of users in the

scenario reduces if the constraints are not observed. The spectral efficiency ǫNnw can,

therefore, be determined for every hotspot strength ρhs, such that the performance of

the different capacity optimization approaches for the maximization of the number of

users is evaluated using the spectral efficiency ǫNnw of (5.2) of the network.

Figure 5.2 shows the spectral efficiency ǫNnw of the network achieved by the differ-

ent capacity optimization approaches for the maximization of the number of users of

Chapter 3 for different HS strengths ρhs in the Single HS scenario. PF scheduling is as-

sumed and coordinated as well as uncoordinated bandwidth allocations are considered.

The different resource allocation techniques are identified by different markers, perfor-

mance results obtained with coordinated bandwidth allocations are visualized by solid

red lines, results obtained with uncoordinated bandwidth allocations are illustrated by

dashed blue lines. A static homogeneous resource allocation as described in Section

5.2.1 is considered as reference, it is represented by the solid green line.

The figure shows that for a HS strength of one, i.e. for a homogeneous capacity demand

distribution, state of the art scheduling based approaches clearly outperform automatic
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Figure 5.2. Performance results of the maximization of the number of users in the
Single HS scenario and for PF scheduling.

capacity optimization approaches for SONs. This result is expected since coordination

of the bandwidth allocations leads to lower frequency reuse. Furthermore, users at the

cell border, which are influenced most by ICI, do not effect the overall cell performance

too much, since PF scheduling is assumed. The effect of uncoordinated bandwidth

allocations in terms of uncontrolled ICI is, therefore, acceptable in the homogeneous

scenario and compensated by the higher frequency reuse achievable with uncoordinated

bandwidth allocations. Among the different resource allocation techniques, small dif-

ferences can be observed for the homogeneous capacity demand distribution, which

result from different initializations, such as the choice of the target power ratios in the

case of the joint resource allocation with fixed power ratios, for example.

With increasing inhomogeneity of the capacity demand, as indicated by increasing HS

strength ρhs, the advantage of coordination of the bandwidth allocations, which is the

lower and controlled ICI, increases. This is true especially from the point of view of

the HS cell, which is capable of accommodating more users due to the lower ICI. The

decreased frequency reuse due to the coordination of the bandwidth allocations is of less

importance in this context, since non-HS cells have lower capacity demands and, thus,

can afford to use less resources in favor of the heavily loaded HS cells. As a consequence,

the main disadvantage of the coordination of the bandwidth allocations in homogeneous

scenarios loses weight with increasing inhomogeneity of the capacity demand, such

that the performance differences between coordinated and uncoordinated bandwidth

allocations quickly reduce and automatic capacity optimization approaches for SONs

outperform the state of the art scheduling based approaches already in scenarios with

low to moderate HS strengths, as can be seen from Figure 5.2.
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This explanation does not hold for transmit power allocation, which shows very high

performance for uncoordinated bandwidth allocations, according to Figure 5.2. The

reason for this behavior is the very large range allowed for the power ratio, cf. Table

5.1. As a consequence of this large range, power ratio differences of more than 30 dB

may arise even between neighbored cells. Furthermore, the lower border of the power

ratio range has been set to a very low value since otherwise, the power allocating ca-

pacity optimization problems quickly become infeasible, even for small HS strengths.

The range as given in Table 5.1 has been chosen despite these critical points in order

to be able to consider transmit power allocation in the functional analysis. For prac-

tical application, however, the chosen range is not suited, since the large power ratio

differences that arise due to the large range for power ratio Γi may lead to very low

SINR γ
(i)
n at the receivers, according to (2.11), which may be problematic for physical

layer transmission techniques. Furthermore, the lower border of the power ratio range

of 100 dB is extremely low since in the considered scenarios with the parameters of

Table 5.1, the pathloss between BS and a UE at the cell border may easily exceed 120

dB, such that a power ratio of 100 dB, for example, results in a very low SINR γ
(i)
n at

the receiver, according to (2.11).

To summarize the findings for the maximization of the number of users that can be sup-

ported by the network, it should be mentioned that automatic capacity optimization

approaches for SON outperform state of the art scheduling based approaches for low

to medium HS strengths. Transmit power allocation may lead to large transmit power

differences even between neighbored cells, which can be problematic for transmission

techniques, such that transmit power allocation is not suited for practical implemen-

tation.

Maximum Network Throughput

With network throughput optimization, the definition of a fixed total number of users

in the scenario is required additionally to the specification of the hotspot strength, ac-

cording to Section 5.2.1. Since the total number of users in the scenario is fixed, there

exists a maximum hotspot strength or maximum level of inhomogeneity of the capacity

demand, respectively, beyond that the optimization problems applied for throughput

optimization are infeasible. The maximum hotspot strength or the maximum capac-

ity demand inhomogeneity, respectively, depends on the resource allocation technique,

such that additionally to the spectral efficiency ǫRnw of the network, the maximum HS

strength that can be handled by a capacity optimization approach can be used to eval-

uate the performance of the capacity optimization approaches for network throughput

maximization.
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Figure 5.3 shows the performance results of the capacity optimization approaches for

the maximization of the network throughput of Chapter 3 in the Single HS scenario.

PF scheduling is assumed and the static homogeneous resource allocation has been

included as reference in the figure. The figure shows the spectral efficiency ǫRnw of the

network achieved by the capacity optimization approaches for different HS strengths

ρhs. Furthermore, the end points of the curves give the maximum HS strength that

can be handled. Line styles, colors and markers are chosen as for the previous discus-

sion of the performance of the maximization of the total number of users. Note that

cell bandwidth allocation and joint resource allocation with fixed power ratio are not

considered with uncoordinated bandwidth allocations since these resource allocation

techniques are not capable of maximizing the network throughput using uncoordinated

bandwidth allocations, as discussed in Section 3.5.
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Figure 5.3. Performance results of the network throughput maximization in the Single
HS scenario and for PF scheduling.

Evaluating Figure 5.3 with respect to the maximum HS strength, it can be seen how

the different resource allocation techniques can cope with different degrees of capacity

demand inhomogeneity. The static resource allocation can handle HS strengths of up

to 3, transmit power allocation with coordinated bandwidth allocations can handle HS

strengths of up to 6, coordinated cell bandwidth allocation can handle HS strengths of

up to 8 and the joint resource allocation approaches with coordinated bandwidth allo-

cations can handle HS strengths of at least 10. Thus, all resource allocation techniques

outperform the static resource allocation with respect to the ability to cope with in-

homogeneous capacity demand distributions. The joint resource allocation approaches

are, furthermore, capable of adapting the network to the inhomogeneous capacity de-

mand distribution without sacrificing much network capacity.
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Comparing uncoordinated and coordinated bandwidth allocations or state of the

art scheduling based approaches and automatic capacity optimization approaches for

SONs, respectively, Figure 5.3 again shows that approaches with uncoordinated band-

width allocations outperform approaches with coordinated bandwidth allocations for

homogeneous capacity demand distributions. Furthermore, even for medium to high

HS strengths, approaches with uncoordinated bandwidth allocations outperform ap-

proaches with coordinated bandwidth allocations. The reason for this difference, com-

pared to the maximization of the total number of users, is that apart from areas close

to a HS cell, the scenario mostly contains a homogeneous capacity demand distribu-

tion, according to Figure 5.1(a). While the approaches with coordinated bandwidth

allocations achieve high performance gains in the areas with inhomogeneous capacity

demand, the approaches with uncoordinated bandwidth allocations perform better in

the areas with homogeneous capacity demands. Since the scenario mostly consists of

areas with homogeneous capacity demand, the locally achieved significant gains of the

automatic capacity optimization approaches for SONs appear in the overall network

performance only for very strong HS strengths ρhs, as can be seen from Figure 5.3.

As in the evaluation of the maximization of the total number of users, transmit power

allocation performs very well for uncoordinated bandwidth allocations. The reason for

this high performance is, as for the maximization of the total number of users, the large

range of values and the low values allowed for Γi, which may result in large transmit

power differences among the cells and in low SINR γ
(i)
n of the users. As a consequence,

also for network throughput maximization, transmit power allocation is not suited for

practical application.

To summarize the investigations on the maximization of the network throughput, it

should to be mentioned that the capacity optimization approaches are capable of adapt-

ing a cellular radio network even to strong inhomogeneities in the capacity demand.

Considering the maximum HS strength and the capacity in terms of spectral efficiency

ǫRnw of the network, it is found that especially the joint resource allocation techniques

with coordinated bandwidth allocations perform very well since they are able to cope

with high inhomogeneity in the capacity demand without significantly sacrificing net-

work capacity. Furthermore, it was reasoned that with network throughput maxi-

mization, gains are achieved especially locally in areas of high inhomogeneity in the

capacity demand. As for the maximization of the total number of users, transmit power

allocation is not suited for practical application
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5.2.3 The Effect of Scheduling

The scheduling strategy decides how the radio resources of a cell are distributed to the

users of the cell. According to Section 1.2, scheduling has great effect on the capacity of

a cell and, therefore, also on the performance of the capacity optimization approaches.

This section presents the results of the performance analysis of the different capacity

optimization approaches for FT scheduling. The results are compared to the results

for PF scheduling presented in Section 5.2.2 and interpreted with respect to the effect

of the different scheduling strategies on the capacity optimization approaches.

The general difference between PF scheduling and FT scheduling is the metric that

is used to express fairness. While PF scheduling distributes the resources fair among

all users, according to Section 2.3, FT scheduling assures a fair distribution of the cell

throughput, such that all users achieve the same user bit rate. As a consequence, users

with worse reception conditions are allocated more resources with FT scheduling, such

that users with bad reception conditions have a larger share of the resources of the cell

and, therefore, more impact on the overall cell performance than with PF scheduling.

The effect of FT scheduling of shifting more influence to users with bad reception condi-

tions leads in particular to more influence of ICI, since cell edge users are most affected

by ICI and, at the same time, are the users with usually bad reception conditions.

In this context, coordinated bandwidth allocations are expected to gain importance,

since they allows to control ICI to a certain extent. In order to verify this expectation,

Figure 5.4 shows the performance results of the capacity optimization approaches for

the maximization of the total number of users and for network throughput optimiza-

tion, respectively, both in the Single HS Scenario and for FT scheduling. The legend

of Figure 5.4(a) also holds for Figure 5.4(b) and line styles, colors and markers are as

in Section 5.2.2. Again, the static homogeneous resource allocation has been included

as reference in the figures.

Figure 5.4 shows that assuming FT scheduling, the automatic capacity optimization

approaches for SONs generally outperform the state of the art scheduling based ap-

proaches, even for the homogeneous capacity demand distribution. The reason behind

this observation is the increased effect of ICI, compared to PF scheduling, which is

effectively mitigated by the automatic capacity optimization approaches for SONs.

Concerning the network throughput maximization, the performance differences of the

approaches in terms of the maximum HS strength that can be handled are clearly visi-

ble. Note that compared to Figure 5.3, the spectral efficiency as well as the maximum

HS strengths that are achieved are lower than for PF scheduling, which is also due to

the increased influence of ICI.
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(a) Maximization of the number of users.
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(b) Network throughput maximization.

Figure 5.4. Performance results of the maximization of the number of users and of the
network throughput maximization in the Single HS Scenario and for FT scheduling

The comparison of Figure 5.4(a) and Figure 5.4(b) with Figure 5.2 and Figure 5.3,

respectively, furthermore allows to assess the importance of ICIC in connection with

users with bad reception conditions. It shows that the more influence users with

bad reception conditions have, the more importance gains ICIC and, consequently,

the automatic capacity optimization approaches for SONs. The influence of users

with bad reception conditions increases with throughput fairness and depends on the

distribution of the users over the cell area. As a consequence, automatic capacity

optimization approaches for SONs are of higher importance in areas where many users

experience bad reception conditions, such as areas with many users at the cell borders

or in strongly attenuated environments, such as indoor environments, for example.

5.2.4 Influence of the HS Distribution

Also the location of the HS cells relative to each other is of relevance for the performance

of the capacity optimization approaches. This section evaluates the different capacity

optimization approaches in the Cluster HS Scenario and in the Multi HS Scenario

of Figure 5.1 in order to investigate behavior and performance of the approaches for

different distributions of the HS cells.

Note that with uncoordinated bandwidth allocations, the HS scenarios differ only with

respect to the density of the HSs but have no fundamental differences. For coordi-

nated bandwidth allocations, however, the clustering of the HS cells in the Cluster

HS Scenario and the distribution of the HSs in the Multi HS Scenario do exhibit fun-

damental differences since the HS cells belong to the same NG, as in the case of the
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Cluster HS Scenario, or to different NGs, as in the case of the Multi HS Scenario. As

a consequence, the HS distribution is for the capacity optimization approaches using

coordinated bandwidth allocations of significant influence, but for the capacity opti-

mization approaches using uncoordinated bandwidth allocations only of minor effect.

Therefore, only coordinated bandwidth allocations are considered in this section.

Figure 5.5 shows the performance results of the capacity optimization approaches for

the maximization of the number of users in the Cluster HS Scenario and in the Multi

HS Scenario with coordinated bandwidth allocations and for FT scheduling. The figure

shows significant performance differences depending on scenario and resource alloca-

tion technique. In particular, transmit power allocation significantly outperforms all

other resource allocation techniques in the Cluster HS scenario, while in the Multi

HS scenario, transmit power allocation performs clearly worse than the other resource

allocation techniques.
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(a) Cluster HS scenario.
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Figure 5.5. Performance results of the maximization of the number of users in the Clus-
ter HS Scenario and in the Multi HS Scenario with coordinated bandwidth allocations
and for FT scheduling.

An explanation for these observations can be found considering the principles of op-

eration of the different resource allocation techniques as discussed in Section 3.5. It

is reasoned there that transmit power allocation shifts capacity over larger distances

even from cells that are located further away. Cell bandwidth allocation, on the other

hand, draws capacity only from neighbored cells in the sense of neighborhood as defined

in Section 3.2. Putting these considerations in the context of coordinated bandwidth

allocations, it becomes clear that depending on the resource allocation technique and

on the HS scenario, the HS cells may be mutually dependent and may compete with

each other in the adaptation to the inhomogeneous capacity demand situation, causing

performance degradation.
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More specifically, for cell bandwidth allocation in the Cluster HS scenario, this means

that every HS cell competes with the other HS cells for more cell bandwidth, such that

the HS cells limit each other in obtaining more resources to fulfill the increased capacity

demand. As a consequence, the HS cells in the Cluster HS Scenario are mutually de-

pendent and compete with each other in the adaptation to the inhomogeneous capacity

demand, which leads to performance degradation. In fact, the HS cluster appears for

cell bandwidth allocation as a homogeneous scenario, such that cell bandwidth alloca-

tion performs in the Cluster HS scenario the same as the static resource allocation, as

can be seen from Figure 5.5(a).

For transmit power allocation, the situation is different. Since, due to coordination of

the bandwidth allocations, the resource allocations of the HS cells are orthogonal in

the Cluster HS scenario, capacity can be accumulated at each HS cell using transmit

power allocation without competing with any of the other HS cells. The HS cells in

the Cluster HS Scenario are, thus, independent from the point of view of transmit

power allocation, such that no HS cell limits another HS cell in adapting to the higher

capacity demand. As a consequence, transmit power allocation clearly outperforms all

other resource allocation techniques in the Cluster HS Scenario, as can be seen from

Figure 5.5(a).

Similar considerations can be made for the Multi HS scenario. For cell bandwidth

allocation, the HS cells are now independent and do not compete with each other for

resources since they are no longer neighbors. Cell bandwidth allocation is, therefore,

capable of achieving good performance in the Multi HS Scenario. From the point of

view of transmit power allocation, however, the HS cells are now dependent since they

interfere with each other. Consequently, the HS cells compete with each other for more

transmit power and limit each other in achieving high cell capacity, which leads to

the performance degradation of transmit power allocation in the Multi HS scenario as

shown in Figure 5.5(b).

Special consideration is required for the joint resource allocation approaches. Accord-

ing to Section 3.4.3, the joint approaches are based on cell bandwidth allocation but

additionally contain mechanisms to adapt transmit power. Thus, the joint approaches

show similar performance as the cell bandwidth allocation but may very likely outper-

form the cell bandwidth allocation. This becomes especially clear regarding the joint

resource allocation technique with fixed PSD ρtx,i, which allocates more cell bandwidth

as well as more transmit power to cells with higher capacity demand. As a consequence,

it is capable of exploiting to a certain extent the advantage of transmit power alloca-

tion in the Cluster HS Scenario as well as the advantages of cell bandwidth allocation
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in the Multi HS Scenario, which results in a performance advantage compared to cell

bandwidth allocation, as can be seen from Figure 5.5.

Figure 5.6(b) shows the performance of the different capacity optimization approaches

for network throughput maximization in the Cluster HS scenario and in the Multi HS

Scenario with coordinated bandwidth allocations and for FT scheduling. Using the
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(a) Cluster HS scenario.

0 2 4 6 8 10
0.4

0.6

0.8

1

1.2

1.4

 

 

ρhs

ǫ R
n
w

in
b
it

/s
/H

z/
ce

ll

Power
Bandwidth
Fixed Γi

Fixed ρtx,i

Static
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Figure 5.6. Performance results of the network throughput maximization in the Cluster
HS Scenario and in the Multi HS Scenario with coordinated bandwidth allocations and
for FT scheduling.

maximum HS strength that can be handled by the different resource allocation tech-

niques to compare the different capacity optimization approaches for the maximization

of the network throughput with each other, it can be seen from the figure that, as

before, transmit power allocation outperforms all other resource allocation techniques

in the Cluster HS Scenario in terms of the maximum HS strength. For higher HS

strengths, transmit power allocation outperforms the other resource allocation tech-

niques also in terms of network capacity or spectrum efficiency ǫRnw , respectively. In

the Multi HS Scenario, cell bandwidth allocation and the joint allocation techniques

show superior performance. Among these approaches, the joint resource allocation

with fixed power ratio Γi performs best for high HS strengths.

To summarize, in this section it is shown that transmit power allocation performs best

with clustered HS cells, while cell bandwidth allocation and joint resource allocation

performs best in scenarios with distributed HS cells. Note that for sake of simplicity

and clearness of presentation, only results for FT scheduling are shown in this section.

The findings for PF scheduling, however, do not differ qualitatively and lead to the same

results, as can be seen from the corresponding performance results for PF scheduling

from Appendix A.2.1.
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5.2.5 QoS Performance Evaluation

For the evaluation of the QoS performance, MC simulations, as described in Section

5.2.1, are used. This section presents and interprets the relevant simulation results.

First, the QoS performance of the maximization of the total number of users is eval-

uated, followed by the evaluation of the QoS performance of the network throughput

maximization.

Maximum Total Number of Users

The results of the MC simulations of the QoS performance of the maximization of

the total number of users in the Single HS Scenario and for PF scheduling are shown

in Figure 5.7 in terms of the minimum Řu,mc,p̃out of the pout-percentile of the user bit

rates achieved in the cells on the left side of the figure and the average R̄u,mc,p̃out of

the pout-percentiles of the user bit rates over all cells on the right side of the figure.

The upper plots show the performance with uncoordinated bandwidth allocations, the

lower plots show the performance with coordinated bandwidth allocations.

According to Figure 5.7, the minimum user bit rate Ru,min as set in Table 5.1 is in gen-

eral assured. Two exceptions, however, apply. The first exception is the joint resource

allocation with fixed power ratios Γi and with uncoordinated bandwidth allocations. It

delivers a user QoS that falls with increasing hotspot strength ρhs below the minimum

requirement, as can be observed in Figure 5.7(a). The decrease in user QoS, however, is

exponentially decaying, which points to a constant offset rather than a general violation

of the minimum QoS requirement. The performance of the joint resource allocation

with fixed power ratios Γi can, therefore, be corrected by considering a weighting factor

with the minimum QoS requirement which compensates the offset.

The second capacity optimization approach that does not yield to the minimum QoS re-

quirement is the joint resource allocation with fixed PSDs ρtx,i, as can be seen from Fig-

ure 5.7(a) and Figure 5.7(c). In contrast to the joint resource allocation with constant

power ratios Γi, however, the decrease in user QoS with increasing hotspot strength

ρhs is linear, such that it cannot be corrected by a weighting of the QoS target. The

reason for this behavior is found in the simulation approach, since the PBR- and

PBN-Characteristics are determined from measurement data collected from the ho-

mogeneous scenario. For larger HS strengths, however, the situation that has to be

adapted to deviates significantly from the situation in which the measurements were

collected, such that the set of measurements, and consequently also the PBR- and
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(c) Coordinated bandwidth allocations, minimum
pout-percentile.
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(d) Coordinated bandwidth allocations, average
pout-percentile.

Figure 5.7. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the user
bit rates of the cells for the maximization of the total number of users in the Single HS
Scenario and for PF scheduling obtained from MC simulations.

PBN-Characteristics, do not represent the current situation, such that errors result.

In practical application, however, measurements are collected constantly, such that

the formation of the HS is accompanied by the collection of measurements and, thus,

represented by the set of measurements, which will reduce the inaccuracy significantly.

The high average QoS performance of the transmit power allocation, as it can be

observed from Figures 5.7(b) and 5.7(d), is typical for transmit power allocation. It

arises in cells that experience high capacity demand since they require high transmit

power in order to assure the observation of the minimum QoS requirement also for users

at the cell borders. The high transmit power leads to high SINR also for other users

which, consequently, achieve high bit rates. Thus, the high average QoS performance

is inherent to transmit power allocation. It is also a reason for the worse performance
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of the transmit power allocation with respect to capacity, as observed previously.

Maximum Network Throughput

For the evaluation of the QoS performance of the network throughput optimization

approaches, the results of the MC simulations are shown in Figure 5.8 for the Single

HS Scenario and for PF scheduling, again in terms of the minimum Řu,mc,p̃out of the

pout-percentile of the user bit rates of the cells and the average R̄u,mc,p̃out of the pout-

percentiles of the user bit rates over all cells. Figure 5.8(a) and Figure 5.8(c) show that
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Ř
u
,m

c,
p̃
o
u
t
in

k
b
it

/s

Power
Fixed ρtx,i

(a) Uncoordinated bandwidth allocations, mini-
mum pout-percentile.
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(c) Coordinated bandwidth allocations, minimum
pout-percentile.
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(d) Coordinated bandwidth allocations, average
pout-percentile.

Figure 5.8. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the user
bit rates of the cells for the maximization of the network throughput in the single HS
Scenario and for PF scheduling obtained from MC simulations.

as long as the maximum HS strength that can be handled by the different resource
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allocation techniques is not exceeded, the minimum QoS requirements are observed

for all capacity optimization approaches and for coordinated as well as uncoordinated

bandwidth allocations. The average QoS over all cells as shown by Figure 5.8(b)

and Figure 5.8(d) is significantly higher than for the maximization of the number of

users. The reason for this behavior is that large areas of the scenario experience a

homogeneous capacity demand distribution, as already mentioned, while at the same

time, the load in these areas is small, which is a consequence of the HS scenarios. Thus,

the cells in the areas with homogeneous capacity demand distribution can provide high

bit rates to their users, resulting in high average QoS.

Note that for sake of simplicity and clearness of presentation, only results for PF

scheduling and the Single HS Scenario are shown in this section. The findings for

the Cluster HS Scenario and for the Multi HS Scenario as well as the findings for FT

scheduling, however, do not differ qualitatively. Appendix A.2.2 shows the performance

results for PF scheduling and the Cluster HS Scenario and the Multi HS Scenario,

Appendix A.2.3 shows the QoS performance results for FT scheduling and all HS

scenarios.

5.3 Real-world Analysis

Additionally to the functional proof and the analysis of strength and weaknesses of the

capacity optimization approaches and the corresponding resource allocation techniques,

the performance evaluation of the capacity optimization approaches under real-world

conditions in order to show the performance gain that can be expected in practical

application is of great importance. This section presents an approach that establishes

a real-world scenario based on throughput measurement data and uses the approach to

obtain real-world simulation results. Section 5.3.1 introduces the simulation approach

and describes which data is used for modeling and building of the real-world scenario.

Section 5.3.2 presents the performance results. Parts of this section have been originally

published by the author in [HKG+10].

5.3.1 Simulation Approach and Modeling Data

Real-word scenarios are very complex. A definition from scratch by considering ev-

ery aspect arising from environmental and morphologic issues is not likely to achieve

high sophistication and is, therefore, not recommended. As an alternative, this section
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presents an approach that is based on throughput measurements, taken during opera-

tion from an existing network, and on prediction data, as it is used for planning and

configuration of the respective part of the network, to define a real-world scenario.

For the real-world scenario of this section, a part of a real 2G/3G cellular mobile radio

network is considered. The rectangular scenario is of size 5.4 km by 9.1 km, contains

126 sectors and is located in the downtown area of a big city. The sectors are distributed

over 46 sites with one to three sectors per site. The simulation area is divided into

a regular grid with a spacing of approximately 32 meters. The grid spacing is the

smallest resolution in which data is available and in which calculations are carried out.

Cell areas and cell borders are determined based on predictions as they are used for

the planning of the network. For this purpose, attenuation estimates are derived for

each grid point and each sector based on predictions of the pilot power strength for

each sector and grid point. The actual pilot power settings used in the operation of the

network are not available, such that a uniform pilot power configuration is assumed

throughout this section. Using the attenuation estimates and considering the pilot

power, the areas covered by each of the sectors are obtained and cell areas and cell

borders are derived. The user position probabilities, i.e. the distributions of the users

within the areas covered by the cells or the sectors, respectively, are obtained based on

an estimate of the user density over the scenario area as it is used for the planning of

the network.

The capacity demand is determined based on downlink throughput measurements that

are available for each sector in intervals of thirty minutes. Due to the combination of

the user density estimation, which is specific for each grid point in the simulation area,

and the traffic measurements, which are specific for the sectors but independent of the

grid points, distribution and fluctuation of the inhomogeneous capacity demand can

be modeled in detail. The throughput measurements are available over a duration of

almost five days. In total, 229 different snapshots of the capacity demand are obtained.

Note that with this method, the traffic that is actually served by the network, but not

the offered traffic, is modeled. However, the method still provides a real-world situation

concerning the inhomogeneous capacity distribution and the capacity variations, such

that it is suited for the purpose of this section.

The proposed automatic capacity optimization approaches are carried out only for sec-

tors that are located within an inner part of the scenario. The size of this inner part

accounts for 22 % of the total area of the simulation scenario and contains approxi-

mately half of the sectors of the scenario. All sectors belonging to the outer area are

assumed to have constant resource allocations and are used as source of interference
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for the inner area such that border effects are avoided in the evaluation of the capac-

ity optimization approaches. Table 5.2 summarizes the parameters of the real-world

simulation approach.

Table 5.2. Simulation parameters for real-world analysis.

Parameter Value
Scenario size 5.4 km x 9.1 km
Total scenario area 49 km2

Size of the inner area 11 km2

Total number of sites 46
Total number of sectors 126
Number of sectors in the inner area 60
Grid spacing 32 m
Carrier frequency 1.9 GHz
System bandwidth Bsys 10 MHz
Minimum user bit rate Ru,min 100 kbit

s

Target cell outage probability p̃out 0.05
Scheduling strategies PF, FT
Total number of users 2500-2700

Target power ratio Γ̃i 105 dB

The simulations are carried out such that the capacity optimization approaches are

applied to each of the snapshots independently. Thus, individual performance results

are obtained for each snapshot and the simulation results are shown as a function of

the snapshot index. As for the functional analysis, the central algorithms of Section

4.2 are applied for the solution of the capacity optimization problems.

In order to be able to better interpret the simulation results, the snapshots are analyzed

with respect to their maximum HS strength of all HSs contained in the scenario. Figure

5.9(a) shows the result. The maximum HS strength is a figure of merit suited to identify

snapshots with inhomogeneous capacity demand distributions and to classify the degree

of inhomogeneity of the snapshot. Additionally, mean and standard deviation of the

HS strength of all HSs of the snapshots are determined, as shown in Figure 5.9(b).

They are used to identify snapshots with close to homogeneous capacity demand since

low values in mean and standard deviation of the strengths of the HSs indicate low

capacity demand inhomogeneity.

The range of forty snapshots considered in Figure 5.9, which covers a period of almost

two days, is chosen for all analysis of this section. The range is selected such that dif-

ferent capacity demand distributions of interest for the evaluated approaches, such as

almost homogeneous and strongly inhomogeneous distributions, are contained. Con-

sidering a broader range than the selected one shows that relevant distributions and



5.3 Real-world Analysis 107

10 20 30 40 50
0

2

4

6

8

10

12

 

 

Snapshot

m
ax

{ρ
h
s}

(a) Maximum HS strength.

10 20 30 40 50
0

0.5

1

1.5

2

 

 

Snapshot

m
ea

n
{ρ

h
s}

,
st

d
{ρ

h
s}

Std. dev.
Mean

(b) Mean and standard deviation of the HS
strengths.

Figure 5.9. Maximum HS strength and mean and standard deviation of the HS
strengths for the considered snapshots.

phenomena observed in the simulation results repeat. Furthermore, calculating average

performance results over this range and over all 229 snapshots yields the same results.

As a consequence, it can be concluded that a broader or different range does not reveal

additional information and the snapshots considered in Figure 5.9 are sufficient for

performance analysis and for the presentation of the results.

5.3.2 Performance Results

The performance results obtained for the real-world scenario in the considered snapshot

range are shown in Figure 5.10 for the maximization of the number of users and for

the maximization of the network throughput, both for PF scheduling as well as FT

scheduling. The legend of Figure 5.10(b) holds for all plots of Figure 5.10. Transmit

power allocation is not considered since it is expected to be problematic in practical

application, as discussed in Section 5.2.2. In general, it can be observed from the figure

that the network capacity is fluctuating less for network throughput maximization than

for the maximization of the number of users since in network throughput maximization,

non-HS cells contribute a large part to the overall network performance, as explained

in Section 5.2.2. As before, the overall network capacity is lower for FT scheduling

than for PF scheduling, since with FT scheduling, users with bad reception conditions

have more influence on the overall performance than with PF scheduling.

Comparing uncoordinated bandwidth allocations and coordinated bandwidth alloca-

tions or state of the art scheduling based approaches and automatic capacity optimiza-

tion approaches for SONs, respectively, with each other in Figure 5.10, a performance
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(a) Maximum number of users, PF scheduling.
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(c) Maximum throughput, PF scheduling.
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(d) Maximum throughput, FT scheduling.

Figure 5.10. Performance results of the maximization of the total number of users and
of the network throughput maximization, both for PF scheduling and FT scheduling.

gain of automatic capacity optimization approaches for SONs relative to state of the

art scheduling based approaches can be observed for FT scheduling compared to PF

scheduling. The large performance advantage of coordinated bandwidth allocations for

FT scheduling, as identified in Section 5.2 where coordinated bandwidth allocations

outperformed uncoordinated bandwidth allocations for FT scheduling, however, can-

not be observed. Evaluating the real-world scenario with respect to the locations of the

BSs and the user distribution of the scenario leads to the conclusion that the reason is

a proper network planning, where sites are placed in or close to areas with high user

density. As a consequence, less cell-edge users can be expected in real-world scenarios

than in a uniform user distribution. The uniform user density assumed in Section 5.2

is, thus, usually not valid for real-world scenarios, such that the gain due to controlling

ICI, as it is achieved by coordinated bandwidth allocations, can be expected to be less

pronounced in real world-scenarios than in the functional analysis of Section 5.2.
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Using Figure 5.9, snapshots that represent situations comparable to the scenarios and

capacity demand distributions considered in Section 5.2 can be identified such that the

results from the real-world simulations can be analyzed with respect to the behavior

identified in the scope of the functional analysis of Section 5.2. In this context, hotspot

situations are identified considering the maximum HS strength of the snapshots, as

shown in Figure 5.9(a), such that snapshots 17-18, snapshot 38, snapshots 43-44 and

snapshot 49, for example, are identified as snapshots that contain strong HSs.

Evaluating the performance results for the identified snapshots with strong HSs more

in detail and according to the knowledge gained in Section 5.2 concerning the behavior

of the different resource allocation techniques in the different HS scenarios allows to

draw further conclusions. For snapshots 17-18 and 42-43, the simulation results show

a significantly stronger performance drop for cell bandwidth allocation than for the

other resource allocation techniques. As a consequence, it can be concluded that the

most influencing HSs appear in clusters in these snapshots. Also, a relatively strong

performance drop for uncoordinated bandwidth allocations can be noted, which lets

even the joint resource allocation techniques with coordinated bandwidth allocations

outperform the approaches with uncoordinated bandwidth allocations, as it was already

observed in Section 5.2 for stronger HSs.

The situation is different for snapshots 38 and 49. Here, a performance drop can be

observed, too. Cell bandwidth allocation, however, shows a relatively smaller perfor-

mance drop than the other approaches, or performs even better. Furthermore, the

performance drop for uncoordinated bandwidth allocations is much less pronounced

than for the previously discussed snapshots, such that it can be concluded that the

HSs in snapshots 38 and 49 are distributed over the scenario.

Additionally to inhomogeneous situations, homogeneous capacity demand distributions

are of interest, too. The respective snapshots can best be identified by evaluating the

average HS strength and its standard deviation as shown in Figure 5.9(b), such that

snapshots 40-42 are identified as snapshots with quite homogeneous capacity demand

distributions. Consequently, as it can be expected based on the knowledge gained from

the results of Section 5.2, the network capacity achieves values that range among the

highest over the considered snapshot range, as can be seen from Figure 5.10. Also

the gain for uncoordinated bandwidth allocations compared to coordinated bandwidth

allocations is found to be among the highest for the considered snapshots, which is

typical for homogeneous scenarios, too.

In order to gain more knowledge concerning the local performance of the automatic

capacity optimization approaches for SONs, rather than the performance in the whole
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scenario, a more detailed analysis is carried out. For this purpose, the strongest HS,

i.e. the HS with the highest HS factor ρhs, in the real-world scenario is identified for

each snapshot. Using this HS, the HS area, which is defined as the HS cells of the

HS together with all cells that belong to all NGs of which the HS cells are part of, is

identified for each snapshot. Only this HS area is considered in the following for the

performance evaluation of the automatic capacity optimization approaches, enabling

the local performance evaluation of the capacity optimization approaches in areas with

inhomogeneous capacity demand distributions.

Figure 5.11 shows for the considered snapshot range the performance results of the

capacity optimization approaches for the HS areas of the strongest HSs in terms of the

spectral efficiencies ǫNnw and ǫRnw , respectively, and for PF scheduling as well as FT

scheduling. The legend of Figure 5.11(b) holds for all plots of Figure 5.11. Comparing

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

Snapshot

ǫ N
n
w

in
b
it

/s
/H

z/
ce

ll

(a) Maximum number of users, PF scheduling.
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(c) Maximum throughput, PF scheduling.
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Figure 5.11. Performance results of the maximization of the total number of users and
of the network throughput maximization for the HS areas of the strongest HSs and for
PF scheduling and FT scheduling.
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Figure 5.11 with Figure 5.10 shows that for the HS areas of the strongest HSs, the

performance of the automatic capacity optimization approaches for SONs increases

relative to state of the art scheduling based approaches, compared to the performance

for the whole scenario. This effect is much more pronounced for the network through-

put maximization than for the maximization of the total number of users. The largest

difference between the performance for the HS area of the strongest HS and the perfor-

mance for the whole scenario can be observed for the network throughput maximization

and FT scheduling, according to Figure 5.10 and Figure 5.11.

The observation concerning the performance differences for the HS area of the strongest

HSs and the performance for the whole scenario are completely according to the sim-

ulation results of Section 5.2, where it was shown that uncoordinated bandwidth al-

locations outperform coordinated bandwidth allocations for homogeneous and slightly

inhomogeneous capacity demands, such that the performance of coordinated bandwidth

allocations for the whole scenario, which also contains areas with homogeneous and low

inhomogeneous capacity demand, must be lower than the performance of coordinated

resource allocations for the HS area of the strongest HS. Also the larger performance

differences that can be observed for the network throughput maximization compared to

the maximization of the number of users are in accordance to the results of Section 5.2,

since in network throughput maximization, a large part of the throughput comes from

areas with homogeneous or low inhomogeneous capacity demand, such that the gain

of the coordinated bandwidth allocations does not become obvious when considering

large areas or a complete scenario. Finally, the performance gain for FT scheduling

is larger than for PF scheduling since the controlling of ICI, as it is achieved by the

coordinated bandwidth allocations, has more effect with FT scheduling than with PF

scheduling, according to Section 5.2.

Thus, above observations and the results of Figure 5.11 make clear that automatic ca-

pacity optimization approaches are especially of interest for application to local areas

that experience inhomogeneous and varying capacity demand. In order to strengthen

this finding further and in order to investigate the gains of the implementation of

automatic capacity optimization approaches for SONs in different areas with inhomo-

geneous capacity demand more in detail, the real-world scenario is further investigated

with respect to the strongest HSs of the considered snapshots. In this context, the

sectors of the scenario are analyzed with respect to their belonging to the HS areas

of the strongest HSs. Figure 5.12(a) shows the result of this analysis in terms of the

probability of each sector to belong to the HS area of the strongest HSs of the consid-

ered snapshots. Figure 5.12(b) provides more detail of this analysis by showing which

sectors belong to the HS area of the strongest HS for each of the considered snapshots.
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Figure 5.12. Analysis of the real-world scenario with respect to the strongest HSs of
the considered snapshots.

Figure 5.12 allows interesting conclusions concerning the application of automatic ca-

pacity optimization approaches for SONs to the considered real-world scenario. Firstly,

it is interesting to analyze the locations of the strongest HSs. Figure 5.12(a) shows

that the strongest HSs in the real-world scenario appear preferably in the areas of

certain sectors, such that it can be expected that the strongest HSs do not appear in

many different places. This observation is supported by considering Table 5.3, which

compiles the information from Figure 5.12 to relate different probabilities of a sector to

belong to the HS area of the strongest HS with the number of sectors that have at least

this probability to belong to the HS area of the strongest HSs and with the percentage

of the HS areas of the strongest HSs that contain the respective sectors. The table

Table 5.3. Relation of the probability of a sector to belong to the HS area of the
strongest HS with the number of sectors that have at least this probability to belong
to the HS area of the strongest HS and with the percentage of the strongest HS that
contain the respective sectors.

HS probability Number of sectors Percentage of considered HSs
<0.01 35 100%
0.01 28 96%
0.02 17 82%
0.03 12 70%
0.04 8 57%
0.05 4 39%

shows that only 35 sectors of the sectors of the inner area of the scenario, which is the

part of the scenario that is considered for automatic capacity optimization, belong to
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the HS area of at least one of the strongest HSs. This means, according to Table 5.2,

that in the coverage area of almost fifty percent of the sectors of the inner area of the

scenario, the strongest HS never appears. Another information that can be taken from

Table 5.3 is, for example, that there are only 8 sectors that belong to the HS areas of

at least four percent of the strongest HSs, and that these 8 sectors are part of the HS

areas of 57 percent of the strongest HSs. Together with Figure 5.12(b), which shows

the sectors that belong to the HS areas of the strongest HS of each snapshot, it can be

concluded that the strongest HSs appear in only few areas repeatedly.

Secondly, it is interesting to relate the locations at which the strongest HSs appear

with the performance results obtained for the HS areas of the strongest HSs. For

this purpose, Figure 5.12(b) can be used to identify the location of the strongest HS

for each of the snapshots. It can be seen from the figure that frequent locations of

the strongest HS are, for example, the coverage areas of sectors 70, 71, 72 and 122,

which will in the following be referred to as HS area 1. Another area in which the

strongest HS is located frequently is the area covered by sectors 9, 76, 77, 78 and 91,

which will in the following be referred to as HS area 2. Identifying the snapshots in

which the strongest HS is located in each of the two mentioned areas and referring

to Figure 5.11 to obtain the performance of the capacity optimization approaches for

the respective snapshots allows to evaluate the performance of the automatic capacity

optimization approaches for SONs for the two HS areas. This way, the different areas

that exhibit inhomogeneous capacity demands and that are, consequently, of interest

for the application of automatic capacity optimization approaches for SONs can be

analyzed with respect to the gain that can be expected by the application of the

new approaches and promising areas for the implementation of automatic capacity

optimization approaches for SONs can be identified.

In order to illustrate this procedure, the snapshots with the strongest HS in HS area 1

and in HS area 2 are identified using Figure 5.12(b). The results are shown in Figure

5.13(a) for HS area 1 and in Figure 5.13(c) for HS area 2. The sector IDs given above

to define the two HS areas can be read from the figures. It can be seen from Figure

5.13(c) that HS area 2 is actually larger than given above and that it changes over

time. Figure 5.13(b) and Figure 5.13(d) show the performance results of the capacity

optimization approaches for network throughput maximization and for FT scheduling

in the respective HS area. The values are obtained from Figure 5.11(d) according to

the snapshots identified by Figure 5.13(a) and Figure 5.13(c), respectively.

Thus, Figure 5.13(b) and Figure 5.13(d) contain the performance of the automatic

capacity optimization approaches if the strongest HS is located in HS area 1 or in

HS area 2, respectively. As a consequence, the figures show the performance of the
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(a) Illustration of the snapshots with the
strongest HS in HS area 1.
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(b) Maximum throughput in HS area 1 for FT
scheduling if the strongest HS is in HS area 1.
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(c) Illustration of the snapshots with the
strongest HS in HS area 2.
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scheduling if the strongest HS is in HS area 2.

Figure 5.13. Performance analysis of the automatic capacity optimization approaches
for HS area 1 and for HS area 2 if the strongest HS is in HS area 1 or in HS area 2,
respectively.

automatic capacity optimization approaches for the two different HS areas. It can be

seen that in HS area 1, automatic capacity optimization approaches for SONs clearly

outperform state of the art scheduling based approaches, depending on the resource al-

location technique, and achieve large gains, such that the implementation of automatic

capacity optimization approaches for SONs is promising for HS area 1. In HS area

2, automatic capacity optimization approaches for SONs do not for all snapshots out-

perform state of the art scheduling based approaches. In average, however, automatic

capacity optimization approaches for SONs achieve superior performance compared

to state of the art scheduling based approaches, depending on the resource allocation

technique.
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Chapter 6

Summary and Outlook

In this thesis, automatic capacity optimization for SONs is investigated. The proposed

automatic capacity optimization approaches for SONs adapt the network to changing

and inhomogeneous capacity demands such that at all times and all places, only as

much capacity as required is delivered. The capacity that is delivered by the network

is adjusted by means of a capacity demand oriented allocation of the radio resources

cell bandwidth and transmit power.

The challenge in the context of automatic capacity optimization for SONs is the com-

bination of frequently made allocations of resources to the users in time intervals of

milliseconds, as carried out by the schedulers of the cells, with the optimization of the

capacity of the network, which needs to consider many cells at the same time. Chapter

2 presents an approach that solves this challenge. It proposes a hierarchic concept

for the coordination of automatic capacity optimization and scheduling that separates

the frequently carried out scheduling decisions and the capacity optimization decisions

into two different planes. The concept is hierarchic since the capacity optimization

approaches of the upper plane determine certain limits and requirements concerning

the resource allocations of the cells such that the network capacity is optimized. These

limits and requirements have to be observed by the scheduling carried out in the lower

plane. This way, for each of the tasks of capacity optimization and scheduling, respec-

tively, specific approaches can be applied that are designed with respect to the specific

challenges of the task.

For the lower plane, state of the art scheduling approaches are well suited. Concerning

the capacity optimization carried out in the upper plane, Chapter 2 presents a cell-

centric modeling approach that models the relation between allocated resources and

cell performance. The cell-centric network model focuses on the cells, rather than on

the individual users, such that the modeling complexity is greatly reduced. At the

same time, the distribution of the users, the QoS requirements of the users and the

environment is considered in the model such that high accuracy is achieved. The cell-

centric network model is derived for different scheduling strategies and approaches for

the practical implementation of the model are given.

Using the cell-centric network model and the hierarchic concept for the coordination of

automatic capacity optimization and scheduling, new automatic capacity optimization
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approaches for SONs as well as state of the art scheduling based approaches can be

considered in simulation and analysis, such that the new approaches can be compared

to the state of the art scheduling based approaches.

Chapter 3 proposes different approaches for the automatic capacity optimization of a

cellular radio network. The approaches consist of a method for the detection of the

need for optimization and of several different optimization problems that optimize the

capacity of the network. Detection of the need for optimization and the optimization

problems for capacity optimization both use the cell-centric network model. The net-

work is optimized with respect to the total network throughput and the total number

of users that can be supported, respectively. The network optimization is achieved by

the capacity demand oriented allocation of cell bandwidth, transmit power or both,

cell bandwidth and transmit power, jointly.

The process of obtaining the solution of the proposed optimization problems is dis-

cussed in Chapter 4. Different algorithms for obtaining the solutions by a central

instance and in a distributed way are presented. The central solving algorithms are

especially of interest for simulation and analysis purposes. The Distributed algorithms

are relevant for practical implementation. Due to the application of the cell-centric

network model with low modeling complexity, the solutions can be found quickly and

efficiently.

The automatic capacity optimization approaches for SONs are evaluated in Chapter 5.

Two different analysis are carried out. The functional analysis verifies the automatic

capacity optimization approaches and investigates their behavior and performance.

For this purpose, a simulation approach with scenarios specifically for the evaluation

of automatic capacity optimization for SONs in scenarios with inhomogeneous capacity

demand is proposed. The functional analysis verifies the presented approaches for auto-

matic capacity optimization for SONs and shows that automatic capacity optimization

approaches for SONs outperform state of the art scheduling based approaches for in-

homogeneous capacity demands and that the QoS of the users is observed using the

cell-centric network model. Concerning the influence of the distribution and the size

of the capacity demand HSs, it is shown that transmit power allocation is preferably

to be used in scenarios with larger HSs that consist of several clustered HS cells. Cell

bandwidth, on the other hand, achieves high performance in scenarios with several

smaller HSs that are distributed over the scenario. Joint resource allocation is capa-

ble of exploiting the strengths of both, transmit power allocation and cell bandwidth

allocation, to a certain degree.

The different optimization goals and different scheduling strategies do not influence
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the performance of the automatic capacity optimization approaches for SONs qual-

itatively, as shown in the functional analysis. However, it is found that automatic

capacity optimization for SONs provides higher gains with FT scheduling than with

FR scheduling since users at the cell borders, which have more effect on the overall

performance with FT scheduling than with PF scheduling, benefit more from auto-

matic capacity optimization for SONs. Furthermore, it was found that transmit power

allocation is of less relevance for practical application since it requires large transmit

power differences in order to adapt a network to inhomogeneous capacity demands,

such that low SINR values may result, which can be problematic with physical layer

transmission techniques.

The second simulation approach pursued in Chapter 5 analyses the performance of the

automatic capacity optimization approaches for SONs in a real-world scenario. For this

purpose, a simulation approach that derives a real-world scenario using measurement

data from a real network is presented. In the derivation of the real-world scenario,

throughput measurement data is used to model the inhomogeneous capacity demand

while predictions of the user distribution and the signal propagation conditions, as

they are used in network planning, are used to determine cell areas and cell borders.

The performance analysis carried out in this scenario confirms the results from the

functional analysis. Furthermore, the real-world scenario is investigated with respect

to the location of appearance of HSs and it is shown that the HSs usually appear in

only few places repeatedly. Thus, the application of automatic capacity optimization

approaches for SONs is especially in these areas of interest. The performance of the

automatic capacity optimization approaches for SONs is evaluated especially in the

areas of frequent appearance of HSs of the real-world scenario and it is shown that

automatic capacity optimization for SONs is capable of achieving high performance

gains locally.

Concerning further related research, the capability of the proposed cell-centric network

model to express how efficient radio resources are used by the cells is of interest. This

capability is already applied in this thesis in the optimization problems that are applied

to carry out the capacity optimization of the network. The same way, the cell-centric

network model could also be used in other planning and optimization processes by

formulating the processes as optimization problems that use the cell-centric network

model in objective functions and constraints. The capability of the cell-centric network

model to express the efficiency of resource usage could, thus, be further exploited in

the optimization and planning of parameters such as pilot power or BS locations, for

example.

Furthermore, the capability of the cell-centric network model to assess the efficiency
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of radio resource use can be applied to determine the cost of radio resources or, vice

versa, the value of the radio resources for each cell individually. This information

is available in real-time since it is obtained from system measurements. Based on

such pricing information, the trading of radio resources or radio spectrum is enabled.

Spectrum could then be traded analogously to stocks or energy at electronic markets,

given an appropriate infrastructure. The trading would be fine-granular in time as

well as in space, since the cell-centric model allows to determine real-time prices for

each cell individually. Participants in such markets would be network operators that

could temporarily sell or rent spectrum to each other, depending on their current and

individual demand of spectrum and supply with spectrum. Pursuing this idea further,

also regulators could enter the market, offering the spectrum to any participant in the

market. Traditional regulation with the assignment of large parts of the spectrum to

individual operators for long times would, thus, be obsolete. Instead, every market

participant could supply itself with spectrum on demand, leading to a transparent and

competitive market and, therefore, to an efficient use of the limited spectrum.

Note that the automatic capacity optimization approaches for SONs proposed in this

thesis and the outlook concerning the further application of the cell-centric network

model for planning and optimization tasks would require a time horizon of possibly

several years to be implemented in cellular radio networks. The outlook concerning

the trading of radio spectrum at electronic markets, as presented in the last paragraph,

is visionary with prospects of being realized in even further future.
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Appendix

A.1 Analytical Derivation of Achievable User Bit

Rate and Required User Bandwidth

This section gives the full formulae of the analytical derivation of the pdf f
R

(i)
u

(
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)

of achievable user bit rate and the pdf f
B

(i)
u

(
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of required user bandwidth as

introduced in Section 2.4.2. According to Section 2.4.2, the user position pdf holds for

each user, such that user indicies can be neglected for the user specific pdfs.

It is assumed that users are uniformly distributed over the circular shaped cell area as

expressed by the user position pdf of (2.26). The pathloss between UE and BS depends

on the distance r but not on the angle ϕ, such that the pdf of the radius is required,

which is given by
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Considering the height hi of BS i in the expression of the total distance d =
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that the signal has to travel, the pdf of the total distance d yields
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Using the pathloss model of (2.6) in a RV transformation of (A.2) leads to the pdf of

the pathloss in dB
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and the pdf of the total signal attenuation in dB is obtained by the convolution of

the pdf of the path loss in dB from (A.3) with the pdf of the independent slow fading

process in dB from (2.7)
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Defining for reasons of convenience the constants
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yields the final expression for the pdf of the total signal attenuation in dB
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Using the pdf of the SINR of (2.28) and considering the related assumptions concerning

position independent ICI yields

fγ(i)

(

γ(i)
)

= fa(i)

(

10 · log10

(

Γi

γ(i)

))

· 10
γ(i)·ln(10)

= 5c2
S2

i γ(i) ln(10)
· e

c22
4c3

+c2

„

10·log10

„

Γi

γ(i)

«

−a0

«

(

erf

(

c2+2c3

„

10·log10

„

Γi

γ(i)

«

−a
(i)
pl,min

«

2
√

c3

)

−erf

(

c2+2c3

„

10·log10

„

Γi

γ(i)

«

−a
(i)
pl,max

«

2
√

c3

))

.

(A.7)



A.1 Analytical Derivation of Achievable User Bit Rate and Required User Bandwidth 121

With (2.19) and defining x = 2
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follows, and with (2.20), the pdf of the required user bandwidth is obtained
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Note that the analytical derivation of mean
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and variance
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could not be carried out. Instead, numerical methods can be used to determine mean

and variance of achievable user bit rate and required user bandwidth.
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A.2 Further Simulation Results

A.2.1 Influence of the HS Distribution
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(a) Cluster HS scenario.
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(b) Multi HS scenario.

Figure A.1. Performance results of the maximization of the number of users in the
Cluster HS Scenario and the Multi HS Scenario with coordinated bandwidth allocations
and for PF scheduling.
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(a) Cluster HS scenario.
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(b) Multi HS scenario.

Figure A.2. Performance results of the network throughput maximization in the Cluster
HS Scenario and the Multi HS Scenario with coordinated bandwidth allocations and
for PF scheduling.



A.2 Further Simulation Results 123

A.2.2 QoS Performance Evaluation for PF scheduling
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(a) Cluster HS scenario, minimum.
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(b) Cluster HS scenario, average.
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(c) Multi HS scenario, minimum.
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(d) Multi HS scenario, average.

Figure A.3. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the user
bit rates of the cells for the maximization of the number of users with coordinated
bandwidth allocations in the Cluster HS Scenario and the Multi HS Scenario and for
PF scheduling obtained from MC simulations.
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(a) Cluster HS scenario, minimum.
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(b) Cluster HS scenario, average.
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(c) Multi HS scenario, minimum.
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Figure A.4. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the
user bit rates of the cells for the network throughput maximization with coordinated
bandwidth allocations in the Cluster HS Scenario and the Multi HS Scenario and for
PF scheduling obtained from MC simulations.
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A.2.3 QoS Performance Evaluation for FT scheduling
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Figure A.5. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the
user bit rates of the cells for the maximization of the total number of users with
uncoordinated bandwidth allocations in the Single HS scenario obtained from MC
simulations.
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Figure A.6. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the user
bit rates of the cells for the maximization of the network throughput with uncoordi-
nated bandwidth allocations in the Single HS scenario obtained from MC simulations.
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(a) Single HS scenario, minimum.
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(b) Single HS scenario, average.
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(c) Cluster HS scenario, minimum.
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(d) Cluster HS scenario, average.
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(e) Multi HS scenario, minimum.
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(f) Multi HS scenario, average.

Figure A.7. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the user
bit rates of the cells for the maximization of the total number of users with coordinated
bandwidth allocations obtained from MC simulations.
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(a) Single HS scenario, minimum.
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(b) Single HS scenario, average.
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(c) Cluster HS scenario, minimum.
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(d) Cluster HS scenario, average.
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(e) Multi HS scenario, minimum.
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(f) Multi HS scenario, average.

Figure A.8. Average R̄u,mc,p̃out and minimum Řu,mc,p̃out of the pout-percentile of the user
bit rates of the cells for the maximization of the network throughput with coordinated
bandwidth allocations obtained from MC simulations.
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List of Acronyms

2G 2nd generation

3G 3rd generation

4G 4th generation

3GPP 3rd Generation Partnership Project

AMC adaptive modulation and coding

BS base station

CAPEX capital expenditures

cdf cumulative distribution function

CDMA code division multiple access

CLT Central Limit Theorem

DPC Distributed Power Control

FR Fair Resource

FT Fair Throughput

FDMA frequency division multiple access

HO handover

HS hotspot

ICI inter-cell interference

ICIC inter-cell interference coordination

IP internet protocol

LP linear program

LTE Long Term Evolution

MIMO multiple input multiple output

MC Monte Carlo

MCS Modulation and Coding Scheme
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MSE mean square error

NG Neighborhood Group

NGMN next generation mobile networks

OFDM Orthogonal Frequency Division Multiplexing

OPEX operational expenditures

UE user equipment

PBR Power-Bandwidth-Rate

PBN Power-Bandwidth-Number-of-Users

PF Proportional Fair

PSD power spectral density

pdf probability density function

QoS Quality Of Service

RV random variable

RRM radio resource management

SAE System Architecture Evolution

SCM Spatial Channel Model

SINR Signal to Interference plus Noise Ratio

SLP Sequential Linear Programming

SNR Signal to Noise Ratio

SON self-organizing network

TDMA time division multiple access
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List of Symbols

aij (r, ϕ) average channel attenuation from cell j to position (r, ϕ) in cell i

b cell bandwidth vector

b∗ optimum cell bandwidth vector

b(l) cell bandwidth vector of iteration l

Bi cell bandwidth of cell i

B̃i outage bandwidth at cell-level of cell i

Bsys total system bandwidth

B
(i)
u,n bandwidth of user n of cell i

B̃
(i)
u,n user bandwidth target for user n of cell i

B
(i)
u,th user bandwidth threshold to assign users to inner and outer area of

cell i in fractional frequency reuse

B
(i)′

u,k user bandwidth resulting from the k-th SINR measurement of cell i

B
(i)
u set of user bandwidths resulting from SINR measurements of cell i

βi relative cell bandwidth of cell i

C interference coupling matrix

D reuse distance

E effective interference coupling matrix considering coordination

ǫi cell spectral efficiency of cell i in bits/s/Hz

ǫNnw spectrum efficiency of the system for the maximization of the number
of users in bits/s/Hz/cell

ǫRnw spectrum efficiency of the system for the network throughput maxi-
mization in bits/s/Hz/cell

gij expected value of the channel gain from cell j over the cell area of cell
i

g
(i)
pf PF scheduling power gain of cell i

G coupling gain matrix

G set of all Neighborhood Groups

γ
(i)
n SINR of user n of cell i

γ
(i)
th user SINR threshold to assign users to inner and outer area of cell i

in fractional frequency reuse

γ
(i)′

k k-th user SINR measurement of cell i

Γ power ratio vector

Γ∗ optimum power ratio vector

Γi power ratio of cell i
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Γ
(i)′

0,k power ratio value at the time of the k-th user SINR measurement of
cell i

Γ̃ power ratio target vector

Γ̃i power ratio target of cell i

Γ̆ modified power ratio target vector

Γ̆i modified power ratio target of cell i

i cell index

j cell index

k measurement value index

l iteration index

µBi
mean of the cell bandwidth of cell i

µ
B

(i)
u,n

mean of the user bandwidth of user n of cell i

µ
B

(i)
u |R(i)

u =1
mean of the bandwidth required by a user of cell i to transmit one
bit/s

µRi
mean of the cell throughput of cell i

µ
R

(i)
u,n

mean of the user bit rate of user n of cell i

µ
R

(i)
u |B(i)

u =1
mean of the bit rate achieved by a user of cell i for one Hertz of user
bandwidth

n user index

n noise power vector

Nc number of cells

N0 number of users in a non-HS cell

Ni number of users of cell i

N ′
i linear approximation of the number of users of cell i

Nhs number of users in a HS cell

Nng number of Neighborhood Groups

Nnw total number of users in the network

N Neighborhood Group matrix

p transmit power vector

p∗ optimum transmit power vector

p(l) transmit power vector of iteration l

pout,i outage probability of cell i at cell-level

p
(i)
r,ϕ (r, ϕ) pdf of user position of cell i

P̄I,i reference interference power of cell i

Pmax maximum transmit power

PN receiver noise power
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Ptx,i transmit power of cell i

P
(l)
tx,i transmit power of cell i of iteration l

r frequency reuse factor

R̄u average user bit rate

Ru,min minimum user bit rate

Ri cell throughput of cell i

R′
i linear approximation of the cell throughput of cell i

R̃i outage capacity at cell-level of cell i

Rnw total network throughput

R
(i)
u,n bit rate of user n of cell i

R̃
(i)
u,n user bit rate target for user n of cell i

R
(i)
u,mc,n user bit rate achieved by user n in MC simulation

R
(i)
u,th user bit rate threshold to assign users to inner and outer area of cell i

in fractional frequency reuse

R
(i)′

u,k user bit rate resulting from the k-th SINR measurement of cell i

R
(i)
u set of user bit rates resulting from SINR measurements of cell i

ρ (X) spectral radius of matrix X

ρhs HS strength

ρin,i relative size of the inner area of cell i for fractional frequency reuse

ρrel,i number of users of cell i relative to the total number of users

ρslp interpolation parameter for SLP

ρtx,i transmit PSD of cell i

Si size of cell i, distance from the BS to the most remote point within
the cell area

S
(i)
u set of user SINR measurements from cell i

σ2
Bi

variance of the cell bandwidth of cell i

σ2

B
(i)
u,n

variance of the user bandwidth of user n of cell i

σ2

B
(i)
u |R(i)

u =1
variance of the bandwidth required by a user of cell i to transmit one
bit/s

σ2
Ri

variance of the cell throughput of cell i

σ2

R
(i)
u,n

variance of the user bit rate of user n of cell i
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R
(i)
u |B(i)

u =1
variance of the bit rate achieved by a user of cell i for one Hertz of
user bandwidth

Tcoup interference coupling threshold
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