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Kurzfassung

In den letzten Jahren gibt es ein erhöhtes Interesse an drahtlosen Ortungssystemen,

die zuverlässige Schätzungen des Ortes eines mobilen Endgerätes (ME) liefern. Dies

liegt vor allem an den bereits vorhandenen sowie den kurz vor der Einführung ste-

henden ortsabhängigen Diensten, wie z.B. intelligente Transportsysteme, Gelbe Seiten,

ortsabhängige Gebührenzahlungen und andere, viel versprechende Dienstleistungen,

deren Anwendung eine genaue Schätzung des Ortes des ME erfordert. Bis heute

sind eine Vielzahl an drahtlosen Ortungssystemen vorgeschlagen worden, die eine

Ortsschätzungen des ME anbieten. Die viel versprechendsten Lösungen basieren

auf dem globalen Navigations-Satellitensystem (GNSS) und dem zellularen Mobil-

funknetz, da beide Systeme eine bereits existierende Infrastruktur ausnutzen. Üblicher-

weise stellen diese Systeme die Ortsschätzungen des ME unabhängig von einander zur

Verfügung. Jedoch existieren Szenarien, in denen die Signale, die zwischen den Satel-

liten und des ME ausgetauscht werden, blockiert werden. Beispiele hierfür sind ein

ME, das sich in innerstädtischen Umgebungen befindet, in denen hohe Gebäude die

freie Sicht zu den Satelliten versperren oder ein ME, das sich innerhalb von Gebäuden

befindet. In diesen Szenarien ist die Anzahl der zur Verfügung stehenden Messwerte

meist nicht ausreichend, um mit Hilfe von GNSS den Ort des ME zu schätzen. Die

Signale, die zwischen der Basisstation (BS) des zellularen Mobilfunknetzes und des

ME ausgetauscht werden, stehen praktisch in jedem Szenario zur Verfügung, jedoch

können diese Signale nicht die gleiche Lokalisierungsgenauigkeit liefern, wie die Sig-

nale des GNSS. In innerstädtischen Umgebungen und innerhalb von Gebäuden werden

diese Signale häufig an den Hindernissen, wie z.B. Gebäuden oder Bäume reflektiert, so

dass keine direkte Sichtverbindung (line-of-sight (LOS)) zwischen des ME und der BS

existiert. In diesem Fall erreicht das Signal des ME die BS über einen indirekten Pfad,

was in der Literatur als non-line-of-sight (NLOS) Ausbreitung bezeichnet wird. Die

Fehler durch NLOS-Ausbreitung führen im Allgemeinen zu einer Verschlechterung der

Lokalisierungsgenauigkeit, und sollten daher in den Lokalisierungsalgorithmen berück-

sichtigt werden.

Die vorliegende Arbeit behandelt das Problem der Bestimmung des Ortes des ME

unter Verwendung von Pseudoentfernungs-Messwerte (PE), welche das Global Posi-

tioning System (GPS) zur Verfügung stellt, sowie Umlaufzeit-Messwerte (ULZ) und

Empfangsfeldstärtke-Messwerte (EFS), welche das Global System for Mobile com-

munications (GSM) zur Verfügung stellt. Die zugrunde liegenden Messwerte wer-

den heutzutage von jedem handelsüblichen Mobiltelefon sowie GPS-Empfänger zur

Verfügung gestellt. Die verschiedenen Messwerte werden effektiv miteinander kom-

biniert unter der Verwendung von Verfahren der statistischen Datenfusion, was im
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Folgenden als hybride Lokalisierung bezeichnet wird. Durch die Kombination von

Messwerten ist es möglich, Ortsschätzungen des ME zu erhalten, auch wenn die An-

zahl der von GPS zur Verfügung gestellten Messwerte nicht ausreicht. Die hybriden

Lokalisierungsalgorithmen sind so entworfen, dass eine gute Lokalisierungsgenauigkeit

in Szenarien mit LOS Ausbreitungsbedingungen sowie in Szenarien in denen die Aus-

breitungsbedingungen zwischen LOS und NLOS wechseln können, erreicht werden

kann. Weiterhin wird untersucht, inwiefern Messwerte über die GNSS Referenzzeit

(GRZ) den bestehenden Uhrenfehler zwischen den Uhren der Satelliten und des ME

verringern und die Lokalisierungsgenauigkeit verbessern können. Um die hybriden

Lokalisierungsalgorithmen analysieren zu können, wird ein Modell eingeführt, das das

hybride Lokalisierungsszenario mathematisch beschreibt. Statistische Modelle, die die

Bewegung des ME sowie die Uhr des ME beschreiben, werden eingeführt. Die Mess-

werte werden ebenfalls statistisch beschrieben und enthalten Modelle die für LOS Aus-

breitungsbedingungen gültig sind, sowie Modelle die zwischen LOS und NLOS Ausbre-

itungsbedingungen wechseln können. In dieser Arbeit werden die folgendenen hybriden

Lokalisierungsalgorithmen vorgeschlagen:

• Nicht rekursive, hybride Lokalisierungsalgorithmen, die Abhängigkeiten zwischen

zeitlich aufeinanderfolgenden Orten des ME und zeitlich aufeinanderfolgenden

Messwerten nicht berücksichtigen.

• Rekursive, hybride Lokalisierungsalgorithmen, die Informationen über Schätzw-

erte des Ortes des ME aus zeitlich vorangegangenen Schätzungen sowie Messwerte

von vorherigen Zeitschritten in die aktuellen Schätzung mit einfließen lassen.

• Rekursive, hybride Lokalisierungsalgorithmen mit adaptiver LOS/NLOS Detek-

tion, die Informationen über Schätzwerte des Ortes des ME aus zeitlich vor-

angegangenen Schätzungen sowie Messwerte von vorherigen Zeitschritten in die

aktuellen Schätzung mit einfließen lassen, und darüber hinaus die aktuellen Aus-

breitungsbedingungen schätzen.

Die nicht rekursiven hybriden Lokalisierungsalgorithmen basieren auf dem Maximum

Likelihood (ML) Prinzip. Für LOS Ausbreitungsbedingungen sowie für Ausbreitungs-

bedingungen, die zwischen LOS und NLOS wechseln können werden die ML Schätzer

hergeleitet. Die ML Schätzwerte werden numerisch berechnet unter der Verwendung

von suboptimalen Algorithmen. Um die theoretisch bestmögliche Performanz der nicht

rekursiven Schätzer zu bestimmen, werden die Cramér-Rao Schranken (CRS) für die

hybride Lokalisierung bestimmt. Die Ergebnisse mit simulierten Daten sowie Daten,

die aus Feldversuchen stammen, haben gezeigt, dass durch die zusätzliche Berücksich-

tigung von PE Messwerte von GPS und GRT Messwerte von GSM die Lokalisierungs-

genauigkeit erheblich verbessert werden kann, im Vergleich zu Algorithmen, die nur

ULZ und EFS Messwerte von GSM auswerten.
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Die rekursiven hybriden Lokalisierungsalgorithmen, die in dieser Arbeit entwickelt

werden, beruhen auf Kalman Filter (KF)-basierte Schätzer und Partikelfilter (PF)-

basierte Schätzer. Es werden verschiedene Schätzer für LOS Ausbreitungsbedingungen,

sowie für Ausbreitungsbedingungen, die zwischen LOS und NLOS wechseln können,

vorgeschlagen. Die PF-basierten Schätzer berücksichtigen zusätzlich Straßeninforma-

tionen, um die Lokalisierungsgenauigkeit weiter zu verbessern. Die a posteriori CRS

(PCRS) für die hybride Lokalisierung wird hergeleitet, um die theoretisch bestmögliche

Performanz der rekursiven Schätzer zu bestimmen. Es wird gezeigt, dass durch die

Berücksichtigung von Straßeninformationen in den Schätzern die Lokalisierungsge-

nauigkeit erheblich verbessert werden kann. Des Weiteren wird gezeigt, dass die rekur-

siven hybriden Lokalisierungsalgorithmen eine höhere Lokalisierungsgenauigkeit liefern

als die nicht rekursiven hybriden Lokalisierungsalgorithmen.

Die rekursiven hybriden Lokalisierungsalgorithmen mit adaptiver LOS/NLOS Detek-

tion, die in dieser Arbeit vorgeschlagen werden, basieren auf einem interacing multi-

ple model Algorithmus mit erweiterten KF Schätzern (IMM-EKF), sowie zwei multi-

ple model PF-basierten Schätzer. Die multiple model PF-basierten Schätzer berück-

sichtigen zusätzlich Straßeninformationen, um die Lokalisierungsgenauigkeit weiter

zu verbessern. Eine neue Methode wird vorgeschlagen, um die PCRS für rekur-

sive Schätzer mit adaptiver LOS/NLOS Detektion zu bestimmen. Es wird gezeigt,

dass multiple model PF-basierten Schätzer mit Straßeninformationen im Allgemeinen

eine höhere Lokalisierungsgenauigkeit aufweisen als das IMM-EKF. Es wird weiter-

hin gezeigt, dass das IMM-EKF den besten Kompromiss zwischen Lokalisierungsge-

nauigkeit und Komplexität erzielt, solange keine Straßeninformation in den multiple

model PF-basierten Schätzern berücksichtigt wird.
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Abstract

In recent years, there is an increased interest in wireless location systems offering

reliable mobile terminal (MT) location estimates. This is mainly due to upcoming

and already available Location Based Services, such as intelligent transport systems,

yellow page services, location sensitive billing and other promising services that rely

on accurate MT location estimates. So far, a multitude of wireless location systems

have been proposed that offer MT location estimates. The most promising solutions

are based on the Global Navigation Satellite System (GNSS) and the cellular radio

network, since both systems utilize an already existing infrastructure. Conventionally,

these systems provide MT location estimates independently from each other. However,

there exist scenarios where the signals that are exchanged between the satellites and

the MT are blocked, e.g., in urban environments where tall buildings surround the MT

or in indoor environments. In these scenarios, the number of measurements available

from GNSS is often insufficient to determine the MT location. The signals that are

exchanged between the base stations (BSs) of the cellular radio network and the MT are

available in these scenarios, but generally they cannot offer the same accuracy as the

signals from GNSS. In urban and indoor scenarios, these signals are often reflected at

obstacles such as buildings or trees, so that a direct, line-of-sight (LOS) path between

MT and the BS does not exist. In this case, the signal of the MT arrive via an indirect

path at the BS, which is known as non-line-of-sight (NLOS) propagation. The errors

due to NLOS propagation generally result in a decreased localization performance, and

should be therefore taken into account in the MT localization algorithms.

This thesis deals with the problem of estimating the MT location using pseudorange

(PR) measurements from the Global Positioning System (GPS) and round trip time

(RTT) and received signal strength (RSS) measurements from the Global System for

Mobile communications (GSM), which is termed hybrid localization. The measure-

ments, which are available from off-the-shelf mobile phones and conventional GPS

receivers, are efficiently combined by using statistical data fusion, so that it is possible

to obtain MT location estimates even if the number of measurements available from

GPS is insufficient to determine the MT location. The corresponding hybrid localiza-

tion algorithms are designed such that good performance can be achieved in situations

when the measurements are affected by either LOS propagation conditions or propaga-

tion conditions that switch between LOS and NLOS. It is investigated how the existing

offset between the satellite clocks and the MT clock can be mitigated and the localiza-

tion accuracy can be improved by using GNSS reference time (GRT) measurements.

In order to analyze the hybrid localization algorithms, a mathematical framework is

introduced that describes the hybrid localization scenario. Statistical models for the
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MT movement and MT clock, as well as models for the measurements assuming LOS

and NLOS propagation conditions are introduced. In this work, the following three

types of hybrid localization algorithms are introduced:

• Non-recursive hybrid localization algorithms, that do not take into account ex-

isting temporal dependencies between time consecutive MT locations and mea-

surements.

• Recursive hybrid localization algorithms, that take into account the information

of MT estimates and measurements from previous time steps.

• Recursive hybrid localization algorithms with adaptive LOS/NLOS detection,

that take into account the information of MT estimates and measurements from

previous time steps, and that estimate the current propagation conditions.

The non-recursive hybrid localization algorithms are based on the maximum likelihood

(ML) principle. The ML estimators for LOS propagation conditions and for propa-

gation conditions that switch between LOS and NLOS are newly derived, and ML

estimates are numerically obtained using suboptimal algorithms. In order to assess the

theoretical best achievable performance of non-recursive estimators, the Cramér-Rao

lower bound (CRLB) for hybrid localization is evaluated. Simulation and field trial

results have shown that additionally taking into account PR measurements from GPS

and GRT from GSM in the algorithms can significantly improve the localization accu-

racy compared to algorithms that only take into account RTT and RSS measurements

from GSM.

The recursive hybrid localization algorithms developed in this work are Kalman filter

(KF)-based estimators and particle filter (PF)-based estimators. Different estimators

for LOS propagation conditions and for propagation conditions that switch between

LOS and NLOS are newly proposed. The PF-based estimators additionally take into

account road information to further improve the localization accuracy. The theoretical

best achievable performance of recursive estimators is found by evaluating the posterior

CRLB (PCRLB). It is shown that additionally taking into account road information

into the estimators can significantly improve the localization accuracy. It is further

demonstrated that recursive hybrid localization algorithms outperform non-recursive

hybrid localization algorithms.

The recursive hybrid localization algorithms with adaptive LOS/NLOS detection that

are proposed in this work are based on the interacting multiple model (IMM) estimator

that is combined with extended KFs (EKFs) and two multiple model PF-based esti-

mators. The multiple model PF-based estimators additionally take into account road
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information to further improve the localization accuracy. A novel method is presented

to determine the PCRLB for recursive estimators with adaptive LOS/NLOS detection.

It is shown that multiple model PF-based estimators with road constraints generally

outperform the IMM-EKF. It is further demonstrated that the IMM-EKF achieves

the best trade-off between performance and computational complexity, as long as road

constraints are not considered in the multiple model PF-based estimators.
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Chapter 1

Introduction

1.1 Localization of Mobile Terminals

In recent years, there has been an increased interest in wireless location systems of-

fering reliable estimates of the geographical location of a user that is equipped with

a Mobile Terminal (MT). On the one hand, this is due to upcoming and already

available commercial services (also known as Location Based Services) such as social

networking, intelligent transport systems, fraud detection, yellow page services, loca-

tion sensitive billing and other promising services that rely on accurate MT location

estimates [VWG+04, GG05, STK05, Küp05, GP09]. On the other hand, the United

States Federal Communications Commission issued an order, in which all wireless ser-

vice providers are required to report the location of an enhanced 911 caller within

a specified accuracy [Tri99]. In the European Union similar regulations are under

way [KR99]. The emerging Location Based Services together with the regulations is-

sued by the United States and the European Union have pushed further the research

and standardization activities in the field of MT localization.

In the following, wireless location systems that are used in this context are categorized

into the Global Navigation Satellite System (GNSS) and the cellular radio network.

The GNSS consists of a number of satellites that circulate the Earth on predefined or-

bits. The satellites continuously broadcast radio signals containing information about

their current location. The MT collects measurements by extracting important signal

parameters from the received satellite signals that relate the MT location to the satellite

location. The cellular radio network is composed of a number of Base Stations (BSs)

which are installed at fixed points on Earth. The BSs generally transmit radio signals

containing information about their current location to the MT and receive radio sig-

nals from the MT. From these signals, measurements are collected by either the MT

or the BS by extracting important signal parameters that relate the MT location to

the BS location. Depending on the investigated system, the location of the MT can

be estimated by the MT itself (mobile-centric solution), or it can be estimated by a

central entity in the cellular radio network that obtains the measurements via the BSs

(network-centric solution) [GG05,STK05,SCGL05].

Important signal parameters that can be extracted from the received radio signal are,

e.g., the Time of Arrival (ToA), Time Difference of Arrival (TDoA), Received Signal
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Strength (RSS) or Angle of Arrival (AoA), which are called measurements in the fol-

lowing [Caf99,GG05,GP09]. These measurements have in common that they each do

not provide unique information about the MT location. For example, the ToA mea-

surement gives information about the time the radio signal requires to travel from the

BS to the MT. By multiplying the ToA measurement with the speed of light, the

measured distance to the MT can be obtained. Since a single measured distance to

the MT gives an ambiguous solution for the MT location, several measurements from

different satellites/BSs have to be collected, in order to obtain a unique solution for

the MT location [Tor84, GG05]. The corresponding localization algorithms perform

two tasks, that are conventionally processed using a two step approach [GP09]. In the

first step, the localization algorithms estimate the signal parameters such as the ToA,

TDoA, RSS or AoA from the received radio signal. These measurements are then used

to estimate the MT location in a second step. In this work, only localization algorithms

are developed for estimating the MT location. Algorithms for estimating the signal

parameters are out of scope and are treated, for instance in [KV99,Caf99,Car05,GP09].

In Fig. 1.1 an example for the two-dimensional localization of an MT in a cellular

network based on ToA measurements is given. It is assumed that the radio signals

from different BSs arrive via the direct path at the MT, which is also known as Line-

Of-Sight (LOS) propagation condition. The corresponding ToA measurements are

assumed to be error-free and the BS locations are known. From Fig. 1.1 it can be

seen that measuring the distance between the MT and a single BS limits the location

of the MT to a circle drawn around the BS, with the measured distance being the

Base Station

Mobile Terminal

Figure 1.1. Principle of two dimensional MT localization using ToA measurements
from the cellular radio network.
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radius of the circle. If the measured distance to an additional BS is taken into account,

then the MT location is restricted to the two points where both circles intersect. An

unambiguous MT location can be finally found by taking into account the measured

distance to a third BS.

In reality, however, the measured distances are affected by errors so that the circles

in Fig. 1.1 will not intersect at a unique point. Further, obstacles such as hills, trees

or buildings hinder the radio signals to arrive via the direct path at the MT, which

is known as Non-Line-Of-Sight (NLOS) propagation. In this case, the radio signals

are reflected, refracted, diffracted, absorbed or scattered at the obstacles resulting in

estimated signal parameters that can completely differ from the ones that are expected

under LOS propagation conditions. In Fig. 1.2, the LOS and NLOS propagation

conditions are illustrated for a cellular radio network, where the radio signal of one BS

arrives via the direct path at the MT and the radio signal of the other BS arrives via an

indirect path at the MT. The deviations of the signal parameters in NLOS propagation

conditions from the signal parameters in LOS propagation conditions can be very large

and are generally different for each scenario [SM99, SPK01,FK09,YG09]. The NLOS

problem has been identified as one of the most severe problems in wireless localization,

and algorithms that do not take into account NLOS propagation will significantly

degrade in localization accuracy when NLOS propagation occurs [WH96,Caf99,GG05].

Figure 1.2. Scenario showing LOS and NLOS propagation conditions
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1.2 Hybrid Localization of Mobile Terminals

Standard localization algorithms process only measurements of the same type, e.g.,

solely ToA measurements, in order to estimate the MT location. This strategy re-

quires that a certain number of measurements of the same type are available at any

time. In many situations, however, this is often not the case, so that localization algo-

rithms are preferred that can efficiently combine different types of measurements. The

combination of different types of measurements is also known as data fusion.

Nowadays, almost every MT is equipped with a GNSS receiver, that is used for naviga-

tion purposes. The GNSS, such as the Global Positioning System (GPS) and the

prospective European counterpart Galileo, use ToA measurements to estimate the

MT location. If the MT receives satellite signals from at least four different satel-

lites, a three-dimensional MT location estimate can be found, where the fourth satel-

lite signal is needed to resolve the unknown bias between the MT and the satellite

clock [Kap96,ME06]. In a similar manner, one can obtain a two dimensional MT loca-

tion estimate if the MT receives signals from at least three different satellites. However,

there exist situations where the GNSS signals are blocked, e.g., when the MT is located

indoors or in urban canyons. In these scenarios, the number of satellites in view is of-

ten not sufficient to obtain a three dimensional or even two dimensional MT location

estimate.

An alternative to the GNSS is the exploitation of communication signals of the cel-

lular radio network, in order to obtain MT location estimates. In the Global System

for Mobile communications (GSM), for example, measurements such as the Timing

Advance (TA), Enhanced Observed Time Difference (E-OTD), AoA or RSS exist that

give information on the MT location [Küp05]. An appealing advantage of these mea-

surements is that they are almost everywhere available. However, these measurement

cannot offer the same accuracy as the GNSS-based measurements, and thus, the corre-

sponding localization algorithms that are based on cellular radio network measurements

cannot offer the same accuracy as their GNSS-based counterpart. The combination of

measured values from the GNSS and the cellular radio network is, thus, a promis-

ing approach in order to obtain MT location estimates even if less than four or three

satellites are in view [SAF+00, FKS06]. Instead of processing the measurements of

each system independently, the measurements are processed jointly to estimate the

MT location, which is termed hybrid localization in the following. The corresponding

hybrid localization algorithms are expected to improve the accuracy and availability

of MT location estimates, compared to the localization algorithms that either process

the measurements from the cellular radio network or the GNSS.
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In addition to that, there exist situations where additional information about the MT

location is available. In automotive applications, for instance, this could be informa-

tion about the infrastructure such as road maps, or information available from wheel

speed sensors. Moreover, for a multitude of applications it is possible to approximate

the MT movement with a statistical model, that takes into account that the MT can

travel only a finite distance between two time consecutive time steps. These types

of information with their different levels of accuracies should be additionally incorpo-

rated into the hybrid localization algorithms, in order to further improve the quality

of the MT location estimates. The aim of this work is to develop hybrid localization

algorithms that can efficiently combine RSS and TA measurements from GSM and

Pseudorange (PR) measurements from GPS. These measurements can be easily ob-

tained from off-the-shelf mobile phones and conventional GPS receivers, without the

need to modify components of the satellite or cellular radio network. The performance

of the hybrid localization algorithms should be further improved by taking into ac-

count models for the MT movement, models that take into account NLOS propagation

conditions, and information available from a road map, in order to constrain the MT

movement to roads in automotive applications.

1.3 State-of-the-art

This section presents a review of state-of-the-art in hybrid localization algorithms as

well as localization algorithms that are robust against errors due to NLOS propaga-

tion conditions. In order to give a structured overview, the state-of-the-art in hybrid

localization algorithms is presented first, which is followed by the survey of localization

algorithms that are robust against errors due to NLOS propagation conditions.

In the following, the hybrid localization algorithms are further subdivided into two

different categories. The first category contains hybrid localization algorithms that

only use the information available from the measurements to estimate the MT location.

These algorithms do not take into account information available from MT location

estimates from previous time steps. In order to further improve the performance,

the second category additionally takes into account information available from MT

location estimates from previous time steps and a model for the MT movement. If the

clocks of the satellites and the MT clock are assumed to be unsynchronized, which is

usually the case, a model for the MT clock has to be additionally taken into account.

The term hybrid is used in this section to describe the combination of different types

of measurements as well as the combination of measurements from different systems.
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Since it is not otherwise stated, all algorithms assume that the measurements are

affected by LOS propagation conditions.

The state-of-the-art in hybrid localization algorithms belonging to the first category is

presented next. In [HMD04], a hybrid localization algorithm based on the combination

of PR measurements from GPS and TDoA measurements from the Universal Mo-

bile Telecommunications System (UMTS) is presented, using a weighted least squares

approach. In order to process the signals from GPS and UMTS simultaneously, a high-

level joint receiver structure is proposed, but no performance results are presented.

A similar approach is presented in [SLJ03], where PR measurements from GPS and

TDoA measurements from a CDMA-2000 network are combined using a least squares

approach. In contrast to [HMD04], the presented least squares algorithm is also tested

on field trial data. In [SAF+00], a hybrid method is presented that is based on the

fusion of PR measurements from GPS and Round Trip Time (RTT) measurements

from a cellular radio network that is perfectly synchronized to GPS time. However,

only a general description of the hybrid method is provided and no algorithms or the-

oretical performance bounds are given. Furthermore, the assumption that the radio

network is perfectly synchronized to GPS is unrealistic, since the clocks installed in

the satellite and radio network have a finite accuracy. A study on the influence of the

timing accuracy on the performance of the hybrid localization algorithm is missing.

A hybrid localization method combining PR measurements from GPS and E-OTD

measurements from GSM is presented in [BGRS02]. Again, only general concepts con-

cerning the radio network architecture are given and performance results are missing.

The combination of MT location estimates from GPS and a wireless local area network

is presented in [SGR04]. In [DKK00,KDTSP00], concepts for a hybrid localization sys-

tem based on differential GPS and TDoA are presented and comments on the expected

performance are given. A hybrid data fusion architecture that combines ToA, TDoA

and AoA measurements in an optimal way is developed in [KOB01]. The combination

of AoA and ToA measurements, where cross-correlation between the measurements is

investigated, is presented in [PZV02]. The performance of hybrid systems combining

TDoA and AoA measurements is addressed in [TCL01a,CZ02]. In [Spi01], ToA and

TDoA measurements from a cellular radio network are combined and MT location

estimates are obtained using a weighted least squares approach. The theoretical best

achievable performance of this method is quantified by an accuracy measure, which

turns out to be the Cramér-Rao Lower Bound (CRLB). Experimental results on com-

bining TA and RSS measurements from a GSM network are presented in [SPK01].

Unfortunately, no localization algorithms are given. In [KGP05], a low cost position-

ing method for GSM networks is proposed. A cost function that combines TA and RSS

measurements based on the Maximum Likelihood (ML) principle is proposed, which
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is then solved using the Nelder-Mead simplex algorithm. A hybrid location estimation

scheme for partially synchronized wireless sensor networks is presented in [SC04], where

TDoA and RSS measurements are combined. The MT location estimates are obtained

using the ML principle, but no formulas are provided. The estimation accuracy of the

proposed scheme is further quantified by evaluating the corresponding CRLB. The

results for the CRLB are extended to the case of combining ToA and RSS and are

presented in [CS04]. In [MPV03,MPV05], a hybrid data fusion algorithm combining

RSS and TDoA measurements from cellular radio networks is presented. The proposed

algorithm uses nonparametric estimation methods, which are robust to variations of

measurement noise due to NLOS propagation conditions and quantization. A hybrid

system for accurate vehicular positioning combining signals from GSM and digital au-

dio broadcast is presented in [RCC+00], and a hybrid positioning system that combines

measurements from GPS and television is introduced in [Do08].

In the following a survey of state-of-the-art in hybrid localization algorithms belonging

to the second category is given. In [MSD09], a hybrid data fusion approach is presented

that combines PR measurements from the GNSS with TDoA measurements from fu-

ture 3GPP-LTE communication systems using an Extended Kalman Filter (EKF).

This work has been extended in [MSD10], where the hybrid data fusion problem is

solved using a Particle Filter (PF). The application of so-called Gaussian mixture fil-

ters to hybrid localization is presented in [AL09], where PR measurements, PR rate

measurements from GPS and range measurements from the cellular radio network are

combined. In [PP07], the same combination of measurements as in [AL09] is used

and a robust version of the EKF is proposed, in order to efficiently deal with mea-

surement outliers due to NLOS propagation conditions. A modular software platform

for testing hybrid position estimation algorithms has been presented in [RNALP08].

In [ZKUL06], a data fusion approach for improved positioning in GSM networks is

presented. A method that combines TA and RSS measurements using an EKF is

introduced, and the expected performance is evaluated in a simulation study. A Rao-

Blackwellized variable rate particle filter for tracking the MT using PR measurements

from GNSS, RSS measurements from a wireless sensor network and measurements from

an inertial measurement unit is presented in [FPCFR07]. In this approach, the hybrid

localization algorithm explicitly takes into account that measurements from different

systems are available at different points in time. The expected performance of this

approach is illustrated using computer simulations.

In the following, a review of state-of-the-art localization algorithms is given that are

robust against errors due to NLOS propagation conditions. In order to give a structured

overview, these algorithms are subdivided into two categories, namely algorithms for

NLOS identification and algorithms for NLOS error mitigation.
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The algorithms for NLOS identification detect and discard measurements that result

from NLOS propagation conditions. The remaining measurements are then processed

using localization algorithms that have been designed for LOS propagation conditions.

Thus, these algorithms are especially useful for the case when a large number of mea-

surements from different BS is available. In [BHM98], the NLOS identification problem

for ToA measurements is formulated as a binary hypothesis test, where the errors due

to NLOS are modeled statistically using different assumptions for the corresponding

error probability density function (pdf). Depending on the assumption for the NLOS

error pdf, various decision criteria are developed. In [GKP03], the pdf of the NLOS

error is estimated from ToA measurements using non-parametric density estimation

techniques. The estimated pdf is then compared to the known error pdf in LOS prop-

agation conditions and an appropriate metric is introduced that decides whether the

measurements result from LOS or NLOS propagation conditions. In [VC02], the error

pdf of the ToA measurements remains unspecified and a composite hypothesis test is

proposed to identify NLOS measurements. In [YG09], NLOS identification approaches

based on the Neyman-Pearson theorem are proposed for AoA, ToA and RSS measure-

ments. A simple NLOS identification approach for ultra-wideband localization systems

is proposed in [SGKJ07].

In contrast to the algorithms for NLOS identification, the algorithms for NLOS error

mitigation take into all available measurements to estimate the MT location. The

algorithms for NLOS error mitigation can be subdivided into the following two cate-

gories. The first category contains algorithms for NLOS error mitigation that only use

the information available from the measurements to estimate the MT location. These

algorithms do not take into account information available from MT location estimates

from previous time steps. The second category additionally take into account mod-

els for the MT movement and information available from MT location estimates from

previous time steps to further improve the performance.

The state-of-the-art in algorithms for NLOS error mitigation belonging to the first

category is presented next. In [RU04], an ML detection technique is applied to ToA

measurements in order to mitigate NLOS errors. These approaches assume that the

NLOS error pdf is a-priori known. In [CZ05], NLOS error mitigation algorithms for

TDoA measurements and algorithms that combine TDoA and AoA measurements are

developed. Depending on how much a-priori information about the NLOS error statis-

tics is available, different algorithms are developed. In [QKS06], an analysis in terms

of CRLBs is given for ToA, TDoA, AoA and RSS based localization methods assuming

NLOS propagation conditions. Optimal estimators based on the ML and Maximum

A Posteriori (MAP) principle are derived. A residual weighting algorithm to reduce



1.3 State-of-the-art 9

the NLOS error on MT location estimates is presented in [Che99]. In [MPV00], es-

timation techniques that are robust to some deviation from a presumed NLOS error

pdf are applied to estimate the MT location from RSS measurements. In [SG04], a

similar technique is applied to mitigate NLOS errors in ToA measurements. A NLOS

error mitigation algorithm for ToA measurements which is based on a constrained

linear least squares approach is proposed in [WWO03]. Estimation methods that ap-

proximate the pdf of ToA and TDoA measurements non-parametrically are proposed

in [MPV03]. It is shown by means of simulations for a cellular radio network that

the non-parametric estimators always outperform the parametric ML estimators. A

similar technique is proposed in [HWZ08] to mitigate the NLOS errors in ToA measure-

ments. The algorithms presented in [Che99,MPV00,MPV03,WWO03,SG04,HWZ08]

all have in common, that there is no assumption on the NLOS error pdf. NLOS er-

ror mitigation algorithms that are based on multipath scattering models are presented

in [TCL01b, AJC02, ZLB08]. A two stage approach for NLOS error mitigation for

ToA/TDoA measurements is presented in [WH96,CZ01,GAM05]. In these algorithms,

the first stage consists of identifying, which measurements are affected by errors due

to NLOS propagation. In the second stage, these measurements are then corrected by

the NLOS errors and the MT location is estimated.

In the following, a survey of state-of-the-art in algorithms for NLOS error mitigation

belonging to the second category is given. In [NV03, NHVC04], an EKF based al-

gorithm that mitigates NLOS errors in TDoA measurements and combined ToA and

AoA measurements is proposed. In this algorithm, the NLOS errors are assumed to

be Gaussian distributed with unknown mean value, which is additionally estimated

by the EKF. Simulation and experimental results show, that the MT location can be

efficiently estimated with this algorithm. An approach, where non-parametric density

estimation methods are incorporated into the EKF framework to efficiently estimate

the MT location with ToA measurements is proposed in [HWZ09]. An algorithm for

mitigating the NLOS errors in ToA measurements which is based on probabilistic data

association is presented in [HZ10]. In this algorithm, different subgroups of ToA mea-

surements are constructed, which are fed into a least-squares estimator to determine

the MT location. The MT location estimates together with the corresponding covari-

ance matrices are then used in a hypothesis test for NLOS detection. The accepted

MT location estimates are weighted with different probabilities in a Kalman filter (KF)

based probabilistic data association framework to yield the final MT location estimate.

A somewhat different approach is followed in [LC06,HGVT07,CYLL09], where LOS

and NLOS propagation conditions are modeled as discrete events. A Markov chain is

then used to describe the switching between LOS and NLOS propagation conditions

probabilistically. Since it is generally unknown at which time instances the measure-
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ments are affected by either LOS or NLOS propagation conditions, the current state

of the Markov chain is estimated together with the MT location in the correspond-

ing algorithms. In [HGVT07], the problem of jointly estimating the current state of

the Markov chain and the MT location from ToA measurements is divided into two

interdependent subproblems. It is proposed to solve the problem of estimating the

current state of the Markov chain using a PF. The estimation result of the PF is then

used in an Unscented Kalman Filter (UKF) to solve the problem of estimating the MT

location. In [LC06], the problem of jointly estimating the current state of the Markov

chain and the MT location from ToA measurements is solved using a decentralized

approach. In the decentralized approach, an Interacting Multiple Model (IMM) al-

gorithm is proposed at each BS that is capable to distinguish among a fixed number

of discrete states. The IMM algorithm consists of two KFs, whose measurement noise

statistics are matched to the different LOS and NLOS propagation conditions. The KF

estimates are then combined, in order to determine the distance between the MT and

the BS, but without taking into account the useful MT location information available

from the other BSs. The final MT location estimate is obtained from the combination

of the distance estimates from all BSs by using a geometric method. In [CYLL09], the

decentralized approach is further extended and includes the combination of ToA and

RSS measurements that are available from the BSs. In [LLP09], the Posterior Cramér-

Rao Lower Bound (PCRLB) has been calculated for the joint estimation problem of

the current state of the Markov chain and the MT location from ToA measurements.

In this approach, the Markovian state sequence that models the switching between

LOS and NLOS propagation conditions is assumed a-priori known. This assumption,

however, will yield performance bounds that are overly optimistic, since in reality the

state of the Markov chain is treated in the corresponding algorithms as unknown. The

computation of the PCRLB, where the state sequence of the Markov chain is assumed

unknown and exclusively related to the measurements is still an unsolved problem.

1.4 Open Issues

In the previous sections, it has been shown that hybrid localization is one of the most

promising localization methods, when MT location estimates from GNSS are not avail-

able. However, it has been also shown that errors due to NLOS propagation conditions

are one of the most severe problems in wireless localization. Thus, in the design of

hybrid localization algorithms the aspect of NLOS propagation has to be taken into

account. In this section, the open issues for hybrid localization using measurements

from GPS and GSM arising from the review of the state-of-the-art in hybrid local-
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ization algorithms and NLOS error mitigation algorithms presented in Section 1.3 are

summarized:

1. How can hybrid localization algorithms be designed that efficiently combine dif-

ferent types of measurements with different accuracies from GPS and GSM, and

which take into account that the measurements are affected by propagation con-

ditions that generally switch between LOS and NLOS?

2. How can additional timing information about GPS reference time from the cel-

lular radio network help to improve the performance of hybrid localization algo-

rithms, and what accuracy is required for the timing information to yield perfor-

mance improvements?

3. How can theoretical performance bounds be established for hybrid localization

algorithms that take into account different types of measurements from GPS and

GSM?

4. How can hybrid localization algorithms be designed that satisfy Question 1 and

that additional take into account information from road maps and models for the

MT movement and the MT clock?

5. How can theoretical performance bounds be established for hybrid localization

algorithms that take into account different types of measurements from GPS and

GSM and models for the MT movement and clock?

6. How can hybrid localization algorithms be designed that satisfy Question 3 and

that model the switching between LOS and NLOS propagation conditions with

a Markov chain?

7. How can theoretical performance bounds be established for hybrid localization

algorithms that take into account different types of measurements from GPS

and GSM, a Markov chain model for the switching between LOS and NLOS

propagation conditions and models for the MT movement and clock?

1.5 Thesis Contributions and Overview

In this section, an overview about the structure of the thesis is given and the main

contributions which solve the open problems introduced in Section 1.4 are summarized.

The contents of each chapter together with the main contributions are briefly described

in the following.



12 Chapter 1: Introduction

In Chapter 2, the hybrid localization scenario is explained that is required to evaluate

the corresponding hybrid localization algorithms. Statistical models for the MT move-

ment, MT clock and statistical models for the measurements that take into account

LOS propagation conditions as well as NLOS propagation conditions are presented.

It is explained how measurements and MT trajectories can be generated from these

models, so that the performance of the proposed hybrid localization algorithms can

be evaluated via Monte Carlo simulations. For the simulations, it is assumed that the

measurements are either affected by LOS propagation conditions or by propagation

conditions that switch between LOS and NLOS. Since the proposed hybrid algorithms

will be also tested on data that is available from a field trial, the corresponding field

trial scenario is also explained.

In Chapter 3, new hybrid localization algorithms are introduced that efficiently com-

bine different types of measurements from GPS and GSM. The combination of different

types of measurements in this chapter and the following chapters is based on the com-

bination of information that is available from statistical models for the measurements,

which is also known as statistical data fusion [Gus10b]. In this chapter, answers to the

Questions 1, 2 and 3 stated in Section 1.4 are given:

1. The ML estimator for hybrid localization is newly derived for the case that mea-

surements are affected by LOS propagation conditions. For measurements, where

the propagation conditions switch between LOS and NLOS, an approximate ML

estimator is newly proposed. Since for both ML estimators, closed-form solutions

are not available, three different suboptimal algorithms are proposed to solve the

ML optimization problem.

2. The influence of the accuracy of GPS reference time information on the per-

formance of the proposed hybrid localization algorithms is analyzed in terms of

simulations.

3. The CRLB for hybrid localization is introduced. For measurements affected by

LOS propagation conditions, an analytical expression for the bound of the MT

location Mean Square Error (MSE) is newly derived and a new geometrical inter-

pretation of the bound is presented. For measurements, where the propagation

conditions switch between LOS and NLOS, the CRLB is evaluated numerically.

The performance of the newly introduced hybrid localization algorithms is evaluated

by means of simulations and experimental data. For the simulations, the performance

of the different algorithms is further compared to the corresponding CRLBs.
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In Chapter 4, new hybrid localization algorithms are introduced that combine different

types of measurements, information available from road maps and models for the MT

movement and clock. This Chapter answers Questions 4 and 5 of the open issues:

4. KF-based estimators and PF-based estimators are proposed to solve the hybrid

localization problem. For measurements affected by LOS propagation conditions

as well as for propagation conditions that switch between LOS and NLOS, four

different PF-based estimators are derived. Road map information is included

into these estimators, to further improve the performance. For measurements

affected by LOS propagation conditions, three different KF-based estimators are

proposed that do not take into account road map information.

5. The PCRLB for hybrid localization is introduced. For LOS propagation condi-

tions as well as for propagation conditions that switch between LOS and NLOS,

the PCRLB is evaluated numerically.

The performance of the newly introduced hybrid localization algorithms is evaluated

by means of simulations and experimental data. For the simulations, the performance

of the different algorithms is compared to the PCRLBs. The simulations performed in

this chapter give also an answer to Question 2 of the open issues.

Chapter 5 introduces new hybrid localization algorithms that model the switching

between LOS and NLOS propagation conditions with a Markov chain. This chapter

addresses the open Questions 6 and 7 by the following contributions:

6. An IMM-based estimator and two multiple model-based estimators are newly

proposed to solve the hybrid localization problem using a centralized approach.

In the centralized approach, all measurements are processed jointly in order to

estimate the MT location. Road constraints are included into the multiple model-

based estimators to further improve the performance.

7. The PCRLB for hybrid localization is introduced, where the switching between

LOS and NLOS propagation conditions is modeled with a Markov chain. Two

different approaches for approximately evaluating the PCRLB are proposed and

compared to each other.

The performance of the newly introduced hybrid localization algorithms is evaluated

by means of simulations and is further compared to the PCRLBs and the performance

of the PF-based estimators introduced in Chapter 4.

Finally, a summary of the main conclusions of the thesis is given in Chapter 6.
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Chapter 2

Hybrid Localization Scenario

2.1 Introduction

In this chapter, the hybrid localization scenario that is used for the derivation and

evaluation of the different proposed hybrid localization algorithms is presented. The

hybrid localization scenario is subdivided into the simulations and the field trial. In

the simulations, models describing the MT movement and MT clock, as well as models

for the measurements from the cellular radio and GNSS network are introduced, from

which synthetic measurements are generated. In the field trial, the measurements from

the cellular radio network and the corresponding MT locations are available from a

field trial, while for the GNSS network, synthetic measurements are generated. For the

simulations, single path propagation is assumed, i.e., the radio signals from the MT

arrive at the BS either via the direct path (LOS propagation) or via an indirect path

(NLOS propagation). Two different models for generating the measurements from the

cellular radio network are considered. The first model assumes that the measurements

are only affected by LOS propagation conditions. The second model assumes that the

measurements are affected by either LOS or NLOS propagation conditions, and that

the propagation conditions will switch in time between LOS and NLOS.

The chapter is organized as follows. In Section 2.2, the scenario assumptions for the

simulations and the field trial are discussed. The simulation model together with the

simulation scenario are introduced in Section 2.3, and the field trial together with the

corresponding scenario is explained in Section 2.4.

2.2 Scenario Assumptions

The hybrid localization scenario is composed of the BSs of the cellular radio network,

the Satellites (SATs) of the GNSS and the MT. The BS and satellite locations are

assumed known and the MT location has to be estimated. The locations of the BSs,

the satellites and the MT are defined in a three-dimensional (3-D) Cartesian space

given by R
3, where R is the set of real numbers. A common assumption is to disregard

the height information of the BSs and MT, so that in the following the BSs and MT

can be assumed to be located in the xy-plane [PST97].
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The cellular radio network is composed of NBS BSs, which may be equipped with

directional antennas. Each BS collects measurements by extracting important signal

parameters from the received MT signal that relate the MT location to the BS location.

The measurements are assumed to be available at discrete time steps k ·TS, with k ∈ N,

where index k is assigned to a continuous-time instant tk, TS
∆
= tk − tk−1 denotes the

sampling interval, N is the set of natural numbers and ”
∆
=” denotes equal by definition.

In the following, only RSS and RTT measurements will be considered, since both

measurements are available from ordinary GSM mobile terminals [EVB01, Küp05].

The BS locations are assumed to be fixed and are given by x
(n)
BS = [x

(n)
BS , y

(n)
BS ]

T ∈ R
2,

n = 1, . . . , NBS, where [·]T denotes the transpose of a vector or matrix. The MT

generally moves in space, so that the MT location at time step k is given by xMT,k =

[xMT,k, yMT,k]
T ∈ R

2.

The GNSS is composed ofNSAT satellites. The MT collects measurements by extracting

important signal parameters from the received satellite signals that relate the MT

location to the satellite locations. The measurements are available at discrete time

steps k · T ′
S, where T

′
S denotes the sampling time of the GNSS measurements. For

simplicity, it is assumed that T ′
S = TS. In the following, only PR measurements will be

considered, since these measurements are available from conventional GNSS receivers

[Kap96,ME06]. Here, it is worth noting that the PR measurements are affected by

a common MT clock bias from GNSS reference time, which has to be additionally

estimated. The satellites generally move in space, so that the satellite locations at

time step k are given by x
(l)
SAT,k = [x

(l)
SAT,k, y

(l)
SAT,k, z

(l)
SAT,k]

T ∈ R
3, l = 1, . . . , NSAT.

In addition to the RSS and RTT measurements, it is assumed that the cellular radio

network provides GNSS Reference Time (GRT) measurements to the MT [3GP09].

The GRT measurements are used to estimate the unknown MT clock bias inherent in

the PR measurements and are assumed to be available at discrete time steps k · TS.

2.3 Simulation Model

2.3.1 Introduction

In this section, the simulation model for the hybrid localization is presented. The

simulation model is described in the following by a state model and a measurement

model, which is also known as state-space approach [Jaz70, BSLK01, Sim06]. It is

assumed that both models are formulated in discrete-time and are assumed to be
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available in a probabilistic form. In the state-space approach, the MT is represented

by a state vector that contains all relevant information to describe the MT in a hybrid

localization scenario. The corresponding model describing the evolution in time of

the MT state is given by the state model. The measurements that are available to

the MT give information about the MT state. The corresponding model relating the

measurements from the cellular radio and GNSS network to the MT state is given by

the measurement model. The state model and the measurement model are both used

to generate the simulation environment for the hybrid localization, in order to evaluate

the performance of the hybrid localization algorithms that are developed in this thesis.

This section is organized as follows. In Section 2.3.2, the state model for the hybrid

localization is presented. The models for the measurements from the cellular radio

and GNSS network are introduced in Section 2.3.3. In Section 2.3.4, the simulation

scenario for the hybrid localization is explained.

2.3.2 State Model

2.3.2.1 Introduction

The evolution in time of the MT state is described by a state model 1. The MT state is

in general a vector composed of state variables that provide a complete representation

of the internal condition or status of the MT at a given time instant [Sim06]. A general

state model describing the evolution in time of the MT state is introduced in section

2.3.2.2. For the hybrid localization scenario, the variables that entirely describe the

MT state are assumed to be the two-dimensional MT position and velocity coordinates,

as well as the MT clock bias and clock drift. The corresponding kinematic model, that

is assumed to describe the MT movement is given in Section 2.3.2.3, and the model

characterizing the MT clock is presented in Section 2.3.2.4.

2.3.2.2 General State Model

In this section, a general model is introduced that relates the MT state at time k

to the MT state at time k − 1. It is assumed that the MT state is given by an nx-

dimensional vector xk = [x
(1)
k , . . . , x

(nx)
k ]T ∈ R

nx . The current state is generally affected

1In the literature, the state model is also known as dynamic model, plant model or process model
[BSLK01].
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by errors that take into account any mismodeling effects or unforeseen disturbances

in the model for the MT state. These errors are commonly described statistically by

an nw-dimensional random variable wk−1 = [w
(1)
k−1, . . . , w

(nw)
k−1 ]

T ∈ R
nw (nw ≤ nx) with

probability density function pwk−1
(wk−1). The vector sequence {wk−1, k = 1, 2, . . .} is

assumed to be white, i.e, the wk−1’s are mutually independent for all k ∈ N [Jaz70].

The MT state xk−1 and the errors wk−1 at time k − 1 are related to the state xk at

time k through a vector of known, real-valued, in general nonlinear functions denoted

by fk−1(·). The corresponding general model for the state is, thus, given by

xk = fk−1(xk−1,wk−1). (2.1)

In the following, it is assumed that the errors wk−1 affecting the current state are

additive. Let Γk−1 denote the noise gain matrix of dimension nx × nw that maps the

nw-dimensional noise vector wk−1 to the nx-dimensional state vector xk. Then, the

state model simplifies to

xk = fk−1(xk−1) + Γk−1 ·wk−1. (2.2)

2.3.2.3 Mobile Terminal Kinematic State Model

The movement of the MT can be generally described by a model, in order to predict the

MT position at the next time step. Until now, various mathematical models have been

developed to describe the movement of an MT. These models range from very simple

ones assuming an nonmaneuvering MT movement to very complicated models that

take into account possible MT maneuvers, cf. [LJ03] for a detailed survey of motion

models.

In the following, the nearly Constant Veloctiy (CV) model is used to describe the

MT kinematics [BSLK01, LJ03]. Other, more complicated motion models could have

been used to model MT movement, but this is beyond the scope of this work. The

nearly constant velocity model is one of the simplest motion models, where in addi-

tion to the MT position the MT velocity enters as another unknown into the state

vector and slight changes due to accelerations are modeled with an additive noise

term. Let ẋMT,k = [ẋMT,k, ẏMT,k]
T denote the discrete-time 2-D MT velocity vector,

which can be concatenated together with xMT,k into a single state vector given by

xCV,k = [xT

MT,k, ẋ
T

MT,k]
T and let FCV denote the state transition matrix describing the

movement of the MT between two consecutive time steps. Let further QCV denote

the covariance matrix of a vector-valued, zero-mean white Gaussian noise sequence
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wCV,k−1 = [wx,k−1, wy,k−1]
T and let the matrix ΓCV describe the mapping of the ran-

dom accelerations contained in wCV,k−1 to the MT position and velocity components.

Then, the discrete-time MT kinematic state model can be written as

xCV,k = FCV · xCV,k−1 + ΓCV ·wCV,k−1, (2.3)

with

FCV =

[
I2 TS · I2
0 I2

]

,ΓCV =

[
T 2
S/2 · I2
TS · I2

]

, (2.4)

where In is the n× n identity matrix [BSLK01,LJ03]. In the following, the covariance

matrix QCV is further specified, which describes the uncertainty on the motion model.

It is assumed that the random variables wx,k−1 and wy,k−1 are statistically independent.

Let σ2
x and σ2

y denote the noise variances in the x- and y- directions. Furthermore, let

diag[a1, a2, . . . , aK ] denote a diagonal matrix whose κ1-th entry on the main diagonal

is given by aκ1 , κ1 = 1, . . . , K. Then, the covariance matrix QCV can be written as

QCV = diag[σ2
x, σ

2
y].

2.3.2.4 Mobile Terminal Clock State Model

While GNSS satellites use accurate atomic clocks, the MTs are generally equipped

with inexpensive and inaccurate quartz clocks [ME06]. The main drawback of using

quartz clocks is that the MT clock is not time-synchronized to the clocks of the GNSS

satellites. The resulting unknown MT Clock Offset (CO) cannot be neglected and has

to be additionally estimated (e.g. an MT clock offset of 1µs results in a range offset

of 300m). In the following, a model for the MT clock offset is introduced, in order to

describe the behavior of the MT clock offset over time.

The MT clock offset is modeled using two state components: clock bias δt and clock

drift δṫ, which represent the phase and frequency errors in the MT clock. The relation-

ship between the clock bias and clock drift is commonly modeled with a second-order

Gauss-Markov process [BSLK01, vDBB84]. Let xCO,k = [c0 · δtk, c0 · δṫk]T denote the

vector of discrete-time MT clock states multiplied by the speed of light c0 = 3 ·108 m/s
and let FCO denote the state transition matrix describing the MT clock offset between

two consecutive time steps. Let further QCO denote the covariance matrix of a vector-

valued zero-mean white Gaussian noise sequence wCO,k−1 = [wδt,k−1, wδṫ,k−1]
T and let

the matrix ΓCO describe the mapping of the noise vector wCO,k−1 to the MT clock

states. Then, the discrete-time MT clock state model can be written as

xCO,k = FCO · xCO,k−1 + ΓCO ·wCO,k−1, (2.5)
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with

FCO =

[
1 TS
0 1

]

,ΓCO =

[
c0 0
0 c0

]

. (2.6)

The covariance matrix QCO models the MT clock uncertainty and depends on which

clock type is used. The uncertainty of the different clock types is generally characterized

by the Allan variance, which can be directly related to the covariance matrix QCO

[vDBB84]. Let h0, h−1 and h−2 denote the Allan variance parameters. Then, the

elements of the covariance matrix QCO are given by

Q11 = h0
TS
2

+ 2h−1T
2
S +

2

3
π2h−2T

3
S , (2.7a)

Q21 = Q12 = 2h−1TS + π2h−2T
2
S , (2.7b)

Q22 =
h0
2TS

+ 2h−1 +
8

3
π2h−2TS. (2.7c)

2.3.3 Measurement Model

2.3.3.1 Introduction

The relationship between the MT state and the measurements available from the GNSS

and cellular radio network is described in the following by a measurement model. The

measurements available from the GNSS are assumed to be the PRs and the measure-

ments available from the cellular radio network are assumed to be the RTT, RSS and

GRT. In general, the signals exchanged between the MT and the BSs are subject to

propagation conditions that may switch in time between LOS and NLOS. Since the

different propagation conditions may considerably affect the measurements, it is im-

portant to take the different propagation conditions into account in the measurement

model.

In Section 2.3.3.2, a general measurement model is introduced that relates the actual

measurements to the unknown MT state. A general measurement model that takes into

account the switching between LOS and NLOS propagation conditions is presented in

Section 2.3.3.3, where the switching is modeled with a Markov chain. In Sections 2.3.3.4

to 2.3.3.7, the measurement models for the PR, RTT, RSS and GRT measurements

are presented.

2.3.3.2 General Measurement Model

In this section, a general model is introduced that relates the actual measurements to

the unknown MT state. It is assumed that nz measurements zk = [z
(1)
k , . . . , z

(nz)
k ]T ∈
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R
nz are available, each depending on the MT state xk. The measurements zk are gener-

ally affected by errors that are commonly described statistically by an nv-dimensional

random variable vk = [v
(1)
k , . . . , v

(nv)
k ]T ∈ R

nv (nv ≤ nz) with probability density func-

tion pvk
(vk). The vector sequence {vk, k = 1, 2, . . .} is assumed to be white, i.e, the

vk’s are mutually independent for all k ∈ N. Furthermore, it is assumed that vk and

wk, which is defined in (2.1), are mutually independent for all k ∈ N. The MT state

xk and the errors vk are related to the measurements zk through a vector of known,

real-valued, in general nonlinear functions denoted by hk(·). The corresponding general
model for the measurement is, thus, given by

zk = hk(xk,vk). (2.8)

In the following, it is assumed that the errors vk affecting the measurements are additive

and that the dimensions of the measurement and error vectors are equal, i.e. nz = nv.

Let the vector of functions hk(xk) be given by hk(xk) = [h
(1)
k (xk), . . . , h

(nz)
k (xk)]

T.

Then, the measurement model simplifies to

zk = hk(xk) + vk. (2.9)

2.3.3.3 General Measurement Model for Propagation Conditions that
switch between LOS and NLOS

In this section, a general measurement model is introduced that takes into account

that measurements in LOS or NLOS propagation conditions can be described by dif-

ferent models, and that takes into account that between consecutive time steps the

propagation conditions may switch between LOS and NLOS [DC99,Qi03,LC06]. The

switching between LOS and NLOS is assumed to be time-dependent and is modeled for

each measurement by a discrete-time 2-state stochastic process. The stochastic process

is assumed to satisfy the Markov property [Pap84], i.e., the future states of the process

depend only upon the present state and not on the past. The resulting discrete-time

2-state Markov process is termed Markov chain. The state of the Markov chain for

the m-th measurement is described by a discrete-valued random variable r
(m)
k , called

mode variable in the following, which is in effect during the sampling period (tk−1, tk].

The variable r
(m)
k is assumed to be among the s(m) = 2 possible modes r

(m)
k ∈ {1, 2},

where r
(m)
k = 1 is assigned to the event “LOS” and r

(m)
k = 2 is assigned to the event

”NLOS”. The Markov chain is characterized by the transition probabilities describing

the conditional probability for switching to mode r
(m)
k = j at time k given that mode

r
(m)
k−1 = i is in effect at time k − 1. In the following, it is assumed that the transition

probabilities are independent of k, i.e., the Markov chain is time-homogeneous, and
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are given by

π
(m)
ij = Pr{r(m)

k = j|r(m)
k−1 = i}, ∀ i, j = 1, 2, and m = 1, . . . , nz. (2.10)

The corresponding Transition Probability Matrix (TPM) is, thus, also independent of

k and is given by

Πm =

[

π
(m)
11 π

(m)
12

π
(m)
21 π

(m)
22

]

, (2.11)

where the elements of the TPM are assumed to satisfy the following conditions for

m = 1, . . . , nz:

π
(m)
ij ≥ 0 ∀ i, j = 1, 2, and

2∑

j=1

π
(m)
ij = 1, for i = 1, 2. (2.12)

The initial mode probabilities of the Markov chain, i.e., the probability of being in

mode LOS or NLOS at time k = 1, are given by

π
(m)
i = Pr{r(m)

1 = i}, for i = 1, 2, and m = 1, . . . , nz, (2.13)

where the following conditions for m = 1, . . . , nz, hold:

π
(m)
i ≥ 0 and

2∑

i=1

π
(m)
i = 1, for i = 1, 2. (2.14)

Furthermore, it is assumed that the Markov chain is regular, i.e., for every k, the

k-th power of the TPM, given by the matrix Π̌ = (Πm)
k, contains only positive

entries [Lip74]. From this it follows that as k → ∞ the Markov chain converges to

a unique stationary distribution, regardless of which initial mode probabilities π
(m)
i

are assumed. The stationary distribution is characterized by the probabilities of being

in the mode LOS or NLOS as k → ∞ which are denoted by p
(m)
LOS and p

(m)
NLOS, where

p
(m)
LOS ≥ 0, p

(m)
NLOS ≥ 0 and p

(m)
LOS + p

(m)
NLOS = 1 for m = 1, . . . , nz, hold. The probabilities

of the stationary distribution can be related to the elements of the TPM and are given

by

lim
k→∞

Pr{r(m)
k = 1} =

π
(m)
21

π
(m)
12 + π

(m)
21

= p
(m)
LOS, (2.15a)

lim
k→∞

Pr{r(m)
k = 2} =

π
(m)
12

π
(m)
12 + π

(m)
21

= p
(m)
NLOS, (2.15b)

[Lip74]. In Fig. 2.1, the mode transition diagram of the Markov chain modeling the

switching between LOS and NLOS propagation conditions for the m-th measurement

is shown. The circles in the diagram represent the modes of the process and the
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“LOS”

r
(m)
k = 1

“NLOS”

r
(m)
k = 2

π
(m)
12

π
(m)
21

π
(m)
11 π

(m)
22

Figure 2.1. Mode transition model for Markov chain modeling the switching between
LOS and NLOS propagation conditions for the m-th measurement.

arrows between circles represent the transition between modes and are labeled with

the respective transition probabilities.

In the following, a general measurement model for a vector of nz measurements is

developed that takes into account that the switching between LOS and NLOS prop-

agation conditions for each measurement can occur at different time steps. For nz

measurements, one has to consider nz different 2-state Markov chains, which can be

combined into a single, augmented Markov chain consisting of s = 2nz different states.

In the following, it is assumed that the LOS/NLOS transitions among the different

measurements are independent. Let Π denote the TPM of the augmented Markov

chain combining nz different 2-state Markov chains and let the operator ⊗ denote the

Kronecker product. Then, the TPM Π can be expressed in terms of the TPMs Πm of

the different Markov chains with m = 1, . . . , nz, according to:

Π = Π1 ⊗Π2 ⊗ · · · ⊗Πnz . (2.16)

The state of the augmented Markov chain is now described by the mode variable rk

that is assumed to be among the s = 2nz possible modes rk ∈ {1, . . . , 2nz}. Thus,

the general measurement model, that takes into account the switching between LOS

and NLOS propagation conditions of nz different measurements, can be determined by

additionally considering the discrete mode variable rk of the augmented Markov chain

in the measurement equation hk(·) according to

zk = hk(xk, rk,vk). (2.17)

In the following, it is assumed that the errors affecting the measurements are additive

and that the dimensions of the measurement and error vectors are equal, i.e. nz = nv.

Then, the measurement model simplifies to

zk = hk(xk, rk) + vk(rk), (2.18)
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where both the function hk(·) and the error vk may depend on the mode variable rk. In

the same way, a mode variable can also be incorporated into the general state model,

cf. Section 2.3.2.2, in order to model possible MT maneuvers but which is out of scope

in this work [BSLK01].

2.3.3.4 Pseudorange

In GNSS, the MT measures the time the satellite signal requires to travel from the

satellite to the MT [ME06]. The time measurements are generally affected by delays due

to the propagation of the satellite signal through the ionosphere and the troposphere

and due to errors such as receiver noise, relativity effects or multipath propagation

[ME06]. In addition to that, the MT’s clock is generally not time-synchronized to the

clocks of the GNSS satellites, resulting in an unknown receiver clock bias that has

to be taken into account in the measurement model. The biased time measurements

are generally converted into biased range measurements, hereinafter referred to as PR

measurements, that can be obtained from multiplying the time measurements by the

speed of light c0.

In the following, it is assumed that each measured PR is corrected for the known errors

such as satellite clock offset, relativity effect and ionospheric delay using parameter

values in the navigation message from the satellite [ME06]. Due to the fact that the

clock offsets of the different GNSS satellites can be corrected, it can be assumed that

these clocks are mutually synchronized, so that each PR measurement is affected by

the same bias δtk. It is further assumed that the signal strength of the satellite signal

affected by NLOS propagation falls below the minimum detectable signal strength with

which the GNSS receiver can acquire the satellite signal [ME06]. Thus, the MT can

only receive signals from satellites in LOS, so that errors due to NLOS propagation are

not considered in the PR measurement model.

Let zPR,k denote the vector ofMPR PRmeasurements, where them-th PR measurement

is related to the satellite signal exchanged between the MT and the m-th satellite. Let

d
(m)
SAT,k(xMT,k) denote the Euclidean distance between the MT and the m-th satellite

which is given by

d
(m)
SAT,k(xMT,k) =

√

(xMT,k − x
(m)
SAT,k)

2 + (yMT,k − y
(m)
SAT,k)

2 + (z
(m)
SAT,k)

2, (2.19)

with m = 1, . . . ,MPR. Let further hPR(xMT,k, δtk) denote a vector of MPR functions

relating the MT state to the PR measurements, which is given by

hPR,k(xMT,k, c0 · δtk) =
[

d
(1)
SAT(xMT,k), . . . , d

(MPR)
SAT (xMT,k)

]T

+ c0 · δtk, (2.20)
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and let the MPR-dimensional random variable vPR,k = [v
(1)
PR,k, . . . , v

(MPR)
PR,k ]T describe

unmodeled effects, modeling errors and measurement errors affecting each PR mea-

surement. Then, the PR measurement model can be written as

zPR,k = hPR,k(xMT,k, c0 · δtk) + vPR,k. (2.21)

In the following, it is assumed that vPR,k is a white, zero-mean Gaussian distributed

random sequence with covariance matrix RPR,k. The errors affecting each PR mea-

surement are generally assumed to be uncorrelated and the standard deviation σ
(l)
PR,k

from the PR measurement of the l-th satellite can be approximated by the user equiv-

alent range error [Kap96,ME06]. Thus, the corresponding covariance matrix is given

by RPR,k = diag[σ
(1),2
PR,k, . . . , σ

(MPR),2
PR,k ].

2.3.3.5 Round Trip Time

2.3.3.5.1 Introduction

In cellular radio networks, there exist parameters such as the RTT, i.e., the time the

radio signal requires to propagate from the BS to the MT and back, that give informa-

tion about the MT location. Even though this parameter was not primarily designed

for localization purposes, e.g., in GSM the RTT is used to synchronize the transmit-

ted bursts of the MTs to the frame of the receiving BS, it provides an estimate of

the distance between the BS and the MT [EVB01,Küp05]. The accuracies of the dis-

tance estimates strongly depend on the current propagation conditions, i.e, whether

the signals from the MT arrive via the direct (LOS) path or indirect (NLOS) path at

the BS. Since the indirect path is longer than the direct path, the value of the RTT

measurement will be significantly increased compared to the value of the RTT measure-

ment under the LOS assumption. As the propagation conditions between consecutive

time steps may switch between LOS and NLOS for each RTT measurement, and the

errors due to NLOS propagation can lead to large errors in the RTT measurements,

it is important that the RTT measurement model accounts for both LOS and NLOS

propagation conditions.

2.3.3.5.2 Model for Propagation Conditions that switch between LOS and
NLOS

In the following, let zRTT,k denote the vector of MRTT RTT measurements multiplied

by c0/2, where the m-th RTT measurement is related to the radio signal exchanged
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between the MT and them-th BS. The switching between LOS and NLOS propagation

conditions is modeled for each RTT measurement with a 2-state Markov chain which

is represented by a discrete mode variable r
(m)
k with m = 1, . . . ,MRTT. The switching

between LOS and NLOS forMRTT RTT measurements is, thus, modeled with a 2MRTT-

state Monte Carlo, cf. section 2.3.3.3, where the discrete mode variable rk is assumed

to be among the 2MRTT possible modes rk ∈ {1, . . . , 2MRTT}. The Euclidean distance

between the MT and the m-th BS is given by

d
(m)
BS,k(xMT,k) =

√

(xMT,k − x
(m)
BS,k)

2 + (yMT,k − y
(m)
BS,k)

2, (2.22)

and the vector of MRTT functions relating the MT state to the RTT measurements,

which is assumed to be independent of rk, is given by

hRTT,k(xMT,k) =
[

d
(1)
BS(xMT,k), . . . , d

(MRTT)
BS (xMT,k)

]T

. (2.23)

The RTT measurements are generally affected by errors due to quantization, inac-

curacies in the measurement equipment, changing propagation conditions - LOS and

NLOS situations - and other measurement errors. These errors together with mod-

eling errors are described by an MRTT-dimensional, mode-dependent random variable

vRTT,k(rk) = [vRTT,k(r
(1)
k ), . . . , vRTT,k(r

(MRTT)
k )]T, where the discrete mode variable rk

takes into account that the propagation conditions between consecutive time steps

may switch between LOS and NLOS. Thus, the corresponding model for the RTT

measurements is given by

zRTT,k = hRTT,k(xMT,k) + vRTT,k(rk). (2.24)

In the following, it is assumed that vRTT,k(rk) is a white random sequence and that

the errors affecting each of theMRTT RTT measurements are mutually independent, so

that for each RTT measurement the model for the mode-dependent random variable

vRTT,k(r
(m)
k ) can be determined separately. It is assumed that the errors affecting each

RTT measurement in LOS propagation conditions can be described by the random

variable v
(m)
RTT,LOS,k. In NLOS situations, the RTT measurements are additionally af-

fected by errors due to NLOS propagation, that are modeled by the random variable

v
(m)
RTT,NLOS,k. Thus, the mode-dependent error model can be written as

vRTT,k(r
(m)
k ) =

{

v
(m)
RTT,LOS,k for r

(m)
k = 1,

v
(m)
RTT,LOS,k + v

(m)
RTT,NLOS,k for r

(m)
k = 2.

(2.25)

The random variable v
(m)
RTT,LOS,k is generally described by a zero-mean Gaussian distri-

bution with standard deviation σ
(m)
RTT,LOS,k [SR96,WH96,FK09]. For the random vari-

able v
(m)
RTT,NLOS,k describing the NLOS error, several models have been proposed in the

literature, such as random variables with exponential distributions or shifted Gaussian
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distributions with positive mean value [SR96,CZ01,GG05]. Which error model best fits

reality depends on different factors such as the investigated environment, e.g., indoor,

urban or rural areas, and the cellular radio network, e.g., GSM or UMTS network. In

the following, the NLOS error is described by a Gaussian random variable with posi-

tive mean value µ
(m)
RTT,NLOS,k and standard deviation σ

(m)
RTT,NLOS,k, which is in accordance

with the results that have been obtained from field-trial measurements in GSM net-

works [SR96,FK09]. Furthermore, the random variables v
(m)
RTT,LOS,k and v

(m)
RTT,NLOS,k are

assumed to be independent. Then, the mode-dependent random variable vRTT,k(r
(m)
k )

for each RTT measurement is Gaussian distributed with mode-dependent mean value

µRTT,k(r
(m)
k ) =

{

0 for r
(m)
k = 1,

µ
(m)
RTT,NLOS,k for r

(m)
k = 2,

(2.26)

and mode-dependent variance

σ2
RTT,k(r

(m)
k ) =

{

(σ
(m)
RTT,LOS,k)

2 for r
(m)
k = 1,

(σ
(m)
RTT,LOS,k)

2 + (σ
(m)
RTT,NLOS,k)

2 for r
(m)
k = 2.

(2.27)

Since the errors for the MRTT RTT measurements are mutually independent

and Gaussian distributed, the MRTT-dimensional, mode-dependent random vari-

able vRTT,k(rk) is also Gaussian distributed with mode-dependent mean vector

µRTT,k(rk) = [µRTT,k(r
(1)
k ), . . . , µRTT,k(r

(MRTT)
k )]T and mode-dependent covariance ma-

trix RRTT,k(rk) = diag[σ2
RTT,k(r

(1)
k ), . . . , σ2

RTT,k(r
(MRTT)
k )].

2.3.3.5.3 Model for LOS Propagation Conditions

The model for the RTT measurement assuming LOS propagation conditions can be

deduced from the model introduced in section 2.3.3.5.2. Let zRTT,LOS,k denote the

vector of MRTT RTT measurements affected by LOS propagation conditions and let

the MRTT-dimensional, zero-mean Gaussian distributed random variable vRTT,LOS,k =

[vRTT,k(r
(1)
k = 1), . . . , vRTT,k(r

(MRTT)
k = 1)]T describe the corresponding errors with

covariance matrix RRTT,LOS,k = diag[σ2
RTT,k(r

(1)
k = 1), . . . , σ2

RTT,k(r
(MRTT)
k = 1)]. Then,

the model for the RTT measurements assuming LOS propagation conditions is given

by

zRTT,LOS,k = hRTT,k(xMT,k) + vRTT,LOS,k. (2.28)
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2.3.3.6 Received Signal Strength

2.3.3.6.1 Introduction

In cellular radio networks, the MT measures the power of the received radio signal,

which is known as RSS value. Although the RSS value was not primarily designed for

localization purposes, e.g., in GSM the RSS values from multiple BS are used for the

handover procedure, it provides information about the MT location [EVB01,Küp05].

The RSS measurements are generally affected by the current propagation conditions,

i.e, LOS or NLOS propagation, that have a direct influence on the achievable accuracy

of the MT location estimates. Since in NLOS situations, the signal propagation is

subject to reflection and diffraction from surrounding objects, such as buildings and

trees, the value of the RSS measurement will be significantly decreased compared to

the value of the RSS measurement under the LOS assumption. As the propagation

conditions between consecutive time steps may switch between LOS and NLOS for each

RSS measurement, and the errors due to NLOS propagation can lead to large errors

in the RSS measurements, it is important that the RSS measurement model accounts

for both LOS and NLOS propagation conditions.

2.3.3.6.2 Model for Propagation Conditions that switch between LOS and
NLOS

In the following, let zRSS,k denote the vector ofMRSS RSS measurements, where the m-

th RSS measurement is related to the radio signal exchanged between the MT and the

m-th BS. The switching between LOS and NLOS propagation conditions is modeled

for each RSS measurement with a 2-state Markov chain which is represented by a

discrete mode variable r
(m)
k with m = 1, . . . ,MRSS. The switching between LOS and

NLOS for MBS RSS measurements is, thus, modeled with a 2MRSS-state Markov chain,

cf. section 2.3.3.3, where the discrete mode variable rk is assumed to be among the

2MRSS possible modes rk ∈ {1, . . . , 2MRSS}.

The radio signal, that is exchanged between the m-th BS and the MT generally ex-

periences attenuation. The attenuation of the signal strength through a mobile radio

channel is mainly caused by three factors, namely multipath fading, shadowing and

path loss [Qi03]. Multipath fading is caused by the reception of multiple copies of a

transmitted signal through multipath propagation and results in a rapid fluctuation

of the complex envelope of the received signal. However, the attenuation due to mul-

tipath fading is generally not considered in the RSS measurement model, since the
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RSS value is obtained by averaging the received signal power over some time inter-

val [Qi03]. Shadowing represents a slow variation in the received signal strength and

is caused by events where the direct signal path between the MT and the BS is ob-

scured, e.g., by large buildings. Experimental results have shown that shadowing can

be described by a random variable with log-normal distribution [Rap02, Qi03]. The

path loss describes the attenuation of the signal power as a function of the distance

dBS(xMT,k) between the MT and the BS. In the literature, various models for the

path loss exist [Rap02,DC99,Hat80,OOKF68]. In the following, the log-distance path

loss model is used, since it forms the basis of most of the models available in the lit-

erature [Rap02, DC99]. The log-distance path loss model assumes that the average

received signal power decreases logarithmically with distance and is characterized by

the path loss exponent and the reference path loss. The path loss exponent describes

the rate at which the signal power decays with increasing MT to BS distance. The

reference path loss is measured at a predetermined BS to MT reference distance (1

km in cellular radio networks) and depends on factors such as the specific propagation

environment, BS antenna settings and the frequency band at which the cellular radio

network is operating. Experimental and theoretical investigations have shown that the

values for the reference path loss and the path loss exponent depend on the current

propagation conditions [DC99]. In order to take into account the different propagation

conditions in the path loss model, the reference path loss and the path loss expo-

nent are assumed to be mode-dependent and are given by A(r
(m)
k ) and B(r

(m)
k ). Let

L(m)(xMT,k, r
(m)
k ) denote the path loss corresponding to the m-th RSS measurement.

Then, the mode-dependent path loss model in dB scale is given by

L(m)(xMT,k, r
(m)
k ) = A(r

(m)
k ) + 10 ·B(r

(m)
k ) · log10

(

d
(m)
BS (xMT,k)

1 km

)

. (2.29)

Let A
(m)
LOS and A

(m)
NLOS denote the reference path loss values for LOS and NLOS propa-

gation conditions. Let further B
(m)
LOS and B

(m)
NLOS denote the path loss exponent for LOS

and NLOS propagation conditions. Then, the mode-dependent reference path loss is

given by

A(r
(m)
k ) =

{

A
(m)
LOS for r

(m)
k = 1,

A
(m)
NLOS for r

(m)
k = 2,

(2.30)

and the mode-dependent path loss exponent is given by

B(r
(m)
k ) =

{

B
(m)
LOS for r

(m)
k = 1,

B
(m)
NLOS for r

(m)
k = 2.

(2.31)

The specific values for the mode-dependent parameters A(r
(m)
k ) and B(r

(m)
k ) can be

either determined from field trial measurements or from well known path loss models

as, e.g., COST 231 Walfisch-Ikegami [DC99].
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In real systems, the BSs may be equipped with several directional antennas (also known

as sector antennas) in order to increase the cell’s capacity. The employment of direc-

tional antennas at the BSs, however, will considerably affect the corresponding RSS

measurements, since these antennas concentrate their signal power in one direction

at the expense of other directions. Thus, it is important to incorporate the influence

of directional antennas into the RSS measurement model. Directional antennas are

commonly characterized by the antenna gain. In the following, it is assumed that

2-D models for the antenna gain are available. The antenna gain generally depends

on the azimuth angle, which is given in the units of radians (rad) in the following.

The azimuth angle ϕ
(m)
BS (xMT,k) denotes the angle between the vector pointing into the

boresight direction of the m-th BS antenna and the vector that is directed towards the

propagation path (LOS or NLOS) of the radio signal that is received by the MT. Since

the indirect (NLOS) path is generally pointing into a different direction than the direct

(LOS) path, the azimuth angle is assumed to be mode-dependent in the following. In

LOS situations, the azimuth angle can be described deterministically. Let ϕ
(m)
0 denote

the azimuth angle between the positive x-axis of the Cartesian coordinate system with

the m-th BS location as origin, and the vector pointing in the boresight direction of

the m-th BS antenna. Then, the model for the azimuth angle in LOS situations is

given by

ϕ
(m)
LOS(xMT,k) = arctan

(

y
(m)
BS − yMT,k

x
(m)
BS − xMT,k

)

− ϕ
(m)
0 . (2.32)

In NLOS situations, it is impractical to derive a deterministic model for the azimuth an-

gle, as it would require additional information about the propagation environment such

as the location and orientation of buildings. In these situations, it is much more con-

venient to model the azimuth angle statistically by a random variable [YG09,JCS98].

In the following, it is assumed that the azimuth angle in NLOS situations is uniformly

distributed in the interval (−π−ϕ
(m)
0 , π−ϕ

(m)
0 ], which corresponds to the assumption

that can be often found in the literature [YG09, JCS98]. Thus, the mode-dependent

azimuth angle can be written as

ϕ
(m)
BS (xMT,k, r

(m)
k ) =

{

ϕ
(m)
LOS(xMT,k) for r

(m)
k = 1,

ϕ
(m)
NLOS for r

(m)
k = 2.

(2.33)

For the sake of clarity, the relationship between the different azimuth angles and the

boresight direction of the BS antenna is depicted in Fig. 2.2. Note that the origin of

the coordinate system is equal to the location of the m-th BS. In the following, the

model for the antenna gain is further specified. Let the normalized antenna gain in

dB scale be denoted as G
(m)
ANT(ϕ

(m)
BS (xMT,k, r

(m)
k )). Let further G

(m)
min and ϕ

(m)
3dB denote the

minimum gain and 3 dB beamwidth of the BS antenna and let min{a, b} denote the

smallest value in the set {a, b}. Then, a model for the normalized antenna gain is given



2.3 Simulation Model 31

x

y NLOS path

LOS path

antenna boresight direction

ϕ0
ϕ1

ϕ 2

ϕ0 = ϕ
(m)
0

ϕ1 = ϕ
(m)
LOS(xMT,k)

ϕ2 = ϕ
(m)
NLOS

(x
(m)
BS , y

(m)
BS )

Figure 2.2. Relationship between the different azimuth angles and the antenna’s bore-
sight direction for the m-th BS antenna.

by

G
(m)
ANT(ϕ

(m)
BS (xMT,k, r

(m)
k )) = −min






12 ·

(

ϕ
(m)
BS (xMT,k, r

(m)
k )

ϕ
(m)
3dB

)2

, G
(m)
min






, (2.34)

[3GP07]. Since the azimuth angle ϕ
(m)
NLOS in NLOS situations is modeled with a random

variable, the corresponding antenna gain G
(m)
ANT(ϕ

(m)
BS (xMT,k, r

(m)
k = 2)) is also a random

variable, whose pdf can be found from the transformation of random variables [Pap84].

For simplicity, the pdf of the antenna gain in NLOS situations is approximated in the

following with a Gaussian pdf. Thus, the mean and variance of the Gaussian pdf are

given by

µ
(m)
ANT = −G(m)

min ·
(

1− 1

3π
√
3

√

G
(m)
min · ϕ(m)

3dB

)

, and (2.35a)

σ
(m),2
ANT = G

(m),2
min ·

(

1− 2

5π
√
3

√

G
(m)
min · ϕ(m)

3dB

)

− µ
(m),2
ANT,k, (2.35b)

respectively. The corresponding mode-dependent antenna gain model can be rewritten

as

G(m)(xMT,k, r
(m)
k ) =

{

G
(m)
ANT(ϕ

(m)
BS (xMT,k, r

(m)
k )) for r

(m)
k = 1,

µ
(m)
ANT for r

(m)
k = 2.

(2.36)

The models for the antenna gain and the path loss are used to determine the model

relating the MT state to the m-th RSS measurement. Let P
(m)
T denote the equivalent

isotropic radiated power of the m-th BS antenna in dB. Then, the mode-dependent

model relating the MT state to the m-th RSS measurement is given by

h
(m)
RSS,k(xMT,k, r

(m)
k ) = P

(m)
T −

{

L(m)(xMT,k, r
(m)
k )−G(m)(xMT,k, r

(m)
k )

}

. (2.37)
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As a result, the vector ofMRSS mode-dependent functions relating the MT state to the

MRSS RSS measurements can be written as

hRSS,k(xMT,k, rk) =
[

h
(1)
RSS,k(xMT,k, r

(1)
k ), . . . , h

(MRSS)
RSS,k (xMT,k, r

(MRSS)
k )

]T

. (2.38)

In general, the RSS measurements are affected by errors due to quantization,

slow fading, changing propagation conditions - LOS and NLOS situations - and

other measurement errors. These errors together with modeling errors are de-

scribed by an MRSS-dimensional, mode-dependent random variable vRSS,k(rk) =

[vRSS,k(r
(1)
k ), . . . , vRSS,k(r

(MRSS)
k )]T, where the discrete mode variable rk takes into that

between consecutive time steps the propagation conditions may switch between LOS

and NLOS. Thus, the corresponding model for the RSS measurements in dB is given

by

zRSS,k = hRSS,k(xMT,k, rk) + vRSS,k(rk). (2.39)

In the following, it is assumed that vRSS,k(rk) is a white random sequence and that

the errors affecting each of the MRSS RSS measurements are mutually independent, so

that for each RSS measurement the model for the mode-dependent random variable

vRSS,k(r
(m)
k ) can be determined separately. The errors affecting each RSS measurement

in LOS propagation conditions are described by the random variable v
(m)
RSS,LOS,k. In

NLOS situations, the RSS measurements are additionally affected by errors due to

NLOS propagation, that are modeled by the random variable v
(m)
RSS,NLOS,k. Thus, the

mode-dependent error model can be written as

vRSS,k(r
(m)
k ) =

{

v
(m)
RSS,LOS,k for r

(m)
k = 1,

v
(m)
RSS,LOS,k + v

(m)
RSS,NLOS,k for r

(m)
k = 2.

(2.40)

The random variable v
(m)
RSS,LOS,k is assumed to be zero-mean Gaussian distributed with

standard deviation σ
(m)
RSS,LOS,k [YG09]. In NLOS situations, shadowing as well as the

randomly varying antenna gain predominate the errors. Shadowing is generally de-

scribed by a random variable with log-normal distribution. Since the error model is

in dB units, the random variable describing shadowing is zero-mean Gaussian dis-

tributed with standard deviation σ
(m)
SHA,k [DC99, Rap02, YG09]. The random variable

describing the antenna gain is Gaussian distributed with mean µ
(m)
ANT and standard

deviation σ
(m)
ANT. Since the mean µ

(m)
ANT has been already considered in (2.36), the ran-

dom variable describing the antenna gain is zero-mean Gaussian distributed. The

random variables describing shadowing and the antenna gain are assumed to be inde-

pendent, so that v
(m)
RSS,NLOS,k is zero-mean Gaussian distributed with standard deviation

σ
(m)
RSS,NLOS,k =

√

σ
(m),2
SHA,k + σ

(m),2
ANT . Assuming further that the random variables v

(m)
RSS,LOS,k

and v
(m)
RSS,NLOS,k are independent, the mode-dependent random variable vRSS,k(r

(m)
k ) for
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each RSS measurement is zero-mean Gaussian distributed with mode-dependent vari-

ance

σ2
RSS,k(r

(m)
k ) =

{

σ
(m),2
RSS,LOS,k for r

(m)
k = 1,

σ
(m),2
RSS,LOS,k + σ

(m),2
RSS,NLOS,k for r

(m)
k = 2.

(2.41)

Since the errors for the MRSS RSS measurements are mutually independent and zero-

mean Gaussian distributed, the MRSS-dimensional, mode-dependent random variable

vRSS,k(rk) is also zero-mean Gaussian distributed with mode-dependent covariance ma-

trix RRSS,k(rk) = diag[σ2
RSS,k(r

(1)
k ), . . . , σ2

RSS,k(r
(MRSS)
k )].

2.3.3.6.3 Model for LOS Propagation Conditions

The model for the RSS measurement assuming LOS propagation conditions can be

deduced from the model introduced in section 2.3.3.6.2. Let zRSS,LOS,k denote the

vector of MRSS RSS measurements affected by LOS propagation conditions and let

the MRSS-dimensional, zero-mean Gaussian distributed random variable vRSS,LOS,k =

[vRSS,k(r
(1)
k = 1), . . . , vRSS,k(r

(MRTT)
k = 1)]T describe the corresponding errors with co-

variance matrix RRSS,LOS,k = diag[σ2
RSS,k(r

(1)
k = 1), . . . , σ2

RSS,k(r
(MRSS)
k = 1)]. Further-

more, let hRSS,LOS,k(xMT,k) = [h
(1)
RSS,k(xMT,k, r

(1)
k = 1), . . . , h

(MRSS)
RSS,k (xMT,k, r

(MRSS)
k = 1)]T

denote theMRSS-vector function relating the MT state to theMRSS RSS measurements.

Then, the model for the RSS measurements assuming LOS propagation conditions is

given by

zRSS,LOS,k = hRSS,LOS,k(xMT,k) + vRSS,LOS,k. (2.42)

2.3.3.7 Global Navigation Satellite System Reference Time

In GNSS, the satellite clocks are generally not time-synchronized to the clock of the MT.

The resulting bias δtk enters as an additional unknown into the pseudorange equations,

cf. (2.21). In cellular radio networks, there exists the possibility to provide the MT

with timing information that can be used to estimate the unknown clock bias δtk in the

pseudorange equations. In GSM, for example, the available Radio Ressource Location

Protocol (RRLP) provides timing information for GPS [3GP09]. In the following, a

model is derived that relates the timing information available from the cellular radio

network to the unknown clock bias δtk.

In GNSS, there are basically three time scales to deal with. The two time scales

corresponding to the times kept by the GNSS satellite and MT clocks, and a common

time reference, denoted as GNSS reference time, which is a composite time scale derived
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from the times kept by atomic clocks at the GNSS monitor stations and aboard the

GNSS satellites [ME06]. The time scales of the GNSS satellite clocks are assumed

to coincide with the GNSS reference time scale, since the GNSS satellite clocks are

assumed to be mutually synchronized to GNSS reference time, cf. Section 2.3.3.4. Let

tGNSS,k and tMTC,k denote the GNSS reference time scale and MT clock time scale at

time step k, respectively. Then, the offset between these two time scales describes the

clock bias δtk, which is given by

δtk = tGNSS,k − tMTC,k. (2.43)

The timing information available from the cellular radio network is the GNSS reference

time, which is marked on the radio signal that is transmitted to the MT. The GNSS

reference time, however, can be provided to the MT only with a specified accuracy

[3GP09]. On the one hand, this is due to errors affecting the GNSS reference time such

as inaccurate clocks in the cellular radio network and other errors. On the other hand,

the GNSS reference time information that is received by the MT is generally outdated

by the amount of time the radio signal requires to propagate from the BS to the MT.

The sum of these errors affecting the GNSS reference time is modeled in the following

by a random variable vGRT,k. If the number of errors affecting the GNSS reference time

is sufficiently large, the central limit theorem can be used and vGRT,k can be assumed to

be Gaussian distributed with standard deviation σGRT,k [Pap84]. In the following, it is

assumed that vGRT,k is zero-mean and the corresponding sequence of random variables

is white. Let zGRT,k denote the GRT measurement that is received by the MT. Then,

the model for the GRT is given by

zGRT,k = tGNSS,k + vGRT,k. (2.44)

The GRT measurement model can be directly converted into an MT clock bias model,

since the MT time scale tMTC,k at time step k is known. Let zBIAS,k denote the MT

clock bias measurement. Then, the model for the MT clock bias measurement is given

by

zBIAS,k = c0 · (zGRT,k− tMTC,k) = c0 · δtk+ c0 · vGRT,k = hBIAS,k(c0 · δtk)+ vBIAS,k, (2.45)

where the second equality follows from the insertion of (2.44) into (2.45) and taking

into account (2.43). The error vBIAS,k is zero-mean Gaussian distributed with standard

deviation σBIAS,k = c0 · σGRT,k. Instead of using the GRT measurement model, the MT

clock bias measurement model is used in the following, since it gives a direct relationship

to the MT clock bias δtk, which is inherent in the PR measurement equations.
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2.3.4 Simulation Scenario

2.3.4.1 Introduction

In this section, the simulation scenario for the hybrid localization is presented. In

this work, two different simulation scenarios will be investigated. The first simulation

scenario (Scenario I) is described in Section 2.3.4.2 and the second simulation scenario

(Scenario II) is described in Section 2.3.4.3. For both simulation scenarios, it is assumed

that the radio signals are either affected by LOS propagation conditions or propagation

conditions that may switch between LOS or NLOS, whereas the satellite signals are

assumed to be affected by LOS propagation conditions. The generation of the sequence

of measurements and states together with the simulation parameters is presented in

Section 2.3.5.

2.3.4.2 Scenario I

Scenario I that is investigated in this thesis has a size of 3 km× 2 km and is shown in

Fig. 2.3. It is assumed that a car is equipped with an MT that is capable of providing

PR measurements from GNSS and RSS, RTT and GRT measurements from the cellular

radio network. In Fig. 2.3, the trajectory of the car together with the road network

and the BS locations is shown. The car is assumed to move with a constant speed of 45

km/h on the trajectory. For simplicity, it is assumed that the car maintains its speed

when it enters into a curve. The cellular radio network is composed of NBS = 7 BSs,

where the serving BS is assumed to be the BS located at [-500m, 0m]T. It is further

assumed that the BSs are either equipped with omni-directional or sector antennas.

The satellite locations are assumed to be fixed and are taken from a real GNSS satellite

constellation. In order to investigate the effect of the relative satellite to MT geometry

on the achievable accuracy of the MT location estimates, different satellite geometries

are introduced. The influence of the geometry on the achievable accuracy is expressed

by the 2-D Geometric Dilution of Precision (GDOP) value, which is further illustrated

in Fig. 2.4 [Lev00]. When GNSS satellites are close together in the sky, the geometry is

said to be weak and the GDOP value is high (GDOP > 5). When GNSS satellites are

far apart, the geometry is said to be strong and the GDOP value is low (GDOP ≤ 5).

The satellite locations for different 2-D GDOP values are summarized in Table 2.1.

In order to evaluate the performance of the hybrid localization method, different com-

binations of measurements are proposed. In cellular radio networks, the RTT and RSS

measurements are available only from a limited number of surrounding BSs. In GSM,
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Figure 2.3. Scenario I with MT trajectory (bold line), road network and NBS = 7
BSs (•). The arrows (→) indicate BSs equipped with sector antennas, where only the
sector antenna that is used in the simulations is shown.

for example, the RTT and RSS measurements from the serving BS and between one and

six strongest RSS measurements from the neighboring BSs are available [EVB01]. In

order to better reflect reality, these restrictions are taken into account in the combina-

tion of measurements. Beside the hybrid methods, the cellular method and the satellite

method are introduced. The cellular method combines only measurements from the

cellular radio network, while the satellite method combines only measurements from

the GNSS network. It is assumed that in the satellite method, three PR measurements

from three different GNSS satellites are combined, since this is the minimum number

of PR measurements to obtain a 2-D MT location estimate. For the sake of clarity, the

different considered methods are summarized as follows:

• Cellular method: One RTT measurement from the serving BS and a total of

seven RSS measurements from serving and neighboring BS antennas,

• Hybrid 1 method: Measurements of cellular method and, in addition, one PR

measurement from one GNSS satellite,

• Hybrid 1+ method: Measurements of Hybrid 1 method and, in addition, the

GRT measurement from the cellular radio network,

• Hybrid 2 method: Measurements of cellular method and, in addition, two PR

measurements from two different GNSS satellites,
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• Hybrid 2+ method: Measurements of Hybrid 2 method and, in addition, the

GRT measurement from the cellular radio network,

• Hybrid 3 method: Measurements of cellular method and, in addition, three PR

measurements from three different GNSS satellites,

• Satellite method: Three PR measurements from three different GNSS satellites.

Scenario I is used to investigate the performance of the hybrid localization algorithms

proposed in Chapter 3 and Chapter 4.

x
y

z

Strong GeometryWeak Geometry

GNSS satellites

GNSS satellites

MTMT

Figure 2.4. GNSS satellite to MT geometry for two different scenarios.

2.3.4.3 Scenario II

Scenario II that is investigated in this thesis has a size of 3 km× 2 km and is shown in

Fig. 2.5. It is assumed that a car is equipped with an MT that is capable of providing

PR measurements from GNSS and RSS and RTT measurements from the cellular radio

network. In Fig. 2.5, the trajectory of the car together with the road network and the

BS locations is shown. The car is assumed to move with a constant speed of 45 km/h

on the trajectory as depicted in Fig. 2.5. For simplicity, it is assumed that the car

maintains its speed when it enters into a curve. The cellular radio network is composed

ofNBS = 3 BSs and each BS is equipped with an omni-directional antenna. The satellite

locations are assumed to be fixed and are taken from a real GNSS satellite constellation
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Table 2.1. Satellite Locations for different 2-D GDOP values

Satellite 2-D GDOP

Location 2 10 20 50

x
(1)
SAT in m 14443484 17953574 18268005 18456147

y
(1)
SAT in m 16934083 5296417.60 4395498.20 3856190.30

z
(1)
SAT in m 8607443.69 12778466 12698276 12626966

x
(2)
SAT in m −13737497 13802799 −6961925.70 −7136389

y
(2)
SAT in m 2341650.60 −771094.86 −12403207 −12874647

z
(2)
SAT in m 16441855 16321784 16243256 15919980

x
(3)
SAT in m 11017598 −6649567.10 13064925 12612713

y
(3)
SAT in m −4214169.60 −11609720 −388905.30 −176502.05

z
(3)
SATin m 17323090 16757534 16759635 17009222

according to Table 2.1. The performance of the hybrid localization method is evaluated

based on different combinations of measurements. In contrast to Scenario I, it is now

assumed that RTT measurements are available from all BSs. In GSM, for example,

this can be accomplished by initiating forced handovers [SM99]. The different methods

that are investigated are summarized as follows:

• Cellular method: Three RTT and RSS measurements from three different BS

antennas,

• Hybrid 1 method: Measurements of cellular method and, in addition, one PR

measurement from one GNSS satellite,

• Hybrid 2 method: Measurements of cellular method and, in addition, two PR

measurements from two different GNSS satellites,

• Hybrid 3 method: Measurements of cellular method and, in addition, three PR

measurements from three different GNSS satellites,

• Satellite method: Three PR measurements from three different GNSS satellites.

Scenario II is used to investigate the performance of the hybrid localization algorithms

proposed in Chapter 4 and Chapter 5. The number of BS is decreased from NBS = 7 in

Scenario I to NBS = 3, since the computational complexity of the algorithms developed

in Chapter 5 increases exponentially with NBS. Since more measurements generally

yield an improved localization performance, the number of RTT measurements is in-

creased from MRTT = 1 in Scenario I to MRTT = 3.
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Figure 2.5. Scenario II with MT trajectory (bold line), road network and NBS = 3 BSs
(•).

2.3.5 Monte Carlo Simulations

In this section, the need of performing Monte Carlo (MC) simulations (runs) is moti-

vated. Models with which the MT state and the measurements can be generated for a

single Monte Carlo run are presented, as well as the parameters that are used in the

Monte Carlo simulations are given.

In order to compare different hybrid localization algorithms with each other, it is

necessary to introduce a performance measure. In general, the performance of an

algorithm is quantified by the expected value of a cost function C [BSLK01]. For

localization algorithms, the most frequently chosen cost function is the squared error

in the estimation of the MT location xMT,k. Let x̂MT,k(zk) denote an estimate of the MT

location based on the current measurements. Let further E{·} denote the expectation

operator and let ‖ s ‖ denote the 2-norm of the vector s. Then, the MSE of the MT

location is given by

E{C} ∆
= MSE = E{‖ x̂MT,k(zk)− xMT,k ‖2}. (2.46)

For the hybrid localization algorithms investigated in this work, the performance cannot

be evaluated analytically. In such a case, Monte Carlo simulations are performed to

obtain an estimate of E{C} from a sample average of NMC independent realizations

Ci, i = 1, . . . , NMC, of the cost C. The variability of the resulting estimate will become

smaller for an increasing number of Monte Carlo simulations NMC. Let xMT,k,i and
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x̂MT,k,i(zk,i) denote the true and estimated MT location at the i-th Monte Carlo run,

respectively. Then, the estimate of the performance from NMC independent runs is the

sample mean of the NMC realizations of the cost C or, equivalently,

MSE ≈ 1

NMC

NMC∑

i=1

‖ x̂MT,k,i(zk,i)− xMT,k,i ‖2 . (2.47)

In order to evaluate the average performance of the hybrid localization algorithms by

means of simulations, it is, thus, necessary to generate for the MT trajectory depicted

in Figs. 2.3 and 2.5 NMC independent realizations of the MT state and the measure-

ments. The MT state vector for the hybrid localization is given by xk = [xT

CV,k, x
T

CO,k]
T,

and can be generated from the models introduced in Section 2.3.2. In the following, the

model that is used to generate xk is written more compactly. Let wk = [wT

CV,k, w
T

CO,k]
T

denote a vector of random variables, where wCV,k and wCO,k are assumed to be statis-

tically independent. Let diagb[A1, A2, . . . , AK ] denote a block diagonal matrix given

by

diagb[A1, A2, . . . , AK ] =










A1 0 0 · · · 0
0 A2 0 · · · 0

0 0
. . . 0

...
...

... 0 AK−1 0
0 0 · · · 0 AK










, (2.48)

where the all-zero matrices 0 have to be adapted to the sizes of the arbitrarily

sized real matrices Aκ1 , κ1 = 1, . . . , K. Let further F = diagb[FCV, FCO] and

Γ = diagb[ΓCV, ΓCO] denote the overall state transition and noise mapping matrices,

respectively, and let Q = diagb[QCV, QCO] denote the covariance matrix of the noise

vector wk−1. Then, the model for generating the MT state for the hybrid localization

is given by

xk = F · xk−1 + Γ ·wk−1. (2.49)

For the generation of the measurements, two different models are used:

• The first model assumes that both, the radio signals and satellite signals

are affected by LOS propagation conditions. Let zLOS,k = [zTPR,k, z
T

RTT,LOS,k,

zTRSS,LOS,k, zBIAS,k]
T denote the vector of M measurements, and let hLOS,k(xk) =

[hT

PR,k(xMT,k, c0 · δtk), hT

RTT,k(xMT,k), h
T

RSS,LOS,k(xMT,k), hBIAS,k(c0 · δtk)]T denote

the vector of M functions relating the MT state to the M measurements, where

M = MPR +MRTT +MRSS + 1. Furthermore, let vLOS,k = [vT

PR,k, v
T

RTT,LOS,k,

vT

RSS,LOS,k, vBIAS,k]
T denote the vector of M random variables. It is assumed

that the random variables vPR,k, vRTT,LOS,k, vRSS,LOS,k and vBIAS,k are statisti-

cally independent, so that the covariance matrix of vLOS,k is given by RLOS,k =



2.3 Simulation Model 41

diagb[RPR,k, RRTT,LOS,k, RRSS,LOS,k, σ
2
BIAS,k]. Then, the model for generating the

measurements for the case of LOS propagation conditions can be written as

zLOS,k = hLOS,k(xk) + vLOS,k. (2.50)

• The second model assumes that the satellite signals are affected by LOS propaga-

tion conditions and that the radio signals are affected by propagation conditions

that may switch between LOS and NLOS. The switching between LOS and NLOS

propagation conditions is modeled for each radio signal that is exchanged between

the m-th BS and the MT with a 2-state Markov chain r
(m)
k , with m = 1, . . . , NBS.

Here, it is worth noting that the RTT and RSS measurements that are related

to the radio signal of the same BS are modeled with a single Markov chain, since

both RTT and RSS parameters are extracted from the same radio signal. The

TPM for each Markov chain is assumed to be given by

Πm =

[
0.95 0.05
0.05 0.95

]

, (2.51)

and the mode probabilities to initialize each Markov chain are chosen as π
(m)
1 =

0.5 and π
(m)
2 = 0.5. In the following, the model for generating the measurements

is written more compactly. The NBS different 2-state Markov chains are combined

into a single Markov chain consisting of 2NBS different states. The state of the

augmented Markov chain is now described by the mode variable rk that is among

the 2NBS possible modes rk ∈ {1, . . . , 2NBS}. The transition between LOS and

NLOS propagation conditions is modeled for each radio signal independently, so

that the TPM of the augmented Markov chain is given by

Π = Π1 ⊗Π2 ⊗ · · · ⊗ΠNBS
. (2.52)

Let zk = [zTPR,k, z
T

RTT,k, z
T

RSS,k, zBIAS,k]
T denote the vector of M measure-

ments, and let hk(xk, rk) = [hT

PR,k(xMT,k, δtk), h
T

RTT,k(xMT,k), h
T

RSS,k(xMT,k, rk),

hBIAS,k(δtk)]
T denote the mode-dependent vector of M functions relating

the MT state to the M measurements. Furthermore, let vk(rk) =

[vT

PR,k, v
T

RTT,k(rk), v
T

RSS,k(rk), vBIAS,k]
T denote the mode-dependent vector of ran-

dom variables. It is assumed that the random variables vPR,k, vRTT,k(rk),

vRSS,k(rk) and vBIAS,k are statistically independent. From this it fol-

lows that vk(rk) is Gaussian distributed with mode-dependent mean vector

µk(rk) = [01×MPR
, µT

RTT,k(rk), 01×MRSS
, 0]T and mode-dependent covariance ma-

trix Rk(rk) = diagb[RPR,k, RRTT,k(rk), RRSS,k(rk), σ
2
BIAS,k], where 0i×j denotes

the all-zeros matrix with i rows and j columns. Thus, the model for generating

the measurements that considers the switching between LOS and NLOS propa-

gation conditions is given by

zk = hk(xk, rk) + vk(rk). (2.53)
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In order to generate the vectors xk, zLOS,k and zk for a single Monte Carlo run, the

unknown parameters inherent in the corresponding models have to be further specified.

For the sake of simplicity, it is assumed that these parameters are independent of k

and equal for all BSs and satellites and are summarized in Table 2.2.

Table 2.2. Simulation parameters

Parameter Equation Value

σx in m/s2 (2.3) 10−2

σy in m/s2 (2.3) 10−2

TS in s (2.4), (2.6), (2.7) 0.5

h0 in s [vDBB84] (2.7) 9.4 · 10−20

h−1 [vDBB84] (2.7) 1.8 · 10−19

h−2 in 1/s [vDBB84] (2.7) 3.8 · 10−21

σPR in m [Kap96,ME06] (2.21) 10

µRTT,NLOS in m [SR96,LC06] (2.26) 513

σRTT,LOS in m [SR96,LC06] (2.27) 150

σRTT,NLOS in m [SR96,LC06] (2.27) 409

ALOS in dB [DC99] (2.30) 101.7

ANLOS in dB [DC99] (2.30) 132.8

BLOS in dB [DC99] (2.31) 2.6

BNLOS in dB [DC99] (2.31) 3.8

ϕ3dB in rad (2.34) π/3

Gmin in dB (2.34) 17

PT in dBm (2.37) 50

σRSS,LOS in dB (2.41) 2

σRSS,NLOS in m (2.41) 8

2.4 Field Trial

In this section, the field trial for the hybrid localization is explained. The field trial

was conducted in an operating GSM network in the city center of a German city with

a test area which has a size of approximately 2 km× 2 km. During the field trial, a car

equipped with a standard cellular phone collected Received Signal Level (RXLEV) and

TA measurements from GSM every TS = 0.48 s. Here, it is worth noting that RXLEV
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measurements are quantized RSS measurements and TA measurements are quantized

RTT measurements. In addition, it should be noted that the TA measurement is

only available from the serving BS, while the RXLEV is available from the serving

BS and between one and six strongest RXLEVs are available from the neighboring

BSs [EVB01]. Since GRT measurements have not been collected during the field trial,

this issue is not further elaborated. The GSM network is composed of NBS = 13 fixed

BSs with known locations. The BSs are either equipped with directional antennas or a

single omni-directional antenna, which may operate at different frequency bands (GSM

900 or GSM 1800). The antenna boresight directions, equivalent isotropic radiated

powers and half-power beamwidths are a-priori known. The true MT location during

the field trial was obtained from detailed maps and from GPS, where GPS was available.

For the GPS network, PR measurements collected from a field trial are not available, so

that synthetic PR measurement data have been generated with the PR model presented

in Section 2.3.3.4, the MT clock model described in Section 2.3.2.4 and the parameters

given in Table 2.2. The constellation of the GPS satellites during the field trial is

reconstructed by taking true satellite locations from the real satellite constellation.

The satellite’s visibility status cannot be reproduced subsequently, so that it is assumed

that either NSAT = 1 or NSAT = 2 are visible to the MT. However, this assumption is

only made in order to demonstrate the potential improvements that can be achieved

by the hybrid localization. In reality, the number of visible satellites changes with

time, so that there will be situations where NSAT ≥ 3 and, thus, GPS is available. The

satellite locations are chosen based on the expected visibility status during the field

trial. As the MT antenna is located inside the car, the roof of the car prevents the

MT to receive signals from satellites at high elevation angles. Here, the elevation angle

refers to the angle that is measured in radians counterclockwise from the xy-plane (0

elevation) towards the z-axis (π/2 elevation) of a Cartesian coordinate system, whose

origin is defined to be the location of the MT. The resulting elevation angles, where the

satellite signal is not blocked, is given by the so-called satellite elevation angle mask

θMASK. For the field trial, the satellite elevation angle mask in radians is chosen as

π/9 ≤ θMASK ≤ π/6. In general, the expected satellite visibility status also depends

on the azimuth angle. However, for simplicity, the corresponding satellite azimuth

elevation angle mask is not considered.

When it comes to the processing of real data from field trials, the locations of the MT,

BSs and satellites are often expressed in different coordinate systems. The satellite

locations, for example, are often expressed in Earth Centered Earth Fixed (ECEF)

coordinates, while the true MT location as well as the BS locations are conventionally

given in the geodetic coordinate system [RAG04,GWA07]. In order to apply the hybrid

localization algorithms to the data from the field trial, it is, thus, necessary to define
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a common Cartesian coordinate system. In the following, a fixed local East-North-Up

(ENU) rectangular coordinate system with coordinates xENU, yENU and zENU is used,

which is determined by the fitting of a tangent plane to the Earth’s surface at a fixed

reference point [RAG04,GWA07]. The reference point is the origin of the local ENU

coordinate system and is chosen to be in the vicinity of the field trial scenario where

the data was collected. The xENU-axis points to true east, the yENU-axis points north

and the zENU-axis points up, in order to complete the right-handed coordinate system.

For completeness, the transformations between the different coordinate systems are

summarized in Appendix A.1. The field trial scenario showing the BS locations, the

road network, as well as the MT trajectory in the ENU coordinate system is presented

in Fig. 2.6.
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Figure 2.6. Field trial scenario with MT trajectory (bold line), road network and
NBS = 13 BSs (•). Due to confidentiality reasons only approximate BS locations are
shown. Arrows (→) indicate BSs equipped with sector antennas.
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Chapter 3

Non-Recursive State Estimation for
Hybrid Localization

3.1 Introduction

In this chapter, the hybrid localization problem is solved using non-recursive state

estimation techniques 1. In non-recursive state estimation, the MT state is estimated

for each time step k independently, i.e., without taking into account information on

measurements and MT state estimates from previous time steps. The estimation of the

MT state is, thus, done in a snap-shot manner, based on the measurements available

at a particular time step.

The concept of non-recursive state estimation is introduced in Section 3.2, where the

ML estimator is chosen as a solution for the hybrid localization problem. In order to

assess the theoretically best achievable performance of the estimator, the CRLB for

hybrid localization is evaluated in Section 3.3. For measurements affected by LOS prop-

agation conditions, a novel analytical expression for the CRLB is derived and a novel

geometric interpretation of the bound is given. For measurements affected by propaga-

tion conditions that may switch between LOS and NLOS, a numerical solution for the

CRLB is provided. The ML estimators for the hybrid localization problem assuming

LOS propagation conditions and for propagation conditions that may switch between

LOS and NLOS are newly proposed in Section 3.4. Since in both cases, analytical

solutions to the ML estimators do not exist, suboptimal algorithms for approximately

solving the ML estimation problem are proposed. The performance of the proposed

hybrid localization algorithms is analyzed by means of simulations and experimental

data in Section 3.5. Finally, the main conclusions of this chapter are drawn in Sec-

tion 3.6. Several parts of this Chapter 3 have been originally published by the author

in [FKS06,FKSP07,FK08].

3.2 Concept of Non-Recursive State Estimation

In this section, the concept of non-recursive state estimation for the hybrid localiza-

tion is derived starting from the concept of static Bayesian estimation [vT68,Kay93,

1In the literature, non-recursive state estimation is also known as static estimation or parameter
estimation [GG05,BSLK01].
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BSLK01,GG05]. For static Bayesian estimation, temporal correlations between time

consecutive MT states and measurements are not taken into account, so that the MT

state and the measurements can be regarded as a sequence of uncorrelated parame-

ters. In the following, the discrete mode variable rk is not additionally estimated, so

that the only unknown is the MT state xk, which is estimated for each time step k

independently by using the information available from the current measurements zk.

In static Bayesian estimation, the problem of estimating the MT state from different

measurements is equivalent to the construction of the posterior pdf of the MT state

over an nx-dimensional space given the measurements, from which the MT state can be

then estimated [vT68,Kay93,BSLK01,GG05]. In the Bayesian approach, the MT state

xk is assumed to be a random variable with prior pdf p(xk). Let p(xk|zk) denote the

posterior pdf of the MT state given the measurements. Let further p(zk|xk) denote the

pdf of the measurements conditioned on the MT state, hereinafter called the likelihood

function. Then, according to Bayes’ theorem [Pap84], the posterior pdf can be found

from the following relationship

p(xk|zk) =
p(xk) · p(zk|xk)

∫

Rnx

p(xk) · p(zk|xk) dxk

, (3.1)

where the denominator in (3.1) ensures that the posterior pdf p(xk|zk) integrates to

unity [Kay93]. For the hybrid localization, the elements of the vector zk are assumed

to be mutually independent. Let pν(z
(ν)
k |xk) denote the likelihood function of the ν-th

measurement. Then, the joint conditional pdf p(zk|xk) can be written as a product of

the marginal pdfs pν(z
(ν)
k |xk) according to

p(zk|xk) =
nz∏

ν=1

pν(z
(ν)
k |xk), (3.2)

[vT68]. For the measurement model given by (2.9) and under the additional assumption

that the components of the vector of random variables vk are statistically independent,

(3.2) holds and the marginal likelihood function pν(z
(ν)
k |xk) can be determined by

pν(z
(ν)
k |xk) = p

v
(ν)
k

(z
(ν)
k − h

(ν)
k (xk)), for ν = 1, . . . , nz, (3.3)

[Jaz70]. For the measurement model given by (2.18) and under the additional assump-

tion that the components of the vector vk(rk) of random variables are statistically

independent, (3.2) holds and the marginal likelihood function pν(z
(ν)
k |xk) can be deter-

mined according to the following approach. For ν = 1, . . . , nz, the marginal likelihood

function pν(z
(ν)
k |xk) can be found from the law of total probability [Pap84], yielding

p(z
(ν)
k |xk) =

2∑

r
(ν)
k

=1

p(z
(ν)
k , r

(ν)
k |xk) =

2∑

r
(ν)
k

=1

Pr{r(ν)k } · p(z(ν)k |xk, r
(ν)
k ), (3.4)
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where the mode-dependent likelihood function is given by

pν(z
(ν)
k |xk, r

(ν)
k ) = p

v
(ν)
k

(r
(ν)
k

)
(z

(ν)
k − h

(ν)
k (xk, r

(ν)
k )), for r

(ν)
k = 1, 2. (3.5)

It can be seen that the likelihood function p(z
(ν)
k |xk) is given by a weighted sum of pdfs

with mode dependent weights summing up to unity, which is also known as mixture

pdf [BSLK01]. The mode probabilities Pr{r(ν)k } can be updated from the following

recursive (temporal) relationship:

Pr{r(ν)k } =
2∑

r
(ν)
k−1=1

Pr{r(ν)k |r(ν)k−1} · Pr{r
(ν)
k−1}, for ν = 1, . . . , nz. (3.6)

Since in this chapter the mode variable r
(ν)
k is not additionally estimated, suitable

approximations to (3.6) have to be introduced. In the following, the unknown mode

probabilities Pr{r(ν)k } are replaced with the stationary values p
(ν)
LOS and p

(ν)
NLOS of the

Markov chain, cf. (2.15), which are assumed to be known a-priori. Thus, the marginal

likelihood function can be approximated as

p(z
(ν)
k |xk) ≈ p

(ν)
LOS · p(z

(ν)
k |xk, r

(ν)
k = 1) + p

(ν)
NLOS · p(z

(ν)
k |xk, r

(ν)
k = 2), (3.7)

for ν = 1, . . . , nz. Here, it is worth noting that the expression in (3.4) reduces to (3.7)

for time-homogeneous Markov chains with symmetric TPMs which are initialized with

their stationary values.

Having the prior pdf p(xk) and the likelihood functions pν(z
(ν)
k |xk) of the nz measure-

ments available, the posterior pdf can be determined. Knowledge of the posterior pdf

p(xk|zk) allows to obtain MT state estimates with respect to any optimality criterion.

A well known criterion is to minimize the mean square error for each component of

the unknown MT state vector. Let g(x) denote an integrable function, where x is a

real-valued random variable with pdf p(x). Then, the expected value of g(x) is denoted

as

Ep(x){g(x)} =

∫

R

g(x) · p(x) dx. (3.8)

Whenever necessary, a subscript on E is introduced, in order to clarify which pdf to

use in the integral. Let x̂MMSE,k(zk) denote the Minimum Mean Square Error (MMSE)

estimate. Then, the MMSE estimator is given by

x̂MMSE,k(zk) = Ep(xk|zk){xk} =

∫

Rnx

xk · p(xk|zk) dxk, (3.9)

[Kay93]. Note that x̂MMSE,k(zk) is a random variable since it depends on the random

measurements zk. Finding the MMSE estimate x̂MMSE,k(zk) requires to evaluate the
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multi-dimensional integrals in (3.1) and (3.9). For the hybrid localization, closed-form

solutions for these integrals do not exist and the MMSE estimate x̂MMSE,k(zk) has to be

calculated numerically by using Monte Carlo integration techniques [MU49,RC99]. The

implementation of Monte Carlo integration techniques is computationally intensive,

which often prevents the use of the MMSE estimator in practice. In the following,

the MMSE estimator is not further treated in this chapter and the focus is put to

estimators that are better suited for practical applications.

A criterion that does not require an evaluation of the multi-dimensional integral given

in (3.1) is to determine the maximum of the posterior pdf. The corresponding estimator

is called the MAP estimator [vT68,BSLK01]. Let x̂MAP,k(zk) denote the MAP estimate.

Then, the MAP estimator is given by

x̂MAP,k(zk) = argmax
xk

[p(xk) · p(zk|xk)] . (3.10)

The choice of the prior pdf p(xk) is critical in Bayesian estimation. If prior information

about the unknown MT state is available, it should be incorporated into the estimator

by an appropriate choice of p(xk). However, in most situations prior information is

not available or it is not clear how to model the prior information. In these cases, it is

better to choose p(xk) as being uniformly distributed over an infinite interval, which

is also known as noninformative prior pdf [BSLK01].

In the following, it is assumed that no prior information about the MT state is available,

so that p(xk) is chosen to be uniformly distributed over Rnx . From this, the important

property follows that the posterior pdf p(xk|zk) becomes proportional to its likelihood

function. The corresponding estimator that determines the maximum of the likelihood

function is known as the ML estimator [vT68,BSLK01]. Let x̂ML,k(zk) denote the ML

estimate. Then, with p(xk) being noninformative, the MAP estimator reduces to the

ML estimator, which is given by

x̂ML,k(zk) = argmax
xk

p(zk|xk). (3.11)

Since no prior information is incorporated into the ML estimator, the MT state can be

regarded as an unknown (deterministic) constant. Instead of maximizing the likelihood

function, one can equivalently minimize the negative log-likelihood function, since the

logarithm is a monotonic transformation. This yields

x̂ML,k(zk) = argmin
xk

[− loge (p(zk|xk))] . (3.12)

Finding the ML estimate x̂ML,k(zk) requires the evaluation of (3.12). For the hybrid

localization, a closed-form solution for the ML estimator does not exist and one has

to resort to suboptimal, numerical optimization algorithms, in order to carry out the

minimization of the log-likelihood function [BSLK01].
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3.3 Cramér-Rao Lower Bound

3.3.1 Introduction

In this section, the CRLB for nonrandom parameters is introduced which is used to

assess the theoretical performance bound for the non-recursive hybrid localization al-

gorithms investigated in this work. Let x̂k(zk) denote an unbiased estimate of the un-

known deterministic MT state xk and let the estimation error be given by x̂k(zk)−xk.

The CRLB is defined to give a lower bound for the covariance matrix of the estimation

error [Rao46, vT68, Kay93]. Let [·]−1 denote the inverse of a matrix and let F(xk)

denote the Fisher Information Matrix (FIM) evaluated at the true value of the vector

parameter xk [Fis22,Fis25]. Let further P(xk) denote the CRLB matrix which is de-

fined to be the inverse of the FIM. Then, the covariance matrix of the estimation error

satisfies the following inequality:

Ep(zk|xk){(x̂k(zk)− xk)(x̂k(zk)− xk)
T} ≥ [F(xk)]

−1 ≡ P(xk), (3.13)

where the matrix inequality A ≥ B should be interpreted as the matrix (A−B) being

positive semidefinite. Let us introduce the following operators:

∇a =

[
∂

∂a(1)
,
∂

∂a(2)
, . . . ,

∂

∂a(n)

]T

, (3.14)

∆b
a = ∇a∇T

b, (3.15)

for any vectors a and b. Using this notation, the FIM is defined as

F(xk) = Ep(zk|xk)

{
[∇xk

loge p(zk|xk)][∇xk
loge p(zk|xk)]

T
}

(3.16a)

= Ep(zk|xk)

{
−∆xk

xk
loge p(zk|xk)

}
(3.16b)

= Ep(zk|xk)

{
[∇xk

p(zk|xk)][∇xk
p(zk|xk)]

T

[p(zk|xk)]
2

}

. (3.16c)

The CRLB exists, if the pdf p(zk|xk) satisfies the regularity conditions [LC98]. Let

[A]i,j denote the element at the i-th row and j-th column of the matrixA. The elements

on the main diagonal of the CRLB matrix given in (3.13) provide a lower bound on

the MSEs of the individual components of xk, i.e.,

Ep(zk|xk){(x̂
(i)
k (zk)− x

(i)
k )2} ≥

[
[F(xk)]

−1]

i,i
, i = 1, . . . , nx. (3.17)

In the following, a lower bound on the MSE of the MT location is introduced, since

it gives a bound on the best achievable localization accuracy. The MSE of the MT

location satisfies the following inequality:

Ep(zk|xk){‖ x̂MT,k(zk)− xMT,k ‖2} ≥
[
[F(xk)]

−1]

1,1
+
[
[F(xk)]

−1]

2,2
. (3.18)
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The right-hand side of the inequality is termed hereinafter the MT location CRLB. In

Section 3.3.2, an analytical expression for the MT location CRLB is derived assuming

that the measurements are affected by LOS propagation conditions. For measurements

affected by propagation conditions that may switch between LOS and NLOS, the MT

location CRLB is evaluated numerically, which is presented in Section 3.3.3.

3.3.2 Cramér-Rao Lower Bound for LOS Propagation Condi-
tions

In this section, a closed-form expression for the MT location CRLB is derived for

measurements affected by LOS propagation conditions. For LOS propagation condi-

tions, the nz measurements are assumed to be mutually independent and corrupted

by additive errors that are zero-mean Gaussian distributed with variance σ2
LOS,k for

ν = 1, . . . , nz, cf. Section 2.3.5. In this case, the (i, j)-th element of F(xk) is given by

[F(xk)]i,j =
nz∑

ν=1

σ
(ν),−2
LOS,k ·

[

∂h
(ν)
LOS,k(xk)

∂x
(i)
k

·
∂h

(ν)
LOS,k(xk)

∂x
(j)
k

]

, i, j = 1, . . . , nx. (3.19)

A proof is given in Appendix A.2. Since the PR, RTT, RSS, and GRT measurements

provide only information about the MT location and clock bias components, cf. (2.47),

the FIM entries that are dependent on the MT velocity and MT clock drift are all

zero. In this case, the FIM is not invertible, i.e., the FIM is singular, since several

rows and columns of the FIM are zero. In the following, the FIM is evaluated for a

reduced state vector x̃k = [x̃
(1)
k , x̃

(2)
k , . . . , x̃

(nx̃)
k ]T with dimension nx̃, that only consists

of the elements that are contained in the corresponding measurements. Let FPR(x̃k),

FRTT(x̃k), FRSS(x̃k) and FGRT(x̃k) denote the FIMs of the PR, RTT, RSS and GRT

measurements for the reduced state vector x̃k = [xT

MT,k, c0 · δtk]T. As long as the

measurements are assumed to be mutually independent, the corresponding FIMs of

the different measurements can be added up [Kay93]. Thus, the resulting FIM for the

hybrid localization is given by

F(x̃k) = FPR(x̃k) +FRTT(x̃k) +FRSS(x̃k) +FGRT(x̃k). (3.20)

The FIM of theMPR PR measurements can be determined from (2.21) and (3.19). The

derivation of the FIM for the PR measurements can be found in Appendix A.3. Let

u
(m)
SAT,k denote the unit vector originating at the true MT location and directed towards

the m-th satellite, given by

u
(m)
SAT,k = u

(m)
SATx,k

· ux + u
(m)
SATy,k

· uy + u
(m)
SATz,k

· uz, (3.21)



3.3 Cramér-Rao Lower Bound 51

where ux, uy and uz are the unit vectors in the x, y and z directions. The vector p
(m)
SAT,k

defines the projection of the unit vector u
(m)
SAT,k into the xy-plane and is given by

p
(m)
SAT,k = u

(m)
SATx,k

· ux + u
(m)
SATy,k

· uy. (3.22)

Then, the elements of the FIM of PR measurements are given by

[FPR(x̃k)]1,1 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m),2

SATx,k
, (3.23a)

[FPR(x̃k)]1,2 = [FPR(x̃k)]2,1 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m)

SATx,k
· u(m)

SATy,k
, (3.23b)

[FPR(x̃k)]2,2 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m),2

SATy,k
, (3.23c)

[FPR(x̃k)]1,3 = [FPR(x̃k)]3,1 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m)

SATx,k
, (3.23d)

[FPR(x̃k)]2,3 = [FPR(x̃k)]3,2 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m)

SATy,k
, (3.23e)

[FPR(x̃k)]3,3 =

MPR∑

m=1

σ
(m),−2
PR,k . (3.23f)

The FIM of the MRTT RTT measurements can be determined from (2.28) and (3.19).

The derivation of the FIM for the RTT measurements can be found in Appendix A.4.

Let u
(m)
BS,k denote the unit vector originating at the true MT location and directed

towards the m-th BS, given by

u
(m)
BS,k = u

(m)
BSx,k

· ux + u
(m)
BSy,k

· uy. (3.24)

Then, the non-zero elements of the FIM of RTT measurements are given by

[FRTT(x̃k)]1,1 =

MRTT∑

m=1

σ
(m),−2
RTT,LOS,k · u

(m),2
BSx,k

, (3.25a)

[FRTT(x̃k)]1,2 = [FRTT(x̃k)]2,1 =

MRTT∑

m=1

σ
(m),−2
RTT,LOS,k · u

(m)
BSx,k

· u(m)
BSy,k

, (3.25b)

[FRTT(x̃k)]2,2 =

MRTT∑

m=1

σ
(m),−2
RTT,LOS,k · u

(m),2
BSy,k

. (3.25c)

Note, that all other elements of FRTT(x̃k) are zero, since hRTT,k(xMT,k) only depends

on the MT location. The FIM of theMRSS RSS measurements can be determined from
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(2.42) and (3.19). The derivation of the FIM for the RSS measurements can be found

in Appendix A.5. Let b(m) and g(m) be defined as

b(m) =
10 ·B(m)

LOS

loge(10)
(3.26)

and

g(m) =
∂G

(m)
ANT(ϕ

(m)
LOS(xMT,k))

∂ϕ
(m)
LOS(xMT,k)

. (3.27)

Then, the non-zero elements of the FIM of RSS measurements are given by

[FRSS(x̃k)]1,1 =

MRSS∑

m=1

σ
(m),−2
RSS,LOS,k ·

[
b(m) · u(m)

BSx,k
+ g(m) · u(m)

BSy,k

d
(m)
BS,k(xMT,k)

]2

,

(3.28a)

[FRSS(x̃k)]1,2 = [FRSS(x̃k)]2,1 =

MRSS∑

m=1

σ
(m),−2
RSS,LOS,k ·

[(
b(m) · u(m)

BSx,k
+ g(m) · u(m)

BSy,k

d
(m)
BS,k(xMT,k)

)

·
(
b(m) · u(m)

BSy,k
− g(m) · u(m)

BSx,k

d
(m)
BS,k(xMT,k)

)]

, (3.28b)

[FRSS(x̃k)]2,2 =

MRSS∑

m=1

σ
(m),−2
RSS,LOS,k ·

[
b(m) · u(m)

BSy,k
− g(m) · u(m)

BSx,k

d
(m)
BS,k(xMT,k)

]2

.

(3.28c)

Note, that all other elements of FRSS(x̃k) are zero, since hRSS,LOS(xMT,k) only depends

on the MT location. The FIM of the GRT measurement can be found from (2.45) and

(3.19). The non-zero element of the FIM of the GRT measurement is given by

[FGRT(x̃k)]3,3 = σ−2
BIAS,k. (3.29)

Note, that all other elements of FGRT(x̃k) are zero, since hBIAS,k(c0 · δtk) only depends

on the MT clock bias.

The FIM F(x̃k) for hybrid localization can be found from adding up the FIMs of the

PR, RTT, RSS and GRT measurements according to (3.20). For evaluating the MT

location CRLB, the upper-left 2× 2 diagonal submatrix of [F(x̃k)]
−1 (or equivalently

the upper-left 2×2 diagonal submatrix of P(x̃k)) is of primary interest, cf. (3.18). Let

the FIM be partitioned as follows

F(x̃k) =





[F(x̃k)]1,1 [F(x̃k)]1,2 [F(x̃k)]1,3
[F(x̃k)]2,1 [F(x̃k)]2,2 [F(x̃k)]2,3
[F(x̃k)]3,1 [F(x̃k)]3,2 [F(x̃k)]3,3



 ≡
[
F1(x̃k) F2(x̃k)
F3(x̃k) F4(x̃k)

]

. (3.30)
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Then, the inverse of the matrix F(x̃k) can be found from block matrix inversion [Ber09]

[F(x̃k)]
−1 =

[[
F1(x̃k) F2(x̃k)
F3(x̃k) F4(x̃k)

]]−1

≡
[
P1(x̃k) P2(x̃k)
P3(x̃k) P4(x̃k)

]

, (3.31)

where the upper-left 2× 2 submatrix of P(x̃k) is given by

P1(x̃k) =
[
F1(x̃k)−F2(x̃k)F

−1
4 (x̃k)F3(x̃k)

]−1 ∆
= [FL(x̃k)]

−1 . (3.32)

The MT location CRLB can be now expressed in terms of the equivalent FIM FL(x̃k)

instead of F(x̃k), cf. (3.18). Let tr[A] denote the trace and let det[A] denote the

determinant of the matrix A. Then, the MT location CRLB is given by

PCRLB,k
∆
= tr[P1(x̃k)] =

[FL(x̃k)]1,1 + [FL(x̃k)]2,2
det[FL(x̃k)]

. (3.33)

In order to derive a closed-form expression for PCRLB,k, it is, thus, necessary to evaluate

the expression in (3.33). Let two auxiliary variables be given by

c(κ1,κ2) =
σ
(κ1),−2
PR,k · σ(κ2),−2

PR,k

σ−2
BIAS,k +

MPR∑

κ3=1

σ
(κ3),−2
PR,k

, κ1, κ2 = 1, . . . ,MPR, (3.34)

and

e(κ1) =
σ
(κ1),−2
PR,k · σ−2

BIAS,k

σ−2
BIAS,k +

MPR∑

κ3=1

σ
(κ3),−2
PR,k

, κ1 = 1, . . . ,MPR, (3.35)

respectively. Then, the elements of the matrix FL(x̃k) are given as follows

[FL(x̃k)]1,1 =

MPR∑

κ1=1

e(κ1) · u(κ1),2
SATx,k

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1),2
BSx,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1),2
SATx,k

− u
(κ1)
SATx,k

· u(κ2)
SATx,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1) · u(κ1)

BSx,k
+ g(κ1) · u(κ1)

BSy,k

d
(κ1)
BS,k(xMT,k)

]2

, (3.36a)
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[FL(x̃k)]1,2 =

MPR∑

κ1=1

e(κ1) · u(κ1)
SATx,k

· u(κ1)
SATy,k

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1)
BSx,k

· u(κ1)
BSy,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1)
SATx,k

· u(κ1)
SATy,k

− u
(κ1)
SATy,k

· u(κ2)
SATy,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[(
b(κ1) · u(κ1)

BSx,k
+ g(κ1) · u(κ1)

BSy,k

d
(κ1)
BS,k(xMT,k)

)

·
(
b(κ1) · u(κ1)

BSy,k
− g(κ1) · u(κ1)

BSx,k

d
(κ1)
BS,k(xMT,k)

)]

= [FL(x̃k)]2,1 , (3.36b)

[FL(x̃k)]2,2 =

MPR∑

κ1=1

e(κ1) · u(κ1),2
SATy,k

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1),2
BSy,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1),2
SATy,k

− u
(κ1)
SATy,k

· u(κ2)
SATy,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1) · u(κ1)

BSy,k
− g(κ1) · u(κ1)

BSx,k

d
(κ1)
BS,k(xMT,k)

]2

. (3.36c)

The derivation of (3.36) can be found in Appendix A.6. The numerator of (3.33) can

be found from the addition of [FL(x̃k)]1,1 and [FL(x̃k)]2,2, and is given by

[FL(x̃k)]1,1 + [FL(x̃k)]2,2 =

MPR∑

κ1=1

e(κ1)· ‖ p
(κ1)
SAT,k ‖2 +

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k

+

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

c(κ1,κ2)· ‖ p
(κ1)
SAT,k − p

(κ2)
SAT,k ‖2

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[

b(κ1),2 + g(κ1),2

d
(κ1),2
BS,k (xMT,k)

]

. (3.37)

The derivation of (3.37) can be found in Appendix A.7. The denominator of (3.33) can

be found from evaluating the determinant

det[FL(x̃k)] = [FL(x̃k)]1,1 · [FL(x̃k)]2,2 − [FL(x̃k)]1,1 · [FL(x̃k)]2,2 . (3.38)

Let a×b denote the cross product of the two vectors a and b and let A(κ1,κ2) be given

by

A(κ1,κ2) = [p
(κ1)
SAT,k × p

(κ2)
SAT,k]

T · uz, κ1 = κ2 = 1, . . . , NSAT. (3.39)

The magnitude ‖A(κ1,κ2) ‖ denotes the positive area of the parallelogram determined

by the two vectors p
(κ1)
SAT,k and p

(κ2)
SAT,k and A(κ1,κ2) is commonly referred to as signed



3.3 Cramér-Rao Lower Bound 55

area of the parallelogram (i.e. positive or negative area of parallelogram). The signed

area of the parallelogram determined by u
(κ1)
BS,k and p

(κ2)
SAT,k is given by

B(κ1,κ2) = [u
(κ1)
BS,k × p

(κ2)
SAT,k]

T · uz, κ1 = 1, . . . , NBS, κ2 = 1, . . . , NSAT, (3.40)

and the signed area of the parallelogram determined by u
(κ1)
BS,k and u

(κ2)
BS,k is given by

C(κ1,κ2) = [u
(κ1)
BS,k × u

(κ2)
BS,k]

T · uz, κ1 = κ2 = 1, . . . , NBS. (3.41)

Let further D(κ1,κ2) denote the dot product of the two vectors u
(κ1)
BS,k and p

(κ2)
SAT,k, given

by

D(κ1,κ2) = u
(κ1)
BS,k · p

(κ2)
SAT,k, κ1 = 1, . . . , NBS, κ2 = 1, . . . , NSAT, (3.42)

and let E (κ1,κ2) denote the dot product of the two vectors u
(κ1)
BS,k and u

(κ2)
BS,k, given by

E (κ1,κ2) = u
(κ1)
BS,k · u

(κ2)
BS,k, κ1 = κ2 = 1, . . . , NBS. (3.43)

The signed area of the rectangle determined by [p
(κ1)
SAT,k − p

(κ2)
SAT,k]

T · ux and [p
(κ3)
SAT,k −

p
(κ4)
SAT,k]

T · ux is given by

G(κ1,κ2,κ3,κ4)
1 = [p

(κ1)
SAT,k − p

(κ2)
SAT,k]

T · ux · [p(κ3)
SAT,k − p

(κ4)
SAT,k]

T · uy, (3.44)

with κ1 = . . . = κ4 = 1, . . . , NSAT. The signed area of the parallelogram determined

by (p
(κ1)
SAT,k − p

(κ2)
SAT,k) and (p

(κ3)
SAT,k − p

(κ4)
SAT,k) is given by

G(κ1,κ2,κ3,κ4)
2 = [(p

(κ1)
SAT,k − p

(κ2)
SAT,k)× (p

(κ3)
SAT,k − p

(κ4)
SAT,k)]

T · uz, (3.45)

with κ1 = . . . = κ4 = 1, . . . , NSAT. Furthermore, let G(κ1,κ2,κ3,κ4) be given by

G(κ1,κ2,κ3,κ4) = G(κ1,κ2,κ3,κ4)
1 · G(κ1,κ2,κ3,κ4)

2 , κ1 = . . . = κ4 = 1, . . . , NSAT. (3.46)
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Then, the denominator of (3.33) can be written as

det[FL(x̃k)] =

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

e(κ1) · e(κ2) · A(κ1,κ2),2

+

MRTT∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RTT,LOS,k · e(κ2) · B(κ1,κ2),2

+

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

e(κ1) · c(κ2,κ3) ·
[
A(κ1,κ2) −A(κ1,κ3)

]2

+

MRSS∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RSS,LOS,k · e(κ2) ·

[

b(κ1) · B(κ1,κ2) + g(κ1) · D(κ1,κ2)

d
(κ1)
BS,k(xMT,k)

]2

+

MRTT∑

κ1=1

MRTT∑

κ2=1
κ2>κ1

σ
(κ1),−2
RTT,LOS,k · σ

(κ2),−2
RTT,LOS,k · C(κ1,κ2),2

+

MRTT∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

σ
(κ1),−2
RTT,LOS,k · c(κ2,κ3) ·

[
B(κ1,κ2) − B(κ1,κ3)

]2

+

MRTT∑

κ1=1

MRSS∑

κ2=1

σ
(κ1),−2
RTT,LOS,k · σ

(κ2),−2
RSS,LOS,k ·

[

b(κ2) · C(κ1,κ2) − g(κ2) · E (κ1,κ2)

d
(κ2)
BS,k(xMT,k)

]2

+

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

MPR∑

κ3=1

MPR∑

κ4=1
κ4>κ3

c(κ1,κ2) · c(κ3,κ4) · G(κ1,κ2,κ3,κ4)

+

MRSS∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

σ
(κ1),−2
RSS,LOS,k · c(κ2,κ3) ·

[

b(κ1) · B(κ1,κ2) + g(κ1) · D(κ1,κ2)

d
(κ1)
BS,k(xMT,k)

+
b(κ1) · B(κ1,κ3) + g(κ1) · D(κ1,κ3)

d
(κ1)
BS,k(xMT,k)

]2

+

MRSS∑

κ1=1

MRSS∑

κ1=1
κ2>κ1

σ
(κ1),−2
RSS,LOS,k · σ

(κ2),−2
RSS,LOS,k ·

[

(b(κ1) · b(κ2) + g(κ1) · g(κ2)) · C(κ1,κ2)

d
(κ1)
BS,k(xMT,k) · d(κ2)

BS,k(xMT,k)

+
(b(κ2) · g(κ1) − b(κ1) · g(κ2)) · E (κ1,κ2)

d
(κ1)
BS,k(xMT,k) · d(κ2)

BS,k(xMT,k)

]2

. (3.47)

The derivation of (3.47) can be found in Appendix A.8.
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The MT location CRLB in dependence of the PR, RTT, RSS and GRT measurements

is, thus, given by

PCRLB,k =

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k +

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[

b(κ1),2 + g(κ1),2

d
(κ1),2
BS,k (xMT,k)

]

det[FL(x̃k)]

+

MPR∑

κ1=1

e(κ1)· ‖ p
(κ1)
SAT,k ‖2 +

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

c(κ1,κ2)· ‖ p
(κ1)
SAT,k − p

(κ2)
SAT,k ‖2

det[FL(x̃k)]
.

(3.48)

Depending on the number of available measurements, several special cases can be

deduced from the above expression that correspond to the methods investigated in this

thesis, cf. Section 2.3.4. In the following, the expression in (3.48) is explained in more

detail and a geometric interpretation of the CRLB is given:

• The CRLB depends on the accuracy of the PR, RTT, RSS and GRT measure-

ments, which is represented by the noise variances σ2
RTT,LOS,k and σ2

RSS,LOS,k and

the noise variances σ2
PR,k and σ2

BIAS,k inherent in e(κ1) and c(κ1,κ2), cf. (3.34) and

(3.35). For small variances and, thus, accurate measurements, the CRLB will be

lower than for inaccurate measurements with large variances.

• The CRLB depends on the path loss exponent inherent in the constant b(κ1), the

derivative of the normalized antenna gain given by g(κ1) and the distance between

the MT and the BSs. Note that if omni-directional antennas are employed at the

BSs, then g(κ1) = 0 holds. The distance dependency exclusively results from

the RSS measurements. For small distances, the bound will be generally lower

than for large distances. This in turn means that the contribution of the RSS

measurements to the CRLB is large when the BSs are located close to each other.

• The CRLB depends on the relative geometry between the MT and the BS given

by C(κ1,κ2) and E (κ1,κ2), whose relationship is further illustrated in Fig. 3.1. From

Fig. 3.1, it can be seen that the values of C(κ1,κ2) and E (κ1,κ2) strongly depend

on the relative orientation of the unit vectors u
(κ1)
BS,k and u

(κ2)
BS,k. For instance,

if the two vectors are parallel, C(κ1,κ2) = 0 holds, and if the two vectors are

orthogonal, E (κ1,κ2) = 0 holds. Thus, C(κ1,κ2) and E (κ1,κ2) can be interpreted

as a measure for the geometric contribution to the MT location accuracy [Spi01].
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Figure 3.1. Relationship between C(κ1,κ2), E (κ1,κ2) and the unit vectors u
(κ1)
BS,k and u

(κ2)
BS,k

[Spi01].

• The CRLB depends on the magnitude of the projection vector p
(κ1)
SAT,k given by

‖p(κ1)
SAT,k ‖2, which itself depends on the satellite elevation angle. For a satellite at

a low elevation angle, the magnitude will be larger than for a satellite at a high

elevation angle. For the special case that the satellite is located directly above

the MT, the magnitude will be zero.

• The CRLB is influenced by the relative geometry between the MT, the BS and

the satellite, given by B(κ1,κ2) and D(κ1,κ2), whose relationship is illustrated in Fig.

3.2. From Fig. 3.2, it can be seen that the values of B(κ1,κ2) and D(κ1,κ2) strongly

depend on the relative orientation of the unit vector u
(κ1)
BS,k and the projection

vector p
(κ2)
SAT,k. For instance, if the two vectors are parallel, B(κ1,κ2) = 0 holds, and

if the two vectors are orthogonal D(κ1,κ2) = 0 holds.

• The CRLB is influenced by the relative geometry between the MT and the satel-

lites, given by A(κ1,κ2), ‖ p
(κ1)
SAT,k − p

(κ2)
SAT,k ‖2 and G(κ1,κ2,κ3,κ4). In Fig. 3.3, the

geometrical relationship between the projection vectors p
(κ1)
SAT,k and p

(κ2)
SAT,k and the

signed area of the parallelogram A(κ1,κ2) is shown. It can be seen that the values

of A(κ1,κ2) strongly depend on the relative orientation of the projection vectors

p
(κ1)
SAT,k and p

(κ2)
SAT,k. For example, if p

(κ1)
SAT,k and p

(κ2)
SAT,k are parallel, A(κ1,κ2) = 0

holds. In Fig. 3.4, the relationship between the vectors (p
(κ1)
SAT,k − p

(κ2)
SAT,k),

(p
(κ3)
SAT,k−p

(κ4)
SAT,k) and G(κ1,κ2,κ3,κ4)

1 , G(κ1,κ2,κ3,κ4)
2 is shown, cf. (3.46). From Fig. 3.4,

it can be seen that the sizes of the areas G(κ1,κ2,κ3,κ4)
1 and G(κ1,κ2,κ3,κ4)

2 strongly de-

pend on the magnitude of the two vectors (p
(κ1)
SAT,k−p

(κ2)
SAT,k) and (p

(κ3)
SAT,k−p

(κ4)
SAT,k).
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Figure 3.2. Relationship between B(κ1,κ2), D(κ1,κ2) and the vectors u
(κ1)
BS,k and p

(κ2)
SAT,k.
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Figure 3.4. Relationship between the vectors (p
(κ1)
SAT,k − p
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SAT,k) and

G(κ1,κ2,κ3,κ4)
1 , G(κ1,κ2,κ3,κ4)

2 .

3.3.3 Cramér-Rao Lower Bound for Propagation Conditions
that switch between LOS and NLOS

In this section, the MT location CRLB is determined for measurements affected by

propagation conditions that may switch between LOS and NLOS. Let p(zPR,k|xk)

and p(zBIAS,k|xk) denote the likelihood function of the PR and GRT measurements.

Let further p(z
(m)
RTT,k|xk) and p(z

(m)
RSS,k|xk) denote the likelihood function of the m-th

RTT and RSS measurement. Since the measurements are assumed to be statistically

independent, cf. (2.53), the joint likelihood function p(zk|xk) of the measurements can

be factorized as follows

p(zk|xk) = p(zPR,k|xk) · p(zBIAS,k|xk) ·
MRTT∏

κ1=1

p(z
(κ1)
RTT,k|xk) ·

MRSS∏

κ2=1

p(z
(κ2)
RSS,k|xk). (3.49)

The FIM for the hybrid localization method assuming measurements affected by propa-

gation conditions that may switch between LOS and NLOS can be found from inserting

(3.49) into (3.16). Since the measurements are assumed to be statistically independent,
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the FIMs are additive. Let F
(m)
RTT(x̃k) denote the FIM of the m-th RTT measurement

given by

F
(m)
RTT(x̃k) = E

p(z
(m)
RTT,k

|xk)







∇x̃k
p(z

(m)
RTT,k|xk)[∇x̃k

p(z
(m)
RTT,k|xk)]

T

[

p(z
(m)
RTT,k|xk)

]2







, (3.50)

and let F
(m)
RSS(x̃k) denote the FIM of the m-th RSS measurement given by

F
(m)
RSS(x̃k) =

MRSS∑

m=1

E
p(z

(m)
RSS,k|xk)







∇x̃k
p(z

(m)
RSS,k|xk)[∇x̃k

p(z
(m)
RSS,k|xk)]

T

[

p(z
(m)
RSS,k|xk)

]2







, (3.51)

Then, the corresponding FIM for the hybrid localization assuming propagation condi-

tions that may switch between LOS and NLOS can be written as

F(x̃k) = FPR(x̃k) +FGRT(x̃k) +

MRTT∑

κ1=1

F
(κ1)
RTT(x̃k) +

MRSS∑

κ2=1

F
(κ2)
RSS(x̃k). (3.52)

Since the PR and GRT measurements are independent of rk, the corresponding FIMs

are given by (3.23) and (3.29). The likelihood functions p(z
(m)
RTT,k|xk) and p(z

(m)
RSS,k|xk)

implicitly depend on rk, cf. (3.4). Since the purpose of this chapter is to develop

estimators that do not additionally estimate rk, it is convenient to approximate the

corresponding likelihood functions with the pdf given in (3.7). Let N (z;µz, σ
2
z) denote

a Gaussian density with argument z, mean µz and variance σ2
z , that is,

N (z;µz, σ
2
z) =

1
√

2πσ2
z

· exp
{

− 1

2σ2
z

(z − µz)
2

}

. (3.53)

Then, the likelihood function of the m-th RTT measurement for m = 1, ...,MRTT is

given by

p(z
(m)
RTT,k|xk) ≈ p

(m)
LOS · N (z

(m)
RTT,k;h

(m)
RTT,k(xMT,k) + µRTT,k(r

(m)
k =1), σ2

RTT,k(r
(m)
k =1))

+p
(m)
NLOS · N (z

(m)
RTT,k;h

(m)
RTT,k(xMT,k) + µRTT,k(r

(m)
k =2), σ2

RTT,k(r
(m)
k =2)).

(3.54)

Similarly, the likelihood function of the m-th RSS measurement for m = 1, ...,MRSS is

given by

p(z
(m)
RSS,k|xk) ≈ p

(m)
LOS · N (z

(m)
RSS,k;h

(m)
RSS,k(xMT,k, r

(m)
k =1), σ2

RSS,k(r
(m)
k =1))

+p
(m)
NLOS · N (z

(m)
RSS,k;h

(m)
RSS,k(xMT,k, r

(m)
k =2), σ2

RSS,k(r
(m)
k =2)).

(3.55)
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The FIMs of the RTT and RSS measurements can be found from inserting (3.54)

and (3.55) into (3.50) and (3.51) and evaluating the expected value. Calculating the

FIM for a Gaussian mixture pdf is difficult, and in general no analytic expression

exists. In the following, a Monte Carlo integration approach is used to obtain numerical

approximations for the FIMs of the RTT and RSS measurements [MU49,RC99]. Since

Monte Carlo integration will be used several times in this work, the approach and its

most important properties are reviewed in Appendix A.10.

The application of Monte Carlo integration techniques involves the generation of re-

alizations of a random variable from a previously specified pdf, for which a compact

notation is introduced in the sequel. Let {z(n)}Nn=1, denote a sample of N realizations

of a random variable that is drawn from the pdf p(z). Then, for each realization one

can write more compactly z(n) ∼ p(z). In this work, the generation of realizations of

a random variable from a pdf is denoted as sampling and the realizations are called

samples, or particles. Using Monte Carlo Integration, the expected value in (3.50) for

m = 1, . . . ,MRTT, can be approximated as

F
(m)
RTT(x̃k) ≈

1

N

N∑

n=1

∇x̃k
p(z

(m,n)
RTT,k|xk)[∇x̃k

p(z
(m,n)
RTT,k|xk)]

T

[

p(z
(m,n)
RTT,k|xk)

]2 , (3.56)

where z
(m,n)
RTT,k, n = 1, . . . , N are independent and identically distributed (i.i.d.) samples,

such that z
(m,n)
RTT,k ∼ p(z

(m)
RTT,k|xk). The gradient is given by

∇x̃k
p(z

(m,n)
RTT,k|xk) = p

(m)
LOS · [∇x̃k

p(z
(m)
RTT,k|xk, r

(m)
k =1)]+p

(m)
NLOS · [∇x̃k

p(z
(m)
RTT,k|xk, r

(m)
k =2)],

(3.57)

where

∇x̃k
p(z

(m)
RTT,k|xk, r

(m)
k ) = σ−2

RTT,k(r
(m)
k ) · (z(m)

RTT,k − h
(m)
RTT,k(xMT,k)− µRTT,k(r

(m)
k ))

·p(z(m)
RTT,k|xk, r

(m)
k ) ·

[

∇x̃k
h
(m)
RTT,k(xMT,k)

]

. (3.58)

Similarly, the expected value in (3.51) for m = 1, . . . ,MRSS, can be approximated as

F
(m)
RSS(x̃k) ≈

1

N

N∑

n=1

∇x̃k
p(z

(m,n)
RSS,k|xk)[∇x̃k

p(z
(m,n)
RSS,k|xk)]

T

[

p(z
(m,n)
RSS,k|xk)

]2 , (3.59)

where z
(m,n)
RSS,k, n = 1, . . . , N are i.i.d. samples, such that z

(m,n)
RSS,k ∼ p(z

(m)
RSS,k|xk). The

gradient is given by

∇x̃k
p(z

(m,n)
RSS,k|xk) = p

(m)
LOS · [∇x̃k

p(z
(m)
RSS,k|xk, r

(m)
k =1)] + p

(m)
NLOS · [∇x̃k

p(z
(m)
RSS,k|xk, r

(m)
k =2)],

(3.60)
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where

∇x̃k
p(z

(m)
RSS,k|xk, r

(m)
k ) = σ−2

RSS,k(r
(m)
k ) · (z(m)

RSS,k − h
(m)
RSS,k(xMT,k, r

(m)
k ))

·p(z(m)
RSS,k|xk, r

(m)
k ) ·

[

∇x̃k
h
(m)
RSS,k(xMT,k, r

(m)
k )

]

. (3.61)

In order to evaluate the numerical approximations of the expectation given in (3.56)

and (3.59), it is necessary to draw i.i.d. samples from a Gaussian mixture pdf. Samples

from a Gaussian mixture can be obtained by sampling the mode based on the previously

specified mode probabilities and then drawing samples from the Gaussian distribution

indicated by the mode. The MT location CRLB for propagation conditions that may

switch between LOS and NLOS can be finally found from evaluating (3.52) and (3.18).

3.4 Maximum Likelihood Estimator

3.4.1 Introduction

In this section, the ML estimator for hybrid localization is determined. In order to

find the ML estimate x̂ML,k, it is required to evaluate the expression in (3.12). For

the hybrid localization, a closed-form solution for the ML estimator does not exist.

In this case, one has to resort to numerical search algorithms, in order to carry out

the minimization of the negative log-likelihood function [BSLK01]. Until now, a large

number of numerical search algorithms have been developed, see [JEDS83,Kel99] for

a survey. Which algorithm can be applied to the optimization problem given in (3.12)

strongly depends on the structure of the log-likelihood function. Since the structure of

the log-likelihood function for the case of LOS propagation conditions generally differs

from the structure of the log-likelihood function for the case of propagation conditions

that may switch between LOS and NLOS, different numerical search algorithms have

to be applied to evaluate (3.12).

In Section 3.4.2, the log-likelihood function for LOS propagation conditions is evaluated

and the Gauss-Newton and Levenberg-Marquardt algorithms [JEDS83,Lev44,Mar63]

are proposed to approximately solve the optimization problem. In Section 3.4.3, the log-

likelihood function for propagation conditions that may switch between LOS and NLOS

is evaluated and the Nelder-Mead simplex algorithm [NM65,LRWW98] is proposed to

approximately solve the optimization problem.
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3.4.2 Maximum Likelihood Estimator for LOS Propagation
Conditions

3.4.2.1 Introduction

In this section, the ML estimator for LOS propagation conditions is determined. The

ML estimator can be found from evaluating the likelihood function given in (3.12). For

the hybrid localization assuming LOS propagation conditions, the random variables

describing the errors of the measurements are assumed to be i.i.d., cf. (2.50). Since

for a given xk, zLOS,k is a linear function of v
(ν)
LOS,k, the likelihood function p(zLOS,k|xk)

can be found from the transformation of random variables [Jaz70] and is given by

p(zLOS,k|xk) = pvLOS,k
(zLOS,k − hLOS,k(xk)), (3.62)

where pvLOS,k
(vLOS,k) denotes the pdf of the vector of random variables vLOS,k. Let

N (z;µz,Pz) denote a Gaussian density with argument z, mean vector µz and covari-

ance matrix Pz, that is,

N (z;µz,Pz) =
1

| 2πPz |1/2
· exp

{

−1

2
(z− µz)

TP−1
z (z− µz)

}

. (3.63)

Then, pvLOS,k
(vLOS,k) = N (vLOS,k;01×M ,RLOS,k) holds, and the likelihood function can

be rewritten as

p(zLOS,k|xk) = N (zLOS,k;hLOS,k(xk),RLOS,k). (3.64)

The ML estimator is found from inserting (3.64) into (3.12). By omitting the irrelevant

additive constants, the ML estimator can be written as

ˆ̃xML,k = argmin
x̃k

V1(x̃k), (3.65)

or equivalently

∇x̃k
V1(x̃k)|x̃k=ˆ̃xML,k

= 0nx̃×1, (3.66)

where the cost function to be minimized is given by

V1(x̃k) = (zLOS,k − hLOS,k(x̃k))
T R−1

LOS,k (zLOS,k − hLOS,k(x̃k)) . (3.67)

Note that the minimization of V1(x̃k) is with respect to the reduced state vector x̃k,

since no information about the MT velocity components and the MT clock drift is

contained in the measurements. A closed-form solution for the ML estimator does

not exist, since hLOS,k(x̃k) is nonlinear. Thus, one has to find approximate solutions

by using e.g. numerical optimization algorithms. In the following, two gradient-based

search algorithms, namely the Gauss-Newton and the Levenberg-Marquardt algorithm,

are used to solve the minimization problem. These methods have been chosen due to

their fast convergence to a local solution and relatively low computational complexity.

Other, more complex numerical search methods could have been used, but this is

beyond the scope of this work.
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3.4.2.2 Gauss-Newton Algorithm

The Gauss-Newton algorithm is an iterative method that is based on a first-order

Taylor series approximation of hLOS,k(x̃k) [JEDS83]. Let ˆ̃x
(η)
k denote the estimate of the

reduced state vector obtained from the Gauss-Newton algorithm at the η-th iteration.

Let further HLOS,k(x̃k) denote the Jacobian matrix of hLOS,k(x̃k) with respect to the

reduced state vector, which is given by

HLOS,k(x̃k) =
















∂h
(1)
LOS,k(x̃k)

∂x̃
(1)
k

∂h
(1)
LOS,k(x̃k)

∂x̃
(2)
k

· · ·
∂h

(1)
LOS,k(x̃k)

∂x̃
(nx̃)
k

∂h
(2)
LOS,k(x̃k)

∂x̃
(1)
k

∂h
(2)
LOS,k(x̃k)

∂x̃
(2)
k

· · ·
∂h

(2)
LOS,k(x̃k)

∂x̃
(nx̃)
k

...
...

...

∂h
(M)
LOS,k(x̃k)

∂x̃
(1)
k

∂h
(M)
LOS,k(x̃k)

∂x̃
(2)
k

· · ·
∂h

(M)
LOS,k(x̃k)

∂x̃
(nx̃)
k
















. (3.68)

Then, the first-order Taylor series approximation of hLOS,k(x̃k) about ˆ̃x
(η)
k is given by

hLOS,k(x̃k) = hLOS,k(ˆ̃x
(η)
k ) + HLOS,k(x̃k)|x̃k=ˆ̃x

(η)
k

· (x̃k − ˆ̃x
(η)
k ), (3.69)

which is a good approximation of hLOS,k(x̃k), when ‖ x̃k − ˆ̃x
(η)
k ‖ is small. In the Gauss-

Newton algorithm, a local-linearized version of the cost function V1(x̃k) is minimized

which can be found from inserting (3.69) into (3.67), yielding

Ṽ1(x̃k) =
(

zLOS,k − hLOS,k(ˆ̃x
(η)
k ) +HLOS,k(ˆ̃x

(η)
k ) · (x̃k − ˆ̃x

(η)
k )
)T

R−1
LOS,k

·
(

zLOS,k − hLOS,k(ˆ̃x
(η)
k ) +HLOS,k(ˆ̃x

(η)
k ) · (x̃k − ˆ̃x

(η)
k )
)

. (3.70)

Minimizing the local linearized cost function Ṽ1(x̃k) according to (3.66) results in what

is known as the Gauss-Newton algorithm which is given by

ˆ̃x
(η+1)
k = ˆ̃x

(η)
k +

[

D(ˆ̃x
(η)
k )
]−1

· g(ˆ̃x(η)
k ) (3.71)

where

D(ˆ̃x
(η)
k ) = HT

LOS,k(ˆ̃x
(η)
k )R−1

LOS,k HLOS,k(ˆ̃x
(η)
k ) (3.72)

and

g(ˆ̃x
(η)
k ) = HT

LOS,k(ˆ̃x
(η)
k )R−1

LOS,k · (zLOS,k − hLOS,k(ˆ̃x
(η)
k )). (3.73)

Since the Gauss-Newton algorithm is an iterative method, it is necessary to define

certain stopping criteria to terminate the algorithm. In the following, three stopping

criteria are introduced. Let

V ′
1(x̃k) = ∇x̃k

V1(x̃k) = −2HT

LOS,k(x̃k)R
−1
LOS,k (zLOS,k − hLOS,k(x̃k)) = −2 · g(x̃k),

(3.74)
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denote the gradient of the cost function. It is well known that the ML estimate x̂ML,k

is located at the global minimum of the cost function, so that a necessary condition for

convergence is given by (3.66). Even though this criterion indicates the convergence of

the method to the ML solution, it cannot be used in practice, since ˆ̃xML,k is not known.

Instead, one has to use an approximate condition to stop the algorithm which is given

by

‖V ′
1(ˆ̃x

(η)
k )‖∞≤ ǫ1, (3.75)

[MNT04], where ‖a‖∞ denotes the infinite norm of vector a and ǫ1 is a small, positive

number. Another useful criterion is to stop the algorithm if the difference between
ˆ̃x
(η+1)
k and ˆ̃x

(η)
k is small, i.e.,

‖ ˆ̃x(η+1)
k − ˆ̃x

(η)
k ‖≤ ǫ2(‖ ˆ̃x(η)

k ‖ +ǫ2), (3.76)

where ǫ2 is a small, positive number [MNT04]. The last stopping criterion defines

the maximum number of iterations ηmax, in order to avoid that (3.71) is evaluated

infinitely often, i.e., η ≥ ηmax. The Gauss-Newton algorithm applied to the hybrid

localization in LOS propagation conditions is summarized in Algorithm 3.1. For

certain geometric constellations of the MT, BSs and satellites, the matrix D(ˆ̃x
(η)
k )

becomes rank-deficient, and thus, is not-invertible. In this case, the Gauss-Newton al-

gorithm diverges. In order to avoid this drawback, the Levenberg-Marquardt algorithm

is proposed for the hybrid localization method, which is introduced in the next section.

Algorithm 3.1 Gauss-Newton
1: η := 0
2: ˆ̃x

(0)
k := E{x̃k}

3: D(ˆ̃x
(0)
k ) := HT

LOS,k(
ˆ̃x
(0)
k )R−1

LOS,k HLOS,k(ˆ̃x
(0)
k )

4: g(ˆ̃x
(0)
k ) := HT

LOS,k(
ˆ̃x
(0)
k )R−1

LOS,k · (zLOS,k − hLOS,k(ˆ̃x
(0)
k ))

5: V ′
1(ˆ̃x

(0)
k ) := −2 · g(ˆ̃x(0)

k )

6: ˆ̃x
(1)
k := ˆ̃x

(0)
k +

[

D(ˆ̃x
(0)
k )
]−1

· g(ˆ̃x(0)
k )

7: while ‖V ′
1(ˆ̃x

(η)
k )‖∞> ǫ1 and ‖ ˆ̃x(η+1)

k − ˆ̃x
(η)
k ‖> ǫ2(‖ ˆ̃x(η)

k ‖ +ǫ2) and η < ηmax do
8: η := η + 1
9: D(ˆ̃x

(η)
k ) := HT

LOS,k(
ˆ̃x
(η)
k )R−1

LOS,k HLOS,k(ˆ̃x
(η)
k )

10: g(ˆ̃x
(η)
k ) := HT

LOS,k(
ˆ̃x
(η)
k )R−1

LOS,k · (zLOS,k − hLOS,k(ˆ̃x
(η)
k ))

11: V ′(ˆ̃x
(η)
k ) := −2 · g(ˆ̃x(η)

k )

12: ˆ̃x
(η+1)
k := ˆ̃x

(η)
k +

[

D(ˆ̃x
(η)
k )
]−1

· g(ˆ̃x(η)
k )

13: end while
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3.4.2.3 Levenberg-Marquardt Algorithm

The Gauss-Newton algorithm provides good performance for the case that ‖ x̃k− ˆ̃x
(η)
k ‖

is small. However, when ‖ x̃k − ˆ̃x
(η)
k ‖ is large, then (3.69) is a poor approximation

to hLOS,k(x̃k) and the performance is worse. The Levenberg-Marquardt algorithm

tries to solve this problem by introducing an additional damping term in the cost

function, that should control the performance of the algorithm when ‖ x̃k− ˆ̃x
(η)
k ‖ is too

large [Lev44,Mar63]. Let ζ(η) > 0 denote the damping parameter at the η-th iteration.

Then, the modified cost function is given by

V̆1(x̃k) = Ṽ1(x̃k) +
1

2
· ζ(η)· ‖ x̃k − ˆ̃x

(η)
k ‖2 . (3.77)

where Ṽ1(x̃k) is given in (3.70) and the damping term ζ(η)/2 · ‖ x̃k − ˆ̃x
(η)
k ‖2 involves

higher costs when ‖ x̃k−ˆ̃x
(η)
k ‖2 is large. Minimizing the modified cost function according

to (3.66) yields the Levenberg-Marquardt algorithm which is given by

ˆ̃x
(η+1)
k = ˆ̃x

(η)
k +

[

D(ˆ̃x
(η)
k ) + ζ(η) · IM

]−1

· g(ˆ̃x(η)
k ) (3.78)

where D(·) and g(·) are defined in (3.72) and (3.73). The additional damping param-

eter ζ(η) makes sure that the matrix inversion in (3.78) is always possible, yielding a

much more robust implementation compared to the Gauss-Newton algorithm. The in-

fluence of the damping term on the cost function is further controlled by the damping

parameter ζ(η) which is updated at each iteration step. The value of ζ(η) is chosen

based on the so-called gain ratio ̺ which is the ratio between the actual and predicted

decrease in cost function value and is given by

̺ =
V1(ˆ̃x

(η)
k )− V1(ˆ̃x

(η+1)
k )

V̆1(ˆ̃x
(η)
k )− V̆1(ˆ̃x

(η+1)
k )

=
V1(ˆ̃x

(η)
k )− V1(ˆ̃x

(η+1)
k )

(ˆ̃x
(η+1)
k − ˆ̃x

(η)
k )T · [g(ˆ̃x(η)

k ) + ζ(η) · (ˆ̃x(η+1)
k − ˆ̃x

(η)
k )]

. (3.79)

A small value of ̺ indicates that V̆1(ˆ̃x
(η+1)
k ) is a poor approximation to V1(ˆ̃x

(η+1)
k ) and

the damping factor ζ(η) should be increased. A large value of ̺ indicates that V̆1(ˆ̃x
(η+1)
k )

is a good approximation to V1(ˆ̃x
(η+1)
k ) and the damping factor ζ(η) may be decreased.

For updating ζ(η), the following strategy is widely used:

ζ(η+1) :=

{
ζ(η) ·max{1/3, 1− (2̺− 1)3} for ̺ > 0

ζ(η) · ρ(η) else,
(3.80a)

where

ρ(η) :=

{
2 for ̺ > 0

2 · ρ(η−1) else,
(3.80b)

[Nie99]. Since the Levenberg-Marquardt algorithm is iterative, the values of ζ(η) and

ρ(η) have to be initialized. The initial ρ-value is given by ρ(0) = 2. The choice of the
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initial ζ-value is related to the size of the elements of D(ˆ̃x
(0)
k ) and is given by

ζ(0) = τ ·max
i

{[

D(ˆ̃x
(0)
k )
]

i,i

}

, for i = 1, . . . ,M, (3.81)

where τ is a small positive number [Nie99]. In order to terminate the Levenberg-

Marquardt algorithm, the same stopping criteria are used as they were introduced

for the Gauss-Newton algorithm. The Levenberg-Marquardt algorithm applied to the

hybrid localization in LOS propagation conditions is summarized in Algorithm 3.2.

Algorithm 3.2 Levenberg-Marquardt

1: η := 0

2: ρ(0) := 2

3: ˆ̃x
(0)
k := E{x̃k}

4: D(ˆ̃x
(0)
k ) := HT

LOS,k(
ˆ̃x
(0)
k )R−1

LOS,k HLOS,k(ˆ̃x
(0)
k )

5: g(ˆ̃x
(0)
k ) := HT

LOS,k(
ˆ̃x
(0)
k )R−1

LOS,k · (zLOS,k − hLOS,k(ˆ̃x
(0)
k ))

6: V ′
1(ˆ̃x

(0)
k ) := −2 · g(ˆ̃x(0)

k )

7: ζ(0) := τ ·maxi{[D(ˆ̃x
(0)
k )]i,i}

8: ˆ̃x
(1)
k := ˆ̃x

(0)
k +

[

D(ˆ̃x
(0)
k ) + ζ(0) · IM

]−1

· g(ˆ̃x(0)
k )

9: while ‖ V ′
1(ˆ̃x

(η)
k ) ‖∞> ǫ1 and ‖ ˆ̃x

(η+1)
k − ˆ̃x

(η)
k ‖> ǫ2(‖ ˆ̃x

(η)
k ‖ +ǫ2) and η < ηmax do

10: d := ˆ̃x
(η+1)
k − ˆ̃x

(η)
k

11: Evaluate V1(ˆ̃x
(η)
k ) according to (3.67)

12: Evaluate V1(ˆ̃x
(η+1)
k ) according to (3.67)

13: ̺ :=
V1(ˆ̃x

(η)
k )− V1(ˆ̃x

(η+1)
k )

dT · [g(ˆ̃x(η)
k ) + ζ(η) · d]

14: if ̺ > 0 then

15: ζ(η+1) := ζ(η) ·max{1/3, 1− (2̺− 1)3}
16: ρ(η+1) := 2

17: else

18: ζ(η+1) := ζ(η) · ρ(η)
19: ρ(η+1) := 2 · ρ(η)
20: end if

21: η := η + 1

22: D(ˆ̃x
(η)
k ) := HT

LOS,k(
ˆ̃x
(η)
k )R−1

LOS,k HLOS,k(ˆ̃x
(η)
k )

23: g(ˆ̃x
(η)
k ) := HT

LOS,k(
ˆ̃x
(η)
k )R−1

LOS,k · (zLOS,k − hLOS,k(ˆ̃x
(η)
k ))

24: V ′
1(ˆ̃x

(η)
k ) := −2 · g(ˆ̃x(η)

k )

25: ˆ̃x
(η+1)
k := ˆ̃x

(η)
k +

[

D(ˆ̃x
(η)
k ) + ζ(η) · IM

]−1

· g(ˆ̃x(η)
k )

26: end while
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3.4.3 Maximum Likelihood Estimator for Propagation Condi-
tions that switch between LOS and NLOS

In this section, the ML estimator for propagation conditions that may switch be-

tween LOS and NLOS is determined. The ML estimator for the hybrid localiza-

tion can be found from evaluating the likelihood function according to (3.12). The

likelihood function p(zk|xk) is given in (3.49), which can be rewritten by concate-

nating the PR and GRT measurements into a single measurement vector. Define

zSAT,k = [zTPR,k, zBIAS,k]
T, hSAT,k(xk) = hSAT,k(x̃k = [hT

PR,k(x̃k), hBIAS,k(c0 · δtk)]T and

RSAT,k = diagb[RPR,k, σ
2
BIAS,k]. Then, the likelihood function of zSAT,k is given by

p(zSAT,k|xk) = N (zSAT,k;hSAT,k(xk),RSAT,k), (3.82)

and the joint likelihood function of the measurement vector zk can be written more

compactly, yielding

p(zk|xk) = p(zSAT,k|xk) ·
MRTT∏

κ1=1

p(z
(κ1)
RTT,k|xk) ·

MRSS∏

κ2=1

p(z
(κ2)
RSS,k|xk), (3.83)

where p(z
(κ1)
RTT,k|xk) and p(z

(κ2)
RSS,k|xk) are given by (3.54) and (3.55). The ML estimator

can be found from inserting (3.83) into (3.12). By omitting the irrelevant additive

constants, the ML estimator can be written as

ˆ̃xML,k = argmin
x̃k

V2(x̃k), (3.84)

where the cost function to be minimized is given by

V2(x̃k) = [zSAT,k − hSAT,k(x̃k)]
T R−1

SAT,k [zSAT,k − hSAT,k(x̃k)]

−





MRTT∑

κ1=1

loge(p(z
(κ1)
RTT,k|x̃k)) +

MRSS∑

κ2=1

loge(p(z
(κ2)
RSS,k|x̃k))



 . (3.85)

Note that the minimization of V2(x̃k) is with respect to the reduced state vector x̃k,

since no information about the MT velocity components and the MT clock drift is

contained in the measurements. A closed-form solution for the ML estimator does not

exist, since hPR,k(x̃k), h
(m)
RTT,k(xMT,k), h

(m)
RSS,k(xMT,k, r

(m)
k ) are nonlinear and the likeli-

hood functions of the RTT and RSS measurements are Gaussian mixtures. Thus, one

has to find approximate solutions by using, e.g., numerical optimization algorithms.

Since the cost function V2(x̃k) has a different structure than the cost function V1(x̃k),

the algorithms proposed in Section 3.4.2 cannot be used to solve the minimization

problem without introducing further simplifications.
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In the following, the Nelder-Mead simplex algorithm [NM65,LRWW98] is used to solve

the minimization problem, which can be directly applied to the cost function V2(x̃k).

The Nelder-Mead simplex algorithm is a direct search method for multi-dimensional

unconstrained minimization which has the appealing advantage over gradient-based

search methods, that no derivatives (implicit or explicit) are required. In the Nelder-

Mead simplex algorithm, an essential role is played by the simplex which is a geometric

figure in nx̃ dimensions that is the convex hull of nx̃+1 vertices. In the case nx̃ = 2, the

figure is a triangle, while when nx̃ = 3 it is a tetrahedron. The Nelder-Mead simplex

algorithm attempts to iteratively minimize a scalar valued nonlinear cost function of

nx̃ variables, by comparing function values at the nx̃ + 1 vertices of the simplex. The

vertex with the largest function value is then replaced by another point so that some

form of descent condition is satisfied. The nx̃ + 1 vertices of the simplex given by the

vectors x̃
(η)
i,k for i = 1, . . . , nx̃, are collected in the set S

(η)
1 = {x̃(η)

0,k, . . . , x̃
(η)
nx̃,k

} and the

nx̃ +1 cost function values evaluated at the corresponding vertices are collected in the

set S
(η)
2 = {V2(x̃(η)

0,k), . . . , V2(x̃
(η)
nx̃,k

)}. The Nelder-Mead simplex algorithm is given as

follows:

1. For η = 0, an initial simplex is formed as follows. Given a vector x̃
(0)
0,k and an

edge length l1, an initial regular simplex with edge length l1 can be constructed.

Let in denote the n-th column of the matrix Inx̃
. Then, the vectors defining the

vertices of the initial regular simplex with edge length l1 are given as follows

x̃
(0)
n,k = x̃

(0)
0,k +

l1
2
·
√
nx̃ + 1− 1

nx̃

· 1nx̃×1 +
l1√
2
· in, for n = 1, . . . , nx̃. (3.86)

The nx̃ +1 vectors are collected in the set S
(0)
1 = {x̃(0)

0,k, . . . , x̃
(0)
nx̃,k

} and the nx̃ +1

cost function values evaluated at the corresponding vertices are collected in the

set S
(0)
2 = {V2(x̃(0)

0,k), . . . , V2(x̃
(0)
nx̃,k

)}.

2. Each iteration η starts with the definition of the vector x̃
(η)
H,k providing the largest

function value V2(x̃
(η)
H,k), the vector x̃

(η)
S,k providing the second largest function

value V2(x̃
(η)
S,k), and the vector x̃

(η)
L,k providing the smallest function value V2(x̃

(η)
L,k).

This can be equivalently written as

x̃
(η)
H,k = arg max

x̃k∈S
(η)
1

V2(x̃k), (3.87a)

x̃
(η)
S,k = arg max

x̃k∈S̃
(η)
1

V2(x̃k), (3.87b)

x̃
(η)
L,k = arg min

x̃k∈S
(η)
1

V2(x̃k), (3.87c)

where S̃
(η)
1 = {S(η)

1 \ x̃
(η)
H,k} denotes the set of vectors excluding x̃

(η)
H,k. Similarly,

define S̃
(η)
2 = {S(η)

2 \ V2(x̃(η)
H,k)}. At each iteration η, the vector x̃

(η)
H,k providing



3.4 Maximum Likelihood Estimator 71

the largest function value is replaced by a new vector with a (hopefully) smaller

function value. The new vector is found by the application of at least one of

three basic operations to x̃
(η)
H,k. These operations are reflection, expansion and

contraction, which are further explained in step 3, 4 and 5. In order to perform

one of these operations, it is necessary to define x̃
(η)
M,k which is the centroid of all

x̃
(η)
i,k except x̃

(η)
H,k, and is given by

x̃
(η)
M,k =

1

nx̃

·
nx̃∑

i=0

[

x̃
(η)
i,k − x̃

(η)
H,k

]

. (3.88)

If all these operations do not result in a smaller cost function value, the simplex

is shrunk which is explained in step 6.

3. Reflection: Calculate the reflection vector x̃
(η)
R,k and evaluate the corresponding

cost function V2(x̃
(η)
R,k). Let α1 denote the reflection coefficient, where α1 > 0

holds. Then, the reflection vector x̃
(η)
R,k can be determined from

x̃
(η)
R,k = (1 + α1) · x̃(η)

M,k − α1 · x̃(η)
H,k. (3.89)

If V2(x̃
(η)
L,k) ≤ V2(x̃

(η)
R,k) < V2(x̃

(η)
S,k), then set x̃

(η)
H,k := x̃

(η)
R,k and terminate the iter-

ation. Set S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k} and S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)} and go to step

2.

4. Expansion: If V2(x̃
(η)
R,k) < V2(x̃

(η)
L,k), then calculate the expansion vector x̃

(η)
E,k and

evaluate the corresponding cost function V (x̃
(η)
E,k). Let α2 denote the expansion

coefficient, where α2 > 1 and α2 > α1 holds. Then, the expansion vector x̃
(η)
E,k

can be determined from

x̃
(η)
E,k = α2 · x̃(η)

R,k + (1− α2) · x̃(η)
M,k. (3.90)

If V2(x̃
(η)
E,k) < V2(x̃

(η)
R,k), then set x̃

(η)
H,k := x̃

(η)
E,k. If V2(x̃

(η)
E,k) ≥ V2(x̃

(η)
R,k), then set

x̃
(η)
H,k := x̃

(η)
R,k. In both cases terminate the iteration, set S

(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k} and

S
(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)} and go to step 2.

5.a Outside contraction: If V2(x̃
(η)
S,k) ≤ V2(x̃

(η)
R,k) < V2(x̃

(η)
H,k), then calculate the outside

contraction vector x̃
(η)
OC,k and evaluate the corresponding cost function V (x̃

(η)
OC,k).

Let α3 denote the contraction coefficient where 0 < α3 < 1 holds. Then, the

outside contraction vector x̃
(η)
OC,k can be determined from

x̃
(η)
OC,k = α3 · x̃(η)

R,k + (1− α3) · x̃(η)
M,k. (3.91)

If V2(x̃
(η)
OC,k) ≤ V2(x̃

(η)
R,k), then set x̃

(η)
H,k := x̃

(η)
OC,k and terminate the iteration.

Set S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k} and S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)} and go to step 2. If

V2(x̃
(η)
OC,k) > V2(x̃

(η)
R,k), then go to step 6.
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5.b Inside contraction: If V2(x̃
(η)
R,k) ≥ V2(x̃

(η)
H,k), then calculate the inside contraction

vector x̃
(η)
IC,k and evaluate the corresponding cost function V2(x̃

(η)
IC,k). The inside

contraction vector x̃
(η)
IC,k can be determined from

x̃
(η)
IC,k = α3 · x̃(η)

H,k + (1− α3) · x̃(η)
M,k. (3.92)

If V2(x̃
(η)
IC,k) < V (x̃

(η)
R,k), then set x̃

(η)
H,k := x̃

(η)
IC,k and terminate the iteration.

Set S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k} and S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)} and go to step 2. If

V2(x̃
(η)
IC,k) ≥ V2(x̃

(η)
H,k), then go to step 6.

6. Shrinkage: If V2(x̃
(η)
OC,k) > V2(x̃

(η)
R,k) or if V2(x̃

(η)
IC,k) ≥ V2(x̃

(η)
H,k), then evaluate nx̃

new vectors ñ
(η)
i,k for i = 0, . . . , nx̃. Let α4 denote the shrinkage coefficient, where

0 < α4 < 1 holds. Then, the new vectors can be determined from

ñ
(η)
i,k = x̃

(η)
L,k + α4 · (x̃(η)

i,k − x̃
(η)
L,k), for i = 0, . . . , nx̃. (3.93)

Evaluate V2(·) at the nx̃ vectors ñ
(η)
i,k , set S

(η+1)
1 := {ñ(η)

0,k, . . . , ñ
(η)
nx̃,k

} and S
(η+1)
2 :=

{V2(ñ(η)
0,k), . . . , V2(ñ

(η)
nx̃,k

)} and go to step 2.

Since the Nelder-Mead simplex algorithm is an iterative method, it is necessary to define

certain stopping criteria to terminate the algorithm. In the following, the stopping

criterion proposed in [NM65] is used, which is given by

{

1

nx̃

·
nx̃∑

i=0

(

V2(x̃
(η)
i,k )− V2(x̃

(η)
M,k)

)2
}1/2

< ǫ3, (3.94)

where ǫ3 is a preset small positive number. In order to avoid that the algorithm

is evaluated infinitely often, a second stopping criterion is introduced that stops the

algorithm if a maximum number of iterations ηmax is reached. The vector providing

the smallest cost function value is finally denoted as the estimate of the Nelder-Mead

simplex method, cf. (3.87c). A pseudocode description of the Nelder-Mead simplex

algorithm is given in Algorithm 3.3.

Algorithm 3.3 Nelder-Mead simplex

1: η := 0

2: x̃
(0)
0,k := E{x̃k}

3: Determine initial simplex according to (3.86)

4: S
(0)
1 := {x̃(0)

0,k, . . . , x̃
(0)
nx̃,k

}, S(0)
2 := {V2(x̃(0)

0,k), . . . , V2(x̃
(0)
nx̃,k

)}
5: Define x̃

(0)
H,k, x̃

(0)
S,k and x̃

(0)
L,k according to (3.87)

6: S̃
(0)
1 := {S(0)

1 \ x̃(0)
H,k}, S̃

(0)
2 := {S(0)

2 \ V2(x̃(0)
H,k)}
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7: x̃
(0)
M,k :=

1

nx̃

·
nx̃∑

i=0

[

x̃
(0)
i,k − x̃

(0)
H,k

]

, Evaluate V2(x̃
(0)
M,k) according to (3.85)

8: ˆ̃x
(0)
k := x̃

(0)
0,k

9: while

{
1

nx̃

·
nx̃∑

i=0

(

V2(x̃
(η)
i,k )− V2(x̃

(η)
M,k)

)2
}1/2

≥ ǫ3 and η < ηmax do

10: x̃
(η)
R,k = (1 + α1) · x̃(η)

M,k − α1 · x̃(η)
H,k, Evaluate V2(x̃

(η)
R,k) according to (3.85)

11: if V2(x̃
(η)
L,k) ≤ V2(x̃

(η)
R,k) < V2(x̃

(η)
S,k) then

12: x̃
(η)
H,k := x̃

(η)
R,k

13: S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k}, S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)}

14: else if V2(x̃
(η)
R,k) < V2(x̃

(η)
L,k) then

15: x̃
(η)
E,k := α2 · x̃(η)

R,k + (1− α2) · x̃(η)
M,k, Evaluate V2(x̃

(η)
E,k) according to (3.85)

16: if V2(x̃
(η)
E,k) < V2(x̃

(η)
R,k) then

17: x̃
(η)
H,k := x̃

(η)
E,k

18: else

19: x̃
(η)
H,k := x̃

(η)
R,k

20: end if

21: S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k}, S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)}

22: else if V2(x̃
(η)
S,k) ≤ V2(x̃

(η)
R,k) < V2(x̃

(η)
H,k) then

23: x̃
(η)
OC,k := α3 · x̃(η)

R,k + (1− α3) · x̃(η)
M,k, Evaluate V2(x̃

(η)
OC,k) according to (3.85)

24: if V2(x̃
(η)
OC,k) ≤ V2(x̃

(η)
R,k) then

25: x̃
(η)
H,k := x̃

(η)
OC,k

26: S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k}, S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)}

27: else

28: for i = 0 to nx̃ do

29: ñ
(η)
i,k := x̃

(η)
L,k + α4 · (x̃(η)

i,k − x̃
(η)
L,k), Evaluate V2(ñ

(η)
i,k ) according to (3.85)

30: end for

31: S
(η+1)
1 := {ñ(η)

0,k, . . . , ñ
(η)
nx̃,k

}, S(η+1)
2 := {V2(ñ(η)

0,k), . . . , V2(ñ
(η)
nx̃,k

)}
32: end if

33: else if V2(x̃
(η)
R,k) ≥ V2(x̃

(η)
H,k) then

34: x̃
(η)
IC,k := α3 · x̃(η)

H,k + (1− α3) · x̃(η)
M,k, Evaluate V2(x̃

(η)
IC,k) according to (3.85)

35: if V2(x̃
(η)
IC,k) ≤ V2(x̃

(η)
R,k) then

36: x̃
(η)
H,k := x̃

(η)
IC,k

37: S
(η+1)
1 := {S̃(η)

1 , x̃
(η)
H,k}, S

(η+1)
2 := {S̃(η)

2 , V2(x̃
(η)
H,k)}

38: else

39: for i = 0 to nx̃ do

40: ñ
(η)
i,k := x̃

(η)
L,k + α4 · (x̃(η)

i,k − x̃
(η)
L,k), Evaluate V2(ñ

(η)
i,k ) according to (3.85)

41: end for

42: S
(η+1)
1 := {ñ(η)

0,k, . . . , ñ
(η)
nx̃,k

}, S(η+1)
2 := {V2(ñ(η)

0,k), . . . , V2(x̃
(η)
nx̃,k

)}
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43: end if

44: end if

45: η := η + 1

46: Define x̃
(η)
H,k, x̃

(η)
S,k and x̃

(η)
L,k according to (3.87)

47: S̃
(η)
1 := {S(η)

1 \ x̃(η)
H,k}, S̃

(η)
2 := {S(η)

2 \ V2(x̃(η)
H,k)}

48: x̃
(η)
M,k :=

1

nx̃

·
nx̃∑

i=0

[

x̃
(η)
i,k − x̃

(η)
H,k

]

, Evaluate V2(x̃
(η)
M,k) according to (3.85)

49: ˆ̃x
(η)
k := x̃

(η)
L,k

50: end while

3.5 Performance Evaluation

3.5.1 Introduction

In this Section 3.5, the hybrid localization algorithms of Sections 3.4.2 and 3.4.3 are

evaluated by means of simulations and their average performance is compared to the

CRLB. The comparison of algorithms is based on a set of NMC Monte Carlo simu-

lations, cf. Section 2.3.5. The performance metrics that will be used are the Root

Mean Square Error (RMSE) of the MT location and time averaged RMSE of the MT

location. Recall that xMT,k,i and x̂MT,k,i denote the true and estimated MT location at

time k at the i-th Monte Carlo run. Then, the RMSE of the MT location at time k

can be computed as

RMSEk =

√
√
√
√ 1

NMC

NMC∑

i=1

‖ x̂MT,k,i − xMT,k,i ‖2 (3.95)

Let kmax denote the total number of time steps. Then, the time averaged RMSE of the

MT location is given by

RMSE =
1

kmax

kmax∑

k=1

√
√
√
√ 1

NMC

NMC∑

i=1

‖ x̂MT,k,i − xMT,k,i ‖2 (3.96)

The corresponding CRLBs for the metrics (3.95) and (3.96) can be written as

CRLBk =
√
[
[F(xk)]

−1]

1,1
+
[
[F(xk)]

−1]

2,2
(3.97)

and

CRLB =
1

kmax

kmax∑

k=1

√
[
[F(xk)]

−1]

1,1
+
[
[F(xk)]

−1]

2,2
(3.98)
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where the FIM F(xk) is defined in (3.16). The Monte Carlo simulations are performed

for Scenario I, cf. Section 2.3.4.2, and the results are presented in Section 3.5.2. The

algorithm of Section 3.4.3 is further evaluated for experimental data available from a

field trial, which is presented in Section 3.5.3. Finally, the computational complexity

of the different algorithms is investigated in Section 3.5.4.

3.5.2 Simulation Results for Scenario I

3.5.2.1 Simulation Results for LOS Propagation Conditions

In this section, the performance of the Gauss-Newton algorithm and Levenberg-

Marquardt algorithm introduced in Sections 3.4.2.2 and 3.4.2.3 is evaluated for the

different combinations of measurements of Scenario I as given in Section 2.3.4.2. The

CRLBs for the different combinations of measurements are computed to indicate the

best possible performance that one can expect for the given scenario and set of param-

eters.

In order to apply the algorithms to the hybrid localization problem, the parameters

included in the measurement model hLOS,k(xk) and the covariance matrix RLOS,k have

to be specified. It is assumed that these parameters are equal to the parameters, with

which the measurements have been generated. In practice, however, these parameters

are unknown and have to be estimated in advance from field trial data. The parame-

ters of the stopping criteria necessary to terminate the Gauss-Newton and Levenberg-

Marquardt algorithm are summarized in Table 3.1. The results for each investigated

method are obtained from NMC = 500 Monte Carlo runs. Since both algorithms are

iterative, an initial guess ˆ̃x
(0)
k is required to start the iterations. For nonlinear mea-

surement models, the cost function V1(x̃k) to be minimized might have, besides the

global minimum, multiple local minima to which the algorithm might converge. Thus,

to avoid convergence to a local minimum, the initial guess should be chosen close to

the global minimum. Convergence to a local optimum due to a bad initial guess has

been identified as one of the most severe problems that can affect the performance of

Table 3.1. Parameters of the Gauss-Newton and Levenberg-Marquardt Algorithms

Parameter Value Parameter Value

ǫ1 10−10 ǫ2 10−10

τ 10−6 ηmax 200
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iterative algorithms. It has been found out that for hybrid localization, the choice of

the initial value is critical for both proposed algorithms and generally will yield biased

estimates for the MT location. In the following, however, this issue is not further elab-

orated, since we are interested in the performance of the algorithms under ”optimal”

conditions. In the simulations, the algorithms are therefore initialized with the true

state vector, i.e. ˆ̃x
(0)
k = x̃k, which can be expected to be located close to the global

optimum. In practice, however, the true state vector is not available and one has to

develop other approaches that are based on, e.g., non-iterative solutions or geometric

concepts [Ban85,CSMC06].

In Fig. 3.5, the MT location RMSE in m vs. the time index k for the Cellular, Hybrid

1 and Hybrid 2 methods are shown for the Gauss-Newton algorithm together with the

corresponding CRLBs. For the Gauss-Newton algorithm, the Cellular method provides

the worst performance in terms of RMSE together with the Hybrid 1 method. The

RMSE cannot be further improved with the Hybrid 1 method due to the fact that

one PR measurement is not enough to resolve the unknown clock bias inherent in the

PR measurement equation. The same result can be deduced from the corresponding

CRLBs that coincide with each other in this case. The fact that the CRLBs of the

Cellular and Hybrid 1 method are equivalent can be also proven mathematically which

is given in Appendix A.9. In contrast to the Hybrid 1 method, the Hybrid 2 method

takes into account two PR measurements from two different satellites. Since in this

method an additional PR measurement is available, it is possible to resolve the unknown

clock bias which in turn results in an improved MT location RMSE. The performance

of the Hybrid 2 method using the Gauss-Newton algorithm is very close to the best

achievable performance indicated by the corresponding CRLB, while for the Cellular

and Hybrid 1 method this is not the case. This means that the first-order Taylor

series approximation of the nonlinear measurement equation, introduced in the Gauss-

Newton algorithm, has a larger influence on the Cellular and Hybrid 1 method than

on the Hybrid 2 method. The variations in the MT location RMSE for the three

methods can be explained by the fact that the achievable RMSE strongly depends on

the geometric constellation of the BSs and satellites relative to the MT location.

In Fig. 3.6, the MT location RMSE in m vs. the time index k for the Cellular,

Hybrid 1 and Hybrid 2 methods are shown for the Levenberg-Marquardt algorithm

together with the corresponding CRLBs. It can be seen that for the Hybrid 2 method

the performance of the Levenberg-Marquardt and Gauss-Newton algorithm is similar.

However, for the Cellular and Hybrid 1 method small improvements can be achieved

by using the Levenberg-Marquardt algorithm.

In the following, it is investigated how additional GNSS reference time information
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Figure 3.5. MT location RMSE vs. time index k for Cellular, Hybrid 1 and Hybrid 2
method, solid lines: Gauss-Newton algorithm, dashed lines: CRLB.
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Figure 3.6. MT location RMSE vs. time index k for Cellular, Hybrid 1 and Hybrid 2
method, solid lines: Levenberg-Marquardt algorithm, dashed lines: CRLB.
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available from the cellular radio network helps to improve the Hybrid 1 and Hybrid

2 methods. Here, the important question is investigated, what accuracy of the GNSS

reference time measurements is needed in order to improve the MT location RMSE.

In Fig. 3.7, the MT location RMSE in m vs. the GRT error standard deviation σGRT

in s for the Hybrid 1+ and Hybrid 2+ method are shown for the Gauss-Newton and

Levenberg-Marquardt algorithm together with the corresponding CRLBs. For σGRT ≥
5 · 10−6, the performance of the Hybrid 1+ method reaches an upper bound which is

equivalent to the performance of the Hybrid 1 method as σGRT → ∞. This fact can be

proven mathematically by setting MPR = 1 and e(1) = 0, cf. (3.35), in (3.48). Large

performance improvements can be obtained for σGRT < 5 · 10−6. For σGRT < 10−8 the

Hybrid 1+ method reaches a lower bound and no significant performance improvements

are possible. The performance improvements of the Levenberg-Marquardt algorithm

compared to the Gauss-Newton algorithm are very small. It can be further observed

that both algorithms cannot achieve the CRLB. However, for decreasing values of

σGRT the performance of the Hybrid 1+ method is very close to the CRLB. For

σGRT ≥ 5 · 10−7, the performance of the Hybrid 2+ method reaches an upper bound

which is equivalent to the performance of the Hybrid 2 method as σGRT → ∞. Large

performance improvements are obtained for σGRT < 5 · 10−7. For σGRT < 10−9 the

Hybrid 2+ method reaches a lower bound. The performance of the Gauss-Newton and
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Figure 3.7. MT location RMSE vs. GRT error standard deviation σGRT for Gauss-
Newton algorithm, Levenberg-Marquardt algorithm and corresponding CRLB, solid
lines: Hybrid 1+ method, dashed lines: Hybrid 2+ method.
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Levenberg-Marquardt algorithm is practically equivalent and very close to the CRLB.

The performance improvements of the Hybrid 2+ method compared to the Hybrid

2 method are smaller than the relative performance improvements of the Hybrid 1+

method compared to the Hybrid 1 method.

The impact of the geometric constellation of the satellites relative to the MT location

on the achievable MT location RMSE for the Satellite method and Hybrid 3 method

is investigated next. Here, the important question is investigated, if it is necessary

to take into account measurements from the cellular radio network when three PR

measurements are available. In Fig. 3.8, the MT location RMSE in m vs. time index

k for the Satellite and Hybrid 3 method and three different GDOP values, namely

GDOP = 2, GDOP = 5 and GDOP = 10, are shown for the Gauss-Newton algorithm

together with the corresponding CRLBs. Here, it is worth noting that the GDOP

is defined and calculated only for the Satellite method and then the performance is

compared to the Hybrid 3 method. The results for the Gauss-Newton algorithm show

that for GDOP = 2 the Satellite and Hybrid 3 method have a similar performance

and only very small performance improvements can be achieved. This means, that the

additional consideration of measurements from the cellular radio network does not help

to improve the performance, if the geometric constellation between the satellites and

the MT is good. However, for GDOP = 5 and GDOP = 10, a significant difference in
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Figure 3.8. MT location RMSE vs. time index k for Satellite and Hybrid 3 method,
GDOP = 2, GDOP = 5 and GDOP = 10 values, solid lines: Gauss-Newton algorithm,
dashed lines: CRLB.
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performance can be observed. In this case, the Hybrid 3 method clearly outperforms the

Satellite method. Furthermore, a comparison of the algorithms to the CRLBs show that

a performance very close to these bounds can be achieved. In Fig. 3.9, the MT location

RMSE in m vs. GDOP for the Satellite and Hybrid 3 method are shown for the Gauss-

Newton and Levenberg-Marquardt algorithms together with the corresponding CRLBs.

The results show that there is practically no difference between the performance of the

Gauss-Newton algorithm and the Levenberg-Marquardt algorithm. For the different

GDOP values, it can be observed that the performance of these algorithms is very close

to the CRLB. For small GDOP values, the performance improvements of the Hybrid

3 method compared to the Satellite method are small. However, for large GDOP

values, the Hybrid 3 method significantly outperforms the Satellite method. From this

it follows, that the additional consideration of measurements from the cellular radio

network is expected to significantly improve the performance in scenarios where the

value of GDOP is large.
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Figure 3.9. MT location RMSE vs. GDOP for Gauss-Newton algorithm, Levenberg-
Marquardt algorithm and CRLB, solid lines: Satellite method, dashed lines: Hybrid 3
method.
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3.5.2.2 Simulation Results for Propagation Conditions that switch be-
tween LOS and NLOS

In this section, the performance of the Nelder-Mead simplex algorithm introduced in

Section 3.4.3 is evaluated for the different combinations of measurements of Scenario

I as given in Section 2.3.4.2. In contrast to Section 3.5.2.1, it is now assumed that

the RSS and RTT measurements are affected by propagation conditions that switch

between LOS and NLOS. The CRLBs for the different combinations of measurements

are computed according to Section 3.3.3 using N = 10000 samples, in order to indicate

the best possible performance that one can expect for the given scenario and set of

parameters. In order to apply the algorithm to the hybrid localization problem, the

parameters included in cost function V2(·), cf. (3.85) have to be specified. For the

simulations, it is assumed that these parameters are equal to the parameters, with

which the measurements have been generated. In practice, however, these parameters

are unknown and have to be estimated in advance from field trial data. The parameters

of the stopping criteria, necessary to terminate the Nelder-Mead simplex algorithm

are summarized in Table 3.2. Since the Nelder-Mead simplex algorithm requires a

large number of iterations to converge to the minimum of the cost function, only

NMC = 100 Monte Carlo runs are performed. The performance of the Nelder-Mead

simplex algorithm may also suffer from a poor initial guess ˆ̃x
(0)
k . For the same reasons

as those stated in Section 3.5.2.1, the algorithm is initialized with the true state vector,

i.e., ˆ̃x
(0)
k = x̃k.

In Fig. 3.10, the MT location RMSE in m vs. the time index k for the Cellular, Hybrid 1

and Hybrid 2 methods are shown for the Nelder-Mead simplex algorithm together with

the corresponding CRLBs. For the results, the same conclusions as those for the Gauss-

Newton algorithm, cf. Fig. 3.5, can be drawn. It can be noticed that the performance

of the Cellular method is different to the Hybrid 1 method. These differences can be

explained by the fact that the algorithm converges to different local solutions of the

reduced state vector. The risk that the algorithm is ending up in a local minimum is

higher for the Hybrid 1 method, since the algorithm has to additionally estimate the

unknown MT clock bias. Comparing the results of the Nelder-Mead simplex method

to the best achievable performance indicated by the corresponding CRLB, it can be

Table 3.2. Parameters of the Nelder-Mead Simplex Algorithm

Parameter Value Parameter Value Parameter Value

α1 1 α2 2 α3 1/2

α4 1/2 ǫ3 10−10 ηmax 200
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Figure 3.10. MT location RMSE vs. time index k for Cellular, Hybrid 1 and Hybrid 2
method, solid lines: Nelder-Mead simplex algorithm, dashed lines: CRLB.

observed that for the Hybrid 2 method the performance is close to the CRLB bound,

while for the Cellular and Hybrid 1 method this is not the case.

In Fig. 3.11, the MT location RMSE in m vs. the GRT error standard deviation σGRT

in s for the Hybrid 1+ and Hybrid 2+ method are shown for the Nelder-Mead simplex

algorithm together with the corresponding CRLBs. The same conclusions as those for

the Gauss-Newton algorithm, cf. Fig. 3.7, can be drawn from these results. It can

be also noticed that the Nelder-Mead simplex algorithm cannot achieve the CRLB.

However, for decreasing values of σGRT the algorithm approaches the CRLB.

In Fig. 3.12, the MT location RMSE in m vs. GDOP for the Satellite and Hybrid

3 method are shown for the Nelder-Mead simplex algorithm together with the corre-

sponding CRLBs. For the results, the same conclusions as those for the Gauss-Newton

algorithm, cf. Fig. 3.9, can be drawn. It can be noticed that for the Hybrid 3 method,

the Nelder-Mead simplex algorithm cannot achieve the CRLB. However, for decreasing

values of GDOP the algorithm approaches the CRLB.

The results for the Cellular and Hybrid methods in terms of the CRLBs, RMSEs and

RMSEs presented in this section are worse than the results obtained for the scenario

with LOS propagation conditions. This can be explained by the fact that the RTT and

RSS measurements affected by LOS propagation conditions are more accurate than the
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Figure 3.11. MT location RMSE vs. GRT error standard deviation σGRT for Nelder-
Mead simplex algorithm, solid lines: Hybrid 1+ method, dashed lines: Hybrid 2+
method.

same measurements affected by NLOS propagation conditions. Since both propagation

conditions occur in the scenario that is investigated in this section, the results are on

average worse than the results that can be obtained when using only measurements

affected by LOS propagation conditions.

3.5.3 Field Trial Results

In this section, the expected performance of the hybrid localization method is tested on

experimental data available from a field trial. Since the RTT and RSS measurements

are highly affected by propagation conditions that switch between LOS and NLOS,

the Nelder-Mead simplex algorithm has been used for the hybrid localization method.

The unknown parameters of the RTT and RSS model, cf. (2.24) and (2.39), have

been estimated from the available field trial data using the Expectation-Maximization

algorithm [DLR77,MK97]. The parameters for the stopping criteria of the algorithm

are chosen as in Table 3.2. The initial value is chosen as the mean value of the locations

of all involved BSs, i.e.

x̂
(0)
MT,k =

1

NBS

NBS∑

ν=1

x
(ν)
BS,k. (3.99)
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Figure 3.12. MT location RMSE vs. GDOP for Nelder-Mead simplex algorithm and
CRLB, solid lines: Satellite method, dashed lines: Hybrid 3 method.

and the bias is initialized with ˆco ·δtk
(0)

= z
(1)
PR,k − d

(1)
SAT,k(x̂

(0)
MT,k), which is denoted as

suboptimal initial value. Since the performance of the Nelder-Mead simplex algorithm

may suffer from a poor initial guess ˆ̃x
(0)
k , the performance has been additionally eval-

uated assuming ˆ̃x
(0)
k = x̃k, which is referred to as the optimal initial value in the

following. In Fig. 3.13, the MT location error in m vs. time index k for the Cellular,

Hybrid 1 and Hybrid 2 method are shown for the Nelder-Mead simplex algorithm using

the optimal initial values. Note that the MT location error can be determined from

(3.95) by setting NMC = 1. The results show that the Cellular and Hybrid 1 method

provide the worst performance. The performance can be significantly improved using

the Hybrid 2 method. Even though from a theoretical point of view the performance of

the Cellular and Hybrid 1 method should be equivalent, small performance differences

can be observed. These differences can be explained by the fact that the Nelder-Mead

simplex algorithm is converging to different minima of the respective cost functions.

This is also the reason why the Cellular method sometimes outperforms the Hybrid

2 method. The results also show that distinct peaks occur in the MT location error

for the different methods. These peaks result mainly from bad geometric conditions

between the MT and the BSs. For example, it is possible that the MT receives mea-

surements from only one BS, due to the fact that multiple antennas are deployed at the

BSs. Another reason is that the algorithm does not converge to the global minimum

due to a badly chosen initial value.
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Figure 3.13. MT location error vs. time index k for Cellular, Hybrid 1 and Hybrid 2
method using the Nelder-Mead simplex algorithm and assuming optimal initial values.

The influence of the chosen initial value on the achievable performance is investigated

next. In Fig. 3.14, the MT location error in m vs. time index k for the Cellular,

Hybrid 1 and Hybrid 2 method are shown for the Nelder-Mead simplex algorithm using

suboptimal initial values. The results show that the number of distinct peaks occurring

in the MT location error for the different methods has increased. The algorithm is

obviously converging to different local minima of the corresponding cost functions.

Comparing the different localization methods with each other, the same conclusions

can be drawn as for the case of initializing the algorithm with the optimal values. Table

3.3 summarizes the time averaged MT location error in m for the different localization

methods and initialization strategies. Note that the time averaged MT location error

can be determined from (3.96) assumingNMC = 1. The results show that irrespective of

the initialization strategy, the Hybrid 2 method significantly outperforms the Cellular

and Hybrid 1 method. However, Table 3.3 also shows that the achievable performance

strongly depends on the chosen initial values.

3.5.4 Computational Complexity

In order to complement the performance analysis, this section deals with the com-

plexity of the different hybrid localization algorithms. With the obtained results, it
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Figure 3.14. MT location error vs. time index k for Cellular, Hybrid 1 and Hybrid
2 method using the Nelder-Mead simplex algorithm and assuming suboptimal initial
values.

is possible to identify which algorithm presents the best trade-off between complexity

and performance.

In the following, the complexity of the Gauss-Newton algorithm and Levenberg-

Marquardt algorithm, proposed for the solution of the hybrid localization problem

in LOS propagation scenarios, is investigated. Even though the Nelder-Mead simplex

algorithm could have been used to solve the optimization problem given in (3.66), it

is generally orders of magnitude more complex due to its very slow convergence prop-

erties. The complexity analysis of the Nelder-Meads simplex algorithm can be found

in [SS99] and is not further investigated in this section.

The Gauss-Newton algorithm and Levenberg-Marquardt algorithm are investigated in

terms of Floating-Point Operations (FLOPs) per iteration, which is as one addition,

subtraction, multiplication, or division of two floating-point numbers. Repeated opera-

tions do not increase the complexity, i.e., when the same computation is carried out at

several points within the algorithm, its computational cost is computed only once, since

its result can be stored in memory and reused when necessary. In the Gauss-Newton

algorithm as well as in the Levenberg-Marquardt algorithm, there are certain steps that

cannot be measured in FLOPs. In both algorithms, one has to evaluate the Jacobian

matrix HLOS,k(·) and the nonlinear function hLOS,k(·) and in the Levenberg-Marquardt
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Table 3.3. Time averaged MT location error for the Cellular, Hybrid 1 and Hybrid 2
method using the Nelder-Mead simplex algorithm and different initial values.

Method Time Averaged MT Location Error in m

optimal initial values suboptimal initial values

Cellular 50.73 101.02

Hybrid 1 50.53 103.16

Hybrid 2 32.93 74.28

method, it is further necessary to evaluate a conditional if-statement, cf. Algorithms

3.1 and 3.2. In the following, the cost of evaluating the nonlinear function and Jacobian

matrix as well as the costs of evaluating conditional statements is neglected. Further-

more, the computational cost of the initialization for the two filters can be neglected,

since this step is evaluated only once. Then, the computational complexity in FLOPs

per iteration of the Gauss-Newton algorithm is given by

CGN(nx̃, nz) = n3
z + n3

x̃ + 2n2
znx̃ + 2n2

x̃nz + nx̃nz, + n2
x̃ + nz − nx̃ (3.100)

and that of the Levenberg-Marquardt algorithm is given by

CLM(nx̃, nz) = n3
z + n3

x̃ + 2n2
znx̃ + 2n2

x̃nz + nx̃nz + 3n2
x̃ + 4nx̃ + nz + 9. (3.101)

Here, it is worth noting that the FLOPs for the Levenberg-Marquardt are based on

a worst case scenario with ̺ > 0 for all iteration steps, cf. Algorithm 3.2. Table 3.4

shows the complexity of the algorithms in terms of FLOPs per iteration for the different

methods together with the average number of iterations, until the algorithms converge

to a local solution. The results show that the Gauss-Newton algorithm has a lower

complexity per iteration than the Levenberg-Marquardt algorithm for all investigated

methods. When comparing the number of iterations the algorithms require to converge,

it can be observed that these numbers are in the same order of magnitude. However,

it can be also observed that for the different methods the numbers of iterations vary.

In general, one cannot easily draw conclusions from the average number of iterations,

since these values strongly depend on the investigated scenario, the initial guess ˆ̃x
(0)
k

and the parameters of the stopping criteria, cf. Table 3.1.
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Table 3.4. Computational complexity of the hybrid localization algorithms. Numbers
in parentheses denote the average number of algorithm iterations until convergence.

Method Complexity in FLOPs per Iteration

Gauss-Newton Levenberg-Marquardt

Cellular 866 (19) 893 (21)

Hybrid 1 1446 (17) 1488 (14)

Hybrid 1+ 1853 (13) 1895 (13)

Hybrid 2 1853 (10) 1895 (11)

Hybrid 2+ 2332 (8) 2374 (10)

Hybrid 3 2332 (6) 2374 (5)

Satellite 180 (4) 222 (3)

3.6 Conclusions

In this chapter, the hybrid localization problem has been reformulated as an ML esti-

mation problem, where temporal dependencies between MT states and between mea-

surements are not taken into account explicitly. The ML estimators have been newly

derived for measurements affected by LOS propagation conditions and measurements

affected by propagation conditions that switch between LOS and NLOS. For both

cases, the ML estimates are determined numerically using suboptimal algorithms. For

the case of LOS propagation conditions, the Gauss-Newton and Levenberg-Marquardt

algorithm have been proposed to solve the ML estimation problem. For the case of

propagation conditions that switch between LOS and NLOS, the Nelder-Mead simplex

algorithm has been proposed to solve the ML estimation problem. The performance of

these algorithms have been compared to the theoretically best achievable performance,

which is given by the CRLB. For the case of LOS propagation conditions, an analytical

solution of the CRLB has been newly derived and a novel geometric interpretation of

the bound is given. For the case of propagation conditions that may switch between

LOS and NLOS, a numerical solution of the CRLB based on Monte Carlo integration

has been newly proposed. Additionally, the Nelder-Mead simplex algorithm has been

applied to experimental data available from a field trial. All presented algorithms have

been extensively analyzed in terms of performance and complexity. If it is not otherwise

stated, the following main conclusions hold for both cases assuming LOS propagation

conditions and propagation conditions that switch between LOS and NLOS:

• The performance of the Cellular method and Hybrid 1 method are equivalent,

and the Hybrid 2 method outperforms the Cellular and Hybrid 1 methods.
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• The performance improvements of the Hybrid 1+ and Hybrid 2+ strongly depend

on the accuracy with which the GRT measurements can be provided.

• The performance improvement of the Hybrid 3 method compared to the Satellite

method strongly depends on the GDOP value. While for small GDOP values the

performance improvements are small, significant performance improvements can

be obtained for large GDOP values.

• For the case of LOS propagation conditions, the Gauss-Newton algorithm

presents the best trade-off between complexity and performance. However, for

certain MT, BS and satellite geometries the Gauss-Newton algorithm diverges

due to a rank-deficient matrix. In this case, the Levenberg-Marquardt algorithm

converges to a solution, yielding a much more robust implementation.

• The achievable performance of the different iterative algorithms strongly depends

on the chosen initial values.

• The CRLBs for LOS propagation conditions are always lower than the CRLBs

for propagation conditions that switch between LOS and NLOS.

• The performance of the Gauss-Newton and Levenberg-Marquardt algorithm for

LOS propagation conditions are close to the CRLB. For propagation conditions

that switch between LOS and NLOS, larger performance differences between the

Nelder-Mead simplex algorithm and the CRLB can be observed.
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Chapter 4

Recursive State Estimation for Hybrid
Localization

4.1 Introduction

In this chapter, the hybrid localization problem is solved using recursive state estima-

tion techniques 1. In recursive state estimation, the MT state is estimated for each

time step k recursively, by taking into account information about measurements and

MT state estimates from previous time steps.

The concept of recursive Bayesian state estimation is introduced in Section 4.2 and

the optimal recursive Bayesian solution is presented. In order to assess the theoretical

best achievable performance of recursive estimators, the PCRLB is evaluated for the

hybrid localization problem in Section 4.3. Since an analytical solution of the optimal

recursive Bayesian solution for hybrid localization does not exist, suboptimal recursive

estimators are proposed. In Section 4.4, KF-based estimators are introduced to the

solve the hybrid localization problem, and in Section 4.5, PF-based estimators are

proposed. The performance of the different hybrid localization algorithms is analyzed

by means of simulations and experimental data in Section 4.6. Finally, the main

conclusions of this chapter are drawn in Section 4.7.

4.2 Concept of Recursive Bayesian Estimation

In this section, the concept of recursive Bayesian estimation is introduced. The idea of

recursive estimation is to include information available from state estimates of previous

time steps into the estimation process. In order to avoid that all previous state esti-

mates have to be processed in the recursive estimator at each time step, it is common

to assume that the MT state is a Markov process [Jaz70, RAG04]. With this strat-

egy, only the information from the current measurement and the state estimate of the

previous time step is processed in the recursive estimator.

1In the literature, recursive state estimation is also known as state estimation or filtering [GG05,
BSLK01,RAG04].



92 Chapter 4: Recursive State Estimation for Hybrid Localization

The aim in recursive Bayesian estimation is to recursively compute estimates of the

state xk using the sequence of all available measurements Zk = {z1, . . . , zk} up to and

including time k. From a Bayesian point of view, the aim is to recursively compute the

posterior pdf p(xk|Zk), since it provides a complete statistical description of the state

xk at that time. The optimal recursive Bayesian solution is divided into a time update

step and measurement update step [Jaz70]. In the time update step, the prediction

density p(xk|Zk−1) is computed according to

p(xk|Zk−1) =

∫

R
nx
p(xk,xk−1|Zk−1) dxk−1 (4.1a)

=

∫

R
nx
p(xk|xk−1,Zk−1) · p(xk−1|Zk−1) dxk−1 (4.1b)

=

∫

R
nx
p(xk|xk−1) · p(xk−1|Zk−1) dxk−1, (4.1c)

where (4.1b) follows from repeated application of Bayes’ theorem, and (4.1c) follows

from the fact that xk is Markov, i.e., the current state xk is conditionally independent

of the previous measurements Zk−1 given the previous state xk. Equation (4.1c)

gives the time update equation, which is widely known as Chapman-Kolmogorov

equation [Pap84]. For state-space models of the form (2.2), the transitional pdf

p(xk|xk−1) is given by

p(xk|xk−1) = pΓk−1·wk−1
(xk − fk−1(xk−1)), (4.2)

[Jaz70]. When a new measurement becomes available at time step k, the measurement

update step is performed. Using Bayes’ theorem, the posterior pdf p(xk|Zk) can be

updated according to

p(xk|Zk) = p(xk|Zk−1, zk) =
p(zk|xk,Zk−1) · p(xk|Zk−1)

p(zk|Zk−1)
(4.3a)

=
p(zk|xk) · p(xk|Zk−1)

p(zk|Zk−1)
(4.3b)

=
p(zk|xk) · p(xk|Zk−1)

∫

R
nx
p(zk|xk) · p(xk|Zk−1) dxk

, (4.3c)

where (4.3b) follows from the fact that xk is Markov, i.e., the current measurement

zk is conditionally independent of the previous measurements Zk−1, given the current

state xk. For measurement models of the form (2.9), the pdf p(zk|xk) (or likelihood

function) is given by

p(zk|xk) = pvk
(xk − hk(xk)), (4.4)

and the recursions are initiated with the pdf p(x0) [Jaz70]. Note if xk and xk−1 are as-

sumed to be statistically independent, i.e., p(xk|xk−1) = p(xk) holds, then the recursive
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Bayesian estimation solution given by (4.1c) and (4.3c) reduces to the non-recursive

Bayesian estimation solution given by (3.1). Knowledge of the posterior pdf p(xk|Zk)

enables one to obtain MT state estimates with respect to any criterion. In this work,

only the MMSE criterion will be further elaborated, which has been introduced for

non-recursive state estimation in Section 3.2. In order to better distinguish between

non-recursive and recursive state estimation, the notation x̂k|k is introduced in the

following, which describes the estimate of the MT state xk at time k, given the mea-

surements Zk up to and including time k. The MMSE estimator for recursive estimation

and the corresponding covariance is, thus, given by

x̂MMSE,k|k = Ep(xk|Zk){xk} =

∫

R
nx

xk · p(xk|Zk) dxk, (4.5a)

PMMSE,k|k = Ep(xk|Zk){(xk − x̂MMSE,k|k)·(xk − x̂MMSE,k|k)
T}

=

∫

R
nx
(xk − x̂MMSE,k|k)·(xk − x̂MMSE,k|k)

T ·p(xk|Zk) dxk. (4.5b)

It is well known that the optimal solution in the MMSE sense of the recursive Bayesian

estimation problem only allows analytical solutions in a few special cases. The most

important special case is when the models fk−1(·) and hk(·), cf. (2.1) and (2.8), are

linear, and when the pdfs p(x0), pwk−1
(wk−1), pvk

(vk) are Gaussian. In this case, a

closed-form solution for the recursion equations (4.1) and (4.3) exist, which is known

as the KF [Kal60,HL64,AM79,WB01].

However, if one of the functions fk−1(·) or hk(·) is nonlinear or one of the pdfs p(x0) or

p(xk|xk−1) or p(zk|xk) are non-Gaussian, the multidimensional integrals involved in the

recursions often cannot be solved analytically and a closed-form solution for p(xk|Zk)

becomes intractable. For the hybrid localization problem assuming LOS propagation

conditions, this is the case, since the measurement models hLOS,k(·) are nonlinear. Fur-
thermore, for the case of switching LOS/NLOS propagation conditions, the likelihood

function p(zk|xk) is non-Gaussian, cf. (3.83). In both cases, an analytical solution for

p(xk|Zk) is not available and one has to resort to suboptimal approaches.

4.3 Posterior Cramér-Rao Lower Bound

4.3.1 Introduction

In this section, the PCRLB for recursive Bayesian estimation is introduced, which is

used to assess the theoretical performance bound for the recursive hybrid localization
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algorithms investigated in this work 2. Let the sequence of states be given by Xk =

{x0,x1, . . . ,xk}. Let further X̂k|k(Zk) denote an unbiased estimate of Xk and let the

estimation error be given by X̂k|k(Zk) − Xk. The PCRLB is defined to give a lower

bound for the covariance matrix of the estimation error [vT68,TMN98]. Let IB,k denote

the Bayesian Information Matrix (BIM) and its inverse is denoted as PCRLB matrix

[vT68]. Then, the covariance matrix of the estimation error satisfies the following

inequality

Ep(Xk,Zk)

{

(X̂k|k(Zk)−Xk)(X̂k|k(Zk)−Xk)
T

}

≥ [IB,k]
−1 . (4.6)

The BIM for estimating the sequence of states Xk is defined as

IB,k = Ep(Xk,Zk)

{

∆Xk

Xk
loge(p(Xk,Zk))

}

. (4.7)

The PCRLB exists, if the derivatives and expectations in (4.6) and (4.7) exist. The

proof is given in [vT68]. The BIM as well as the PCRLB matrix are (k+1)nx×(k+1)nx

matrices, whose dimension grows with time k. Since the computation of the PCRLB

involves the inversion of the BIM, the computational complexity grows with time k.

In general, however, one is interested in a recursive computation of the PCRLB, where

the computational complexity is constant over time. In [TMN98], an elegant method

is described, how the PCRLB can be computed recursively, while the computational

complexity is kept constant over time. The idea of this approach is to evaluate the

Bayesian information submatrix for estimating xk, which is denoted as Jk, instead of

the BIM for estimating Xk. According to [TMN98], Jk is given as the inverse of the

nx × nx right-lower block of [IB,k]
−1, whose dimension is independent of time k. The

matrix [Jk]
−1, then gives a lower bound on the mean square error of estimating xk.

Let x̂k|k(Zk) denote an unbiased estimate of xk and let the estimation error be given

by x̂k|k(Zk) − xk. Then, the covariance matrix of the estimation error satisfies the

following inequality

Ep(Xk,Zk)

{
(x̂k|k(Zk)− xk)(x̂k|k(Zk)− xk)

T
}
≥ [Jk]

−1 . (4.8)

According to [TMN98], the Bayesian information submatrix Jk for estimating the state

vector xk can be calculated recursively using the following formula

Jk = D22
k−1 −D21

k−1[Jk−1 +D11
k−1]

−1D12
k−1 +D33

k−1, (k ≥ 1) (4.9)

where

D11
k−1 = Ep(Xk){−△xk−1

xk−1
loge p(xk|xk−1)}, (4.10a)

D12
k−1 = Ep(Xk){−△xk

xk−1
loge p(xk|xk−1)} = [D21

k−1]
T, (4.10b)

D22
k−1 = Ep(Xk){−△xk

xk
loge p(xk|xk−1)}, (4.10c)

D33
k−1 = Ep(Xk,Zk){−△xk

xk
loge p(zk|xk)}. (4.10d)

2Another name for the Posterior Cramér-Rao Lower Bound that can be often found in the literature
is the Bayesian Cramér-Rao (Lower) Bound [vT68].
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The expectation in (4.10d) can rewritten by first taking the expectation with respect to

the conditional pdf p(Zk|Xk) and then with respect to the marginal pdf p(Xk). Then,

it is possible to express D33
k−1 in terms of the FIM F(xk) introduced in Section 3.3.1,

yielding

D33
k−1 = Ep(Xk)

{
Ep(Zk|Xk)

{
−△xk

xk
loge p(zk|xk)

}}

= Ep(xk)

{
Ep(zk|xk)

{
−△xk

xk
loge p(zk|xk)

}}
= Ep(xk) {F(xk)} . (4.11)

The initial Bayesian information submatrix J0 can be calculated from the pdf p(x0)

and is given by

J0 = Ep(x0){−∆x0
x0
loge(p(x0))}. (4.12)

Note that for a Gaussian pdf p(x0) with mean x̂0|0 and covariance matrix P0|0, J0 =

[P0|0]
−1 holds [RAG04]. Similar to (3.18), the MSE of the MT location satisfies the

following inequality

Ep(Xk,Zk){‖ x̂MT,k|k(Zk)− xMT,k ‖2} ≥
[
[Jk]

−1]

1,1
+
[
[Jk]

−1]

2,2
, (4.13)

which is termed hereinafter the MT location PCRLB. In Section 4.3.2, the MT location

PCRLB is determined for measurements affected by LOS propagation conditions. In

Section 4.3.3, the MT location PCRLB is determined for measurements affected by

switching LOS/NLOS propagation conditions. In both cases, the PCRLB is evaluated

numerically using a Monte Carlo integration approach.

4.3.2 Posterior Cramér-Rao Lower Bound for LOS propaga-
tion conditions

In this section, the posterior Cramér-Rao lower bound for measurements affected by

LOS propagation conditions is determined. In order to evaluate the PCRLB according

to (4.13), it is necessary to determine the unknown matrices D11
k−1, D

12
k−1, D

21
k−1, D

22
k−1

and D33
k−1, cf. (4.10). The hybrid localization method assuming LOS propagation

conditions, is fully described by the models given in (2.49) and (2.50). The transitional

pdf can be determined from inserting (2.49) into (3.2), yielding

p(xk|xk−1) = pΓ·wk−1
(xk − F · xk−1) = N (xk;F · xk−1,Γ ·Q · ΓT). (4.14)

Since the model in (2.49) is linear Gaussian, the matrices D11
k−1, D

12
k−1, D

21
k−1 and D22

k−1

greatly simplify to

D11
k−1 = Ep(Xk){−△xk−1

xk−1
loge p(xk|xk−1)} = FT · [Q̃]−1 · F, (4.15a)

D12
k−1 = Ep(Xk){−△xk

xk−1
loge p(xk|xk−1)} = [D21

k−1]
T = −FT · [Q̃]−1, (4.15b)

D22
k−1 = Ep(Xk){−△xk

xk
loge p(xk|xk−1)} = [Q̃]−1, (4.15c)
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where Q̃ = Γ ·Q ·ΓT. Recall that the joint likelihood function p(zLOS,k|xk) is given by

(3.64). Then, according to (A.9) the matrix D33
k−1 can be written as

D33
k−1 = Ep(xk){F(xk)} = Ep(xk){HT

LOS,k(xk) · [RLOS,k]
−1 ·HLOS,k(xk)}, (4.16)

where HLOS,k(xk) denotes the Jacobian matrix of the measurements, cf. (3.68), but

now evaluated for the complete MT state vector. Substitution of (4.15) and (4.16) into

the recursion (4.9) yields

Jk = [Q̃]−1 − [Q̃]−1 · F ·
[

Jk−1 + FT · [Q̃]−1 · F
]−1

· FT · [Q̃]−1

+Ep(xk){HT

LOS,k(xk) · [RLOS,k]
−1 ·HLOS,k(xk)}. (4.17)

Using the matrix inversion lemma

[A+BCBT]−1 = A−1 −A−1B[C−1 +BTA−1B]−1BTA−1 (4.18)

[Ber09], the matrix Jk can be rewritten as

Jk =
[
Γ ·Q · ΓT + F · [Jk−1]

−1 · FT
]−1

+ Ep(xk){HT

LOS,k(xk) · [RLOS,k]
−1 ·HLOS,k(xk)}.

(4.19)

Note that in the absence of a state model, i.e. F = 0nx×nx and assuming zero process

noise, i.e. Q = 0nw×nw , the expectation in (4.19) can be dropped and the Bayesian

information submatrix is equal to the FIM. In this case, the PCRLB reduces to the

CRLB for nonrandom parameters, cf. (3.13). The most difficult problem in determining

the PCRLB is the evaluation of the expectation in (4.19). In the following, a Monte

Carlo integration approach, cf. Appendix A.10, is used to approximate the expected

value of the FIM, yielding

Ep(xk){F(xk)} ≈ 1

NMC

NMC∑

n=1

HT

LOS,k(x
(n)
k ) · [RLOS,k]

−1 ·HLOS,k(x
(n)
k ), (4.20)

where x
(n)
k , n = 1, . . . , NMC, are i.i.d. state vector realizations, such that x

(n)
k ∼ p(xk).

Finally, by insertion of (4.19) into (4.13), the MT location PCRLB for measurements

affected by LOS propagation conditions can be evaluated.

4.3.3 Posterior Cramér-Rao Lower Bound for Propagation
Conditions that switch between LOS and NLOS

In this section, the posterior Cramér-Rao lower bound for measurements affected by

switching LOS/NLOS propagation conditions is determined. The evaluation of the
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PCRLB according to (4.13) requires the determination of the matrices D11
k−1, D

12
k−1,

D21
k−1, D

22
k−1 and D33

k−1, cf. (4.10). The hybrid localization method assuming switching

LOS/NLOS propagation conditions, is fully described by the models given in (2.49) and

(2.51). Since the state model is equivalent to the LOS case, the matrices D11
k−1, D

12
k−1,

D21
k−1, D

22
k−1 are given by (4.15). Thus, the only difference in determining the PCRLB is

the computation of the matrix D33
k−1. Recall that the joint likelihood function p(zk|xk)

in this case is given by (3.49). Then, the matrix D33
k−1 can be written as

D33
k−1 = Ep(xk){F(xk)} = Ep(xk){FPR(xk)}+ Ep(xk){FGRT(xk)}

+Ep(xk)

{
MRTT∑

κ1=1

F
(κ1)
RTT(xk)

}

+ Ep(xk)

{
MRSS∑

κ2=1

F
(κ2)
RSS(xk)

}

, (4.21)

where all involved FIMs are evaluated with respect to the complete state vector. Note,

that the FIM F(xk) for the complete state vector and the FIM for the reduced state

vector F(x̃k) are related to each other. For hybrid localization, the available measure-

ments do not give information about the MT velocity states ẋMT,k and the MT clock

drift state c0 · δṫk. In this case, the following relationship holds:

F(xk) =











[F(x̃k)]1,1 [F(x̃k)]1,2 0 0 [F(x̃k)]1,3 0

[F(x̃k)]2,1 [F(x̃k)]2,2 0 0 [F(x̃k)]2,3 0

0 0 0 0 0 0
0 0 0 0 0 0

[F(x̃k)]3,1 [F(x̃k)]3,2 0 0 [F(x̃k)]3,3 0

0 0 0 0 0 0











. (4.22)

Thus, determining the FIM of the complete state vector is nothing more than re-

arranging the elements of the FIM of the reduced state vector according to (4.22).

Substitution of (4.15) into the recursion (4.9) and application of the matrix inversion

lemma (4.18) yields,

Jk =
[
Γ ·Q · ΓT + F · [Jk−1]

−1 · FT
]−1

+D33
k−1. (4.23)

The matrix D33
k−1 is given by (4.21) and is evaluated approximately using a Monte

Carlo integration approach, cf. Appendix A.10, yielding

D33
k−1≈

1

NMC

NMC∑

n=1

{

FPR(x
(n)
k )+FGRT(x

(n)
k )+

MRTT∑

κ1=1

F
(κ1)
RTT(x

(n)
k )+

MRSS∑

κ2=1

F
(κ2)
RSS(x

(n)
k )

}

, (4.24)

where x
(n)
k , n = 1, . . . , NMC, are i.i.d. state vector realizations, such that x

(n)
k ∼ p(xk).

Note, that the evaluation of (4.23) involves two Monte Carlo integration approaches,

namely the computation of the FIMs of the RTT and RSS measurements according to

(3.56) and (3.59), and the computation of the expected value of the FIM according to

(4.24). Finally, by insertion of (4.23) into (4.13), the MT location PCRLB for mea-

surements affected by switching LOS/NLOS propagation conditions can be evaluated.
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4.4 Kalman Filter-based Estimators

4.4.1 Introduction

In this section, KF-based estimators are proposed to solve the hybrid localization

problem. KF-based estimators assume that all pdfs involved in the computation of the

recursive solution, cf. (4.1c) and (4.3c), can be approximated with Gaussian pdfs, i.e.,

p(xk−1|Zk−1) ≈ N (xk−1; x̂k−1|k−1,Pk−1|k−1), (4.25a)

p(xk|Zk−1) ≈ N (xk; x̂k|k−1,Pk|k−1), (4.25b)

p(xk|Zk) ≈ N (xk; x̂k|k,Pk|k), (4.25c)

[RAG04], which are completely specified by their mean vectors and covariance matrices.

An appealing advantage of this approach is that the functional recursion in (4.1c) and

(4.3c) reduces to an algebraic recursion, where only means and covariances have to

be calculated. In Fig. 4.1, a block diagram showing the recursion of a KF-based

estimator is depicted. At time k = 0, the filter is initialized with a Gaussian pdf

p(x0) with mean vector x̂0|0 and covariance matrix P0|0. In the time update stage, a

Gaussian approximation to the prediction density p(xk|Zk−1) is calculated, which is

represented by the mean x̂k|k−1 and covariance Pk|k−1, cf. (4.1c) and (4.25b). Upon

the arrival of a new measurement zk, the predicted mean x̂k|k−1 and covariance Pk|k−1

are corrected in the measurement update stage to follow the measurements. Here,

a Gaussian approximation to the posterior pdf p(xk|Zk) is calculated, cf. (4.3c) and

(4.25c). The corresponding mean x̂k|k and covariance Pk|k are the final estimates of the

KF-based estimator and are used as approximations of the MMSE estimates defined

in (4.5). In order to satisfy a recursion, the mean and covariance of the posterior pdf

are used as input values for the time update stage at the next time instance.

In the following, three suboptimal algorithms, namely the EKF [BSLK01], the UKF

[WvdM00], and the Cubature Kalman Filter (CKF) [AH09], are proposed to solve the

underlying hybrid localization problem. While the filtering algorithms are well-known,

the application of these algorithms to the hybrid localization problem can be regarded

as the novel contribution. The filters can be straightforwardly applied to the scenario

with LOS propagation conditions, where the transitional pdf p(xk|xk−1) and the likeli-

hood pdf p(zLOS,k|xk) are assumed Gaussian, cf. (4.14) and (3.64). In scenarios, where

the propagation conditions switch between LOS and NLOS, the likelihood pdf p(zk|xk)

is a mixture of Gaussian pdfs, cf. (3.54). In order to apply the KF-based estimators to

this scenario, the Gaussian mixture pdf has to be approximated with a single Gaussian
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x̂0|0

P0|0

k > 0
x̂k|k−1

Pk|k−1

x̂k|k

Pk|k

x̂k−1|k−1

Pk−1|k−1

Time Measurement
UpdateUpdate

Delay

zk

Figure 4.1. Block diagram showing the operation of KF-based estimators.

pdf using moment matching [BSLK01]. It can be straightforwardly shown that the

covariance matrix of the moment-matched RSS measurement pdf is state-dependent,

which prevents a direct application of the EKF, UKF and CKF to the hybrid local-

ization problem. For these reasons, the KF-based estimators are only applied to the

hybrid localization problem assuming LOS propagation conditions. In Section 4.4.2,

the EKF is presented. In Section 4.4.3, the UKF is described and the CKF is briefly

outlined in Section 4.4.4.

4.4.2 Extended Kalman Filter

The EKF belongs to the class of nonlinear filters, where the nonlinear functions in

the state and measurement models, cf. (2.1) and (2.8) are locally linearized using a

Taylor series expansion [BSLK01]. It is assumed that the local linearization of the state

and measurement models is a sufficient description of nonlinearity. The posterior pdf

is approximated by a Gaussian density and relationships (4.25a)-(4.25c) are assumed

to hold. For the hybrid localization problem, the state model is linear with additive

Gaussian noise, cf. (2.49), so that there is no need for linearization in the time update.

Since the measurement model is nonlinear with additive Gaussian noise, cf. (2.50),

suitable approximations have to be introduced in the measurement update. The time

update and measurement update of the EKF are presented next.

Time Update

Based on the assumption that the posterior pdf p(xk−1|Zk−1) of the previous time

step k − 1 is Gaussian, cf. (4.25a), and based on the fact that the transitional pdf
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p(xk|xk−1) is linear Gaussian, cf. (4.14), the time update step, cf. (4.1c), can be

evaluated in closed-form, and is given by

p(xk|Zk−1) =

∫

R
nx
p(xk|xk−1) · p(xk−1|Zk−1)dxk−1

≈
∫

R
nx

N (xk;F · xk−1,Γ ·Q · ΓT) · N (xk−1; x̂k−1|k−1,Pk−1|k−1) dxk−1

= N (xk; x̂k|k−1,Pk|k−1), (4.26)

where

x̂k|k−1 = F · x̂k−1|k−1, (4.27a)

Pk|k−1 = F ·Pk−1|k−1 · FT + Γ ·Q · ΓT. (4.27b)

A proof of (4.26) can be found, for instance, in [HL64,BSLK01].

Measurement Update

In the measurement update step, the posterior pdf is calculated according to (4.3c),

which involves the evaluation of a multidimensional integral. Since for the hybrid

localization problem the measurement model hLOS,k(xk) is nonlinear, a closed-form

solution of the integral given in (4.3c) does not exist. In the EKF, the nonlinear mea-

surement model hLOS,k(xk) is approximated with a first-order Taylor series expansion

about x̂k|k−1, which is given by

hLOS,k(xk) ≈ hLOS,k(x̂k|k−1) + HLOS,k(xk)|xk=x̂k|k−1
· (xk − x̂k|k−1), (4.28)

where HLOS,k(xk) denotes the Jacobian matrix of the measurements, cf. (3.68), evalu-

ated for the complete MT state vector. Thus, the likelihood pdf can be approximated

with

p(zk|xk) = p(zLOS,k|xk) = N (zLOS,k;hLOS,k(xk),RLOS,k)

≈ N (zLOS,k;hLOS,k(x̂k|k−1) +HLOS,k(x̂k|k−1) · (xk − x̂k|k−1),RLOS,k)

= N (zLOS,k; h̃LOS,k(x̂k|k−1,xk),RLOS,k). (4.29)

The measurement update step, can be written as

p(xk|Zk) =
p(zk|xk) · p(xk|Zk−1)

∫

R
nx
p(zk|xk) · p(xk|Zk−1)dxk

≈ N (zLOS,k; h̃LOS,k(x̂k|k−1,xk),RLOS,k) · N (xk; x̂k|k−1,Pk|k−1)
∫

R
nx

N (zLOS,k; h̃LOS,k(x̂k|k−1,xk),RLOS,k) · N (xk; x̂k|k−1,Pk|k−1) dxk

= N (xk; x̂k|k,Pk|k), (4.30)
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where

x̂k|k = x̂k|k−1 +Kk · [zLOS,k − hLOS,k(x̂k|k−1)], (4.31a)

Pk|k = Pk|k−1 −Kk ·Pzz,k|k−1 ·KT

k , (4.31b)

Pxz,k|k−1 = Pk|k−1 ·HT

LOS,k(x̂k|k−1), (4.31c)

Pzz,k|k−1 = HLOS,k(x̂k|k−1) ·Pk|k−1 ·HT

LOS,k(x̂k|k−1) +RLOS,k, (4.31d)

Kk = Pxz,k|k−1 · [Pzz,k|k−1]
−1. (4.31e)

A proof of (4.30) is given, for instance, in [BSLK01]. A pseudocode description of the

EKF is given in Algorithm 4.1. Even though the EKF consists of an algebraic recursion,

which allows a simple implementation and fast execution, it may have suboptimal

performance or even will diverge, if hLOS,k(xk) is highly nonlinear. In this case, the

non-Gaussianity of the true posterior pdf p(xk|Zk) will be more pronounced and its

Gaussian approximation is no longer justified.

Algorithm 4.1 Extended Kalman Filter

1: // Initialization
2: x̂0|0 := E{x0}
3: P0|0 := E{(x0 − x̂0|0)(x0 − x̂0|0)

T}
4: // Recursion
5: for k = 1 to kmax do
6: // Time Update
7: x̂k|k−1 := F · x̂k−1|k−1

8: Pk|k−1 := F ·Pk−1|k−1 · FT + Γ ·Q · ΓT

9: // Measurement Update
10: Pxz,k|k−1 := Pk|k−1 ·HT

LOS,k(x̂k|k−1)

11: Pzz,k|k−1 := HLOS,k(x̂k|k−1) ·Pk|k−1 ·HT

LOS,k(x̂k|k−1) +RLOS,k

12: Kk := Pxz,k|k−1 · [Pzz,k|k−1]
−1

13: x̂k|k := x̂k|k−1 +Kk · [zLOS,k − hLOS,k(x̂k|k−1)]
14: Pk|k := Pk|k−1 −Kk ·Pzz,k|k−1 ·KT

k

15: end for

4.4.3 Unscented Kalman Filter

The UKF belongs to the class of nonlinear filters, where all involved pdfs, cf. (4.1c)

and (4.3c), are approximated by Gaussian densities and whose mean and covari-

ance is computed from a small number of deterministically chosen sample points and

weights [WvdM00]. These sample points capture the true mean and covariance of the

Gaussian densities and are often denoted as sigma points. When these sample points

are propagated through a nonlinear transform, it can be shown that the transformed
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sigma points exactly describe the true mean and covariance up to at least the second

order of the Taylor series expansion of the nonlinearity, while the EKF achieves only

first-order accuracy [Jul02]. Thus, instead of linearizing the state and measurement

models, as it is done in the EKF, the UKF approximates pdfs, which is also known

as statistical linearization [G+74]. The corresponding weights and sigma points are

selected using the scaled unscented transformation [Jul02], which is presented next.

The scaled unscented transformation is a method for calculating the moments of a

nonlinear transformed random variable. Let a denote a vector of random variables of

dimension na with mean µa and covariance Pa. It is assumed that the random variable

a is propagated through an arbitrary nonlinear function g(·), yielding the transformed

random variable

b = g(a) (4.32)

of dimension nb. The mean µb and covariance Pb of b are computed using the scaled

unscented transformation. In the scaled unscented transformation, 2 · na + 1 weighted

sample points are deterministically chosen so that they completely describe the true

mean µa and covariance Pa. Let (A)i denote the i-th row of the matrix A. Further,

let B =
√
A denote the matrix square root of A, such that A = BT ·B. Then, a set

of sigma points A(i) and weights W (i) that satisfy the above requirements is given by

A(0) = µa, (4.33a)

A(i) = µa +
(√

(na + γ) ·Pa

)

i
, i = 1, . . . , na, (4.33b)

A(i) = µa −
(√

(na + γ) ·Pa

)

i−na

, i = na + 1, . . . , 2 · na, (4.33c)

W (0)
m =

γ

na + γ
, (4.33d)

W (0)
c =

γ

na + γ
+ (1− α2 + β2), (4.33e)

W (i)
m = W (i)

c =
1

2 · (na + γ)
, i = 1, . . . , 2 · na, (4.33f)

where γ = α2(na+β1)−na is a scaling parameter, β1 is a secondary scaling parameter,

α determines the spread of the sigma points around the mean µa and β2 is a weight

parameter [Jul02]. Propagation of the sigma points A(i) through the true nonlinear

function, yields the transformed sigma points

B(i) = g(A(i)), i = 1, . . . , 2 · na. (4.34)

The first two moments of b are then approximated using a weighted mean and covari-
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ance of the transformed sigma points, yielding

µb ≈
2·na∑

i=0

W (i)
m · B(i), (4.35a)

Pb ≈
2·na∑

i=0

W (i)
c · (B(i) − µb) · (B(i) − µb)

T. (4.35b)

Application of the scaled unscented transformation to the EKF framework, cf. (4.27)

and (4.31), yields the UKF, whose time update and measurement update for the hybrid

localization are presented in the following [BMW03].

Time Update

Since the posterior pdf p(xk−1|Zk−1) is assumed Gaussian and the transitional pdf

p(xk|xk−1) is linear Gaussian, there is no need to apply the scaled unscented transfor-

mation to the time update. In this case, the time update of the UKF is equivalent to

the time update of the EKF, and the prediction pdf is given by

p(xk|Zk−1) ≈ N (xk; x̂k|k−1,Pk|k−1), (4.36)

where x̂k|k−1 and Pk|k−1 are given in (4.27).

Measurement Update

In order to apply the scaled unscented transformation to the measurement update, the

update of the posterior pdf is expressed in terms of the conditional density of the joint

state and the measurement p(xk, zk|Zk−1), yielding

p(xk|Zk) =
p(xk, zk|Zk−1)

p(zk|Zk−1)
=

p(xk, zk|Zk−1)
∫

R
nx
p(xk, zk|Zk−1) dxk

. (4.37)

Since it is assumed that all pdfs involved in the recursive estimation of the posterior

pdf are approximated by Gaussian pdfs, the pdf p(xk, zk|Zk−1) is also Gaussian, and

is given by

p(xk, zk|Zk−1) ≈ N ([xT

k , z
T

k ]
T;µxz, P̃xz), (4.38)

with

µxz =

[
x̂k|k−1

ẑk|k−1

]

, P̃xz =

[
Pk|k−1 Pxz,k|k−1

PT

xz,k|k−1 Pzz,k|k−1

]

. (4.39)
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Inserting (4.38) into (4.37) and evaluating the multidimensional integral, it follows that

the posterior pdf p(xk|Zk) is Gaussian

p(xk|Zk) ≈ N (xk; x̂k|k−1,Pk|k−1), (4.40)

where

x̂k|k = x̂k|k−1 +Kk · [zk − ẑk|k−1], (4.41a)

Pk|k = Pk|k−1 −Kk ·Pzz,k|k−1 ·KT

k , (4.41b)

Kk = Pxz,k|k−1 · [Pzz,k|k−1]
−1. (4.41c)

A proof of this fact can be found in [BSLK01]. While x̂k|k−1 and Pk|k−1 are available

from the time update, the predicted measurement ẑk|k−1, the associated covariance

Pzz,k|k−1 and the cross-covariance Pxz,k|k−1 have to be further evaluated. For measure-

ment models of the form (2.50), these are given by

ẑk|k−1 =

∫

R
nx

hLOS,k(xk) · N (xk; x̂k|k−1,Pk|k−1) dxk, (4.42)

Pzz,k|k−1 =

∫

R
nx
(hLOS,k(xk)− ẑk|k−1) · (hLOS,k(xk)− ẑk|k−1)

T ·N (xk; x̂k|k−1,Pk|k−1) dxk

+RLOS,k, (4.43)

Pxz,k|k−1 =

∫

R
nx
(xk − x̂k|k−1) · (hLOS,k(xk)− ẑk|k−1)

T · N (xk; x̂k|k−1,Pk|k−1) dxk.(4.44)

The key idea in the UKF is now to approximate the multi-dimensional integrals in

(4.42), (4.43) and (4.44) using the scaled unscented transformation [WvdM00, Jul02].

In the scaled unscented transformation, the prediction density p(xk|Zk−1) is represented

by 2 · nx + 1 sigma points X (i)
k|k−1 and weights W (i), which are chosen according to

the scheme given in (4.33). The sigma points are then transformed through the true

nonlinear function according to

Z(i)
k|k−1 = hLOS,k(X (i)

k|k−1), i = 0, . . . , 2 · nx. (4.45)

Finally, estimates of ẑk|k−1, Pzz,k|k−1 and Pxz,k|k−1 can be determined from (4.35) and

are given by

ẑk|k−1 ≈
2·nx∑

i=0

W (i)
m · Z(i)

k|k−1, (4.46)

Pzz,k|k−1 ≈
2·nx∑

i=0

W (i)
c · (Z(i)

k|k−1 − ẑk|k−1) · (Z(i)
k|k−1 − ẑk|k−1)

T +RLOS,k, (4.47)

Pxz,k|k−1 ≈
2·nx∑

i=0

W (i)
c · (X (i)

k|k−1 − x̂k|k−1) · (Z(i)
k|k−1 − ẑk|k−1)

T. (4.48)

A pseudocode description of the UKF is given in Algorithm 4.2. Compared to the

EKF the UKF does not require to evaluate Jacobian matrices, which is useful in cases,

where no closed-form expression for hLOS,k(·) is available.
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Algorithm 4.2 Unscented Kalman Filter

1: // Initialization

2: x̂0|0 := E{x0}
3: P0|0 := E{(x0 − x̂0|0)(x0 − x̂0|0)

T}
4: γ := α2 · (nx + β1)− nx

5: W
(0)
m := γ/(nx + γ)

6: for i = 1 to nx do

7: W
(i)
m := 1/(2 · (nx + γ))

8: W
(0)
c := W

(0)
m + (1− α2 + β2)

9: end for

10: // Recursion

11: for k = 1 to kmax do

12: // Time Update

13: x̂k|k−1 := F · x̂k−1|k−1

14: Pk|k−1 := F ·Pk−1|k−1 · FT + Γ ·Q · ΓT

15: // Measurement Update

16: X (0)
k|k−1 := x̂k|k−1

17: Z(0)
k|k−1 := hLOS,k(X (0)

k|k−1)

18: for i = 1 to nx do

19: X (i)
k|k−1 := x̂k|k−1 +

(√
(nx + γ) ·Pk|k−1

)

i

20: X (nx+i)
k|k−1 := x̂k|k−1 −

(√
(nx + γ) ·Pk|k−1

)

i

21: Z(i)
k|k−1 := hLOS,k(X (i)

k|k−1)

22: Z(nx+i)
k|k−1 := hLOS,k(X (nx+i)

k|k−1 )

23: end for

24: ẑk|k−1 :=
∑2nx

i=0 W
(i)
m · Z(i)

k|k−1

25: Pxz,k|k−1 :=
∑2nx

i=0 W
(i)
c · (X (i)

k|k−1 − x̂k|k−1) · (Z(i)
k|k−1 − ẑk|k−1)

T

26: Pzz,k|k−1 :=
∑2nx

i=0 W
(i)
c · (Z(i)

k|k−1 − ẑk|k−1) · (Z(i)
k|k−1 − ẑk|k−1)

T +RLOS,k

27: Kk := Pxz,k|k−1 · [Pzz,k|k−1]
−1

28: x̂k|k := x̂k|k−1 +Kk · [zLOS,k − ẑk|k−1]

29: Pk|k := Pk|k−1 −Kk ·Pzz,k|k−1 ·KT

k

30: end for

4.4.4 Cubature Kalman Filter

The CKF is very similar to the UKF as it also calculates approximately the mean

and covariances given in (4.46)-(4.48) by using a set of deterministically chosen sample

points and weights. In the CKF, however, the sample points and weights result from
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solving the multi-dimensional integrals in (4.42)-(4.44) with highly efficient numeri-

cal integration methods, which are known as cubature rules (see [AH09] for detailed

derivations). One obtains a set of 2 · nx cubature points and weights, from which the

corresponding weighted mean and covariance can be computed. The set of cubature

points and weights is very similar to the set of sigma points and weights of the UKF

and can be determined from (4.33) by setting the parameters α = 1, β1 = 0 and β2 = 0.

The time update and the measurement update of the CKF for the hybrid localization

problem is presented next.

Time Update

The time update of the CKF is equivalent to the time update of the EKF and

UKF, since the posterior pdf p(xk|Zk) is assumed Gaussian and the transitional pdf

p(xk|xk−1) is linear Gaussian. It follows, that

p(xk|Zk−1) ≈ N (xk; x̂k|k−1,Pk|k−1), (4.49)

where x̂k|k−1 and Pk|k−1 are given in (4.27).

Measurement Update

In the measurement update, the mean x̂k|k and covariance Pk|k of the Gaussian pos-

terior pdf p(xk|Zk) is computed from (4.41). In [AH09], the mean ẑk|k−1 and the

covariances Pzz,k|k−1 and Pxz,k|k−1 are given by

ẑk|k−1 =

∫

R
nx

hLOS,k(xk) · N (xk; x̂k|k−1,Pk|k−1) dxk, (4.50)

Pzz,k|k−1 =

∫

R
nx

hLOS,k(xk) · hT

LOS,k(xk) · N (xk; x̂k|k−1,Pk|k−1) dxk

−ẑk|k−1 · ẑTk|k−1 +RLOS,k, (4.51)

Pxz,k|k−1 =

∫

R
nx
xk · hT

LOS,k(xk) · N (xk; x̂k|k−1,Pk|k−1) dxk − x̂k|k−1 · ẑTk|k−1,(4.52)

which is equivalent to (4.42)-(4.44). The multi-dimensional integrals are numerically

approximated using cubature rules as described in [AH09], yielding

ẑk|k−1 ≈ 1

2 · nx

·
2·nx∑

i=1

Z(i)
k|k−1, (4.53)

Pzz,k|k−1 ≈ 1

2 · nx

·
2·nx∑

i=1

Z(i)
k|k−1 · Z

(i),T
k|k−1 − ẑk|k−1 · ẑTk|k−1 +RLOS,k, (4.54)

Pxz,k|k−1 ≈ 1

2 · nx

·
2·nx∑

i=1

X (i)
k|k−1 · Z

(i),T
k|k−1 − x̂k|k−1 · ẑTk|k−1, (4.55)



4.5 Particle Filter-based Estimators 107

where Z(i)
k|k−1 is defined in (4.45). A pseudocode description of the CKF is given in

Table 4.3. Comparing the UKF and CKF with each other, it can be observed that the

recursions are very similar, except that different sets of sample points and weights are

used to approximate ẑk|k−1, Pzz,k|k−1 and Pxz,k|k−1.

Algorithm 4.3 Cubature Kalman Filter

1: // Initialization
2: x̂0|0 := E{x0}
3: P0|0 := E{(x0 − x̂0|0)(x0 − x̂0|0)

T}
4: Wm := 1/(2 · nx)
5: Wc := Wm

6: Ξ :=
√
nx · [Inx ,−Inx ]

7: // Recursion
8: for k = 1 to kmax do
9: // Time Update
10: x̂k|k−1 := F · x̂k−1|k−1

11: Pk|k−1 := F ·Pk−1|k−1 · FT + Γ ·Q · ΓT

12: // Measurement Update
13: Sk|k−1 :=

√
Pk|k−1

14: for i = 1 to 2 · nx do
15: X (i)

k|k−1 := x̂k|k−1 + Sk|k−1 · (Ξ)i
16: Z(i)

k|k−1 := hLOS,k(X (i)
k|k−1)

17: end for
18: ẑk|k−1 := Wm ·∑2nx

i=1 Z
(i)
k|k−1

19: Pxz,k|k−1 := Wc ·
∑2nx

i=1 X
(i)
k|k−1 · Z

(i)
k|k−1 − x̂k|k−1 · ẑTk|k−1

20: Pzz,k|k−1 := Wc ·
∑2nx

i=1 Z
(i)
k|k−1 · Z

(i)
k|k−1 − ẑk|k−1 · ẑTk|k−1 +RLOS,k

21: Kk := Pxz,k|k−1 · [Pzz,k|k−1]
−1

22: x̂k|k := x̂k|k−1 +Kk · [zLOS,k − ẑk|k−1]
23: Pk|k := Pk|k−1 −Kk ·Pzz,k|k−1 ·KT

k

24: end for

4.5 Particle Filter-based Estimators

4.5.1 Introduction

In this section, PF-based estimators are proposed to solve the hybrid localization

problem. PF-based estimators approximate the multi-dimensional integrals in the

recursive Bayesian solution, cf. (4.1c) and (4.3c), using a Monte Carlo integration
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technique, so that the posterior pdf p(xk|Zk) can be represented by a set of ran-

dom samples (particles) with associated weights [GSS93]. It can be shown that the

Monte Carlo approximation approaches the true posterior pdf and, thus, approaches

the optimal recursive Bayesian solution, if the number of particles goes to infin-

ity [dM04, HSL08]. In practice, however, an approximation is computed with a fi-

nite number of particles, due to the limited computational resources. The problem

of using Monte Carlo integration techniques to recursive Bayesian estimation is de-

generacy, i.e., after a certain number of recursive steps, all but one particle will have

negligible weight [DGA00]. In order to overcome the degeneracy, the concept of re-

sampling has been introduced, and the PF became useful in practice for the first

time [GSS93]. Since then, several extensions and improvements have been proposed,

see [DGA00, DdFG01, AMGC02, RAG04, CGM07, DJ09, Gus10a] for detailed surveys

and tutorials on particle filtering. Compared to KF-based estimators, the PF-based

estimators have the following advantageous properties:

• They can be applied to a very general class of nonlinear, non-Gaussian estimation

problems

• They provide an approximation of the entire posterior pdf p(xk|Zk) and not only

of its first two moments.

• It is very easy to incorporate hard constraints, e.g. road constraints or constraints

on the MT velocity, into the PF.

However, since all PFs are based on the principle of Monte Carlo integration, the main

disadvantage of using them is that they are orders of magnitudes computationally more

complex than KF-based estimators. In the following, four different particle filter-based

estimators are proposed to solve the hybrid localization problem. These are the PF

as proposed in [GSS93], the Rao-Blackwellized Particle Filter (RBPF) [CL00,AD02,

SGN05, Sch03], the Auxiliary Particle Filter (APF) [PS99, CCF99] and the recently

proposed Rao-Blackwellized Auxiliary Particle Filter (RBAPF) [FSK09]. These filters

can be applied to both scenarios with LOS and switching LOS/NLOS propagation

conditions. In order to further improve the localization accuracy, road constraints have

been incorporated into the PF and the RBPF. The novel contribution of this section

is the application of the well-known PF, RBPF and APF to the hybrid localization

problem. In addition to that a new filter, called the RBAPF is derived and applied to

the hybrid localization problem. In Section 4.5.2 and 4.5.3, the PF and RBPF without

road constraints are presented. In Section 4.5.4, the APF is described. In Section 4.5.5

the RBAPF is introduced. Finally, in Section 4.5.6 and 4.5.7, the road-constrained PF

and RBPF are presented.
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4.5.2 Particle Filter

4.5.2.1 Introduction

In this section, the PF is proposed as solution for the hybrid localization problem.

The PF approximates the posterior pdf p(xk|Zk) with a discrete density, which can be

obtained as follows: Let δ(x) denote the Dirac delta function, which can be thought

of as a function that is zero except at x = 0 where it is infinite, and which has the

following properties
∫ ∞

−∞

δ(x) dx = 1,

∫ ∞

−∞

g(x) · δ(x− a) dx = g(a) (4.56)

[Bra00]. The key idea is to rewrite the posterior pdf as follows

p(xk|Zk) = p(xk|Zk) ·
∫

R
nx
δ(xk − x′

k) dx
′
k

︸ ︷︷ ︸

=1

=

∫

R
nx
δ(xk − x′

k) · p(x′
k|Zk) dx

′
k. (4.57)

The trick is now to evaluate the above integral approximately using Monte Carlo inte-

gration, cf. Appendix A.10. Since, in most cases, the posterior pdf is known only up to

a normalization constant, cf. (4.3c), direct sampling from the posterior pdf is often im-

possible. In these cases, samples are drawn from an importance density x
(i)
k ∼ q(xk|Zk),

which should be similar to the pdf p(xk|Zk). Using this strategy, which is known as

importance sampling, the posterior pdf can be approximated as follows

p(xk|Zk) =

∫

R
nx
δ(xk − x′

k) ·
p(x′

k|Zk)

q(x′
k|Zk)

· q(x′
k|Zk) dx

′
k

≈
N∑

i=1

w
(i)
k|k · δ(xk − x

(i)
k ), (4.58)

where the normalized importance weights are defined as

w
(i)
k|k =

w̃
(i)
k|k

∑N
j=1 w̃

(j)
k|k

, with w̃
(i)
k|k =

p(x
(i)
k |Zk)

q(x
(i)
k |Zk)

(4.59)

[RAG04]. In the following, it is shown, how the concept of importance sampling can

be applied to the optimal recursive Bayesian solution given by (4.1c) and (4.3c).

4.5.2.2 Derivations

In this section, the PF for hybrid localization is derived. In the literature, it is common

to derive the PF from the pdf of the state trajectory p(Xk|Zk) and then to discard

the path Xk−1 to arrive at the desired posterior pdf of the current state p(xk|Zk)

[DGA00,RAG04,Sch03]. In this work, the PF is derived from the posterior pdf p(xk|Zk)

which is similar to the derivation given in [Tör08].
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Initialization

The PF is initialized by sampling N particles from the initial distribution p(x0) ac-

cording to

x
(i)
0 ∼ p(x0), (4.60)

with corresponding weights w
(i)
0|0 for i = 1, . . . , N . As a result, the initial pdf can be

approximated with

p(x0) ≈
N∑

i=1

w
(i)
0|0 · δ(x0 − x

(i)
0 ). (4.61)

Time Update

In the time update, the Chapman-Kolmogorov equation (4.1c) has to be evaluated.

Suppose that at time k − 1, a weighted discrete approximation of p(xk−1|Zk−1) is

available. This yields

p(xk|Zk−1) =

∫

R
nx
p(xk|xk−1) · p(xk−1|Zk−1) dxk−1

≈
∫

R
nx
p(xk|xk−1) ·

N∑

i=1

w
(i)
k−1|k−1 · δ(xk−1 − x

(i)
k−1) dxk−1

=
N∑

i=1

w
(i)
k−1|k−1 · p(xk|x(i)

k−1), (4.62)

where the last equality follows from (4.56). The prediction pdf in (4.62) is continuous

with respect to xk and is composed of a weighted sum of N transitional pdfs. In

the following, a weighted discrete approximation of p(xk|Zk−1) is obtained using an

importance sampling approach. In the PF, the key idea is to represent each component

of the weighted sum by a single particle that is sampled from the following importance

density

x
(i)
k ∼ q(xk|x(i)

k−1, zk), i = 1, . . . , N, (4.63)

where the latest measurement zk is taken into account in the importance density as this

can improve the numerical properties of the PF [Dou98]. As a result, the prediction

pdf can be approximated as

p(xk|Zk−1) ≈
N∑

i=1

w
(i)
k|k−1 · δ(xk − x

(i)
k ), (4.64)



4.5 Particle Filter-based Estimators 111

where the unnormalized importance weights are given by

w
(i)
k|k−1 ∝ w

(i)
k−1|k−1 ·

p(x
(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

k−1, zk)
, i = 1, . . . , N, (4.65)

and “∝” denotes the proportionality operator. The importance weights have to be

further normalized to ensure
∑N

j=1w
(j)
k|k−1 = 1.

Measurement Update

In the measurement update, the posterior pdf p(xk|Zk) is updated according to (4.3c).

Insertion of (4.64) into (4.3c) gives a weighted discrete approximation of the posterior

pdf. Since this approximation is numerically normed, a calculation of the denominator

in (4.3c) is not needed, yielding

p(xk|Zk) =
p(zk|xk) · p(xk|Zk−1)

p(zk|Zk−1)
∝ p(zk|xk) · p(zk|Zk−1)

≈
N∑

i=1

w
(i)
k|k−1 · p(zk|x

(i)
k ) · δ(xk − x

(i)
k )

=
N∑

i=1

w
(i)
k|k · δ(xk − x

(i)
k ), (4.66)

where the normalized importance weights are given by

w
(i)
k|k =

w
(i)
k|k−1 · p(zk|x

(i)
k )

∑N
j=1w

(j)
k|k−1 · p(zk|x

(j)
k )

, i = 1, . . . , N. (4.67)

The PF recursion is now complete and consists of the recursive propagation of particles

x
(i)
k and importance weights w

(i)
k|k according to (4.63), (4.65) and (4.67). However, it has

been shown in [DGA00] that the sequential application of importance sampling leads to

the degeneracy problem, i.e., after a certain number of recursions, all but one particle

will have close to zero importance weights. In order to overcome the degeneracy, the

concept of resampling has been introduced in the PF.

Estimation

The PF provides a discrete approximation of the posterior pdf according to (4.66), from

which standard measures such as the MMSE x̂MMSE,k|k and its covariance PMMSE,k|k
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can be computed [Sch03]. Numerical approximations of these quantities are given by

x̂MMSE,k|k ≈
N∑

i=1

w
(i)
k|k · x

(i)
k , (4.68a)

PMMSE,k|k ≈
N∑

i=1

w
(i)
k|k · (x

(i)
k − x̂MMSE,k|k)(x

(i)
k − x̂MMSE,k|k)

T. (4.68b)

Resampling

Particle filters with importance densities of the form (4.63) suffer from the degener-

acy of particles. The resampling step was therefore included in the PF to solve this

problem [GSS93]. The idea of resampling is to multiply particles with high impor-

tance weights and to discard particles having low importance weights. This can be

done by drawing samples from the discrete approximation of p(xk|Zk) as follows: Take

N samples from the set {x(i)
k }Ni=1, where the probability to take sample i is given by

w
(i)
k|k. Afterwards, replace the old weights with uniform weights. Until now, several

resampling algorithms have been proposed that efficiently implement the above de-

scribed procedure, see e.g. [DC05,HSG06] for a detailed description and comparison of

different resampling algorithms. In this work, systematic resampling is used which is

summarized in Algorithm 4.4 [CCF99,RAG04]. This algorithm also stores the index

of the resampled parent particle, denoted as i(j) or equivalently ij, which is needed in

the APF and RBAPF algorithms.

4.5.2.3 Choice of Importance Density

In the design of PFs, the choice of the importance density q(xk|x(i)
k−1, zk) plays a major

role. The optimal importance density that minimizes the variance of the importance

weights is given by q(xk|x(i)
k−1, zk)opt = p(xk|x(i)

k−1, zk) [DGA00,RAG04]. However, for

the hybrid localization problem, a closed-form expression for this density does not exist,

so that one has resort to suboptimal importance densities. For the hybrid localization

problem, the transitional pdf, cf. (3.14), is chosen as importance density, i.e.,

q(xk|x(i)
k−1, zk) = p(xk|x(i)

k−1), (4.69)

which is the most popular suboptimal choice. In this case, the weights in the time

update are given by w
(i)
k|k−1 = w

(i)
k−1|k−1, cf. (4.65), and the weights in the measurement

update simplify to

w
(i)
k|k =

w
(i)
k−1|k−1 · p(zk|x

(i)
k )

∑N
j=1w

(j)
k−1|k−1 · p(zk|x

(j)
k )

, i = 1, . . . , N. (4.70)
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Algorithm 4.4 Systematic Resampling

Input: {x̌(i)
k , w̌

(i)
k|k}Ni=1

Output: {x(j)
k , w

(j)
k|k}Nj=1

1: c1 := w̌
(1)
k|k

2: for i = 2 to N do
3: ci := ci−1 + w̌

(i)
k|k

4: end for
5: i := 1
6: u1 ∼ U [0, N−1]
7: for j = 1 to N do
8: uj := u1 +N−1 · (j − 1)
9: while uj > ci do

10: i := i+ 1
11: end while
12: x

(j)
k := x̌

(i)
k

13: w
(j)
k|k := N−1

14: ij := i
15: end for

A pseudocode description of the PF for the hybrid localization is given in Algorithm

4.5. For the sake of clarity, a different notation for the description of the algorithm

is used. The algorithm can be used for the scenario with LOS propagation conditions

as well as for the scenario, where the propagation conditions switch between LOS and

NLOS. The only difference is that the likelihood pdf p(zk|xk) for the former is given

by (3.64) and for the latter is given by (3.83).
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Algorithm 4.5 Particle Filter

1. Initialization:

- For i = 1, ..., N, initialize the particles x
(i)
0 ∼ p(x0) and weights w

(i)
0|0 =

1
N
.

2. Time Update:

- For i = 1, ..., N, draw particles from the importance density according to

x
(i)
k ∼ p(xk|x(i)

k−1).

3. Measurement Update:

- For i = 1, ..., N,, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · p(zk|x

(i)
k )

N∑

j=1

w
(j)
k−1|k−1 · p(zk|x

(j)
k )

.

4. Estimation:

- Determine an estimate of the state vector according to

x̂k =
N∑

i=1

w
(i)
k|k · x

(i)
k .

5. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {x(i)
k }Ni=1, where the probability to take sample i

is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

6. Set k := k + 1 and iterate from step 2.

4.5.3 Rao-Blackwellized Particle Filter

4.5.3.1 Introduction

In state estimation problems, where the dimension of the state vector xk is high, the PF

requires a large number of particles to obtain a good approximation of the posterior

pdf p(xk|Zk) [DH03, Dau05]. In order to overcome this problem, a technique called
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Rao-Blackwellization can be applied to PFs [CR96,CL00,AD02, SGN05, Sch03]. The

RBPF exploits linear substructures in the state and measurement model equations,

cf. Sections 2.3.2 and 2.3.3, so that the state space can be partitioned into two parts

according to

xk =

[
xn
k

xl
k

]

, (4.71)

where xn
k denotes the vector of states with dimension nxn that enter nonlinearly into

the model equations and xl
k denotes the vector of states with dimension nxl that enter

linearly into the model equations. The resulting joint posterior pdf can be partitioned

into two pdfs using Bayes’ rule as follows

p(xn
k,x

l
k|Zk) = p(xl

k|xn
k,Zk) · p(xn

k|Zk). (4.72)

The first pdf p(xl
k|xn

k,Zk) can be evaluated analytically using a KF, if the models are

linear given the states xn
k, while the second pdf p(xn

k|Zk) is approximated using a PF.

Since the dimension of the state xn
k is smaller than the dimension of the state xk,

the RBPF generally requires fewer particles to obtain a good approximation of the

posterior pdf p(xk|Zk). This fact is proven theoretically in [DGK99], where it is shown

that the variance of the state estimates provided by the RBPF is smaller than or equal

to the variance of the state estimates provided by the standard PF. The RBPF has

been extensively treated in the literature [CL00,AD02], and often is referred to as the

marginalized particle filter [SGN05,Sch03].

4.5.3.2 Derivations

In order to exploit the idea of Rao-Blackwellization in the PF for the hybrid localization

problem, the following conditional linear system model is introduced:

xn
k = fnk−1(x

n
k−1) + Fn

k−1(x
n
k−1) · xl

k−1 + Γn
k−1(x

n
k−1) ·wn

k−1, (4.73a)

xl
k = f lk−1(x

n
k−1) + Fl

k−1(x
n
k−1) · xl

k−1 + Γl
k−1(x

n
k−1) ·wl

k−1, (4.73b)

z1,k = h1,k(x
n
k) +Hk(x

n
k) · xl

k + v1,k, (4.73c)

z2,k = h2,k(x
n
k,v2,k), (4.73d)

where the measurement vector zk = [zT1,k, z
T

2,k]
T is split into two statistically indepen-

dent parts, fnk−1(·), f lk−1(·), h1,k(·), h2,k(·) are vector functions and Fn
k−1(·), Fl

k−1(·),
Γn

k−1(·), Γn
k−1(·), Hk(·) are matrices of appropriate dimensions. The noises in the state

and measurement models are denoted by wn
k−1, w

n
k−1, v1,k and v2,k and are assumed

to be white. In contrast to the approach presented in [SGN05, Sch03], a second mea-

surement model, cf. (4.73d) is introduced, where the pdf of v2,k can be arbitrary and
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h2,k(·) is any nonlinear function. The only restriction to (4.73d) is, that the model is

independent of the linear state xl
k and that the corresponding likelihood pdf p(z2,k|xn

k)

is available. The noise vectors [wn,T
k−1,w

l,T
k−1]

T and v1,k of dimensions nw = nwn + nwl

and nv,1 are assumed to be zero-mean Gaussian distributed according to
[
wn

k−1

wl
k−1

]

∼ N
(

0nw×1,

[
Qn

k−1 Qnl
k−1

Qnl,T
k−1 Ql

k−1

])

, v1,k ∼ N (0nv,1×1,R1,k). (4.74)

Furthermore, it is assumed that xn
0 and xl

0 are white. The pdf of xn
0 is arbitrary, but

has to be known, and the pdf of xl
0 is assumed Gaussian

xl
0 ∼ N (x̂l

0,P0). (4.75)

In order to derive the RBPF from the model given in (4.73), the two noise processes

wn
k−1 and wl

k−1 have to be decorrelated using a Gram-Schmidt procedure, see [Sch03]

for detailed derivations. The decorrelated system can be written as

xn
k = fnk−1(x

n
k−1) + Fn

k−1(x
n
k−1) · xl

k−1 + Γn
k−1(x

n
k−1) ·wn

k−1, (4.76a)

xl
k = f lk−1(x

n
k−1) + F̄l

k−1(x
n
k−1) · xl

k−1 + Ēk(x
n
k,x

n
k−1) + Γl

k−1(x
n
k−1) · w̄l

k−1, (4.76b)

z1,k = h1,k(x
n
k) +Hk(x

n
k) · xl

k + v1,k, (4.76c)

z2,k = h2,k(x
n
k,v2,k), (4.76d)

where

F̄l
k−1(x

n
k−1) = Fl

k−1(x
n
k−1)− Γl

k−1(x
n
k−1) ·Qnl,T

k−1 · [Γn
k−1(x

n
k−1) ·Qn

k−1]
−1 · Fn

k−1(x
n
k−1),

(4.77a)

Ēk(x
n
k,x

n
k−1) = Γl

k−1(x
n
k−1) ·Qnl,T

k−1 · [Γn
k−1(x

n
k−1) ·Qn

k−1]
−1 ·

[
xn
k − fnk−1(x

n
k−1)

]
. (4.77b)

The noises wn
k−1 and w̄l

k−1 are now uncorrelated and distributed according to
[
wn

k−1

w̄l
k−1

]

∼ N (0nw×1, Q̄k−1 = diagb[Q
n
k−1,Q

l
k−1 −Qnl,T

k−1 · [Qn
k−1]

−1 ·Qnl
k−1

︸ ︷︷ ︸

Q̄l
k−1

]). (4.78)

In order to simplify the notation, the following abbreviations are introduced

fk−1(x
n
k−1) =

[
fnk−1(x

n
k−1)

f lk−1(x
n
k−1)

]

, Fk−1 =

[
Fn

k−1(x
n
k−1)

F̄l
k−1(x

n
k−1)

]

, wk−1 =

[
wn

k−1

w̄l
k−1

]

,

Ek(x
n
k,x

n
k−1) =

[
0nxn×1

Ēk(x
n
k,x

n
k−1)

]

, Γk−1 = diagb[Γ
n
k−1(x

n
k−1),Γ

l
k−1(x

n
k−1)].

Thus, the state model, cf. (4.76a) and (4.76b), can be written as

xk =

[
xn
k

xl
k

]

= fk−1(x
n
k−1) + Fk−1 · xl

k−1 + Ek(x
n
k,x

n
k−1) + Γk−1 ·wk−1. (4.79)

In the following, the RBPF is derived for the model given by (4.76). The derivation

is based on the joint posterior pdf p(xn
k,x

l
k|Zk) and is similar to the derivation given

in [Tör08].
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Initialization

The RBPF is initialized as follows:

p(xn
k−1,x

l
k−1|Zk−1) ≈

N∑

i=1

w
(i)
k−1|k−1 ·N (xl

k−1;x
l,(i)
k−1|k−1,P

(i)
k−1|k−1)·δ(xn

k−1−x
n,(i)
k−1 ). (4.80)

Time Update

The time update starts with evaluating the prediction density of the state at time k

via the Chapman-Kolmogorov equation, cf. (4.1c):

p(xn
k,x

l
k|Zk−1) =

∫

R
nxn

∫

R
nxl

p(xn
k,x

l
k|xn

k−1,x
l
k−1) · p(xn

k−1,x
l
k−1|Zk−1)

︸ ︷︷ ︸

(4.80)

dxn
k−1 dx

l
k−1

≈
N∑

i=1

w
(i)
k−1|k−1

·
∫

R
nxl

p(xn
k,x

l
k|xn,(i)

k−1 ,x
l
k−1) · N (xl

k−1;x
l,(i)
k−1|k−1,P

(i)
k−1|k−1) dx

l
k−1.

(4.81)

Due to the fact that the dynamic model, cf. (4.79), is conditional linear and the error

is Gaussian distributed, the pdf p(xn
k,x

l
k|xn,(i)

k−1 ,x
l
k−1) is also Gaussian

p(xn
k,x

l
k|xn,(i)

k−1 ,x
l
k−1) = N (xk; fk−1(x

n,(i)
k−1 ) + F

(i)
k−1 · xl

k−1 + Ek(x
n
k,x

n,(i)
k−1 ),

Γ
(i)
k−1 · Q̄k−1 · Γ(i),T

k−1 ). (4.82)

The integral in (4.81) can be evaluated analytically since the integrand is a product

of Gaussian densities. From this it follows, that an approximation of the prediction

density is given by a weighted sum of Gaussian densities

p(xn
k,x

l
k|Zk−1) ≈

N∑

i=1

w
(i)
k−1|k−1 · N (xk; x̄

(i)
k|k−1, P̄

(i)
k|k−1), (4.83)

where

x̄
(i)
k|k−1 = fk−1(x

n,(i)
k−1 ) + F

(i)
k−1 · x

l,(i)
k−1|k−1 + Ek(x

n
k,x

n,(i)
k−1 ), (4.84a)

P̄
(i)
k|k−1 = F

(i)
k−1 ·P

(i)
k−1|k−1 · F

(i),T
k−1 + Γ

(i)
k−1 · Q̄k−1 · Γ(i),T

k−1 . (4.84b)

Note that (4.84) is similar to the KF time update. A proof of (4.84) can be found

in [Sch03]. Unfortunately, the Gaussian mixture distribution is continuous in the lin-

ear and nonlinear part. In order to obtain a discrete weighted approximation of the
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nonlinear part, the Gaussian pdfs in (4.83) have to be split into two parts. The mean

vector and error covariance matrix can be split as follows:

x̄
(i)
k|k−1 =

[

x̄
n,(i)
k|k−1

x̄
l,(i)
k|k−1

]

, P̄
(i)
k|k−1 =

[

P̄
n,(i)
k|k−1 P̄

nl,(i)
k|k−1

P̄
nl,(i),T
k|k−1 P̄

l,(i)
k|k−1

]

. (4.85)

It is well known [BSLK01], that a Gaussian density, with mean and covariance as given

in (4.85), can be split into two parts according to

N (xk; x̄
(i)
k|k−1, P̄

(i)
k|k−1) = N (xl

k;x
l,(i)
k|k−1,P

(i)
k|k−1) · N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1), (4.86)

where

x
l,(i)
k|k−1 = x̄

l,(i)
k|k−1 + P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · (xn

k − x̄
n,(i)
k|k−1), (4.87a)

P
(i)
k|k−1 = P̄

l,(i)
k|k−1 − P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · P̄nl,(i)

k|k−1. (4.87b)

Here, it should be noted that the first part is conditioned on the second through xn
k.

As a result, the prediction density can be rewritten as

p(xn
k,x

l
k|Zk−1) = p(xl

k|xn
k,Zk−1) · p(xn

k|Zk−1)

≈
N∑

i=1

w
(i)
k−1|k−1 · N (xl

k;x
l,(i)
k|k−1,P

(i)
k|k−1) · N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1). (4.88)

In the following, a weighted discrete approximation of p(xn
k|Zk−1) is obtained using

an importance sampling approach. In the RBPF, the key idea is to represent each

component of the weighted sum by a single particle that is sampled from the following

importance density

x
n,(i)
k ∼ q(xn

k|Xn,(i)
k−1 ,Zk), i = 1, . . . , N, (4.89)

[DGA00,CGM07]. As a result, the prediction pdf can be approximated as

p(xn
k,x

l
k|Zk−1) ≈

N∑

i=1

w
(i)
k|k−1 · N (xl

k;x
l,(i)
k|k−1,P

(i)
k|k−1) · δ(xn

k − x
n,(i)
k ), (4.90)

where the unnormalized importance weights are given by

w
(i)
k|k−1 ∝ w

(i)
k−1|k−1 ·

N (x
n,(i)
k ; x̄

n,(i)
k|k−1, P̄

n,(i)
k|k−1)

q(x
n,(i)
k |Xn,(i)

k−1 ,Zk)
, i = 1, . . . , N. (4.91)

The importance weights have to be further normalized to ensure
∑N

j=1w
(j)
k|k−1 = 1.
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Measurement Update

The measurement update distribution can be split as follows:

p(xn
k,x

l
k|Zk) = p(xl

k|xn
k,Zk) · p(xn

k|Zk). (4.92)

The two parts can be evaluated separately. The first distribution can be updated for

each particle from the following relationship

p(xl
k|xn,(i)

k ,Zk) =
p(zk|xn,(i)

k ,xl
k) · p(xl

k|xn,(i)
k ,Zk−1)

p(zk|xn,(i)
k ,Zk−1)

, (4.93)

where

p(zk|xn,(i)
k ,Zk−1) =

∫

R
nxl

p(zk|xn,(i)
k ,xl

k) · p(xl
k|xn,(i)

k ,Zk−1) dx
l
k. (4.94)

For the measurement models given by (4.76c) and (4.76d), the likelihood function can

be split into two parts according to

p(zk|xn,(i)
k ,xl

k) = p(z1,k|xn,(i)
k ,xl

k) · p(z2,k|xn,(i)
k ). (4.95)

By insertion of (4.95) into (4.94), the pdf p(z2,k|xn,(i)
k ) can be canceled, since it is

independent of the linear states xl
k, yielding

p(xl
k|xn,(i)

k ,Zk) =
p(z1,k|xn,(i)

k ,xl
k) · p(xl

k|xn,(i)
k ,Zk−1)

p(z1,k|xn,(i)
k ,Zk−1)

, (4.96)

where

p(z1,k|xn,(i)
k ,Zk−1) =

∫

R
nxl

p(z1,k|xn,(i)
k ,xl

k) · p(xl
k|xn,(i)

k ,Zk−1) dx
l
k. (4.97)

The likelihood pdf p(z1,k|xn,(i)
k ,xl

k) can be determined from (4.76c) and is given by

p(z1,k|xn,(i)
k ,xl

k) = N (z1,k;h1,k(x
n
k) +Hk(x

n
k) · xl

k,R1,k). (4.98)

The density p(xl
k|xn,(i)

k ,Zk−1) is available from the time update stage and is given by

p(xl
k|xn,(i)

k ,Zk−1) = N (xl
k;x

l,(i)
k|k−1,P

(i)
k|k−1). (4.99)

The integral in (4.97) can be evaluated analytically since the integrand is a product of

Gaussian densities. From this it follows,

p(z1,k|xn,(i)
k ,Zk−1) = N (z1,k; ẑ

(i)
1,k,S

(i)
k ), (4.100)

where

ẑ
(i)
1,k = h1,k(x

n,(i)
k ) +Hk(x

n,(i)
k ) · xl,(i)

k|k−1, (4.101a)

S
(i)
k = Hk(x

n,(i)
k ) ·P(i)

k|k−1 ·HT

k (x
n,(i)
k ) +R1,k. (4.101b)
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The densities involved in evaluating the measurement update, cf. (4.95), are all Gaus-

sian. As a result, the density p(xl
k|xn,(i)

k ,Zk) is also Gaussian and is given by

p(xl
k|xn,(i)

k ,Zk) = N (xl
k;x

l,(i)
k|k ,P

(i)
k|k), (4.102)

where

x
l,(i)
k|k = x

l,(i)
k|k−1 +K

(i)
k · (z1,k − ẑ

(i)
1,k), (4.103a)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k · S(i)

k ·K(i),T
k , (4.103b)

K
(i)
k = P

(i)
k|k−1 ·HT

k (x
n,(i)
k ) · [S(i)

k ]−1. (4.103c)

Note, that (4.103) is similar to the Kalman measurement update. A proof of (4.103)

can be found in [Sch03]. The measurement update for the nonlinear states xn
k is done

as follows:

p(xn
k|Zk) =

p(zk|xn
k,Zk−1) · p(xn

k|Zk−1)

p(zk|Zk−1)
. (4.104)

Since the pdf p(xn
k|Zk) is approximated using an importance sampling approach, the

denominator in (4.104) will be numerically normed and has not to be calculated. The

measurement update can be written as

p(xn
k|Zk) ∝ p(zk|xn

k,Zk−1) · p(xn
k|Zk−1)

=

∫

R
nxl

p(zk|xn
k,x

l
k) · p(xl

k|xn
k,Zk−1) dx

l
k · p(xn

k|Zk−1)

≈
N∑

i=1

w
(i)
k|k−1 ·

∫

R
nxl

p(zk|xn,(i)
k ,xl

k)
︸ ︷︷ ︸

(4.95)

·p(xl
k|xn,(i)

k ,Zk−1) dx
l
k · δ(xn

k − x
n,(i)
k )

=
N∑

i=1

w
(i)
k|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn

k)
︸ ︷︷ ︸

w
(i)
k|k

·δ(xn
k − x

n,(i)
k ). (4.105)

Combining (4.102) and (4.105) according to (4.92) results in

p(xn
k,x

l
k|Zk) ≈

N∑

i=1

w
(i)
k|k · N (xl

k;x
l,(i)
k|k ,P

(i)
k|k) · δ(xn

k − x
n,(i)
k ). (4.106)

where the normalized weights are given by

w
(i)
k|k =

w
(i)
k|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn,(i)

k )
∑N

j=1w
(j)
k|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k )
. (4.107)
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Estimation

The RBPF provides a discrete approximation of the posterior pdf according to (4.106),

from which standard measures as the MMSE x̂MMSE,k|k and its covariance PMMSE,k|k for

the linear and nonlinear states can be computed [Sch03]. Numerical approximations

of these quantities are given by

x̂n
MMSE,k|k ≈

N∑

i=1

w
(i)
k|k · x

n(i)
k , (4.108a)

Pn
MMSE,k|k ≈

N∑

i=1

w
(i)
k|k · (x

n,(i)
k − x̂n

MMSE,k|k)·(xn,(i)
k − x̂n

MMSE,k|k)
T, (4.108b)

x̂l
MMSE,k|k ≈

N∑

i=1

w
(i)
k|k · x

l(i)
k , (4.108c)

Pl
MMSE,k|k ≈

N∑

i=1

w
(i)
k|k ·

[

P
(i)
k|k + (x

l,(i)
k|k − x̂l

MMSE,k|k)·(xl,(i)
k|k − x̂l

MMSE,k|k)
T

]

. (4.108d)

Resampling

For the resampling step in the RBPF, systematic resampling is used which is explained

in Section 4.5.2.2.

4.5.3.3 Choice of Importance Density

In the design of RBPFs, the choice of the importance density q(xn
k|Xn,(i)

k−1 ,Zk) plays

a major role. The optimal importance density that minimizes the variance of the

importance weights is given by q(xn
k|Xn,(i)

k−1 ,Zk)opt = p(xn
k|Xn,(i)

k−1 ,Zk) [DGA00]. However,

for the hybrid localization problem, a closed-form expression for this density does not

exist, so that one has to resort to suboptimal importance densities. For the hybrid

localization problem, the following pdf

q(xk|X(i)
k−1,Zk) = N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1), (4.109)

is chosen as importance density, cf. (4.88), which is the most popular suboptimal

choice. In this case, the weights in the time update are given by w
(i)
k|k−1 = w

(i)
k−1|k−1, cf.

(4.91), and the weights in the measurement update simplify to

w
(i)
k|k =

w
(i)
k−1|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn,(i)

k )
∑N

j=1w
(j)
k−1|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k )
. (4.110)
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A pseudocode description of the RBPF for the hybrid localization problem is given in

Algorithm 4.6, where the following abbreviations have been introduced to simplify the

notation:

fnk−1(x
n,(i)
k−1 ) = f

n,(i)
k−1 , Fn

k−1(x
n,(i)
k−1 ) = F

n,(i)
k−1 , Γn

k−1(x
n,(i)
k−1 ) = Γ

n,(i)
k−1 ,

f lk−1(x
n,(i)
k−1 ) = f

l,(i)
k−1, Fl

k−1(x
n,(i)
k−1 ) = F

l,(i)
k−1, Γl

k−1(x
n,(i)
k−1 ) = Γ

l,(i)
k−1,

h1,k(x
n,(i)
k ) = h

(i)
1,k, Hk(x

n,(i)
k ) = H

(i)
k , Ēk(x

n,(j)
k ,x

n,(i)
k−1 ) = Ē

(i)
k (x

n,(j)
k ). (4.111)

Algorithm 4.6 Rao-Blackwellized Particle Filter

1. Initialization:

- For i = 1, ..., N, initialize the particles x
n,(i)
0 ∼ p(xn

0) and weights w
(i)
0|0 =

1
N
,

and set {xl,(i)
0|0 ,P

(i)
0|0} = {x̂l

0,P0}.

2. Particle Filter Time Update:

- For i = 1, ..., N, draw particles from the importance density according to

x
n,(i)
k ∼ N (x̄

n,(i)
k|k−1, P̄

n,(i)
k|k−1),

where

x̄
n,(i)
k|k−1 = f

n,(i)
k−1 + F

n,(i)
k−1 · xl,(i)

k−1|k−1,

P̄
n,(i)
k|k−1 = F

n,(i)
k−1 ·P(i)

k−1|k−1 · F
n,(i),T
k−1 + Γ

n,(i)
k−1 ·Qn

k−1 · Γn,(i),T
k−1 .

3. Kalman Filter Time Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k−1 = x̄

l,(i)
k|k−1 + P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · (xn,(i)

k − x̄
n,(i)
k|k−1),

P
(i)
k|k−1 = P̄

l,(i)
k|k−1 − P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · P̄nl,(i)

k|k−1,

where

x̄
l,(i)
k|k−1 = f

l,(i)
k−1 + F̄

l,(i)
k−1 · x

l,(i)
k−1|k−1 + Ē

(i)
k (x

n,(i)
k−1 ),

P̄
nl,(i)
k|k−1 = F

n,(i)
k−1 ·P(i)

k−1|k−1 · F̄
l,(i),T
k−1 ,

P̄
l,(i)
k|k−1 = F̄

l,(i)
k−1 ·P

(i)
k−1|k−1 · F̄

l,(i),T
k−1 + Γ

l,(i)
k−1 · Q̄l

k−1 · Γl,(i),T
k−1 ,

Ē
(i)
k (x

n,(i)
k−1 ) = Γ

l,(i)
k−1 ·Qnl,T

k−1 · [Γ
n,(i)
k−1 ·Qn

k−1]
−1 · (xn,(i)

k − f
n,(i)
k−1 ),

F̄
l,(i)
k−1 = F

l,(i)
k−1 − Γ

l,(i)
k−1 ·Qnl,T

k−1 · [Γ
n,(i)
k−1 ·Qn

k−1]
−1 · Fn,(i)

k−1 ,

Q̄l
k−1 = Ql

k−1 −Qnl,T
k−1 · [Qn

k−1]
−1 ·Qnl

k−1.
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4. Particle Filter Measurement Update:

- For i = 1, ..., N, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn,(i)

k )
∑N

j=1w
(j)
k−1|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k )
,

where

ẑ
(i)
1,k = h

(i)
1,k +H

(i)
k · xl,(i)

k|k−1,

S
(i)
k = H

(i)
k ·P(i)

k|k−1 ·H
(i),T
k +R1,k.

5. Kalman Filter Measurement Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k = x

l,(i)
k|k−1 +K

(i)
k · (z1,k − ẑ

(i)
1,k),

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k · S(i)

k ·K(i),T
k ,

where

K
(i)
k = P

(i)
k|k−1 ·H

(i),T
k · [S(i)

k ]−1.

6. Estimation:

- Determine estimates of the linear and nonlinear state vectors according to

x̂n
MMSE,k|k =

N∑

i=1

w
(i)
k|k · x

n,(i)
k , x̂l

MMSE,k|k =
N∑

i=1

w
(i)
k|k · x

l,(i)
k|k .

7. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {xn,(i)
k ,x

l,(i)
k|k ,P

(i)
k|k}Ni=1, where the probability to take

sample i is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

8. Set k := k + 1 and iterate from step 2.

4.5.3.4 Application to the Hybrid Localization Problem

In this section, it is shown how the state and measurement models for the hybrid

localization can be adopted to the conditional linear system model of the RBPF. For

the hybrid localization problem, the state model is linear Gaussian and given by (2.49).
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For the scenario with LOS propagation conditions, the measurement model is given

by (2.50), and for the scenario, where the propagation conditions switch between LOS

and NLOS, an approximation to the measurement model is used, whose likelihood pdf

is given by (3.83). In order to relate the state and measurement models to the RBPF

framework, the state vector is split into two parts. Due to the fact that only the MT

location vector xMT,k enters nonlinearly into the measurement model, the state vector

is split as follows

xn
k = [xMT,k, yMT,k]

T, (4.112)

xl
k = [ẋMT,k, ẏMT,k, c0 · δtk, c0 · δṫk]T. (4.113)

The resulting adapted state and measurement models are presented next.

State Model

The state model can be adapted to the RBPF framework as follows:

[
xMT,k

yMT,k

]

︸ ︷︷ ︸

xn
k

=

[
xMT,k−1

yMT,k−1

]

︸ ︷︷ ︸

fn
k−1(x

n
k−1)

+

[
TS 0 0 0
0 TS 0 0

]

︸ ︷︷ ︸

Fn
k−1

·







ẋMT,k−1

ẏMT,k−1

c0 · δtk−1

c0 · δṫk−1







︸ ︷︷ ︸

xl
k−1

+

[
T 2
S
2

0

0
T 2
S
2

]

︸ ︷︷ ︸

Γnk−1

·
[
wx,k−1

wy,k−1

]

︸ ︷︷ ︸

wn
k−1

, (4.114)







ẋMT,k

ẏMT,k

c0 · δtk
c0 · δṫk







︸ ︷︷ ︸

xl
k

=







1 0 0 0
0 1 0 0
0 0 1 TS
0 0 0 1







︸ ︷︷ ︸

Fl
k−1

·







ẋMT,k−1

ẏMT,k−1

c0 · δtk−1

c0 · δṫk−1







︸ ︷︷ ︸

xl
k−1

+







TS 0 0 0
0 TS 0 0
0 0 c0 0
0 0 0 c0







︸ ︷︷ ︸

Γlk−1

·







wx,k−1

wy,k−1

wδt,k−1

wδṫ,k−1







︸ ︷︷ ︸

wl
k−1

. (4.115)

Observe that the noises wn
k−1 and wl

k−1 are correlated, cf. (4.74), where the corre-

sponding covariance matrices are given by Qn
k−1 = QCV, Qnl

k−1 = [QCV,02×2] and

Ql
k−1 = diagb[QCV,QCO].

Measurement Model - LOS Propagation Conditions

For the scenario with LOS propagation conditions, the measurement vector is split as

follows

z1,k = [zTPR,k, z
T

RTT,LOS,k, z
T

RSS,LOS,k, zBIAS,k]
T, (4.116)
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i.e, all measurements can be expressed with (4.76c), while the measurement vector z2,k

is empty. Thus, the corresponding measurement model can be rewritten as







zPR,k

zRTT,LOS,k

zRSS,LOS,k

zBIAS,k







︸ ︷︷ ︸

z1,k

=







dSAT,k(x
n
k)

hRTT,k(x
n
k)

hRSS,LOS,k(x
n
k)

0







︸ ︷︷ ︸

h1,k(x
n
k
)

+





0MPR×2 1MPR×1 0MPR×1

0(MRTT+MRSS)×4

01×2 1 0





︸ ︷︷ ︸

Hk

·







ẋMT,k

ẏMT,k

c0 · δtk
c0 · δṫk







︸ ︷︷ ︸

xl
k

+







vPR,k

vRTT,LOS,k

vRSS,LOS,k

vBIAS,k







︸ ︷︷ ︸

v1,k

.

(4.117)

The measurement noise v1,k is zero-mean Gaussian distributed with covariance matrix

R1,k = RLOS,k. Since all measurements are expressed with model (4.76c), the likelihood

function p(z2,k|xn
k) can be omitted in the calculation of the importance weights, cf.

(4.110).

Measurement Model - LOS/NLOS Propagation Conditions

For the scenario, where the propagation conditions switch between LOS and NLOS,

the measurement vector is split as follows:

z1,k = [zTPR,k, zBIAS,k]
T, (4.118)

z2,k = [zTRTT,k, z
T

RSS,k]
T. (4.119)

The measurement model of z1,k can be rewritten as

[
zPR,k

zBIAS,k

]

︸ ︷︷ ︸

z1,k

=

[
dSAT,k(xMT,k)

0

]

︸ ︷︷ ︸

h1,k(x
n
k
)

+

[
0MPR×2 1MPR×1 0MPR×1

01×2 1 0

]

︸ ︷︷ ︸

Hk

·







ẋMT,k

ẏMT,k

c0 · δtk
c0 · δṫk







︸ ︷︷ ︸

xl
k

+

[
vPR,k

vBIAS,k

]

︸ ︷︷ ︸

v1,k

,

(4.120)

where the measurement noise v1,k is zero-mean Gaussian distributed with covariance

matrix R1,k = RSAT,k. For the second measurement model (4.76d), it is sufficient to

know the likelihood pdf p(z2,k|xn
k), which is given by

p(z2,k|xn
k) =

MRTT∏

κ1=1

p(z
(κ1)
RTT,k|xn

k) ·
MRSS∏

κ2=1

p(z
(κ2)
RSS,k|xn

k), (4.121)

where p(z
(κ1)
RTT,k|xn

k) and p(z
(κ2)
RSS,k|xn

k) are defined in (3.54) and (3.55).
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4.5.4 Auxiliary Particle Filter

4.5.4.1 Introduction

In this section, the APF is proposed as a solution for the hybrid localization problem.

Compared to the standard PF, the APF can be interpreted as a look ahead method,

which at time k − 1 predicts which samples will be in regions of high likelihood at

time k. As a result, the cost of sampling particles from regions of very low likelihoods

is reduced. Since its introduction in [PS99], several improvements were proposed to

reduce the variance of the APF [CCF99,DdFG01]. In the following, the modified APF

presented in [CCF99], is used for the hybrid localization problem. This algorithm has

only one resampling step at each time instance and experimentally outperforms the

original two-stage resampling algorithm proposed in [PS99].

4.5.4.2 Derivations

In this section, the APF for hybrid localization is derived. The APF can be derived

based on pdf of the state trajectory p(Xk|Zk), which is presented in [CGM07], or from

the posterior pdf p(xk|Zk) which is sketched in [RAG04]. In this work, the APF is

derived from the posterior pdf p(xk|Zk) of the current state, so that a better comparison

to the PF derivation is possible.

Initialization

The APF is initialized as follows:

p(xk−1|Zk−1) =
N∑

i=1

w
(i)
k−1|k−1 · δ(xk−1 − x

(i)
k−1). (4.122)

Time Update

In the time update, the Chapman-Kolmogorov equation has to be evaluated. Insertion

of (4.122) into (4.1c), yields

p(xk|Zk−1) =

∫

R
nx
p(xk|xk−1) · p(xk−1|Zk−1) dxk−1 ≈

N∑

i=1

w
(i)
k−1|k−1 · p(xk|x(i)

k−1) (4.123)

=
N∑

i=1

p(xk, i|Zk−1). (4.124)



4.5 Particle Filter-based Estimators 127

Comparison of (4.123) and (4.124) leads to

p(xk, i|Zk−1) = w
(i)
k−1|k−1 · p(xk|x(i)

k−1). (4.125)

The idea of the APF is to approximate the joint density p(xk, i|Zk) and later on, omit

the discrete index i, in order to arrive at the desired filtering distribution p(xk|Zk).

The joint prediction pdf p(xk, i|Zk−1) is continuous with respect to xk and discrete

with respect to i. In the following, a weighted discrete approximation of p(xk, i|Zk−1)

is obtained using an importance sampling approach. In the APF, the key idea is to

represent each component of the weighted sum by a single particle and its corresponding

discrete index, that is sampled from the following importance density

x
(j)
k , i(j) ∼ q(xk, i|Zk−1, zk), j = 1, . . . , N, (4.126)

where the latest measurement zk is taken into account in the importance density. As

a result, the prediction pdf can be approximated as

p(xk, i|Zk−1) ≈
N∑

j=1

w
(j)
k|k−1 · δ(xk − x

(j)
k , i− i(j)), (4.127)

where the unnormalized importance weights are given by

w
(j)
k|k−1 ∝ w

(ij)
k−1|k−1 ·

p(x
(j)
k |x(ij)

k−1)

q(x
(j)
k , i(j)|Zk)

, j = 1, . . . , N. (4.128)

The importance weights have to be further normalized to ensure
∑N

m=1w
(m)
k|k−1 = 1.

Measurement Update

In the measurement update, the joint posterior pdf p(xk, i|Zk) is updated according to

p(xk, i|Zk) =
p(zk|xk, i,Zk−1) · p(xk, i|Zk−1)

p(zk|Zk−1)
=
p(zk|xk) · p(xk, i|Zk−1)

p(zk|Zk−1)
. (4.129)

Insertion of (4.127) into (4.129) gives a weighted discrete approximation of the joint

posterior pdf. Since this approximation is numerically normed, a calculation of the

denominator in (4.129) is not needed, yielding

p(xk, i|Zk) ∝ p(zk|xk) · p(xk, i|Zk−1)

≈
N∑

j=1

w
(j)
k|k−1 · p(zk|x

(j)
k )

︸ ︷︷ ︸

w
(j)
k|k

·δ(xk − x
(j)
k , i− i(j))

=
N∑

j=1

w
(j)
k|k · δ(xk − x

(j)
k , i− i(j)), (4.130)
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where the normalized importance weights are given by

w
(j)
k|k =

w
(j)
k|k−1 · p(zk|x

(j)
k )

∑N
m=1w

(m)
k|k−1 · p(zk|x

(m)
k )

, j = 1, . . . , N. (4.131)

By finally omitting the index i in the discrete approximation, the desired posterior pdf

of the current state is found which is given by

p(xk|Zk) ≈
N∑

j=1

w
(j)
k|k · δ(xk − x

(j)
k ). (4.132)

Estimation and Resampling

In the APF, the formulas for estimating the mean vector x̂MMSE,k and its covariance

P̂MMSE,k are equivalent to the formulas given in (4.68). For the resampling step in the

APF, systematic resampling is used which is explained in Section 4.5.2.2.

4.5.4.3 Choice of Importance Density

In the design of APFs, the choice of the importance density q(xk, i|Zk) plays a major

role. For the APF, the importance density used to draw the sample {x(j)
k , i(j)}Nj=1 is

defined to satisfy the following proportionality

q(xk, i|Zk) ∝ p(zk|ξ(i)k ) · p(xk|x(i)
k−1) · w

(i)
k−1|k−1, (4.133)

[DdFG01,RAG04]. Here, ξ
(i)
k is some characterization of xk, given x

(i)
k−1, for instance,

the conditional mean, i.e., ξ
(i)
k = E

p(xk|x
(i)
k−1)

{xk}, or a sample ξ
(i)
k ∼ p(xk|x(i)

k−1). The

importance density can be further decomposed using Bayes’ rule, yielding

q(xk, i|Zk) = q(xk|i,Zk) · q(i|Zk). (4.134)

By defining

q(xk|i,Zk) = p(xk|x(i)
k−1), (4.135)

it follows from (4.133) that

q(i|Zk) ∝ w
(i)
k−1|k−1 · p(zk|ξ

(i)
k ). (4.136)

As a result, the weights can be updated according to

w
(j)
k|k ∝ w

(ij)
k−1|k−1 ·

p(zk|x(j)
k ) · p(x(j)

k |x(ij)
k−1)

q(x
(j)
k , i(j)|Zk)

=
p(zk|x(j)

k )

p(zk|ξ(i
j)

k )
. (4.137)
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The idea of the decomposition in (4.134), is to first sample the discrete index i of

the weighted sum according to q(i|Zk) and then draw particles from the importance

density q(xk|i,Zk). By first sampling the discrete index i, it is possible to find out which

components of the weighted sum are most likely to be in the region of high likelihood.

This information can be then used to draw particles only from those components of

the weighted sum providing high likelihoods and, thus, inefficient sampling from sum

components with low likelihoods is avoided. A pseudocode description of the APF is

given in Algorithm 4.7. Note that the algorithm can be used for the scenario with LOS

propagation conditions as well as for the scenario, where the propagation conditions

switch between LOS and NLOS. The only difference is that the likelihood pdf p(zk|xk)

for the former is given by (3.64) and for the latter is given by (3.83).

4.5.5 Rao-Blackwellized Auxiliary Particle Filter

4.5.5.1 Introduction

In this section, the idea of Rao-Blackwellization is applied to the APF. By partitioning

the state space into two parts according to (4.71), the corresponding joint posterior

pdf can be decomposed into two pdfs using Bayes’ rule as follows

p(xn
k,x

l
k, i|Zk) = p(xl

k|xn
k, i,Zk) · p(xn

k, i|Zk). (4.138)

The first pdf p(xl
k|xn

k, i,Zk) can be evaluated analytically using the KF and the second

pdf p(xn
k, i|Zk) is approximated using the APF. By using this technique, it is possible

to reduce the variance of the state estimates of the APF. The resulting filter is called

the RBAPF and is also known as the marginalized auxiliary particle filter [FSK09].

4.5.5.2 Derivations

The idea of Rao-Blackwellization can be exploited in the APF, if the system model is

conditionally linear. A system model that fulfills this requirement is given by (4.73),

which can be further simplified to (4.76). In the following, the RBAPF is derived for

the hybrid localization problem using the decorrelated system model as given in (4.76).
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Algorithm 4.7 Auxiliary Particle Filter

1. Initialization:

- For i = 1, . . . , N, initialize the particles x
(i)
0 ∼ p(x0) and weights w

(i)
0|0 =

1
N
.

2. Time Update and Measurement Update (First Stage Weights):

- For i = 1, . . . , N, determine ξ
(i)
k according to

ξ
(i)
k = E

p(xk|x
(i)
k−1)

{xk}.

- For i = 1, . . . , N, evaluate the first stage weights

w
(i)
k|k−1 = q(i|Zk) =

w
(i)
k−1|k−1 · p(zk|ξ

(i)
k )

∑N
m=1w

(m)
k−1|k−1 · p(zk|ξ

(m)
k )

.

3. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with
replacement from the set {ξ(i)k }Ni=1, where the probability to take sample i is

w
(i)
k|k−1. Store for each resampled particle the parent index, denoted by i(j).

4. Time Update and Measurement Update (Second Stage Weights):

- For j = 1, ..., N, draw particles from the importance density according to

x
(j)
k ∼ q(xk|i,Zk) = p(xk|x(ij)

k−1).

- For j = 1, ..., N,, evaluate the second stage weights

w̃
(i)
k|k =

p(zk|x(j)
k )

p(zk|ξ(i
j)

k )
,

and normalize the weights according to w
(j)
k|k = w̃

(j)
k|k/

N∑

m=1

w̃
(m)
k|k .

5. Estimation:

- Determine an estimate of the state vector according to

x̂k =
N∑

j=1

w
(j)
k|k · x

(j)
k .

6. Set k := k + 1 and iterate from step 2.
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Initialization

The RBAPF is initialized as follows:

p(xn
k−1,x

l
k−1|Zk−1) ≈

N∑

i=1

w
(i)
k−1|k−1 · N (xl

k−1;x
l,(i)
k−1|k−1,P

(i)
k−1|k−1) · δ(xn

k−1 − x
n,(i)
k−1 ).

(4.139)

Time Update

The time update starts with evaluating the prediction density p(xn
k,x

l
k|Zk−1). Following

the same derivation steps as in the RBPF, cf. Section 4.5.3.2, this density can be

written as

p(xn
k,x

l
k|Zk−1) =

N∑

i=1

p(xn
k,x

l
k, i|Zk−1)

=
N∑

i=1

p(xl
k|xn

k, i,Zk−1) · p(xn
k, i|Zk−1) (4.140)

≈
N∑

i=1

w
(i)
k−1|k−1 · N (xl

k;x
l,(i)
k|k−1,P

(i)
k|k−1) · N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1), (4.141)

where x
l,(i)
k|k−1 and P

(i)
k|k−1 are given by (4.87) and x̄

n,(i)
k|k−1 and P̄

n,(i)
k|k−1 are given by (4.85),

respectively. Comparing (4.140) with (4.141) leads to

p(xl
k|xn

k, i,Zk−1) = N (xl
k;x

l,(i)
k|k−1,P

(i)
k|k−1), (4.142)

p(xn
k, i|Zk−1) = w

(i)
k−1|k−1 · N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1). (4.143)

The joint prediction pdf p(xkn , i|Zk−1) is continuous with respect to the nonlinear state

xn
k and discrete with respect to i. In the following, a weighted discrete approximation

of p(xn
k, i|Zk−1) is obtained using an importance sampling approach. The key idea is to

represent each component of the weighted sum by a single particle and its corresponding

discrete index, that is sampled from the following importance density

x
n,(j)
k , i(j) ∼ q(xn

k, i|Zk−1, zk), j = 1, . . . , N, (4.144)

where the latest measurement zk is taken into account in the importance density. As

a result, the joint prediction pdf can be approximated as

p(xn
k,x

l
k, i|Zk−1) ≈

N∑

j=1

w
(j)
k|k−1 · N (xl

k;x
l,(j)
k|k−1,P

(j)
k|k−1) · δ(xn

k − x
n,(j)
k , i− i(j)), (4.145)
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where

x
l,(j)
k|k−1 = x̄

l,(ij)
k|k−1 + P̄

nl,(ij),T
k|k−1 · [P̄n,(ij)

k|k−1]
−1 · (xn,(j)

k − x̄
n,(ij)
k|k−1), (4.146a)

P
(j)
k|k−1 = P̄

l,(ij)
k|k−1 − P̄

nl,(ij),T
k|k−1 · [P̄n,(ij)

k|k−1]
−1 · P̄nl,(ij)

k|k−1, (4.146b)

and

w
(j)
k|k−1 ∝ w

(ij)
k−1|k−1 ·

N (x
n,(j)
k ; x̄

n,(ij)
k|k−1, P̄

n,(ij)
k|k−1)

q(x
n,(j)
k , i(j)|Zk)

, j = 1, . . . , N. (4.147)

The importance weights have to be further normalized to ensure
∑N

m=1w
(m)
k|k−1 = 1.

Measurement Update

The measurement update distribution can be split as follows:

p(xn
k,x

l
k, i|Zk) = p(xl

k|xn
k, i,Zk) · p(xn

k, i|Zk). (4.148)

The two parts can be evaluated separately. The first distribution can be updated for

each particle from the following relationship

p(xl
k|xn,(j)

k , i(j),Zk) =
p(zk|xl

k,x
n,(j)
k , i(j),Zk−1) · p(xl

k|xn,(j)
k , i(j),Zk−1)

p(zk|xn,(j)
k , i(j),Zk−1)

=
p(zk|xl

k,x
n,(j)
k ) · p(xl

k|xn,(j)
k , i(j),Zk−1)

p(zk|xn,(j)
k ,Zk−1)

, (4.149)

where

p(zk|xn,(j)
k ,Zk−1) =

∫

R
nx
p(zk|xl

k,x
n,(j)
k ) · p(xl

k|xn,(j)
k , i(j),Zk−1) dx

l
k. (4.150)

For the measurement models given by (4.76c) and (4.76d), the relationship in (4.149)

can be simplified, cf. Section 4.5.3.2, yielding

p(xl
k|xn,(j)

k , i(j),Zk) =
p(z1,k|xn,(j)

k ,xl
k) · p(xl

k|xn,(j)
k , i(j),Zk−1)

p(z1,k|xn,(j)
k ,Zk−1)

, (4.151)

where

p(z1,k|xn,(j)
k ,Zk−1) =

∫

R
nxl

p(z1,k|xn,(j)
k ,xl

k) · p(xl
k|xn,(j)

k , i(j),Zk−1) dx
l
k. (4.152)

The likelihood pdf p(z1,k|xn,(j)
k ,xl

k) is Gaussian and given by (4.98) and the density

p(xl
k|xn,(j)

k , i(j),Zk−1) is available from the time update stage and is given by

p(xl
k|xn,(j)

k , i(j),Zk−1) = N (xl
k;x

l,(j)
k|k−1,P

(j)
k|k−1). (4.153)
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Since both pdfs are Gaussian, the integral in (4.152) can be evaluated analytically,

yielding

p(z1,k|xn,(j)
k ,Zk−1) = N (z1,k; ẑ

(j)
1,k,S

(j)
k ), (4.154)

where ẑ
(j)
1,k and S

(j)
k are obtained from (4.101) by replacing the index i with the new

index j. Since the densities involved in evaluating the measurement update, cf. (4.151),

are all Gaussian, the density p(xl
k|xn,(j)

k , i(j),Zk) is also Gaussian and is given by

p(xl
k|xn,(j)

k , i(j),Zk) = N (xl
k;x

l,(j)
k|k ,P

(j)
k|k), (4.155)

where x
l,(j)
k|k and P

(j)
k|k are obtained from (4.103) by replacing the index i with the new

index j.

The measurement update for the nonlinear states xn
k is done as follows:

p(xn
k, i|Zk) =

p(zk|xn
k, i,Zk−1) · p(xn

k, i|Zk−1)

p(zk|Zk−1)
. (4.156)

Since the pdf p(xn
k, i|Zk) is approximated using an importance sampling approach, the

denominator in (4.156) will be numerically normed and has not to be calculated. The

measurement update can be written as

p(xn
k, i|Zk) ∝ p(zk|xn

k, i,Zk−1) · p(xn
k, i|Zk−1)

=

∫

R
nxl

p(zk|xn
k,x

l
k, i,Zk−1) · p(xl

k|xn
k, i,Zk−1) dx

l
k · p(xn

k, i|Zk−1)

=

∫

R
nxl

p(z1,k|xn
k,Zk−1) · p(xl

k|xn
k, i,Zk−1) dx

l
k · p(z2,k|xnk) · p(xn

k, i|Zk−1)

≈
N∑

j=1

w
(ij)
k|k−1 · p(z1,k|x

n,(j)
k ,Zk−1)

︸ ︷︷ ︸

(4.154)

·p(z2,k|xn,(j)
k ) · δ(xn

k − x
n,(j)
k , i− i(j))

=
N∑

j=1

w
(ij)
k|k · δ(xn

k − x
n,(j)
k , i− i(j)), (4.157)

where the normalized importance weights are given by

w
(j)
k|k =

w
(ij)
k|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k )
∑N

m=1w
(im)
k|k−1 · N (z1,k; ẑ

(m)
1,k ,S

(m)
k ) · p(z2,k|xn,(m)

k )
, j = 1, . . . , N. (4.158)

Combining (4.153) and (4.158) according to (4.148) results in

p(xn
k,x

l
k, i|Zk) ≈

N∑

j=1

w
(j)
k|k N (xl

k;x
l,(j)
k|k ,P

(j)
k|k) · δ(xn

k − x
n,(j)
k , i− i(j)). (4.159)

By finally omitting the index i in the discrete approximation, the posterior pdf is found

which is given by

p(xn
k,x

l
k|Zk) ≈

N∑

j=1

w
(j)
k|k N (xl

k;x
l,(j)
k|k ,P

(j)
k|k) · δ(xn

k − x
n,(j)
k ). (4.160)
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Estimation and Resampling

In the RBAPF, the formulas for estimating the mean vector x̂MMSE,k and its covariance

P̂MMSE,k of the linear and nonlinear states are equivalent to the formulas given in

(4.108). For the resampling step in the RBAPF, systematic resampling is used which

is explained in Section 4.5.2.2.

4.5.5.3 Choice of Importance Density

In the design of RBAPFs, the choice of the importance density q(xn
k, i|Zk) plays a

major role. Similar to the APF, the importance density used to draw the sample

{xn,(j)
k , i(j)}Nj=1 is defined to satisfy the following proportionality

q(xn
k, i|Zk) ∝ p(z1,k|ξn,(i)k ,Zk−1) · p(z2,k|ξn,(i)k ) · N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1) ·w

(i)
k−1|k−1, (4.161)

where ξ
n,(i)
k is some characterization of xn

k (e.g. the mean, mode or a sample) that is

associated to the density N (xn
k; x̄

n,(i)
k|k−1, P̄

n,(i)
k|k−1). The importance density can be further

decomposed using Bayes’ rule, yielding

q(xn
k, i|Zk) = q(xn

k|i,Zk) · q(i|Zk). (4.162)

By defining

q(xn
k|i,Zk) = N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1), (4.163)

it follows from (4.161) that

q(i|Zk) ∝ w
(i)
k−1|k−1 · p(z1,k|ξ

n,(i)
k ,Zk) · p(z2,k|ξn,(i)k ). (4.164)

As a result, the weights can be updated according to

w
(j)
k|k ∝ w

(ij)
k−1|k−1 ·

N (x
n,(j)
k ; x̄

n,(ij)
k|k−1, P̄

n,(ij)
k|k−1) · p(z1,k|x

n,(j)
k ,Zk) · p(z2,k|xn,(j)

k )

q(x
n,(j)
k , i(j)|Zk)

=
p(z1,k|xn,(j)

k ,Zk) · p(z2,k|xn,(j)
k )

p(z1,k|ξn,(i
j)

k ,Zk) · p(z2,k|ξn,(i
j)

k )
, j = 1, . . . , N. (4.165)

A pseudocode description of the RBAPF with the abbreviations introduced in (4.111)

is given in Algorithm 4.8. Note that the algorithm can be used for the scenario with

LOS propagation conditions as well as for the scenario, where the propagation condi-

tions switch between LOS and NLOS. The necessary decompositions of the state and

measurement models are equivalent to the decompositions presented in Section 4.5.3.4.
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Algorithm 4.8 Rao-Blackwellized Auxiliary Particle Filter

1. Initialization:

- For i = 1, ..., N, initialize the particles x
n,(i)
0 ∼ p(xn

0) and weights w
(i)
0|0 =

1
N
,

and set {xl,(i)
0|0 ,P

(i)
0|0} = {x̂l

0,P0}.

2. Particle Filter Time Update and Measurement Update (First Stage Weights):

- For i = 1, . . . , N , determine ξ
n,(i)
k from N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1), e.g., take the

mean ξ
n,(i)
k = x̄

n,(i)
k|k−1, where

x̄
n,(i)
k|k−1 = f

n,(i)
k−1 + F

n,(i)
k−1 · xl,(i)

k−1|k−1,

P̄
n,(i)
k|k−1 = F

n,(i)
k−1 ·P(i)

k−1|k−1 · F
n,(i),T
k−1 + Γ

n,(i)
k−1 ·Qn

k−1 · Γn,(i)T
k−1 .

- For i = 1, . . . , N , evaluate the first stage weights

w
(i)
k|k−1 = q(i|Zk) =

w
(i)
k−1|k−1 · N (z1,k; z̃

(i)
1,k, S̃

(i)
k ) · p(z2,k|ξ(i)k )

∑N
m=1w

(m)
k−1|k−1 · N (z1,k; z̃

(i)
1,k, S̃

(i)
k ) · p(z2,k|ξ(m)

k )
.

where

z̃
(i)
k = hk(ξ

n,(i)
k ) +Hk(ξ

n,(i)
k ) · x̃l,(i)

k|k−1,

S̃
(i)
k = Hk(ξ

n,(i)
k ) · P̃l,(i)

k|k−1 ·Hk(ξ
n,(i),T
k ) +R1,k,

x̃
l,(i)
k|k−1 = x̄

l,(i)
k|k−1 + P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · (ξn,(i)k − x̄

n,(i)
k|k−1),

P̃
l,(i)
k|k−1 = P̄

l,(i)
k|k−1 − P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · P̄nl,(i)

k|k−1,

and

x̄
l,(i)
k|k−1 = f

l,(i)
k−1 + F̄

l,(i)
k−1 · x

l,(i)
k−1|k−1 + Ē

(i)
k (ξ

n,(i)
k ),

P̄
l,(i)
k|k−1 = F̄

l,(i)
k−1 ·P

(i)
k−1|k−1 · F̄

l,(i),T
k−1 + Γ

l,(i)
k−1 · Q̄l

k−1 · Γl,(i),T
k−1 ,

P̄
nl,(i)
k|k−1 = F

n,(i)
k−1 ·P(i)

k−1|k−1 · F̄
l,(i),T
k−1 ,

Ē
(i)
k (ξ

n,(i)
k ) = Γ

l,(i)
k−1 ·Qnl,T

k−1 · [Γ
n,(i)
k−1 ·Qn

k−1]
−1 · (ξn,(i)k − f

n,(i)
k−1 ),

F̄
l,(i)
k−1 = F

l,(i)
k−1 − Γ

l,(i)
k−1 ·Qnl,T

k−1 · [Γ
n,(i)
k−1 ·Qn

k−1]
−1 · Fn,(i)

k−1 ,

Q̄l
k−1 = Ql

k−1 −Qnl,T
k−1 · [Qn

k−1]
−1 ·Qnl

k−1.

3. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {ξn,(i)k }Ni=1, where the probability to take sample i

is w
(i)
k|k−1. Store for each resampled particle the parent index denoted by i(j).
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4. Particle Filter Time Update:

- For j = 1, . . . , N , draw particles from the importance density according to

x
n,(j)
k ∼ q(xn

k|i(j),Zk) = N (xn
k; x̄

n,(ij)
k|k−1, P̄

n,(ij)
k|k−1).

5. Kalman Filter Time Update:

- For j = 1, . . . , N, evaluate

x
l,(j)
k|k−1 = x̄

l,(j)
k|k−1 + P̄

nl,(ij),T
k|k−1 · [P̄n,(ij)

k|k−1]
−1 · (xn,(j)

k − x̄
n,(ij)
k|k−1),

P
(j)
k|k−1 = P̄

l,(ij)
k|k−1 − P̄

nl,(ij),T
k|k−1 · [P̄n,(ij)

k|k−1]
−1 · P̄nl,(ij)

k|k−1,

where

x̄
l,(j)
k|k−1 = f

n,(ij)
k−1 + F

n,(ij)
k−1 · xl,(ij)

k−1|k−1 + Ē
(ij)
k (x

n,(j)
k ).

6. Particle Filter Measurement Update (Second Stage Weights):

- For j = 1, . . . , N, evaluate the second stage weights

w̃
(j)
k|k =

N (z1,k; ẑ
(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k )

N (z1,k; z̃
(ij)
1,k , S̃

(ij)
k ) · p(z2,k|ξn,(i

j)
k )

,

where

ẑ
(j)
1,k = h

(j)
1,k +H

(j)
k · xl,(j)

k|k−1,

S
(j)
k = H

(j)
k ·P(j)

k|k−1 ·H
(j),T
k +R1,k,

and normalize the weights according to w
(j)
k|k = w̃

(j)
k|k/

N∑

m=1

w̃
(m)
k|k .

7. Kalman Filter Measurement Update:

- For j = 1, . . . , N, evaluate

x
l,(j)
k|k = x

l,(j)
k|k−1 +K

(j)
k · (z1,k − ẑ

(j)
1,k),

P
(j)
k|k = P

(j)
k|k−1 −K

(j)
k · S(j)

k ·K(j),T
k ,

where

K
(j)
k = P

(j)
k|k−1 ·H

(j),T
k · [S(j)

k ]−1.

8. Estimation:

- Determine estimates of the linear and nonlinear state vectors according to

x̂n
MMSE,k|k =

N∑

j=1

w
(j)
k|k · x

n,(j)
k , x̂l

MMSE,k|k =
N∑

j=1

w
(j)
k|k · x

l,(j)
k|k .

9. Set i := j and k := k + 1 and iterate from step 2.
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4.5.6 Particle Filter with Road Constraints

4.5.6.1 Introduction

In many situations, additional information such as road maps are available to the MT,

that can be additionally used to further constrain the MT movement to roads. If such

an information is available to the MT, it should be taken into account in the hybrid

localization algorithm, since it further improves the performance. Until now, several

approaches have been proposed to efficiently incorporate road constraints into PF-

based estimators, see for instance [AMGC02,RAG04,UK06,ES07,CS07,OSG09]. The

vast majority of approaches consider that the movement of the MT can switch between

on-road and off-road, which is described by different state models. These models are

then incorporated into a multiple model filtering approach that can efficiently keep

track of the different MT movements [CS07,OSG09]. In this work, it is assumed that

the MT is restricted to on-road movements and no off-road movement is considered.

Hence, a multiple model filtering approach is no longer necessary and a PF can be used

to implement the road-constrained approach.

4.5.6.2 Incorporation of Road Constraints

In this section, it is shown how road constraints can be incorporated into the PF for

hybrid localization. The road-constrained approach presented in this work is taken

from [OSG09], where it was used to track targets, which can move both on-road and

off-road, with a multiple model particle filter approach.

It is assumed that a road network database TRN is available to the MT. A road is

assumed to be represented by straight line segments with corresponding endpoints

that are connected with each other. Each line segment is assigned a different road

identity denoted by sID, which is stored together with the corresponding endpoints in

the road network database TRN. The key idea of the approach presented in [OSG09],

is to express the MT state model, cf. Section 2.3.2, in a local coordinate system

and the measurement model, cf. Section 2.3.3, in a global coordinate system. The

local coordinate system is road-segment based. The origin (or the reference point)

of the local coordinate system is placed at one of the endpoints of the corresponding

road segment, where the local xL- and yL-axes are aligned along and perpendicular to

the road as shown in Fig. 4.2. In the following, only MT movement along the road

is considered, so that the position and speed of the MT on the road segment can be

expressed by the scalar variables pMT and ṗMT. Since the state and measurement models
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ψ1

ψ2

xL

yL

xL
yL

xG

yG

(xG,1, yG,1)

(xG,2, yG,2)

(xG,3, yG,3)

sID = 1

sID = 2

Figure 4.2. Relationship between global coordinate system and local, road-constrained,
coordinate system.

use different coordinate systems, appropriate functions to convert the state vector from

one coordinate system representation into the other coordinate system representation

are needed. For the road-constrained approach investigated in this work, only the

transformation TLG(·) from local coordinates to global coordinates is required, which

is given by






xMT

yMT

ẋMT

ẏMT






= TLG









pMT

ṗMT

sID



 , TRN



 =







pMT · cos(ψsID) + xG,sID

pMT · sin(ψsID) + yG,sID

ṗMT · cos(ψsID)
ṗMT · sin(ψsID)






, (4.166)

where ψsID denotes the angle between the sID-th road segment and the xG-axis of the

global coordinate system, and xG,sID = [xG,sID , yG,sID ]
T denotes the reference endpoint

of the sID-th road segment in global coordinates, cf. Fig. 4.2. In the PF with road

constraints, the on-road movement of the MT is described by the following model

[
p′MT,k

ṗ′MT,k

]

=

[
1 TS
0 1

]

·
[
pMT,k−1

ṗMT,k−1

]

+

[
T 2
S
2

TS

]

· w1,k−1, (4.167)

where w1,k−1 denotes zero-mean white Gaussian noise with standard deviation σP.

Since the predicted position and speed values p′MT,k, ṗ
′
MT,k might not be on the road

segment indicated by sID,k−1, the function fP,k−1(·) is introduced which projects the

values p′MT,k, ṗ
′
MT,k into the next road segment indicated by sID,k. If there are several

candidates for the next road segment in the road database TRN, e.g., the MT crosses a

road junction, the function fP,k−1(·) also selects at random one road segment according

to the discrete process noise term w2,k−1 ∈ {1, . . . , Nr}, where Nr denotes the number
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of candidates for the next road segment. As a result, the model describing road-

constrained MT movement for hybrid localization can be written as









pMT,k

ṗMT,k

sID,k

c0 · δtk
c0 · δṫk









=









fP,k−1









p′MT,k

ṗ′MT,k

sID,k−1



 , TRN, w2,k−1





[
1 TS
0 1

]

·
[
c0 · δtk−1

c0 · δṫk−1

]

+

[
c0 0
0 c0

]

·
[
wδt,k−1

wδṫ,k−1

]









. (4.168)

In the following, let xR,k = [pMT,k, ṗMT,k, sID,k, c0 · δtk, c0 · δṫk]T denote the state vec-

tor for road-constrained hybrid localization, let wR,k−1 = [w1,k−1, w2,k−1]
T denote the

corresponding noise term and let fR,k−1(·) denote a nonlinear function, so that (4.168)

is fulfilled. Then, the model in (4.168) can be written more compactly, yielding

xR,k = fR,k−1(xR,k−1, IRN, wR,k−1,wCO,k−1). (4.169)

The measurement models and the corresponding likelihood pdfs depend on the MT

state, which is commonly expressed in global coordinates, cf. (3.64) and (3.83). In order

to evaluate the importance weights in the measurement update of the PF with road

constraints, the corresponding likelihood functions have to be related to the MT state

xR,k in local coordinates. The function TG,k(·) is therefore introduced that converts a

state vector xR,k given in local coordinates to a state vector xk in global coordinates

according to










xMT,k

yMT,k

ẋMT,k

ẏMT,k

c0 · δtk
c0 · δṫk











︸ ︷︷ ︸

xk

=











TLG,k









pMT,k

ṗMT,k

sID,k



 , TRN





c0 · δtk
c0 · δṫk











︸ ︷︷ ︸

TG,k(xR,k,TRN)

, (4.170)

which is equivalent to

xk = TG,k(xR,k, TRN). (4.171)

Using this approach, the likelihood pdfs can be expressed as p(zk|xk = TG,k(xR,k, TRN)).

A pseudocode description of the PF with road constraints is given in Algorithm 4.9.

The algorithm can be used for the scenario with LOS propagation conditions as well

as for the scenario, where the propagation conditions switch between LOS and NLOS.

The only difference is that the likelihood pdf for the former is given by (3.64) and for

the latter is given by (3.83).
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Algorithm 4.9 Particle Filter with Road Constraints

1. Initialization:

- For i = 1, ..., N, initialize the particles x
(i)
R,0 ∼ p(xR,0) and weights w

(i)
0|0 =

1
N
.

2. Time Update:

- For i = 1, ..., N, generate particles x
(i)
R,k from x

(i)
R,k−1 by using samples from

the process noise sequences w
(i)
R,k−1 ∼ pwR,k−1

(·) and w
(i)
CO,k−1 ∼ pwCO,k−1

(·)
as shown in (4.169).

3. Measurement Update:

- For i = 1, ..., N,, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · p(zk|TG,k(x

(i)
R,k, IRN))

N∑

j=1

w
(j)
k−1|k−1 · p(zk|TG,k(x

(j)
R,k, IRN))

.

4. Estimation:

- Determine an estimate of the state vector according to

x̂k =
N∑

i=1

w
(i)
k|k ·TG,k(x

(i)
R,k, IRN).

5. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {x(i)
R,k}Ni=1, where the probability to take sample i

is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

6. Set k := k + 1 and iterate from step 2.

4.5.7 Rao-Blackwellized Particle Filter with Road Constraints

In this section, it is shown how the state and measurement models of the road-

constrained approach, presented in the previous section, can be rewritten to fit into the

RBPF framework. By using this strategy, it is expected to further reduce the variance

of the state estimates compared to the PF approach.
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Due to the fact that the one-dimensional MT location vector pMT,k and velocity vec-

tor ṗMT,k enters nonlinearly into the state equation and the the two-dimensional MT

location vector xMT,k enters nonlinearly into the measurement model, the state vector

xR,k is split as follows

xn
R,k = [pMT,k, ṗMT,k, sID,k]

T, (4.172)

xl
R,k = [c0 · δtk, c0 · δṫk]T. (4.173)

The resulting adapted state and measurement models are presented next.

State Model

The state model can be adapted to the RBPF framework as follows:




pMT,k

ṗMT,k

sID,k





︸ ︷︷ ︸

xnR,k

= fP,k−1









p′MT,k

ṗ′MT,k

sID,k−1



 , TRN, w2,k−1





︸ ︷︷ ︸

fn
k−1(x

n
R,k−1,w

n
k−1)

, (4.174)

[
c0 · δtk
c0 · δṫk

]

︸ ︷︷ ︸

xlR,k

=

[
1 TS
0 1

]

︸ ︷︷ ︸

Fl
k−1

·
[
c0 · δtk−1

c0 · δṫk−1

]

︸ ︷︷ ︸

xlR,k−1

+

[
c0 0
0 c0

]

︸ ︷︷ ︸

Γlk−1

·
[
wδt,k−1

wδṫ,k−1

]

︸ ︷︷ ︸

wl
k−1

. (4.175)

Observe that the noises wn
k−1 = [w1,k−1, w2,k−1]

T and wl
k−1 = [wδt,k−1, wδṫ,k−1]

T are

uncorrelated and that the state equation (4.174) is independent of the linear states.

This is another special case of a conditional linear model, where the RBPF can be

applied to. An appealing advantage of the model structure given in (4.174) is that the

time update stage in the RBPF can be greatly simplified [SGN05,Sch03].

Measurement Model - LOS Propagation Conditions

For the scenario with LOS propagation conditions, the measurement vector is split as

follows

z1,k = [zTPR,k, z
T

RTT,LOS,k, z
T

RSS,LOS,k, zBIAS,k]
T, (4.176)

The corresponding measurement model can be rewritten as






zPR,k

zRTT,LOS,k

zRSS,LOS,k

zBIAS,k







︸ ︷︷ ︸

z1,k

=







dSAT,k(xMT,k)
hRTT,k(xMT,k)

hRSS,LOS,k(xMT,k)
0







︸ ︷︷ ︸

h1,k(TLG,k(x
n
R,k

,TRN))

+





1MPR×1 0MPR×1

0(MRTT+MRSS)×2

1 0





︸ ︷︷ ︸

Hk

·
[
c0 · δtk
c0 · δṫk

]

︸ ︷︷ ︸

xlR,k

+







vPR,k

vRTT,LOS,k

vRSS,LOS,k

vBIAS,k







︸ ︷︷ ︸

v1,k

.

(4.177)
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The measurement noise v1,k is zero-mean Gaussian distributed with covariance matrix

R1 = RLOS,k.

Measurement Model - LOS/NLOS Propagation Conditions

For the scenario, where the propagation conditions switch between LOS and NLOS,

the measurement vector is split as follows:

z1,k = [zTPR,k, zBIAS,k]
T, (4.178)

z2,k = [zTRTT,k, z
T

RSS,k]
T. (4.179)

The measurement model of z1,k can be rewritten as

[
zPR,k

zBIAS,k

]

︸ ︷︷ ︸

z1,k

=

[
dSAT,k(xMT,k)

0

]

︸ ︷︷ ︸

h1,k(TLG,k(x
n
R,k

,TRN))

+

[
1MPR×1 0MPR×1

1 0

]

︸ ︷︷ ︸

Hk

·
[
c0 · δtk
c0 · δṫk

]

︸ ︷︷ ︸

xlR,k

+

[
vPR,k

vBIAS,k

]

︸ ︷︷ ︸

v1,k

, (4.180)

where the measurement noise v1,k is zero-mean Gaussian distributed with covariance

matrix R1 = RSAT,k. The second measurement model is expressed in terms of the

likelihood pdf p(z2,k|TLG,k(x
n
R,k, TRN)), which is given by

p(z2,k|TLG,k(x
n
k, TRN))=

MRTT∏

κ1=1

p(z
(κ1)
RTT,k|TLG,k(x

n
R,k, TRN))·

MRSS∏

κ2=1

p(z
(κ2)
RSS,k|TLG,k(x

n
R,k, TRN)),

(4.181)

where the pdfs p(z
(κ1)
RTT,k|TLG,k(x

n
R,k, TRN)) and p(z

(κ2)
RSS,k|TLG,k(x

n
R,k, TRN)) are given by

(3.54) and (3.55). A pseudocode description of the RBPF with road constraints is

given in Algorithm 4.10.

Algorithm 4.10 Rao-Blackwellized Particle Filter with Road Constraints

1. Initialization:

- For i = 1, ..., N, initialize the particles x
n,(i)
R,0 ∼ p(xn

R,0) and the weights

w
(i)
0|0 =

1
N
, and set x

l,(i)
0|0 = x̂l

R,0 and P0|0 = PR,0.

2. Particle Filter Time Update:

- For i = 1, ..., N, generate particles x
n,(i)
R,k from x

n,(i)
R,k−1 by using samples from

the process noise sequences w
n,(i)
k−1 ∼ pwn

k−1
(·) as shown in (4.174).

3. Kalman Filter Time Update:
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- For i = 1, ..., N, evaluate

x
l,(i)
k|k−1 = Fl

k−1 · xl,(i)
k−1|k−1,

Pk|k−1 = Fl
k−1 ·Pk−1|k−1 · Fl,T

k−1 + Γl
k−1 ·Ql

k−1 · Γl,T
k−1.

4. Particle Filter Measurement Update:

- For i = 1, ..., N, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · N (z1,k; ẑ

(i)
1,k,Sk) · p(z2,k|TLG,k(x

n,(i)
k , TRN))

∑N
j=1w

(j)
k−1|k−1 · N (z1,k; ẑ

(j)
1,k,Sk) · p(z2,k|TLG,k(x

n,(j)
k , TRN))

,

where

ẑ
(i)
1,k = h1,k(TLG,k(x

n,(i)
R,k , TRN)) +Hk · xl,(i)

k|k−1,

Sk = Hk ·Pk|k−1 ·HT

k +Rk.

5. Kalman Filter Measurement Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k = x

l,(i)
k|k−1 +Kk · (z1,k − ẑ

(i)
1,k),

Pk|k = Pk|k−1 −Kk · Sk ·KT

k ,

where

Kk = Pk|k−1 ·HT

k · [Sk]
−1.

6. Estimation:

- Determine estimates of the linear and nonlinear state vectors according to

x̂n
MMSE,k|k =

N∑

i=1

w
(i)
k|k ·TLG,k(x

n,(i)
R,k , TRN), x̂l

MMSE,k|k =
N∑

i=1

w
(i)
k|k · x

l,(i)
k|k .

7. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {xn,(i)
R,k ,x

l,(i)
k|k }Ni=1, where the probability to take sam-

ple i is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

8. Set k := k + 1 and iterate from step 2.



144 Chapter 4: Recursive State Estimation for Hybrid Localization

4.6 Performance Evaluation

4.6.1 Introduction

In this Section 4.6, the hybrid localization algorithms of Sections 4.4 and 4.5 are evalu-

ated by means of Monte Carlo simulations and their average performance is compared

to the PCRLB. The performance metrics that will be used are the RMSE of the MT

location and time averaged RMSE of the MT location as defined in (3.95) and (3.96).

The corresponding PCRLBs for these metrics are given by

PCRLBk =
√
[
[Jk]

−1]

1,1
+
[
[Jk]

−1]

2,2
(4.182)

and

PCRLB =
1

kmax

kmax∑

k=1

√
[
[Jk]

−1]

1,1
+
[
[Jk]

−1]

2,2
, (4.183)

where the Bayesian information submatrix Jk is defined in (4.9). Since it is not oth-

erwise stated, the results are averaged over NMC = 500 Monte Carlo runs. The Monte

Carlo simulations are performed for Scenario I, cf. Section 2.3.4.2, and the results

are presented in Section 4.6.2. The algorithms of Section 4.5 are further evaluated

for experimental data available from a field trial, which is presented in Section 4.6.3.

Finally, the computational complexity of the different algorithms is investigated in

Section 4.6.4.

4.6.2 Simulation Results for Scenario I

4.6.2.1 Simulation Results for LOS Propagation Conditions

In this section, the performance of the KF-based algorithms and PF-based algorithms

introduced in Sections 4.4 and 4.5 is evaluated for the different combinations of mea-

surements of Scenario I as given in Section 2.3.4.2. The PCRLBs for the different

combinations of measurements are computed to indicate the best possible performance

that one can expect for the given scenario and set of parameters.

Since all algorithms are recursive, proper initialization is required. For the KF-based

estimators, the initial state estimate x̂0|0 is assumed to be the true state with initial

covariance matrix P0|0 = diag[2002, 102, 2002, 102, 1002/3, 52]. The initial pdf of the

PF-based estimators without road constraints is assumed to be Gaussian with mean x̂0|0
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and covariance P0|0. The initial pdf of the PF-based estimators with road constraints

is assumed to be Gaussian with mean x̂R,0|0 equal to the true state and covariance

matrix PR,0|0 = diag[2002, 102, 1002/3, 52]. Here, it is worth noting that the true initial

state for the hybrid localization scenario is a fixed known quantity. This requirement,

however, violates the assumption for the optimal Bayesian solution, cf. Section 4.2,

where the true initial state is a random variable with pdf p(x0). Thus, it is expected

that the reuse of the same initial conditions in the algorithms for each Monte Carlo

run will lead to biased estimates [BSLK01].

In order to apply the algorithms to the hybrid localization problem, the parameters

included in the measurement model hLOS,k(xk), as well as the noise statistics given

by the covariance matrices RLOS,k and Q have to be specified. In order to account

for possible MT maneuvers and clock uncertainties Q is chosen in the algorithms as

Q = diagb[QCV, 100 ·QCO] with QCV = diag[9, 9] (Q = diagb[σ
2
p, 100 ·QCO] with σ

2
p = 9

for PF-based algorithms with road constraints), where the parameters of the covariance

matrix QCO are given in Table 2.2. The parameters that specify the measurement

model hLOS,k(xk) and the covariance matrix RLOS,k are assumed to be equal to the

parameters with which the measurements have been generated. In practice, however,

these parameters are unknown and have to be estimated in advance from field trial

data. For the computation of the PCRLB, the covariance matrices RLOS,k and Q,

as well as the parameters included in the measurement model hLOS,k(xk) are chosen

such that they are equal to the parameters with which the measurements have been

generated. The pdf required to initialize the PCRLBs, cf. (4.12), is assumed to be

Gaussian with mean x̂0|0 and covariance matrix P0|0.

In Fig. 4.3 the MT location RMSEs in m vs. the time index k for the Cellular, Hy-

brid 1 and Hybrid 2 methods are shown for the EKF, UKF and CKF together with

the corresponding PCRLBs. It can be seen that the performance of the three filters

for the different methods is practically equivalent. The Cellular method provides the

worst performance, small improvements can be obtained with the Hybrid 1 method

and large improvements are possible using the Hybrid 2 method. The equivalent per-

formance of the three filters can be explained by the fact that the distances between

the BSs/satellites and the MT are large and, thus, the impact of the nonlinearities,

inherent in the RSS and RTT and PR measured values, is small. At time steps k = 160

and k = 320, the performance of the filters become worse for a certain period of time.

These peaks can be explained by the fact that at these time steps, the MT is located

in a curve, cf. Fig. 2.3, and has to perform a maneuver to change the direction of

movement. Since the filter has no knowledge about the maneuver, it has to adapt to

this new situation, resulting in the worse performance. The magnitude of the peak er-

rors can be controlled by the choice of the covariance matrix QCV in the filters. While
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Figure 4.3. MT location RMSE vs. time index k for EKF, UKF, CKF and PCRLB
assuming LOS propagation conditions, solid lines: Cellular method, dash-dotted lines:
Hybrid 1 method, dashed lines: Hybrid 2 method.

small values for QCV can decrease the RMSE during periods of straight and uniform

MT movement, it will result in larger peak errors during maneuvers. Furthermore, it

can be observed that the peaks resulting from the maneuver of the MT are smaller

for the Hybrid 1 and Hybrid 2 method than for the Cellular method. This fact can

be explained as follows. Since the filters extract their information about the MT state

from the measurements, more accurate measurements, as it is the case for the Hybrid

1 and Hybrid 2 method, will yield an improved filter performance during maneuvers.

Comparing the performance of the filters to the PCRLB, it can be seen that the filters

are biased for small values of k, which is a result of the chosen initialization strategy.

Furthermore, it can be observed that the filters cannot attain the PCRLB. Comparing

the PCRLBs of the Cellular and Hybrid 1 method, it can be observed that small

improvements are possible for small values of k. However, after a certain number of

time steps, the two bounds coincide with each other and from a theoretical point of

view, no improvements using the Hybrid 1 method instead of the Cellular method are

possible.

This behaviour can be explained best by looking at the computation of the Bayesian

information submatrix Jk, cf. (4.19). The first term in (4.19) is composed of the infor-

mation from previous time steps and the information available from the state model,
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while the second term describes the contribution of the measurements. Recall from

Section 3.3.2, that the CRLBs of the Cellular and Hybrid 1 method are equal. Due

to the fact that (4.22) holds, the measurements cannot be responsible for the perfor-

mance improvements of the Hybrid 1 method. Thus, the performance improvements

exclusively depend on the state model and the information that is contained in the

initial Bayesian information submatrix J0. Since the first term in the sum of (4.19) has

the effect of averaging the information from previous time steps with the information

available from the state model, the initial information becomes less important as the

number of time steps k increases. Due to the fact that the measurements of the Hybrid

1 method do not contribute to the improvement of the PCRLB, the PCRLBs of the

Cellular and Hybrid 1 methods finally coincide with each other.

In Figs. 4.4, 4.5 and 4.6 the MT location RMSEs in m vs. the time index k for the

Cellular, Hybrid 1 and Hybrid 2 methods are shown for the PF, APF, RBPF and

RBAPF using N = 1000 particles, together with the corresponding PCRLBs. From

this results, the same conclusions as those for the KF-based estimators can be drawn.

For the Cellular method, the performance of the four filters without taking into account

road constraints is practically equivalent, and compared to the KF-based estimators, no

performance improvements are possible. By additionally considering road constraints

in the PF, the performance can be significantly improved. The worse performance
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Figure 4.4. MT location RMSE vs. time index k for PF, APF, RBPF, RBAPF and
PCRLB assuming LOS propagation conditions and Cellular method, solid lines: No
road constraints, dashed lines: Road constraints.
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Figure 4.5. MT location RMSE vs. time index k for PF, APF, RBPF, RBAPF and
PCRLB assuming LOS propagation conditions and Hybrid 1 method, solid lines: No
road constraints, dashed lines: Road constraints.
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Figure 4.6. MT location RMSE vs. time index k for PF, APF, RBPF, RBAPF and
PCRLB assuming LOS propagation conditions and Hybrid 2 method, solid lines: No
road constraints, dashed lines: Road constraints.
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beginning at k = 80 and k = 320 can be explained by the fact that at these time steps,

the MT is located in a road junction, cf. Fig. 2.3. Since at k = 320 three roads meet

at the junction and the MT is additionally changing the direction of its movement, the

peak is larger compared to the peak at k = 80. For the Hybrid 1 method shown in

Fig. 4.5, differences in the performance of the four filters without taking into account

road constraints can be observed. It can be seen that for small values of k and when

the MT is performing a maneuver, the RBPF and RBAPF clearly outperform the PF

and APF. The reason for this is the increased state dimension, the PF and APF have

to deal with. While the nonlinear state dimension of the RBPF and RBAPF remains

unchanged at two, the state dimension in the PF and APF has increased from four to

six. Thus, in order to obtain a good approximation of the posterior pdf in the PF and

APF, a larger number of particles in these filters are necessary. With the given number

of N = 1000 particles, only the RBPF and RBAPF can achieve a performance similar

to the KF-based estimators. By additionally considering road constraints in the PF

and RBPF, the performance can be significantly improved. However, the performance

improvements of the RBPF compared to the PF are marginal. The reason for this is the

relatively small state dimension. While the nonlinear state dimension of the RBPF with

road constraints remains unchanged at two, the state dimension in the PF with road

constraints has increased from two to four. With the given number of particles, this is

enough to obtain a good approximation of the posterior pdf. Comparing these results

with the results of the Cellular method, it can be observed that small improvements are

possible with the Hybrid 1 method especially in situations, where the MT is performing

a maneuver or is located in a road junction.

For the Hybrid 2 method shown in Fig. 4.6, the same conclusions as those for the

Hybrid 1 method can be drawn. However, compared to the Hybrid 1 method, it

can be seen that for small values of k and when the MT is performing a maneuver,

the RBAPF now clearly outperforms the other filters without road constraints. The

additional incorporation of road constraints into the PF and RBPF can further improve

the performance and strongly depends on the orientation of the street and the location

of the satellites and BSs relative to the street, cf. Fig. 2.3. It can be observed that good

performance is achieved when the MT is moving on street segments oriented parallel

to the x-axis. This is the case for time steps 0 ≤ k < 160 and 320 < k ≤ 480. The

performance is worse when the MT is moving on street segments oriented parallel to

the y-axis, which is the case for time steps 160 ≤ k < 320.

In Fig. 4.7 the MT location RMSE in m vs. particle number N for the Cellular,

Hybrid 1 and Hybrid 2 methods are shown for the PF, APF, RBPF, RBAPF together

with the PCRLB. It can be observed that for the Cellular method, the performance of

the different filters is practically equivalent and only small performance improvements
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Figure 4.7. MT location RMSE vs. particle number N for PF, APF, RBPF, RBAPF
and PCRLB assuming LOS propagation conditions, solid lines: Cellular method, dash-
dotted lines: Hybrid 1 method, dashed lines: Hybrid 2 method.

can be achieved by increasing the number of particles in the filters. For the Hybrid

1 method, the same conclusions as those for the Cellular method can be drawn for

the RBPF and RBAPF. It can be noticed that for all tested number of particles, the

performance of the RBPF and RBAPF is always better than the performance of these

filters for the Cellular method. The RMSEs of the PF and APF are worse compared to

the RMSEs of the RBPF and RBAPF and results from the increased state dimension,

the PF and APF have to deal with. Even though the performance of these filters can be

improved by increasing the number of particles, they cannot reach the performance of

the RBPF and RBAPF. More interestingly, they cannot even reach the performance

of the Cellular method. For the Hybrid 2 method, the RBAPF provides the best

performance even for small numbers of particles, which is followed by the RBPF. The

PF and APF generally require more particles to obtain acceptable results.

In Fig. 4.8 the MT location RMSE in m vs. particle number N for the Cellular, Hybrid

1 and Hybrid 2 methods are shown for the PF and RBPF with road constraints. It

can be observed that the performance of the RBPF with road constraints is practically

equivalent for all investigated numbers of particles. Compared to the RBPF with

road constraints, the performance of the PF with road constraints is slightly worse,

especially when the number of particles is small.
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Figure 4.8. MT location RMSE vs. particle number N for PF and RBPF with road
constraints assuming LOS propagation conditions, solid lines: Cellular method, dash-
dotted lines: Hybrid 1 method, dashed lines: Hybrid 2 method.

In Fig. 4.9, the MT location RMSE in m vs. the GRT error standard deviation σGRT

in s for the Hybrid 1+ and Hybrid 2+ method are shown for the EKF, UKF and CKF

together with the corresponding PCRLB. The results are obtained from NMC = 100

Monte Carlo runs. It can be observed that all three filters have practically the same

performance. For σGRT ≥ 5·10−6, the RMSE of the Hybrid 1+ method reaches an upper

bound, which is equivalent to the RMSE of the Hybrid 1 method. Large performance

improvements can be obtained for σGRT < 5 · 10−6. For values of σGRT smaller than

10−8 the Hybrid 1+ method reaches a lower bound and no significant performance

improvements are possible. For the Hybrid 2+ method, similar conclusions can be

drawn. For σGRT ≥ 5 · 10−7 the RMSE of the Hybrid 2+ method reaches an upper

bound which is equivalent to the RMSE of the Hybrid 2 method. Small performance

improvements can be obtained for σGRT < 5 · 10−7. For values of σGRT smaller than

10−9 the Hybrid 2+ method reaches a lower bound and no significant performance

improvements are possible. The performance improvements of the Hybrid 2+ method

are smaller than the performance improvements of the Hybrid 1+ method. It can be

observed that all three filters cannot attain the corresponding PCRLB. In Fig. 4.10,

the MT location RMSE in m vs. the GRT error standard deviation σGRT in s for the

Hybrid 1+ and Hybrid 2+ method are shown for the PF, APF, RBPF and RBAPF

using N = 1000 particles, together with the corresponding PCRLB. The results are
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Figure 4.9. MT location RMSE vs. GRT error standard deviation σGRT for EKF,
UKF, CKF and corresponding PCRLB assuming LOS propagation conditions, solid
lines: Hybrid 1+ method, dashed lines: Hybrid 2+ method.

obtained from NMC = 100 Monte Carlo runs and the same conclusions as those for

the KF-based estimators can be drawn. It can be observed that only the RBPF and

RBAPF can approximately achieve the performance of the KF-based estimators. The

PF and APF diverge for small values of σGRT. The reason for divergence is that for small

values of σGRT, the likelihood pdf of the GRT measurement becomes highly peaked.

Since the particles in the PF and APF are drawn from the transitional pdf which is

not peaked, and the weights are updated using the likelihood pdf, the corresponding

weights will have very low weights resulting in a poor representation of the posterior

pdf. In the RBPF and RBAPF, the peaked likelihood pdf of the GRT measurement

cancels out in the PF measurement update of the nonlinear states, cf. (4.104) and

(4.156), since it depends only on the bias which is a linear state. Thus, the RBPF

and RBAPF are not influenced by this effect. In Fig. 4.11, the MT location RMSE

in m vs. the GRT error standard deviation σGRT in s for the Hybrid 1+ and Hybrid

2+ method are shown for the PF and RBPF with road constraints using N = 1000

particles. The results are obtained from NMC = 100 Monte Carlo runs and the same

conclusions as those for the PF-based estimators without road constraints can be drawn

from these results. It can be noticed, that with the Hybrid 2+ method practically no

performance gains can be achieved compared to the Hybrid 2 method. Furthermore,

compared to the PF, the effect of the peaked likelihood is less pronounced for the PF
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Figure 4.10. MT location RMSE vs. GRT error standard deviation σGRT for PF, APF,
RBPF, RBAPF and corresponding PCRLB assuming LOS propagation conditions,
solid lines: Hybrid 1+ method, dashed lines: Hybrid 2+ method.
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Figure 4.11. MT location RMSE vs. GRT error standard deviation σGRT for PF and
RBPF with road constraints assuming LOS propagation conditions, solid lines: Hybrid
1+ method, dashed lines: Hybrid 2+ method.
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with road constraints. In Fig. 4.12, the MT location RMSE in m vs. GDOP for

the Satellite and Hybrid 3 method are shown for the EKF, UKF and CKF together

with the corresponding PCRLBs. The results show that all three filters provide the

same performance and that they cannot achieve the corresponding PCRLBs. For small

GDOP values, the performance improvements of the Hybrid 3 method compared to the

Satellite method are small. For large GDOP values, the Hybrid 3 method significantly

outperforms the Satellite method. In Fig. 4.13, the MT location RMSE in m vs.

GDOP for the Satellite and Hybrid 3 method are shown for the PF, APF, RBPF,

RBAPF using N = 1000 particles, together with the corresponding PCRLBs. For the

PF-based estimators without road constraints, the same conclusions can be drawn from

these results as those for the KF-based estimators. It can be noticed that the RBPF

and RBAPF provide the best performance, which is practically identical, while the

performance of the PF and APF is worse. For the PF and RBPF with road constraints,

significant performance improvements can be obtained. However, using the Hybrid 3

method rather than the Satellite method will yield only small improvements, which

is true for all tested GDOP values. It can be further seen that the performance is

approximately equal for all GDOP values. This can be explained by the fact that

the additional consideration of road information in the filter can be interpreted as an

additional and very accurate measurement. Depending on the orientation of the road
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Figure 4.12. MT location RMSE vs. GDOP for EKF, UKF, CKF and corresponding
PCRLB assuming LOS propagation conditions, solid lines: Satellite method, dashed
lines: Hybrid 3 method.
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Figure 4.13. MT location RMSE vs. GDOP for PF, APF, RBPF, RBAPF and corre-
sponding PCRLB assuming LOS propagation conditions, solid lines: Satellite method,
dashed lines: Hybrid 3 method.

with respect to the locations of the satellites and BSs, the road information can help to

further improve the performance. Comparing the results of this section with the results

of the non-recursive estimators, cf. Section 3.5.2.1, it can be observed that due to the

additional consideration of the state model in the estimation process, large performance

gains due to time averaging effects are possible for all investigated methods.

4.6.2.2 Simulation Results for Propagation Conditions that switch be-
tween LOS and NLOS

In this section, the performance of the PF-based algorithms introduced in Section

4.5 is evaluated for the different combinations of measurements of Scenario I as given

in Section 2.3.4.2. In contrast to Section 4.6.2.1, it is now assumed that the RSS

and RTT measurements are affected by switching LOS/NLOS propagation conditions.

The PCRLBs for the different combinations of measurements are computed accord-

ing to Section 4.3.3 using N = 10000 samples, in order to indicate the best possible

performance that one can expect for the given scenario and set of parameters.

For the initialization of the filters, the same strategy is used as explained in Section

4.6.2.1. In order to apply the algorithms to the hybrid localization problem, the pa-
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rameters of the likelihood pdf and transitional pdf have to be specified, cf. (3.83) and

(4.14). In the following, the covariance matrix Q is chosen as in Section 4.6.2.1 and

the parameters of the likelihood pdf are chosen such that they are equal to the param-

eters with which the measurements have been generated, cf. Table 2.2. The stationary

probabilities of the Markov chain can be computed from (2.15) and (2.51). In practice,

however, these parameters are unknown and have to be estimated in advance from

field trial data. For the computation of the PCRLB, the parameters of the likelihood

pdf and transitional pdf are assumed to be equal to the parameters with which the

measurements have been generated, cf. Table 2.2. The pdf required to initialize the

PCRLBs, cf. (4.12), is assumed to be Gaussian with mean x̂0|0 and covariance P0|0.

In Figs. 4.14, 4.15 and 4.16, the MT location RMSEs in m vs. the time index k for

the Cellular, Hybrid 1 and Hybrid 2 methods are shown for the PF, APF, RBPF and

RBAPF using N = 1000 particles, together with the corresponding PCRLBs. From

these results, the same conclusions as those for the PF-based estimators assuming LOS

propagation conditions can be drawn. It can be observed that compared to the LOS

case, the RMSEs for the different methods are larger. This can be explained by the

fact that in NLOS situations, the noise with which the measurements are affected with

is larger. This, in turn, means that the measurements provide less information about

the MT state, which leads to the inferior performance. It can be further noticed that

the performance of the PF and RBPF with road constraints for the Hybrid 2 method,

cf. Fig 4.16, is practically equivalent to the performance of the same filters assuming

LOS propagation conditions, cf. Fig. 4.6. From these results one can conclude that

the performance is dominated by the information available from the PR measurements

and the road, and less influenced by the RSS and RTT measurements.

In Figs. 4.17 and 4.18, the MT location RMSE in m vs. the GRT error standard

deviation σGRT in s for the Hybrid 1+ and Hybrid 2+ method are shown for the PF,

APF, RBPF, RBAPF, PF with road constraints and RBPF with road constraints using

N = 1000 particles, together with the corresponding PCRLB. The results are obtained

from NMC = 100 Monte Carlo runs. For the shown results, the same conclusions as

those drawn for the results assuming LOS propagation conditions can be drawn. It can

be noticed that compared to the LOS case, the performance of the PF-based estimators

without road constraints is worse for the Hybrid 1+ and Hybrid 2+ method. However,

the possible performance improvements using the Hybrid 1+ method instead of the

Hybrid 1 method are larger compared to the LOS case. In Fig. 4.19, the MT location

RMSE in m vs. GDOP for the Satellite and Hybrid 3 method are shown for the

PF, APF, RBPF, RBAPF using N = 1000 particles, together with the corresponding

PCRLBs. The same conclusions can be drawn from these results as those for the PF-

based estimators assuming LOS propagation conditions. It can be observed that for
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the PF-based estimators without road constraints the results are worse compared to

the LOS case, which is due to the different assumptions for the measurement noise in

LOS and NLOS propagation conditions.

4.6.3 Field Trial Results

In this section, the expected performance of the hybrid localization method is tested

on experimental data available from a field trial. Since the RTT and RSS measure-

ments are highly affected by switching LOS/NLOS propagation conditions the PF-

based algorithms have been used for the hybrid localization method. The unknown

parameters of the RTT and RSS model as well as the stationary values of the Markov

chain, which are necessary to evaluate the likelihood function, cf. (3.83), have been

estimated from the available field trial data using the Expectation-Maximization al-

gorithm [DLR77,MK97]. For the initialization of the filters, the strategy presented in

Section 4.6.2.1 is used. The initial state vector is obtained from the geometric approach

presented in Section 3.5.3 and the initial MT velocity and the MT clock drift is set to

zero. The movement of the MT during the field trial can be described with the move-

ment of a car in a city. The MT experiences many accelerations and deaccelerations,
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Figure 4.14. MT location RMSE vs. time index k for PF, APF, RBPF, RBAPF and
PCRLB assuming switching LOS/NLOS propagation conditions and Cellular method,
solid lines: No road constraints, dashed lines: Road constraints.
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Figure 4.15. MT location RMSE vs. time index k for PF, APF, RBPF, RBAPF and
PCRLB assuming switching LOS/NLOS propagation conditions and Hybrid 1 method,
solid lines: No road constraints, dashed lines: Road constraints.
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Figure 4.16. MT location RMSE vs. time index k for PF, APF, RBPF, RBAPF and
PCRLB assuming switching LOS/NLOS propagation conditions and Hybrid 2 method,
solid lines: No road constraints, dashed lines: Road constraints.
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followed by periods of no movement, since the car has to stop at traffic lights. In order

to take into account the different maneuvers of the MT, the covariance matrixQ, which

is a filter design parameter, is chosen in the algorithms as Q = diagb[QCV, 100 ·QCO]

with QCV = diag[100, 100] (Q = diagb[σ
2
p, 100 ·QCO] with σ

2
p = 100 for PF-based algo-

rithms with road constraints), where the parameters of the covariance matrix QCO are

given in Table 2.2. Note that the algorithms have been also tested for smaller values

of QCV, but this yielded no performance improvements. In order to obtain an average

performance of the PF-based estimators, NMC = 100 Monte Carlo runs are performed,

where in each run the same set of measurement data is used.

In Fig. 4.20, the MT location RMSE vs. particle number N for the Cellular, Hybrid

1 and Hybrid 2 method is shown for the PF, APF, RBPF and RBAPF. It can be

seen that the performance of the different filters for the Cellular method is practically

equivalent for all tested numbers of particles. Small performance gains can be obtained

using the Hybrid 1 method rather than the Cellular method, where the PF and APF

are outperformed by the RBPF and RBAPF for small N . Significant performance

improvements are possible with the Hybrid 2 method. In Fig. 4.21, the MT location

RMSE vs. time index k for the Cellular, Hybrid 1 and Hybrid 2 method is shown for the

PF using N = 1000. Here, only the results for the PF are shown since for N = 1000, all

investigated algorithms have approximately the same performance, cf. Fig. 4.20. It can
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Figure 4.17. MT location RMSE vs. GRT error standard deviation σGRT for PF, APF,
RBPF, RBAPF and PCRLB assuming switching LOS/NLOS propagation conditions,
solid lines: Hybrid 1+ method, dashed lines: Hybrid 2+ method.
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Figure 4.18. MT location RMSE vs. GRT error standard deviation σGRT for PF and
RBPF with road constraints assuming switching LOS/NLOS propagation conditions,
solid lines: Hybrid 1+ method, dashed lines: Hybrid 2+ method.
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Figure 4.19. MT location RMSE vs. GDOP for PF, APF, RBPF, RBAPF and PCRLB
assuming switching LOS/NLOS propagation conditions, solid lines: Satellite method,
dashed lines: Hybrid 3 method.
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Figure 4.20. MT location RMSE vs. particle number N for PF, APF, RBPF and
RBAPF, solid lines: Cellular method, dash-dotted lines: Hybrid 1 method, dashed
lines: Hybrid 2 method.

be seen that the Cellular method provides the worst performance. Small performance

improvements can be obtained using the Hybrid 1 method and significant performance

gains are possible using the Hybrid 2 method. The peaks in the RMSE result from the

mismatch between the state model assumptions and the true MT movement, and the

geometric relationships between the satellites, BS and the MT during the field trial.

In Fig. 4.22, the MT location RMSE vs. time index k for the Cellular, Hybrid 1 and

Hybrid 2 method is shown for the PF with road constraints usingN = 1000. From these

results the same conclusions as those for the PF can be drawn. Note that the results for

the RBPF with road constraints are pratically equivalent and are not shown. It can be

seen that the incorporation of road constraints into the PF for the Cellular method does

not yield the performance improvements that have been obtained in the simulations.

The reason for this result is the investigated field trial scenario, which is much more

challenging than the simulation scenario, since it contains much more road junctions

and less favourable geomtries between the MT and the BSs, cf. Fig. 2.6. These facts

in combination with the availability of inaccurate RTT and RSS measurements result

in the described performance. The performance can be significantly improved using

the Hybrid 2 method. In this case, two very accurate PR measurements are available

that help to improve the overall performance. In Table 4.1, the MT location RMSE

in m for the Cellular, Hybrid 1 and Hybrid 2 methods are shown for the PF and PF
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Figure 4.21. MT location RMSE vs. time index k for the Cellular, Hybrid 1 and
Hybrid 2 methods shown for the PF.

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

 

 

R
M
S
E

in
m

Cellular
Hybrid 1
Hybrid 2

time index k

Figure 4.22. MT location RMSE vs. time index k for the Cellular, Hybrid 1 and
Hybrid 2 methods shown for the PF with road constraints.
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with road constraints using N = 1000 particles. The results show that in terms of

RMSE, the PF with road constraints always outperforms the PF. However, only large

improvements are possible using the Hybrid 2 method. Comparing these results with

the results of the non-recursive estimator, cf. Table 4.1, it can be concluded that the

results of the PF are similar to the results obtained with the non-recursive estimator

assuming optimal initial values. The performance using the PF is not further improved

due to the choice of QCV. Even though the choice of QCV helps to cover the different

maneuvers of the MT during the field trial, it also leads to higher uncertainty meaning

less confidence in the state model. This, in turn, means that performance of the filter

is dominated by the information that is contained in the measurements. Nevertheless,

compared to the non-recursive estimator, the PF-based estimators have the advantage

that they are relatively insensitive to badly chosen initial values.

Table 4.1. MT location RMSE for the Cellular, Hybrid 1 and Hybrid 2 method using
the PF and PF with road constraints for N = 1000 particles.

Method MT location RMSE in m

PF PF with road constraints

Cellular 50.26 49.42

Hybrid 1 47.49 46.30

Hybrid 2 29.85 19.76

4.6.4 Computational Complexity

In order to complement the performance analysis, this section deals with the com-

plexity of the different hybrid localization algorithms. With the obtained results, it

is possible to identify which algorithm presents the best trade-off between complexity

and performance.

In the following, the complexity of the EKF, UKF and CKF algorithms is evaluated in

terms of FLOPs. In the PF-based algorithms, essential steps such as the generation of

random variables cannot be measured in FLOPs. These steps, however, significantly

contribute to the computational complexity and cannot be neglected. The complexity

analysis of PF-based estimators can be found in [KSG05] and is not further treated

in this work, since a fair comparison to KF-based estimators in terms of FLOPs is

not possible. However, as a rule, one can safely say that the PF-based estimators are

orders of magnitude more complex than the KF-based estimators. In Table 4.2, the
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Table 4.2. Computational complexity of some common matrix operations [KSG05]

Operation Size Mult. Add. Other

A+A A ∈ R
n×m − nm −

A ·B A ∈ R
n×m, B ∈ R

m×l lmn (m− 1)ln −
C−1 C ∈ R

n×n n3 − −√
C C ∈ R

n×n − − n3/3 + 2n2

computational complexity of some common matrix operations is summarized [KSG05].

Here, it is worth noting that the matrix square root, which is needed to evaluate the

set of cubature and sigma points, is computed using Cholesky decomposition, whose

complexity grows cubically. In the EKF as well as in the UKF and CKF, there are

certain steps that cannot be measured in FLOPs. In the EKF, for example, one has to

evaluate at every time step k the Jacobian matrix HLOS,k and the nonlinear function

hLOS,k(·), cf. Algorithm 4.1. In the UKF and CKF, one has to propagate at every time

step 2 · nx + 1 sigma points and 2 · nx cubature points through the nonlinear function

hLOS,k(·) (cf. Algorithms 4.2 and 4.3). In the following, the cost of evaluating a certain

nonlinear function and Jacobian matrix is neglected. Furthermore, the computation of

the weights in the UKF and CKF, as well as the initialization of all three filters can

be neglected, since these steps are done only once. In Table 4.3, the computational

complexity of the different quantities that have to be evaluated in the EKF, UKF

and CKF is presented. Summing up the computational complexity of the different

Table 4.3. Computational complexity of the EKF, UKF and CKF. X k|k−1 denotes the
matrix composed of sigma/cubature point vectors.

Quantity Complexity in FLOPs

EKF UKF CKF

x̂k|k−1 2n2
x − nx 2n2

x − nx 2n2
x − nx

Pk|k−1 8n3
x−15n2

x+10nx 8n3
x−15n2

x+10nx 8n3
x−15n2

x+10nx

X k|k−1 − 13n3
x/3+2n2

x 13n3
x/3+2n2

x

ẑk|k−1 − 2nxnz+2nz 2nxnz

Pzz,k|k−1 2n2
znx+2n2

xnz−nxnz 4n2
znx+2nxnz+4n2

z+nz 4n2
znx+3n2

z

Pxz,k|k−1 2n2
xnz−nxnz 4n2

xnz+3nxnz+2n2
x+nx 4n2

xnz+2nxnz

Kk n3
z+2n2

znx−nxnz n3
z+2n2

znx−nxnz n3
z+2n2

znx−nxnz

x̂k|k 2nxnz+2nz 2nxnz+2nz 2nxnz+2nz

Pk|k 2n2
znx+2n2

xnz−nxnz 2n2
znx+2n2

xnz−nxnz 2n2
znx+2n2

xnz−nxnz
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quantities results in the total FLOP complexity of the EKF, UKF and CKF for one

time step which is given by

CEKF(nx, nz) = 8n3
x + n3

z + 6n2
xnz + 6n2

znx − 13n2
x − 2nxnz + 9nx + 2nz, (4.184)

CUKF(nx, nz) =
37

3
n3
x + n3

z + 6n2
xnz + 8n2

znx − 9n2
x + 7nxnz + 4n2

z + 10nx + 5nz,(4.185)

CCKF(nx, nz) =
37

3
n3
x + n3

z + 6n2
xnz + 8n2

znx − 11n2
x + 4nxnz + 3n2

z + 9nx + 2nz.(4.186)

Table 4.4 shows the complexity of the algorithms in terms of FLOPs per time step k for

the different methods and Scenario I. It can be seen that for all investigated methods,

the EKF has the lowest computational complexity, followed by the CKF and UKF.

The complexity reduction of the EKF compared to the UKF is about 30%. Using a

CKF rather than a UKF results in a complexity reduction of only 4%.

Table 4.4. Computational complexity of the hybrid localization algorithms in FLOPs
per time step k for Scenario I.

Method Complexity in FLOPs per Time Step

EKF UKF CKF

Cellular 3108 4534 4314

Hybrid 1 6813 9708 9360

Hybrid 1+ 7974 11230 10842

Hybrid 2 7974 11230 10842

Hybrid 2+ 9267 12916 12486

Hybrid 3 9267 12916 12486

Satellite 2283 3684 3534

4.7 Conclusions

In this chapter, the hybrid localization problem has been reformulated as a recursive

state estimation problem, where the MT state is assumed to be a Markov process.

Various well-known KF-based estimators and PF-based estimators have been proposed

to solve the hybrid localization problem. The RBAPF has been newly proposed and

derived in the framework of a general conditional linear system model. Road constraints

have been incorporated into the PF and RBPF to further improve the performance.

The performance of the different algorithms has been compared to the theoretically
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best achievable performance, which is given by the PCRLB. For the case of LOS

propagation conditions, the PCRLB has been newly derived in the hybrid localization

framework. For the case of switching LOS/NLOS propagation conditions, a numerical

solution of the PCRLB based on Monte Carlo integration has been newly proposed.

The presented hybrid localization algorithms have been extensively analyzed in terms

of performance. The KF-based algorithms are further investigated in terms of their

complexity. If it is not otherwise stated, the following main conclusions hold for both

cases assuming LOS and switching LOS/NLOS propagation conditions:

• The performance gains of the Hybrid 1 method with respect to the Cellular

method strongly depend on the accuracy of the initial values.

• Compared to the hybrid localization algorithms presented in Chapter 3, large

performance improvements can be obtained with the KF-based algorithms and

PF-based algorithms for all investigated methods.

• The proposed KF-based algorithms and PF-based algorithms cannot achieve the

corresponding PCRLBs.

• The RBPF and RBAPF show good performance for the Hybrid 1+ and Hybrid

2+ method for all investigated accuracies of the GRT measurements. The PF and

APF diverge for highly accurate GRT measurements due to a peaked likelihood

pdf.

• For the case of LOS propagation conditions and having no road information avail-

able, the EKF provides the best trade-off between complexity and performance.

• Significantly performance improvements can be achieved for all investigated

methods by incorporating road-constraints into the PF and RBPF. Good per-

formance results can be obtained already with a small number of particles.

• The RBPF always outperforms the PF and the RBAPF always outperforms the

APF. The achievable performance gains strongly depend on the dimension of the

state space and the number of particles used in the corresponding filters.
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Chapter 5

Recursive State Estimation with Adaptive
LOS/NLOS Detection for Hybrid
Localization

5.1 Introduction

In this chapter, the hybrid localization problem is solved using recursive state estima-

tion techniques with adaptive LOS/NLOS detection 1. In recursive state estimation

with adaptive LOS/NLOS detection, the MT state and the mode variable is taken into

account in the estimation process. These quantities are estimated for each time step k

recursively, by taking into account the information available from the measurements,

MT state estimates and estimates related to the mode variable from previous time

steps.

The concept of adaptive recursive Bayesian state estimation is introduced in Section 5.2

and two solutions to the optimal adaptive recursive Bayesian solution are presented.

In order to assess the theoretical best achievable performance of adaptive recursive

estimators, the PCRLB is evaluated for the hybrid localization problem in Section 5.3.

Since an analytical solution of the optimal adaptive recursive Bayesian solution for hy-

brid localization does not exist, suboptimal adaptive recursive estimators are proposed.

In Section 5.4, IMM algorithm-based estimators are introduced to the solve the hybrid

localization problem, and in Section 5.5, multiple model PF-based estimators are pro-

posed. The performance of the different hybrid localization algorithms is analyzed by

means of simulations in Section 5.6. Finally, the main conclusions of this chapter are

drawn in Section 5.7.

1In the literature, recursive state estimation with adaptive detection is also known as adaptive
state estimation, adaptive filtering, jump Markov state estimation or hybrid state estimation [SB99,
BSLK01,RAG04,GG05].
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5.2 Concept of Adaptive Recursive Bayesian Esti-

mation

5.2.1 Introduction

In this section, the concept of adaptive recursive Bayesian estimation is presented. In

adaptive recursive Bayesian estimation, the discrete-valued mode variable rk is intro-

duced to model possible jumps among different models that occur randomly between

two consecutive time steps, see for instance [SB99,BSLK01,RAG04,LJ05]. Since the

actual value of the mode variable rk at every time step is unknown, it has to be consid-

ered as unknown in the corresponding adaptive recursive estimator. In the following,

two approaches are presented, with which the adaptive Bayesian estimation problem

can be solved.

The first approach is based on mode sequence conditioning and is presented in Section

5.2.2. The second approach is based on state vector augmentation and is presented in

Section 5.2.3.

5.2.2 Mode Sequence Conditioning

In this section, the conceptual solution for the adaptive recursive Bayesian estimation

problem using the mode sequence conditioning approach is presented [AF70,BSLK01,

RAG04]. The idea of the mode sequence conditioning approach is to calculate posterior

pdfs that are conditioned on particular mode sequences. Thus, instead of estimating

the current mode rk, all possible mode sequences that might occur through time k are

evaluated in this approach.

Let rlκ denote the particular value of the mode variable at time κ in the l-th mode

sequence. Since at each time step k the mode variable is assumed to be among the

possible s modes, the number of mode sequences increase exponentially with sk. In the

following, the sequence of modes up to time index k is denoted with

Rl
k = {rl1, rl2, . . . , rlk} = {Rl

k−1, r
l
k}, for l = 1, . . . , sk. (5.1)

Let Pr{Rl
k|Zk} denote the probability of a particular mode sequence given the mea-

surements Zk, and let p(xk|Rl
k,Zk) denote the posterior pdf conditioned on a particular
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mode sequence. Then, the posterior pdf p(xk|Zk) can be expressed as a weighted sum

of pdfs according to

p(xk|Zk) =
sk∑

l=1

p(xk,Rl
k|Zk) =

sk∑

l=1

Pr{Rl
k|Zk} · p(xk|Rl

k,Zk). (5.2)

Note that the number of sum components increase exponentially with time. According

to [AF70], the posterior pdf p(xk|Rl
k,Zk) conditioned on a particular mode sequence

as well as the probability Pr{Rl
k|Zk} can be updated recursively. The corresponding

time update and measurement update equations can be written as follows. In the time

update step, the prediction density p(xk|Rl
k,Zk−1) conditioned on the mode sequence

Rl
k is computed according to

p(xk|Rl
k,Zk−1) =

∫

R
nx
p(xk|xk−1, r

l
k) · p(xk−1|Rl

k−1,Zk−1) dxk−1. (5.3)

For state models of the form (2.2), the transitional pdf p(xk|xk−1, rk) can be reduced

to

p(xk|xk−1, rk) = p(xk|xk−1), (5.4)

where p(xk|xk−1) is given by (4.2). In the measurement update step, the posterior

pdf p(xk|Rl
k,Zk) conditioned on the mode sequence is calculated from the following

relationship

p(xk|Rl
k,Zk) =

p(zk|xk, r
l
k) · p(xk|Rl

k,Zk−1)

p(zk|Rl
k,Zk−1)

=
p(zk|xk, r

l
k) · p(xk|Rl

k,Zk−1)
∫

R
nx
p(zk|xk, r

l
k)·p(xk|Rl

k,Zk−1) dxk−1

.

(5.5)

For measurement models of the form (2.18), the pdf p(zk|xk, r
l
k) (or mode-conditioned

likelihood function) is given by

p(zk|xk, r
l
k) = pvk(r

l
k
)(xk − hk(xk, r

l
k)). (5.6)

The probability Pr{Rl
k|Zk} can be evaluated recursively from

Pr{Rl
k|Zk} =

p(zk|Rl
k,Zk−1) · Pr{rlk|rlk−1} · Pr{Rl

k−1|Zk−1}
p(zk|Zk−1)

, (5.7)

and the recursions are initiated with p(x0) and Pr{r1} [AF70,BSLK01]. Note that if the

mode variable rk in effect at every time step k is known, then the adaptive recursive

solution given by (5.2), reduces to the recursive solution presented in Section 4.2.

Knowledge of the posterior pdf p(xk|Zk) enables one to obtain MT state estimates with

respect to any criterion. In the following, the MMSE estimator for recursive adaptive
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estimation and the corresponding covariance using the mode sequence conditioning

approach are introduced that can be obtained from inserting (5.2) into (4.5), yielding

x̂MMSE,k|k =
sk∑

l=1

Pr{Rl
k|Zk} ·

∫

R
nx

xk · p(xk|Rl
k,Zk) dxk, (5.8a)

PMMSE,k|k =
sk∑

l=1

Pr{Rl
k|Zk} ·

∫

R
nx
(xk − x̂MMSE,k|k)(xk − x̂MMSE,k|k)

Tp(xk|Rl
k|Zk) dxk.

(5.8b)

For the hybrid localization problem, an analytical solution for p(xk|Rl
k,Zk) does not

exist, since the measurement model hk(xk, rk) is nonlinear. In this case, one has to

resort to suboptimal approaches. In addition to that, the exponentially increasing

number of mode sequences prevent the evaluation of (5.2) for large values of k in

practice, so that further approximations have to be introduced.

5.2.3 State Vector Augmentation

In this section, the conceptual solution for the adaptive recursive Bayesian estima-

tion problem using the state vector augmentation approach is presented [RAG04]. In

the state vector augmentation approach, the continuous-valued state vector xk is aug-

mented by the unknown discrete-valued mode variable rk, yielding yk = [xT

k , rk]
T. Since

the augmented state vector yk is composed of continuous-valued and discrete-valued

states, the corresponding estimation problem is also known as hybrid-state estimation

problem [RAG04,SB99].

The aim in hybrid-state estimation is to recursively compute estimates of the state xk

and the mode rk using the sequence of all available measurements Zk. From a Bayesian

point of view, the aim is to recursively compute the joint posterior pdf p(xk, rk|Zk),

since it provides a complete statistical description of the state xk and mode rk at that

time. The recursive solution to the hybrid state estimation problem is divided into a

time update step and measurement update step [RAG04]. In the time update step,

the joint prediction density p(xk, rk|Zk−1) is computed according to

p(xk, rk|Zk−1) =
∑

rk−1

Pr{rk|rk−1} ·
∫

R
nx
p(xk|xk−1, rk) · p(xk−1, rk−1|Zk) dxk−1. (5.9)

Note that for state models of the form (2.2) the pdf p(xk|xk−1, r
l
k) can be replaced by

the expression in (5.4). When a new measurement becomes available at time step k,
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the measurement update step is performed. Using Bayes’ theorem, the joint posterior

pdf p(xk, rk|Zk) can be updated according to

p(xk, rk|Zk) =
p(zk|xk, rk) · p(xk, rk|Zk−1)

∑

rk

∫

R
nx
p(zk|xk, rk) · p(xk, rk|Zk−1) dxk

, (5.10)

where the pdf p(zk|xk, rk) is given by (5.6), and the recursions are initiated with p(x0)

and Pr{r1} [RAG04]. The posterior pdf of the current state, given the measurements

can be finally obtained from

p(xk|Zk) =
∑

rk

p(xk, rk|Zk). (5.11)

Note that if rk is known at each time step k, then the adaptive recursive solution

given by (5.11) reduces to the recursive solution presented in Section 4.2. Knowledge

of the posterior pdf p(xk|Zk) enables one to obtain MT state estimates with respect to

any criterion. In the following the MMSE estimator for recursive adaptive estimation

and the corresponding covariance using the state vector augmentation approach are

presented that can be obtained from inserting (5.11) into (4.5), yielding

x̂MMSE,k|k =
∑

rk

∫

R
nx

xk · p(xk, rk|Zk) dxk, (5.12a)

PMMSE,k|k =
∑

rk

∫

R
nx
(xk − x̂MMSE,k|k)·(xk − x̂MMSE,k|k)

T ·p(xk, rk|Zk) dxk. (5.12b)

For the hybrid localization method, an analytical solution to the recursion given by (5.9)

and (5.11) does not exist, since the mode-dependent measurement function hk(xk, rk)

is nonlinear. In this case, one has to resort to suboptimal approaches.

5.3 Posterior Cramér-Rao Lower Bound

5.3.1 Introduction

In this section, the PCRLB for the hybrid localization method is presented, where the

switching between LOS and NLOS propagation conditions is modeled with a Markov

chain. The calculation of the PCRLB for this case is more difficult, since a discrete

valued model index rk is introduced in addition to the continuous valued state vector

xk. As the evaluation of the PCRLB involves derivatives with respect to the state
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vector of interest, rk cannot be included into the state vector, since then, the regularity

conditions for computing the PCRLB are no longer satisfied [vT68].

In the following, two approaches for the evaluation of the PCRLB are presented, that

avoid the incorporation of rk into the state vector of interest. In Section 5.3.2, the

enumeration method is presented, where the PCRLB is approximated as the expected

value of the mode sequence [BRF+03,RAG04,HRF05]. In Section 5.3.3, the marginal-

ization method is proposed, where the discrete mode index rk is marginalized from all

pdfs that are involved in the computation of the PCRLB. The main contributions in

this section are the application of the well-known enumeration method to the hybrid

localization problem, so that suitable performance bounds for the corresponding esti-

mators can be established. In addition to that, a new performance bound is proposed,

which is derived for a more general setting and then applied to the hybrid localization

problem.

5.3.2 Enumeration Method

The idea of the enumeration method is to condition the PCRLB on the mode sequence,

yielding a conditional PCRLB. The unconditional PCRLB is then found, by evaluating

the expected value of the conditional PCRLB, where the expectation is taken over the

mode sequence [BRF+03,RAG04,HRF05].

Let p(Xk,Zk|Rl
k) denote the joint pdf of the sequence of states Xk and measurements

Zk, conditioned on a particular sequence of modes Rl
k. Let further x̂k|k(Zk) denote an

unbiased estimate of xk and let x̂k|k(Zk) − xk denote the estimation error. Then, for

a given mode sequence Rl
k, the covariance matrix of the estimation error has a lower

bound, referred to as conditional PCRLB, and is defined as the inverse of the (nx×nx)

conditional Bayesian information submatrix Jl
k. Then, the covariance matrix of the

estimation error satisfies the following inequality

Ep(Xk,Zk|R
l
k
){(x̂k|k(Zk)− xk)(x̂k|k(Zk)− xk)

T} ≥
[
Jl
k

]−1
. (5.13)

According to [BRF+03, RAG04, HRF05], the conditional Bayesian information sub-

matrix Jl
k for estimating the state vector xk can be calculated recursively using the

following formula

Jl
k = Dl,22

k−1 −Dl,21
k−1(J

l
k−1 +Dl,11

k−1)
−1Dl,12

k−1 +Dl,33
k−1, (k ≥ 1) (5.14)
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where

Dl,11
k−1 = Ep(Xk|R

l
k
){−△xk−1

xk−1
loge p(xk|xk−1, r

l
k)}, (5.15a)

Dl,12
k−1 = Ep(Xk|R

l
k
){−△xk

xk−1
loge p(xk|xk−1, r

l
k)} = [Dl,21

k ]T, (5.15b)

Dl,22
k−1 = Ep(Xk|R

l
k
){−△xk

xk
loge p(xk|xk−1, r

l
k)}, (5.15c)

Dl,33
k−1 = Ep(Xk|R

l
k
){Ep(Zk|Xk,R

l
k
){−△xk

xk
loge p(zk|xk, r

l
k)}}. (5.15d)

The recursion (5.14) is initialized with J0 which is defined in (4.12). The uncondi-

tional PCRLB is defined as the expected value of the conditional PCRLB and can be

determined from the following relationship

Ep(Xk,Zk,R
l
k
){(x̂k|k(Zk)− xk)(x̂k|k(Zk)− xk)

T}

= EPr{Rl
k
}

{

Ep(Xk,Zk|R
l
k
){(x̂k|k(Zk)− xk)(x̂k|k(Zk)− xk)

T}
}

≥ EPr{Rl
k
}

{[
Jl
k

]−1
}

(5.16)

=
sk∑

l=1

Pr{Rl
k}
[
Jl
k

]−1
= PE-PCRLB, (5.17)

where Pr{Rl
k} is the probability that a particular mode sequence Rl

k will occur. Ob-

serve that the number of sum components grows exponentially with time k. Since the

calculation of the probabilities Pr{Rl
k} requires the enumeration of all possible mode

sequences, the bound given in (5.17) is called the Enumeration Posterior Cramér-Rao

Lower Bound (E-PCRLB) [RAG04].

For the hybrid localization method, the Markov chain is assumed to have s = 2NBS

different modes with rk ∈ {1, . . . , 2NBS}, cf. Section 2.3.5. Thus, a calculation of (5.17)

for large values of k is practically impossible (e.g. assuming NBS = 3 and k = 100,

one has to calculate and sum up 8100 unconditional PCRLBs). In this case, it is

possible to approximate the expectation given in (5.16) using a Monte Carlo integration

approach [BRF+03]. The idea is to sample NMC mode sequences Ri
k, i = 1, . . . , NMC,

using the prior mode probabilities Pr{rk = i}, i = 1, . . . , 2NBS , and the mode transition

probabilities πij, i, j = 1, . . . , 2NBS . Then, the expectation (5.16) can be approximated

as follows

EPr{Rl
k
}

{[
Jl
k

]−1
}

≈ 1

NMC

NMC∑

i=1

[
Ji
k

]−1
. (5.18)

Using this strategy, one naturally considers those mode sequences in the computation

of the bound that are most likely and discard the ones that are very unlikely. A proof

that the approximation in (5.18) converges to the E-PCRLB for large NMC can be

found in [BRF+03]. As a result, the E-PCRLB can be approximated with

PE-PCRLB ≈ 1

NMC

NMC∑

i=1

[
Ji
k

]−1
. (5.19)



174 Chapter 5: Recursive State Estimation with Adaptive LOS/NLOS Detection

From (5.19), the MSE of the MT location can be determined which satisfies the fol-

lowing inequality

Ep(Xk,Zk,Rk){‖ x̂MT,k|k(Zk)− xMT,k ‖2} ≥ [PE-PCRLB,k]1,1 + [PE-PCRLB,k]2,2 . (5.20)

In order to evaluate the E-PCRLB for the hybrid localization method, it is necessary

to determine the unknown matrices Dl,11
k−1, D

l,12
k−1, D

l,21
k−1, D

l,22
k−1 and Dl,33

k−1, cf. (5.15).

Since the switching between LOS and NLOS propagation conditions is modeled with

a Markov chain, the hybrid localization method is fully described by the models given

in (2.49) and (2.53). The model in (2.49) is linear Gaussian and independent of the

mode variable rlk, so that the matrices Dl,11
k−1, D

l,12
k−1, D

l,21
k−1 and Dl,22

k−1 simplify to

Dl,11
k−1 = D11

k−1, Dl,12
k−1 = D12

k−1, Dl,21
k−1 = D21

k−1, Dl,22
k−1 = D22

k−1, (5.21)

where D11
k−1, D12

k−1, D21
k−1 and D22

k−1 are defined in (4.15). The likelihood function

p(zk|xk, rk), necessary to evaluate the matrix Dl,33
k−1, can be determined from the mea-

surement model (2.53), and is given by

p(zk|xk, rk) = N (zk;hk(xk, rk) + µk(rk),Rk(rk)). (5.22)

Let H̃k(xk, rk) denote the mode-conditioned Jacobian matrix, which is given by

H̃k(xk, rk) =
















∂h
(1)
k (xk, rk)

∂x
(1)
k

∂h
(1)
k (xk, rk)

∂x
(2)
k

· · · ∂h
(1)
k (xk, rk)

∂x
(nx)
k

∂h
(2)
k (xk, rk)

∂x
(1)
k

∂h
(2)
k (xk, rk)

∂x
(2)
k

· · · ∂h
(2)
k (xk, rk)

∂x
(nx)
k

...
...

...

∂h
(M)
k (xk, rk)

∂x
(1)
k

∂h
(M)
k (xk, rk)

∂x
(2)
k

· · · ∂h
(M)
k (xk, rk)

∂x
(nx)
k
















, (5.23)

and let F(xk, rk) denote the mode-conditioned FIM. Then, the matrix Dl,33
k−1 can be

written as

Dl,33
k−1 = Ep(xk){F(xk, r

l
k)} = Ep(xk){H̃T

k (xk, r
l
k) ·
[
Rk(r

l
k)
]−1 · H̃k(xk, r

l
k)}. (5.24)

Note that the bound is independent of the mean vector µk(r
l
k). By insertion of (5.21)

and (5.24) into (5.14) and by application of the matrix inversion lemma (4.18) to (5.14),

the expression for the recursive calculation of the conditional Bayesian information

submatrix can be rewritten as

Jl
k =

[
Γ ·Q · ΓT + F · [Jl

k−1]
−1 · FT

]−1
+ Ep(xk){H̃T

k (xk, r
l
k) ·
[
Rk(r

l
k)
]−1 · H̃k(xk, r

l
k)}.

(5.25)
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The expected value of the mode-conditioned FIM is approximated in the following

using a Monte-Carlo integration approach, cf. Appendix A.10, yielding

Ep(xk){F(xk, r
l
k)} ≈ 1

NMC

NMC∑

n=1

H̃T

k (x
(n)
k , rlk) ·

[
Rk(r

l
k)
]−1 · H̃k(x

(n)
k , rlk), (5.26)

where x
(n)
k , n = 1, . . . , NMC, are i.i.d. state vector realizations, such that x

(n)
k ∼ p(xk).

Finally, by insertion of (5.25) into (5.19) and evaluation of (5.20), the MT location

E-PCRLB can be found. The E-PCRLB is overly optimistic, because in calculating

each conditional Bayesian information submatrix Jl
k, it is implicitly assumed that the

mode sequence Rl
k is known [BRF+03,RAG04,HRF05]. In reality, however, the mode

sequence is not known and the corresponding filter algorithm has to account for this

added uncertainty. As a result, it is expected, that the estimation errors of the corre-

sponding adaptive recursive algorithms are greater than the bound.

5.3.3 Marginalization Method

The idea of the marginalization method is to marginalize the discrete mode index rk

from all pdfs that are necessary to evaluate the PCRLB. This approach is not new and

has been recently proposed in [Sve10] to compute the PCRLB for a nonlinear, additive

Gaussian state model that depends on the discrete model index rk and a linear, additive

Gaussian measurement model that is independent of rk. However, the algorithm pre-

sented in [Sve10] cannot be applied to evaluate the PCRLB for the hybrid localization

method, since in our case, the state model is linear, additive Gaussian and indepen-

dent of rk, cf. (2.49), and the measurement model is nonlinear, additive Gaussian and

depends on rk, cf. (2.53). In the following, it is shown how the idea of marginalization

can be applied to evaluate the PCRLB for the hybrid localization method. The cor-

responding PCRLB is termed hereinafter the Marginalization Posterior Cramér-Rao

Lower Bound (M-PCRLB).

The main objective is to evaluate the PCRLB for the current state xk given the sequence

of measurements Zk. Recall from Section 4.3 that the Bayesian information submatrix

Jk for the parameter of interest xk, is defined as the inverse of the (nx×nx) lower-right

submatrix of [IB,k]
−1. Thus, in order to obtain the PCRLB for xk, the inverse of Jk has

to be calculated. According to (4.7), the BIM for estimating the sequence of states Xk

depends on the joint density p(Xk,Zk). For the general state and measurement model

given in (2.1) and (2.17), which include the models (2.49) and (2.53) for the hybrid
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localization method, the joint density p(Xk,Zk) can be decomposed as follows

p(Xk,Zk) = p(xk,Xk−1, zk,Zk−1)

= p(zk|xk,Xk−1,Zk−1) · p(xk|Xk−1,Zk−1) · p(Xk−1,Zk−1)

= p(zk|xk,Zk−1) · p(xk|xk−1) · p(Xk−1,Zk−1), (5.27)

where the third equality follows from the fact that xk is Markov. Note that the pdf

p(zk|xk,Zk−1) implicitly takes into account the dependency of the measurements on

the Markov chain by conditioning the pdf on the sequence of measurements Zk−1.

This, in turn, means that the conditional independence assumption does not hold

any longer for models of the form (2.17), i.e., p(zk|xk,Zk−1) 6= p(zk|xk). Since xk is

Markov, the BIM has a block diagonal structure that enables a recursive calculation

of the PCRLB [TMN98]. In the following, a recursive formula for evaluating the

Bayesian information submatrix is presented. The Bayesian information submatrix Jk

for estimating the state vector xk can be calculated recursively using the following

formula

Jk = D22
k−1 −D21

k−1(Jk−1 +D11
k−1)

−1D12
k−1 +D33

k−1, (k ≥ 1) (5.28)

where D11
k−1, D

12
k−1, D

21
k−1 and D22

k−1 are given by (4.10a)-(4.10c) and

D33
k−1 = Ep(Xk,Zk){−△xk

xk
loge p(zk|xk,Zk−1)}. (5.29)

A proof of (5.28) can be found in Appendix A.11. For the hybrid localization method,

the matrices D11
k−1, D

12
k−1, D

21
k−1 and D22

k−1 are given by (4.15). Following the same

derivation steps as in Section 4.3.2, the recursive formula for computing the Bayesian

information submatrix for the hybrid localization method can be written as

Jk =
[
Γ ·Q · ΓT + F · [Jk−1]

−1 · FT
]−1

+D33
k−1. (5.30)

The matrix D33
k−1 is approximated numerically, using a Monte Carlo integration ap-

proach. The expectation in (5.29) can be written as

D33
k−1 =

∫

(Rnx)k

[
∫

(Rnz)k

[
−△xk

xk
loge p(zk|xk,Zk−1)

]
· p(Zk|Xk) dZk

]

· p(Xk) dXk.

(5.31)

Often, it is more convenient to express D33
k−1 as follows

D33
k−1=

∫

(Rnx)k

[
∫

(Rnz)k
∇xk

p(zk|xk,Zk−1)·[∇xk
p(zk|xk,Zk−1)]

T

[p(zk|xk,Zk−1)]
2 p(Zk|Xk)dZk

]

p(Xk)dXk.

(5.32)

A Monte Carlo approximation of (5.32) is, thus, given by

D33
k−1 ≈

1

NMC

NMC∑

n=1

∇xk
p(z

(n)
k |x(n)

k ,Z
(n)
k−1) ·

[

∇xk
p(z

(n)
k |x(n)

k ,Z
(n)
k−1)

]T

[

p(z
(n)
k |x(n)

k ,Z
(n)
k−1)

]2 , (5.33)
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where X
(n)
k , n = 1, . . . , NMC, are i.i.d. vectors such that X

(n)
k ∼ p(Xk) and Z

(n)
k ,

n = 1, . . . , NMC, are i.i.d. vectors such that Z
(n)
k ∼ p(Zk|X(n)

k ). In order to approximate

D33
k−1 as in (5.33), a recursive algorithm has to be developed to generate X

(n)
k and Z

(n)
k

and to evaluate

∇xk
p(z

(n)
k |x(n)

k ,Z
(n)
k−1) ·

[

∇xk
p(z

(n)
k |x(n)

k ,Z
(n)
k−1)

]T

[

p(z
(n)
k |x(n)

k ,Z
(n)
k−1)

]2 . (5.34)

Note, if X
(n)
k can be generated recursively, it is also possible to evaluate the approx-

imation of the expectation (5.33) for each k. For the state and measurement model

given by (2.1) and (2.17), the joint density of Xk and Zk can be written for k > 0 as

p(Xk,Zk) = p(x0) · p(z1|x1) ·
k∏

t=1

p(xt|xt−1) ·
k∏

s=2

p(zs|xs,Zs−1), (5.35)

which allows a recursive generation of X
(n)
k and Z

(n)
k . To compute ∇xk

p(z
(n)
k |x(n)

k ,Z
(n)
k−1)

and p(z
(n)
k |x(n)

k ,Z
(n)
k−1), one has to calculate Pr{rk}, p(z

(n)
k |x(n)

k , rk) and

∇xk
p(z

(n)
k |x(n)

k , rk) for all values of rk and k. An algorithm to do this and with

which the M-PCRLB can be evaluated is given in Algorithm 5.1.

Algorithm 5.1 Computation of the Marginalization PCRLB

1. At time k = 0, initialize xn
0 ∼ p(x0) for n = 1, ..., NMC. Evaluate J0 from (4.12)

and determine the M-PCRLB which is given by [J0]
−1.

2. At time k = 1, initialize r
(n)
1 ∼ Pr{r1} and generate x

(n)
1 ∼ p(x1|x(n)

0 ) and

z
(n)
1 ∼ p(z1|x(n)

1 , r
(n)
1 ) for n = 1, ..., NMC.

- Evaluate ∇x1p(z
(n)
1 |x(n)

1 ) and p(z
(n)
1 |x(n)

1 ) for each n as follows:

∇x1p(z
(n)
1 |x(n)

1 ) =
∑

r1

∇x1p(z
(n)
1 |x(n)

1 , r1) · Pr{r1},

p(z
(n)
1 |x(n)

1 ) =
∑

r1

p(z
(n)
1 |x(n)

1 , r1) · Pr{r1}.

- Evaluate D33
0 given in (5.33). Afterwards, evaluate J1 according to (5.28)

and obtain the M-PCRLB which is given by [J1]
−1.

3. For k = 2, 3, . . . , and n = 1, . . . , NMC, do:

- Generate r
(n)
k ∼ Pr{rk|r(n)k−1}, x

(n)
k ∼ p(xk|x(n)

k−1) and z
(n)
k ∼ p(zk|x(n)

k , r
(n)
k ).
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- Update the stored quantity Pr{rk−1} using the relation

Pr{rk} =
∑

rk−1

Pr{rk|rk−1}Pr{rk−1}. (5.36)

- Evaluate ∇xk
p(z

(n)
k |x(n)

k ,Zk−1) and p(z
(n)
k |x(n)

k ,Zk−1) as follows:

∇xk
p(z

(n)
k |x(n)

k ,Z
(n)
k−1) =

∑

r1

∇xk
p(z

(n)
k |x(n)

k , rk) · Pr{rk},

p(z
(n)
k |x(n)

k ,Z
(n)
k−1) =

∑

r1

p(z
(n)
k |x(n)

k , rk) · Pr{rk}. (5.37)

- Evaluate D33
k−1 given in (5.33). Afterwards, evaluate Jk according to (5.28)

and obtain the M-PCRLB which is given by [Jk]
−1.

Note that (5.37) can be derived as follows

p(z
(n)
k |x(n)

k ,Z
(n)
k−1) =

∑

rk

p(z
(n)
k , rk|x(n)

k ,Z
(n)
k−1)

=
∑

rk

p(z
(n)
k |x(n)

k , rk,Z
(n)
k−1) · p(xk,Z

(n)
k−1|rk) · Pr{rk}

p(xk,Z
(n)
k−1)

=
∑

rk

p(z
(n)
k |x(n)

k , rk) · p(xk,Z
(n)
k−1) · Pr{rk}

p(xk,Z
(n)
k−1)

=
∑

rk

p(z
(n)
k |x(n)

k , rk) · Pr{rk}, (5.38)

where the third equality follows from the fact that the joint distribution of xk and

Zk−1 is conditionally independent of rk. Note further that (5.36) reduces to Pr{rk} =

Pr{rk−1}, ∀ rk = rk−1, for time-homogeneous Markov chains with symmetric TPMs,

which are initialized with their stationary values. In order to evaluate the M-PCRLB

for the hybrid localization method, the gradient ∇xk
p(zk|xk, rk) and the transitional

pdf has to be known. Recall that the pdfs p(xk|xk−1) and p(zk|xk, rk) are given by

(4.14) and (5.22). Then, the gradient is given as follows

∇xk
p(zk|xk, rk) = p(zk|xk, rk) ·HT

k (xk, rk) · [Rk(rk)]
−1 · [zk − hk(xk, rk)− µk(rk)] .

(5.39)

The MT location PCRLB can be determined by evaluating the Bayesian information

submatrix Jk according to (5.30) and then inserting the result into (4.13). In contrast

to the E-PCRLB, the M-PCRLB does not assume that the mode sequenceRl
k is known.

Thus, it is expected, that the M-PCRLB is greater than the E-PCRLB.
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5.4 Interacting Multiple Model Algorithm-based

Estimators

5.4.1 Introduction

In this section, suboptimal estimators for the hybrid localization problem are developed

that are based on the mode sequence conditioning approach presented in Section 5.2.2.

In order to avoid the exponential increasing number of mode sequences in the optimal

approach, the idea of suboptimal solutions is to keep a fixed number of mode sequences

with the largest probabilities and discard the rest. The probabilities of the remaining

mode sequences are then renormalized such that they sum up to unity.

Suboptimal approaches for solving the adaptive recursive Bayesian estimation problem

using the mode sequence conditioning approach are the generalized pseudo-Bayesian

and the IMM algorithm [AF70, BBS88,MABSD98, BSLK01, DB04, LJ05]. These ap-

proaches have in common that a certain number of filters (e.g. EKFs, CKFs or PFs)

operate in parallel, where each filter is matched to a certain mode sequence. In the

following, the IMM algorithm is proposed to solve the adaptive recursive Bayesian

estimation problem, since it only requires s filters in parallel and best trades off perfor-

mance versus computational complexity [BSLK01]. Any filter proposed in Section 4.4

and 4.5 or a combination of them can be used in conjunction with the IMM algorithm.

For the hybrid localization problem, however, the IMM algorithm in conjunction with

the EKF is proposed as solution, since with the other, computationally more complex

filters, no significant performance improvements are expected, as long as road con-

straints are not included in the algorithm. Even though PF-based estimators using

road constraints can be used in the IMM algorithm as well, it turned out that these

approaches cannot reach the performance of the multiple-model particle filter based

approaches, cf. Section 5.5, and thus, are not further considered. The main contri-

bution of this section is the application of the well-known IMM-EKF to the hybrid

localization problem with adaptive LOS/NLOS detection.

5.4.2 Interacting Multiple Model Extended Kalman Filter

In this section, the IMM-EKF is proposed as a solution to the hybrid localization

problem with adaptive LOS/NLOS detection. In the IMM algorithm, the posterior

pdf, cf. (5.2), is approximated as

p(xk|Zk) ≈
∑

rk

Pr{rk|Zk} · p(xk|rk,Zk) (5.40)
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[BBS88,BSLK01]. Observe that the number of components in the sum is reduced from

sk to s, which leads to a substantial complexity reduction. The quantities Pr{rk|Zk}
and p(xk|rk,Zk) can be calculated recursively by introducing a mixing stage at the

beginning of each recursion, where the history through k − 1 is summarized by merg-

ing the mode-conditioned posterior pdfs of the previous time step into s new mixing

pdfs. The mixing stage is the key feature of the IMM algorithm, and enables one to

use s mode-conditioned filters in parallel rather than sk filters. The IMM algorithm

can be decomposed into the following stages: Mixing probability calculation, mixing,

mode-conditioned filtering and mode update. The corresponding IMM recursions are

summarized below (for detailed derivations, see for instance [BBS88,BSLK01]).

• Mixing probability calculation (rk, rk−1 = 1, . . . , s)

Pr{rk−1|rk,Zk−1} =
Pr{rk|rk−1} · Pr{rk−1|Zk−1}

Pr{rk|Zk−1}
, (5.41)

where

Pr{rk|Zk−1} =
∑

rk−1

Pr{rk|rk−1} · Pr{rk−1|Zk−1}. (5.42)

• Mixing (rk = 1, . . . , s)

p(xk−1|rk,Zk−1) =
∑

rk−1

Pr{rk−1|rk,Zk−1} · p(xk−1|rk−1,Zk−1). (5.43)

• Mode-conditioned filtering (rk = 1, . . . , s)

– Mode-conditioned Time Update

p(xk|rk,Zk−1) =

∫

p(xk|xk−1, rk) · p(xk−1|rk,Zk−1) dxk−1. (5.44)

– Mode-conditioned Measurement Update

p(xk|rk,Zk) =
p(zk|xk, rk) · p(xk|rk,Zk−1)

p(zk|rk,Zk−1)
, (5.45)

where

p(zk|rk,Zk−1) =

∫

p(zk|xk, rk) · p(xk|rk,Zk−1) dxk. (5.46)

• Mode Update (rk = 1, . . . , s)

Pr{rk|Zk} =
p(zk|rk,Zk−1) · Pr{rk|Zk−1}
∑

rk

p(zk|rk,Zk−1) · Pr{rk|Zk−1}
. (5.47)
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The IMM recursions are initiated with p(x0) and Pr{r1}. By using the mode prob-

abilities Pr{rk|Zk}, obtained from the mode update, and the mode-conditioned pdfs

p(xk|rk,Zk), obtained from the mode-conditioned measurement update, an approxima-

tion to the posterior pdf p(xk|Zk) can be finally determined according to (5.40).

In the IMM-EKF the idea is to evaluate the mode-conditioned filtering stage using

a bank of s EKF, operating in parallel, where each of the EKFs is matched to a

specific mode. In each mode-conditioned EKF, the posterior pdf p(xk−1|rk−1,Zk−1) is

approximated with a Gaussian pdf, i.e.,

p(xk−1|rk−1,Zk−1) ≈ N (xk−1; x̂k−1|k−1(rk−1),Pk−1|k−1(rk−1)), for rk−1 = 1, . . . , s.

(5.48)

Thus, the mixing pdf p(xk−1|rk,Zk−1), cf. (5.43), is composed of a sum of Gaussian

pdfs (or Gaussian mixture pdf) given by

p(xk−1|rk,Zk−1) ≈
∑

rk−1

Pr{rk−1|rk,Zk−1} · N (xk−1; x̂k−1|k−1(rk−1),Pk−1|k−1(rk−1)),

(5.49)

with rk = 1, . . . , s, respectively. Since the mixing pdfs p(xk−1|rk,Zk−1) serve as input

to the s mode-conditioned EKF, and the mode-conditioned EKF can handle only

Gaussian pdfs, the mixing pdfs have to be further approximated with a single Gaussian

pdf using moment matching [BSLK01], yielding

p(xk−1|rk,Zk−1) ≈ N (xk−1; x̂m,k−1|k−1(rk),Pm,k−1|k−1(rk)), for rk = 1, . . . , s,

(5.50)

where

x̂m,k−1|k−1(rk) =
∑

rk−1

Pr{rk−1|rk,Zk−1} · x̂k−1|k−1(rk−1), (5.51a)

Pm,k−1|k−1(rk) =
∑

rk−1

Pr{rk−1|rk,Zk−1} ·
{
Pk−1|k−1(rk−1) +

[
x̂k−1|k−1(rk−1)−

x̂m,k−1|k−1(rk)
]
·
[
x̂k−1|k−1(rk−1)− x̂m,k−1|k−1(rk)

]T
}

.(5.51b)

After having completed the mode-matched filtering and mode update stage, s different

state estimates x̂k|k(rk), covariances Pk|k(rk) and mode probabilities Pr{rk|Zk} are

available, from which approximations of the estimates x̂MMSE,k|k and PMMSE,k|k, cf.

(5.8), can be computed according to

x̂MMSE,k|k ≈
∑

rk

Pr{rk|Zk} · x̂k|k(rk), (5.52a)

PMMSE,k|k ≈
∑

rk

Pr{rk|Zk}·
{

Pk|k(rk)+
[
x̂k|k(rk)−x̂MMSE,k|k

]
·
[
x̂k|k(rk)−x̂MMSE,k|k

]T
}

(5.52b)
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[BSLK01]. For the hybrid localization method, where the switching between LOS

and NLOS propagation conditions is modeled with a Markov chain having s = 2NBS

different modes, 2NBS EKFs have to be operated in parallel. Thus, the proposed

IMM-EKF-based solution is especially suitable for scenarios where measurements are

received from a small number of BSs. In addition to that, if the number of possible

modes is too large, another problem occurs which degrades the performance and which

is known as competition among the modes [MABSD98]. A pseudocode description of

the IMM-EKF for hybrid localization is summarized in Algorithm 5.2. Note that after

the initialization, the mixing probability calculation and the mixing are left out and

one directly performs the mode-conditioned extended Kalman filtering.

Algorithm 5.2 Interacting Multiple Model Extended Kalman Filter

1. Initialization:

- For r1 = 1, ..., 2NBS , initialize the 2NBS mode-conditioned EKFs with

{xm,0|0(r1),Pm,0|0(r1)} = {x̂0,P0} and set the initial mode probabilities to

Pr{r1} = 1/2NBS .

2. Mixing Probability Calculation:

- For rk−1 = rk = 1, ..., 2NBS , evaluate the mixing probabilities according to

Pr{rk−1|rk,Zk−1} =
Pr{rk|rk−1} · Pr{rk−1|Zk−1}

Pr{rk|Zk−1}
,

and store the predicted mode probabilities

Pr{rk|Zk−1} =
∑

rk−1

Pr{rk|rk−1} · Pr{rk−1|Zk−1}.

3. Mixing:

- For rk = 1, ..., 2NBS , evaluate the moment matched means and covariances

of the mixing pdfs according to

x̂m,k−1|k−1(rk) =
∑

rk−1

Pr{rk−1|rk,Zk−1} · x̂k−1|k−1(rk−1),

Pm,k−1|k−1(rk) =
∑

rk−1

Pr{rk−1|rk,Zk−1} ·
{
Pk−1|k−1(rk−1) +

[
x̂k−1|k−1(rk−1)−

x̂m,k−1|k−1(rk)
]
·
[
x̂k−1|k−1(rk−1)− x̂m,k−1|k−1(rk)

]T
}

.

4. Mode-conditioned Extended Kalman Filtering:
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- For rk = 1, ..., 2NBS , evaluate

x̂k|k−1(rk) = F · x̂m,k−1|k−1(rk),

Pk|k−1(rk) = F ·Pm,k−1|k−1(rk) · FT + Γ ·Q · ΓT,

Pxz,k|k−1(rk) = Pk|k−1(rk) · H̃T

k (x̂k|k−1(rk), rk),

Pzz,k|k−1(rk) = H̃k(x̂k|k−1(rk), rk) ·Pk|k−1(rk) · H̃T

k (x̂k|k−1(rk), rk) +Rk(rk),

Kk(rk) = Pxz,k|k−1(rk) · [Pzz,k|k−1(rk)]
−1,

x̂k|k(rk) = x̂k|k−1(rk) +Kk(rk) · [zk − hk(x̂k|k−1(rk), rk)− µk(rk)],

Pk|k(rk) = Pk|k−1(rk)−Kk(rk) ·Pzz,k|k−1(rk) ·KT

k (rk),

and approximate

p(zk|rk,Zk−1) = N (zk;hk(x̂k|k−1(rk), rk) + µk(rk),Pzz,k|k−1(rk)).

5. Mode Update

- For rk = 1, ..., 2NBS , evaluate

Pr{rk|Zk} =
p(zk|rk,Zk−1) · Pr{rk|Zk−1}
∑

rk

p(zk|rk,Zk−1) · Pr{rk|Zk−1}
,

where Pr{rk|Zk−1} and p(zk|rk,Zk−1) are available from step 2 and 4.

6. Estimation:

- Determine an estimate of the state vector according to

x̂MMSE,k|k =
∑

rk

Pr{rk|Zk} · x̂k|k(rk).

7. Set k := k + 1 and iterate from step 2.

5.5 Multiple Model Particle Filter-based Estima-

tors

5.5.1 Introduction

In this section, suboptimal estimators for the hybrid localization problem are developed

that are based on the state vector augmentation approach presented in Section 5.2.3.
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Suboptimal approaches for solving the adaptive recursive Bayesian estimation prob-

lem using the state vector augmentation approach are generally PF-based [RAG04].

These approaches have in common that the posterior pdf of the augmented state vector

p(xk, rk|Zk) is represented by particles and corresponding weights, from which relevant

quantities such as x̂MMSE,k|k, PMMSE,k|k and mode probabilities Pr{rk|Zk} can be com-

puted. An appealing advantage of this approach is that, compared to the IMM-EKF,

the mode probabilities can be estimated without merging mode histories and it is not

necessary to linearize the measurement model.

For any PF-based estimator proposed in Section 4.5, a corresponding multiple-model-

based estimator can be constructed. In the literature, this has been done for the

PF [MI00], yielding the multiple-model particle filter (MM-PF), for the APF [KB00],

yielding the multiple-model auxiliary particle filter and for the RBPF, yielding the

multiple-model Rao-Blackwellized particle filter (MM-RBPF) [MAH+07]. In the fol-

lowing, the MM-PF and the MM-RBPF are proposed as solution for the hybrid lo-

calization problem. Road constraints are incorporated into these filters in order to

further improve the performance. In Section 5.5.2 the MM-PF is presented and in Sec-

tion 5.5.3 the MM-RBPF is introduced. The main contributions of this section are the

application of the well-known MM-PF to the hybrid localization problem. In addition

to that, the MM-RBPF presented in [MAH+07] is derived for a more general setting

and then applied to the hybrid localization problem.

5.5.2 Multiple Model Particle Filter

5.5.2.1 Introduction

In this section, the MM-PF is proposed as a solution to the hybrid localization problem.

The MM-PF is a sequential Monte Carlo approximation of the conceptual solution of

the adaptive recursive Bayesian estimation given by (5.9) and (5.10). In the MM-

PF, the posterior pdf, cf. (5.2) is approximated by a set of particles and weights

{y(i)
k , w

(i)
k|k}Ni=1, where each particle y

(i)
k consists of two components, namely x

(i)
k and

r
(i)
k [MI00,RAG04]. The corresponding discrete approximation to the posterior pdf is

given by

p(xk, rk|Zk−1) ≈
N∑

i=1

w
(i)
k|k · δ(xk − x

(i)
k , rk − r

(i)
k ). (5.53)

In the following, it is shown how the particles and weights can be updated recursively,

resulting in the MM-PF.
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5.5.2.2 Derivations

In this section, the MM-PF for hybrid localization is derived. The derivation of the

MM-PF is based on the posterior pdf p(xk, rk|Zk) [MI00,DdFG01].

Initialization

The MM-PF is initialized as follows:

p(xk−1, rk−1|Zk−1) ≈
N∑

i=1

w
(i)
k−1|k−1 · δ(xk−1 − x

(i)
k−1, rk−1 − r

(i)
k−1). (5.54)

Time Update

The time update starts with evaluating the joint prediction density p(xk, rk|Zk−1), cf.

(5.9), yielding

p(xk, rk|Zk−1) =
∑

rk−1

Pr{rk|rk−1} ·
∫

R
nx
p(xk|xk−1, rk) · p(xk−1, rk−1|Zk)

︸ ︷︷ ︸

(5.54)

dxk−1

≈
N∑

i=1

w
(i)
k−1|k−1 · Pr{rk|r

(i)
k−1} · p(xk|x(i)

k−1, rk). (5.55)

In the following, a weighted discrete approximation of p(xk, rk|Zk−1) is obtained using

an importance sampling approach. In the MM-PF, the key idea is to represent each

component of the weighted sum in (5.55) by a single particle, which is composed of

x
(i)
k and r

(i)
k . While the mode rk is sampled from Pr{rk|r(i)k−1}, the state xk is sampled

from a mode-conditioned importance density, yielding

r
(i)
k ∼ Pr{rk|r(i)k−1}, and x

(i)
k ∼ q(xk|x(i)

k−1, r
(i)
k , zk), i = 1, . . . , N, (5.56)

where the latest measurement zk is taken into account in the mode-conditioned impor-

tance density [RAG04]. As a result, the prediction pdf can be approximated as

p(xk, rk|Zk−1) ≈
N∑

i=1

w
(i)
k|k−1 · δ(xk − x

(i)
k , rk − r

(i)
k ), (5.57)

where the unnormalized importance weights are given by

w
(i)
k|k−1 ∝ w

(i)
k−1|k−1 ·

p(x
(i)
k |x(i)

k−1, r
(i)
k )

q(x
(i)
k |x(i)

k−1, r
(i)
k , zk)

, i = 1, . . . , N. (5.58)

The importance weights have to be further normalized to ensure
∑N

j=1w
(j)
k|k−1 = 1.
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Measurement Update

In the measurement update, the joint posterior pdf p(xk, rk|Zk) is updated according

to (5.10). Insertion of (5.58) into (5.10) gives a weighted discrete approximation of the

joint posterior pdf. Since this approximation is numerically normed, a calculation of

the denominator in (5.10) is not needed, yielding

p(xk, rk|Zk) ∝ p(zk|xk, rk) · p(xk, rk|Zk−1)

≈
N∑

i=1

w
(i)
k|k−1 · p(zk|x

(i)
k , r

(i)
k )

︸ ︷︷ ︸

w
(i)
k|k−1

·δ(xk − x
(i)
k , rk − r

(i)
k )

=
N∑

i=1

w
(i)
k|k · δ(xk − x

(i)
k , rk − r

(i)
k ), (5.59)

where the normalized importance weights are given by

w
(i)
k|k =

w
(i)
k|k−1 · p(zk|x

(i)
k , r

(i)
k )

∑N
j=1w

(j)
k|k−1 · p(zk|x

(j)
k , r

(i)
k )

, i = 1, . . . , N. (5.60)

By finally omitting the mode rk in the discrete approximation (5.59), the desired pos-

terior pdf of the current state is found which is given by

p(xk|Zk) ≈
N∑

i=1

w
(i)
k|k · δ(xk − x

(i)
k ). (5.61)

Estimation and Resampling

In the MM-PF, the formulas for estimating the mean vector x̂MMSE,k and its covariance

P̂MMSE,k are equivalent to the formulas given in (4.68), since the posterior pdf is ap-

proximated with (5.61). For the resampling step in the MM-PF, systematic resampling

is used which is explained in Section 4.5.2.2.

5.5.2.3 Choice of Importance Density

In the design of MM-PFs, the choice of the mode-conditioned importance den-

sity q(xk|x(i)
k−1, r

(i)
k , zk) plays a major role. The optimal mode-conditioned impor-

tance density that minimizes the variance of the importance weights is given by
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q(xk|x(i)
k−1, r

(i)
k , zk)opt = p(xk|x(i)

k−1, rk, zk) [RAG04]. However, for the hybrid localiza-

tion problem, a closed-form expression for the density p(xk|x(i)
k−1, rk, zk) does not exist,

so that one has resort to suboptimal choices. For the hybrid localization problem, the

following importance density is chosen

q(xk|x(i)
k−1, r

(i)
k , zk) = p(xk|x(i)

k−1, r
(i)
k ) = p(xk|x(i)

k−1). (5.62)

In this case, the weights in the time update are given by w
(i)
k|k−1 = w

(i)
k−1|k−1, cf. (5.58),

and the weights in the measurement update simplify to

w
(i)
k|k =

w
(i)
k−1|k−1 · p(zk|x

(i)
k , r

(i)
k )

∑N
j=1w

(j)
k−1|k−1 · p(zk|x

(j)
k , r

(j)
k )

, i = 1, . . . , N. (5.63)

A pseudocode description of the MM-PF for the hybrid localization is given in Algo-

rithm 5.3. Note that the pdfs p(xk|xk−1) and p(zk|xk, rk), and the TPM Pr{rk|rk−1},
necessary to evaluate Algorithm 5.3, are given by (4.14), (5.22) and (2.52), respectively.

Note further that after the initialization, the sampling of mode variables in the time

update step is left out, and one directly starts with the sampling of the states.

5.5.2.4 Incorporation of Road Constraints

In this section, it is explained how road constraints can be incorporated into the MM-

PF for hybrid localization. For incorporating road constraints into the MM-PF, the

approach presented in Section 4.5.6.2 is used. Since the mode variable is included only

in the measurement model, the incorporation of road constraints into the MM-PF can

be done as follows. The model for generating the state xk is replaced with the model for

generating road-constrained states xR,k, cf. (4.169). The mode-conditioned likelihood

function has to be rewritten as

p(zk|xk, rk) = p(zk|TG,k(xR,k, TRN), rk). (5.64)

A pseudocode description of the MM-PF with road-constraints for hybrid localization

is given in Algorithm 5.4. Note that after the initialization, the sampling of mode

variables in the time update step is left out, and one directly starts with the sampling

of the road-constrained states.
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Algorithm 5.3 Multiple-Model Particle Filter

1. Initialization:

- For i = 1, ..., N, initialize the particles x
(i)
0 ∼ p(x0), the weights w

(i)
0|0 = 1

N

and the mode probabilities r
(i)
1 ∼ Pr{r1}.

2. Time Update:

- For i = 1, ..., N, draw mode probabilities according to

r
(i)
k ∼ Pr{rk|r(i)k−1},

and draw states from the importance density

x
(i)
k ∼ p(xk|x(i)

k−1).

3. Measurement Update:

- For i = 1, ..., N,, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · p(zk|x

(i)
k , r

(i)
k )

N∑

j=1

w
(j)
k−1|k−1 · p(zk|x

(j)
k , r

(j)
k )

.

4. Estimation:

- Determine an estimate of the state vector according to

x̂k =
N∑

i=1

w
(i)
k|k · x

(i)
k .

5. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with
replacement from the set {x(i)

k , r
(i)
k }Ni=1, where the probability to take sample

i is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

6. Set k := k + 1 and iterate from step 2.



5.5 Multiple Model Particle Filter-based Estimators 189

Algorithm 5.4 Multiple-Model Particle Filter with Road Constraints

1. Initialization:

- For i = 1, ..., N, initialize the particles x
(i)
R,0 ∼ p(xR,0), the weights w

(i)
0|0 =

1
N

and the mode probabilities r
(i)
1 ∼ Pr{r1}.

2. Time Update:

- For i = 1, ..., N, draw mode probabilities according to

r
(i)
k ∼ Pr{rk|r(i)k−1},

- For i = 1, ..., N, generate particles x
(i)
R,k from x

(i)
R,k−1 by using samples from

the process noise sequences w
(i)
R,k−1 ∼ pwR,k−1

(·) and w
(i)
CO,k−1 ∼ pwCO,k−1

(·)
as shown in (4.169).

3. Measurement Update:

- For i = 1, ..., N,, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · p(zk|TG,k(x

(i)
R,k, IRN), r

(i)
k )

N∑

j=1

w
(j)
k−1|k−1 · p(zk|TG,k(x

(j)
R,k, TRN), r

(j)
k )

.

4. Estimation:

- Determine an estimate of the state vector according to

x̂k =
N∑

i=1

w
(i)
k|k ·TG,k(x

(i)
R,k, TRN).

5. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with
replacement from the set {x(i)

R,k, r
(i)
k }Ni=1, where the probability to take sample

i is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

6. Set k := k + 1 and iterate from step 2.
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5.5.3 Multiple Model Rao-Blackwellized Particle Filter

5.5.3.1 Introduction

The MM-PF requires a large number of particles to obtain a good approximation of the

joint posterior pdf p(xk, rk|Zk) in state estimation problems, where the dimension of the

state vector xk is high. In order to overcome this problem, Rao-Blackwellization can

be applied to the MM-PF. The corresponding MM-RBPF exploits linear substructures

in the state and measurement model equations, cf. Sections 2.3.2 and 2.3.3, so that

the state space can be partitioned into two parts according to (4.71). The resulting

joint posterior pdf can be partitioned into two pdfs using Bayes’ rule as follows

p(xn
k,x

l
k, rk|Zk) = p(xl

k|xn
k, rk,Zk) · p(xn

k, rk|Zk). (5.65)

The first pdf p(xl
k|xn

k, rk,Zk) can be evaluated analytically using a mode-conditioned

Kalman filter, if the models are linear given xn
k and rk, while the second pdf p(xn

k, rk|Zk)

is approximated using an MM-PF. Since the dimension of the state xn
k is smaller than

the dimension of the state xk, the MM-RBPF generally requires fewer particles to

obtain a good approximation of the posterior pdf p(xk, rk|Zk).

5.5.3.2 Derivations

In this section, the MM-RBPF is derived for the hybrid localization method. The

MM-RBPF approach is not new and has been proposed in [MAH+07] to derive an

estimator for mobility tracking in cellular radio networks, where the mode variable rk

is included only in the state model and the measurement model is independent of the

linear states. However, the algorithm presented in [MAH+07] cannot be applied to the

hybrid localization problem, since in our case, the measurement model depends on the

mode variable rk and the linear states, cf. (2.53). In the following, the MM-RBPF

is derived for a more general mode-dependent conditional linear system model, where

both, the state model and the measurement model, depend on the mode variable rk.

The resulting MM-RBPF can be applied to a broader class of problems and, thus,

the results in this work can be regarded as an extension of what has been presented

in [MAH+07]. In order to exploit the idea of Rao-Blackwellization in the MM-PF, the

following mode-dependent conditional linear system model is introduced:

xn
k = fnk−1(x

n
k−1, rk) + Fn

k−1(x
n
k−1, rk) · xl

k−1 + Γn
k−1(x

n
k−1, rk) ·wn

k−1(rk), (5.66a)

xl
k = f lk−1(x

n
k−1, rk) + Fl

k−1(x
n
k−1, rk) · xl

k−1 + Γl
k−1(x

n
k−1, rk) ·wl

k−1(rk), (5.66b)

z1,k = h1,k(x
n
k, rk) +Hk(x

n
k, rk) · xl

k + v1,k(rk), (5.66c)

z2,k = h2,k(x
n
k, rk,v2,k(rk)). (5.66d)
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Note, that in contrast to (4.73), the discrete mode variable rk is included into the

equations, in order to account for the possible switching between different models.

The measurement vector zk = [zT1,k, z
T

2,k]
T is split into two statistically independent

parts, fnk−1(·), f lk−1(·), h1,k(·), h2,k(·) are vector functions and Fn
k−1(·), Fl

k−1(·), Γn
k−1(·),

Γn
k−1(·), Hk(·) are matrices of appropriate dimensions. The mode-dependent noises in

the state and measurement models are denoted by wn
k−1(rk), w

n
k−1(rk), v1,k(rk) and

v2,k(rk) and are assumed to be white. The noise vector [wn,T
k−1(rk),w

l,T
k−1(rk)]

T, with

dimension nw, and the vector v1,k(rk) are assumed Gaussian distributed according to

[
wn

k−1(rk)
wl

k−1(rk)

]

∼ N
(

0nw×1,

[
Qn

k−1(rk) Qnl
k−1(rk)

Qnl,T
k−1(rk) Ql

k−1(rk)

])

,v1,k(rk) ∼ N (µ1,k(rk),R1,k(rk)).

(5.67)

Furthermore, it is assumed that xn
0 and xl

0 are white. The pdfs p(x
n
0) and p(z2,k|xk, rk)

can be arbitrary, but have to be known. The pdf of xl
0 is Gaussian, cf. (4.75) and

the initial mode probabilities Pr{r1}, r1 ∈ {1, . . . , s}, are assumed known. In order to

derive the MM-RBPF from the model given in (5.66), the two noise processes wn
k−1(rk)

andwl
k−1(rk) have to be decorrelated using a Gram-Schmidt procedure [Sch03]. Similar

to (4.76), the decorrelated system can be written as

xn
k = fnk−1(x

n
k−1, rk) + Fn

k−1(x
n
k−1, rk) · xl

k−1 + Γn
k−1(x

n
k−1, rk) ·wn

k−1(rk), (5.68a)

xl
k = f lk−1(x

n
k−1, rk) + F̄l

k−1(x
n
k−1, rk) · xl

k−1 + Ēk(x
n
k,x

n
k−1, rk)

+Γl
k−1(x

n
k−1, rk) · w̄l

k−1(rk), (5.68b)

z1,k = h1,k(x
n
k, rk) +Hk(x

n
k, rk) · xl

k + v1,k(rk), (5.68c)

z2,k = h2,k(x
n
k, rk,v2,k(rk)), (5.68d)

where

F̄l
k−1(x

n
k−1, rk) = Fl

k−1(x
n
k−1, rk)− Γl

k−1(x
n
k−1, rk) ·Qnl,T

k−1(rk)

·[Γn
k−1(x

n
k−1, rk) ·Qn

k−1(rk)]
−1 · Fn

k−1(x
n
k−1, rk), (5.69a)

Ēk(x
n
k,x

n
k−1, rk) = Γl

k−1(x
n
k−1, rk) ·Qnl,T

k−1(rk) · [Γn
k−1(x

n
k−1, rk) ·Qn

k−1(rk)]
−1

·
[
xn
k − fnk−1(x

n
k−1, rk)

]
. (5.69b)

The noises wn
k−1(rk) and w̄l

k−1(rk) are now uncorrelated and distributed according to

[
wn

k−1(rk)
w̄l

k−1(rk)

]

∼ N (0nw×1, Q̄k−1(rk)), (5.70)

with

Q̄k−1(rk) = diagb[Q
n
k−1(rk),Q

l
k−1(rk)−Qnl,T

k−1(rk) · [Qn
k−1(rk)]

−1 ·Qnl
k−1(rk)

︸ ︷︷ ︸

Q̄l
k−1(rk)

]. (5.71)
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In order to simplify the notation, the following abbreviations are introduced

fk−1(x
n
k−1, rk) =

[
fnk−1(x

n
k−1, rk)

f lk−1(x
n
k−1, rk)

]

, Fk−1(rk) =

[
Fn

k−1(x
n
k−1, rk)

F̄l
k−1(x

n
k−1, rk)

]

,

Ek(x
n
k,x

n
k−1, rk) =

[
0nxn×1

Ēk(x
n
k,x

n
k−1, rk)

]

, wk−1(rk) =

[
wn

k−1(rk)
w̄l

k−1(rk)

]

,

Γk−1(rk) = diagb[Γ
n
k−1(x

n
k−1, rk),Γ

l
k−1(x

n
k−1, rk)].

Thus, the state model, cf. (5.68a) and (5.68b), can be written as

[
xn
k

xl
k

]

= fk−1(x
n
k−1, rk)+Fk−1(rk) ·xl

k−1+Ek(x
n
k,x

n
k−1, rk)+Γk−1(rk) ·wk−1(rk). (5.72)

In the following, the MM-RBPF is derived for the model given by (5.68). The derivation

is based on the joint posterior pdf p(xn
k,x

l
k, rk|Zk).

Initialization

The MM-RBPF is initialized as follows:

p(xn
k−1,x

l
k−1, rk−1|Zk−1) ≈

N∑

i=1

w
(i)
k−1|k−1 · N (xl

k−1;x
l,(i)
k−1|k−1,P

(i)
k−1|k−1)

·δ(xn
k−1 − x

n,(i)
k−1 , rk−1 − r

(i)
k−1). (5.73)

Time Update

The time update starts with evaluating the prediction density p(xn
k,x

l
k, rk|Zk−1), cf.

(5.9), yielding

p(xn
k,x

l
k, rk|Zk−1) =

∑

rk−1

Pr{rk|rk−1} ·
∫

R
nxn

∫

R
nxl

p(xn
k,x

l
k|xn

k−1,x
l
k−1, rk)

· p(xn
k−1,x

l
k−1, rk−1|Zk−1)

︸ ︷︷ ︸

(5.73)

dxn
k−1 dx

l
k−1

≈
N∑

i=1

w
(i)
k−1|k−1 · Pr{rk|r

(i)
k−1}

·
∫

R
nxl

p(xn
k,x

l
k|xn,(i)

k−1 ,x
l
k−1, rk)·N (xl

k−1;x
l,(i)
k−1|k−1,P

(i)
k−1|k−1) dx

l
k−1.

(5.74)
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Since the dynamic model, cf. (5.72), is conditional linear and the error is Gaussian

distributed, the pdf p(xn
k,x

l
k|xn,(i)

k−1 ,x
l
k−1, rk) is also Gaussian and given by

p(xn
k,x

l
k|xn,(i)

k−1 ,x
l
k−1, rk) = N (xk; fk−1(x

n,(i)
k−1 , rk) + F

(i)
k−1(rk) · xl

k−1 + Ek(x
n
k,x

n,(i)
k−1 , rk),

Γ
(i)
k−1(rk) · Q̄k−1(rk) · Γ(i),T

k−1 (rk)). (5.75)

As a result, the integral in (5.74) can be evaluated analytically, yielding

p(xn
k,x

l
k, rk|Zk−1) ≈

N∑

i=1

w
(i)
k−1|k−1 · Pr{rk|r

(i)
k−1} · N (xk; x̄

(i)
k|k−1, P̄

(i)
k|k−1), (5.76)

where

x̄
(i)
k|k−1 = fk−1(x

n,(i)
k−1 , rk) + F

(i)
k−1(rk) · x

l,(i)
k−1|k−1 + Ek(x

n
k,x

n,(i)
k−1 , rk), (5.77a)

P̄
(i)
k|k−1 = F

(i)
k−1(rk) ·P

(i)
k−1|k−1 · F

(i),T
k−1 (rk) + Γ

(i)
k−1(rk) · Q̄k−1(rk) · Γ(i),T

k−1 (rk). (5.77b)

By splitting the mean vector x̄
(i)
k|k−1 and covariance matrix P̄

(i)
k|k−1 according to (4.85),

the Gaussian density in (5.76) can be split into two parts, cf. (4.86). Note that the

consideration of the mode variable rk in (5.77) does not affect the splitting. Thus, the

prediction pdf p(xn
k,x

l
k, rk|Zk−1) can be further rewritten as

p(xn
k,x

l
k, rk|Zk−1) = p(xl

k|xn
k, rk,Zk−1) · p(xn

k, rk|Zk−1)

≈
N∑

i=1

w
(i)
k−1|k−1 · Pr{rk|r

(i)
k−1} · N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1)

·N (xl
k;x

l,(i)
k|k−1,P

(i)
k|k−1), (5.78)

with

x
l,(i)
k|k−1 = x̄

l,(i)
k|k−1 + P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · (xn

k − x̄
n,(i)
k|k−1), (5.79a)

P
(i)
k|k−1 = P̄

l,(i)
k|k−1 − P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · P̄nl,(i)

k|k−1, (5.79b)

where x̄
n,(i)
k|k−1, x̄

l,(i)
k|k−1, P̄

l,(i)
k|k−1, P̄

nl,(i)
k|k−1, and P̄

n,(i)
k|k−1 are defined in (4.85). In the following,

a weighted discrete approximation of p(xn
k, rk|Zk−1) is obtained using an importance

sampling approach. In the MM-RBPF, the key idea is to represent each component

of the weighted sum by a single particle which is composed of x
(i)
k and r

(i)
k . While

the mode rk is sampled from Pr{rk|r(i)k−1}, the nonlinear state xn
k is sampled from the

following importance density

x
n,(i)
k ∼ q(xn

k|Xn,(i)
k−1 , r

(i)
k ,Zk), i = 1, . . . , N. (5.80)

As a result, the prediction pdf can be approximated as

p(xn
k,x

l
k, rk|Zk−1) ≈

N∑

i=1

w
(i)
k|k−1 · N (xl

k;x
l,(i)
k|k−1,P

(i)
k|k−1) · δ(xn

k − x
n,(i)
k , rk − r

(i)
k ), (5.81)



194 Chapter 5: Recursive State Estimation with Adaptive LOS/NLOS Detection

where the unnormalized importance weights are given by

w
(i)
k|k−1 ∝ w

(i)
k−1|k−1 ·

N (x
n,(i)
k ; x̄

n,(i)
k|k−1, P̄

n,(i)
k|k−1)

q(x
n,(i)
k |Xn,(i)

k−1 , r
(i)
k ,Zk)

, i = 1, . . . , N. (5.82)

The importance weights have to be further normalized to ensure
∑N

j=1w
(j)
k|k−1 = 1.

Measurement Update

The measurement update distribution can be split as follows:

p(xn
k,x

l
k, rk|Zk) = p(xl

k|xn
k, rk,Zk) · p(xn

k, rk|Zk). (5.83)

The two parts can be evaluated separately. The first distribution can be updated for

each particle from the following relationship

p(xl
k|xn,(i)

k , r
(i)
k ,Zk) =

p(zk|xn,(i)
k ,xl

k, r
(i)
k ) · p(xl

k|xn,(i)
k , r

(i)
k ,Zk−1)

p(zk|xn,(i)
k , r

(i)
k ,Zk−1)

, (5.84)

where

p(zk|xn,(i)
k , r

(i)
k ,Zk−1) =

∫

R
nxl

p(zk|xn,(i)
k ,xl

k, r
(i)
k ) · p(xl

k|xn,(i)
k , r

(i)
k ,Zk−1) dx

l
k. (5.85)

For the measurement models given by (5.68c) and (5.68d), the likelihood function can

be split into two parts according to

p(zk|xn,(i)
k ,xl

k, r
(i)
k ) = p(z1,k|xn,(i)

k ,xl
k, r

(i)
k ) · p(z2,k|xn,(i)

k , r
(i)
k ). (5.86)

By insertion of (5.86) into (5.84), the pdf p(z2,k|xn,(i)
k , r

(i)
k ) can be canceled, since it is

independent of the linear states xl
k, yielding

p(xl
k|xn,(i)

k ,Zk) =
p(z1,k|xn,(i)

k ,xl
k, r

(i)
k ) · p(xl

k|xn,(i)
k , r

(i)
k ,Zk−1)

p(z1,k|xn,(i)
k , r

(i)
k ,Zk−1)

, (5.87)

where

p(z1,k|xn,(i)
k , r

(i)
k ,Zk−1) =

∫

R
nxl

p(z1,k|xn,(i)
k ,xl

k, r
(i)
k ) · p(xl

k|xn,(i)
k , r

(i)
k ,Zk−1) dx

l
k. (5.88)

The likelihood pdf p(z1,k|xn,(i)
k ,xl

k, r
(i)
k ) can be determined from (5.68c) and is given by

p(z1,k|xn,(i)
k ,xl

k, r
(i)
k ) = N (z1,k;h1,k(x

n
k, r

(i)
k ) +Hk(x

n
k, r

(i)
k ) · xl

k + µ1,k(r
(i)
k ),R1,k(r

(i)
k )).

(5.89)
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The density p(xl
k|xn,(i)

k , r
(i)
k ,Zk−1) is available from the time update stage and is given

by

p(xl
k|xn,(i)

k ,Zk−1) = N (xl
k;x

l,(i)
k|k−1,P

(i)
k|k−1). (5.90)

The integral in (5.88) can be evaluated analytically since the integrand is a product of

Gaussian densities. From this it follows that

p(z1,k|xn,(i)
k , r

(i)
k ,Zk−1) = N (z1,k; ẑ

(i)
1,k,S

(i)
k ), (5.91)

where

ẑ
(i)
1,k = h1,k(x

n,(i)
k , r

(i)
k ) +Hk(x

n,(i)
k , r

(i)
k ) · xl,(i)

k|k−1 + µ1,k(r
(i)
k ), (5.92a)

S
(i)
k = Hk(x

n,(i)
k , r

(i)
k ) ·P(i)

k|k−1 ·HT

k (x
n,(i)
k , r

(i)
k ) +R1,k(r

(i)
k ). (5.92b)

The densities involved in evaluating the measurement update, cf. (5.84), are all Gaus-

sian. As a result, the density p(xl
k|xn,(i)

k , r
(i)
k ,Zk) is also Gaussian and is given by

p(xl
k|xn,(i)

k , r
(i)
k ,Zk) = N (xl

k;x
l,(i)
k|k ,P

(i)
k|k), (5.93)

where

x
l,(i)
k|k = x

l,(i)
k|k−1 +K

(i)
k · (z1,k − ẑ

(i)
1,k), (5.94a)

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k · S(i)

k ·K(i),T
k , (5.94b)

K
(i)
k = P

(i)
k|k−1 ·HT

k (x
n,(i)
k , r

(i)
k ) · [S(i)

k ]−1. (5.94c)

The measurement update for the nonlinear states xn
k is done as follows:

p(xn
k, rk|Zk) =

p(zk|xn
k, rk,Zk−1) · p(xn

k, rk|Zk−1)

p(zk|Zk−1)
. (5.95)

Since the pdf p(xn
k, rk|Zk) is approximated using an importance sampling approach,

the denominator in (5.95) will be numerically normed and has not to be calculated.

The measurement update can be written as

p(xn
k, rk|Zk) ∝ p(zk|xn

k, rk,Zk−1) · p(xn
k, rk|Zk−1)

=

∫

R
nxl

p(zk|xn
k,x

l
k, rk) · p(xl

k|xn
k, rk,Zk−1) dx

l
k · p(xn

k, rk|Zk−1)

≈
N∑

i=1

w
(i)
k|k−1 ·

∫

R
nxl

p(zk|xn,(i)
k ,xl

k, r
(i)
k )

︸ ︷︷ ︸

(5.86)

·p(xl
k|xn,(i)

k , r
(i)
k ,Zk−1) dx

l
k

·δ(xn
k − x

n,(i)
k , rk − r

(i)
k )

=
N∑

i=1

w
(i)
k|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn

k, rk)
︸ ︷︷ ︸

w
(i)
k|k

·δ(xn
k − x

n,(i)
k , rk − r

(i)
k ).

(5.96)
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Combining (5.93) and (5.96) according to (5.83) results in

p(xn
k,x

l
k, rk|Zk) ≈

N∑

i=1

w
(i)
k|k · N (xl

k;x
l,(i)
k|k ,P

(i)
k|k) · δ(xn

k − x
n,(i)
k , rk − r

(i)
k ). (5.97)

where the normalized weights are given by

w
(i)
k|k =

w
(i)
k|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn,(i)

k , r
(i)
k )

∑N
j=1w

(j)
k|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k , r
(i)
k )

. (5.98)

By finally omitting the mode rk in the discrete approximation (5.97), the desired pos-

terior pdf of the current state is found which is given by

p(xn
k,x

l
k|Zk) ≈

N∑

i=1

w
(i)
k|k · N (xl

k;x
l,(i)
k|k ,P

(i)
k|k) · δ(xn

k − x
n,(i)
k ). (5.99)

Estimation and Resampling

In the MM-RBPF, the formulas for estimating the mean vector x̂MMSE,k and its covari-

ance PMMSE,k of the linear and nonlinear states are equivalent to the formulas given in

(4.108), since the joint posterior pdf is approximated with (5.99). For the resampling

step in the MM-RBPF, systematic resampling is used which is explained in Section

4.5.2.2.

5.5.3.3 Choice of Importance Density

In the design of MM-RBPFs, the choice of the mode-conditioned importance den-

sity q(xn
k|Xn,(i)

k−1 , r
(i)
k ,Zk) plays a major role. The optimal mode-conditioned impor-

tance density that minimizes the variance of the importance weights is given by

q(xn
k|Xn,(i)

k−1 , r
(i)
k ,Zk)opt = p(xn

k|Xn,(i)
k−1 , r

(i)
k ,Zk). The proof is similar to the proof given

in [DGA00]. However, for the hybrid localization problem, a closed-form expression

for this density does not exist, so that one has to resort to suboptimal importance

densities. For the hybrid localization problem, the following pdf

q(xn
k|Xn,(i)

k−1 , r
(i)
k ,Zk) = N (xn

k; x̄
n,(i)
k|k−1, P̄

n,(i)
k|k−1) (5.100)

is chosen as importance density, cf. (5.78). In this case, the weights in the time update

are given by w
(i)
k|k−1 = w

(i)
k−1|k−1, cf. (5.72), and the weights in the measurement update

simplify to

w
(i)
k|k =

w
(i)
k−1|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn,(i)

k , r
(i)
k )

∑N
j=1w

(j)
k−1|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k , r
(j)
k )

. (5.101)
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A pseudocode description of the MM-RBPF is given in Algorithm 5.5, where the fol-

lowing abbreviations have been introduced in order to simplify the notation:

fnk−1(x
n,(i)
k−1 , r

(i)
k ) = f

n,(i)
k−1 , Fn

k−1(x
n,(i)
k−1 , r

(i)
k ) = F

n,(i)
k−1 , Γn

k−1(x
n,(i)
k−1 , r

(i)
k ) = Γ

n,(i)
k−1 ,

f lk−1(x
n,(i)
k−1 , r

(i)
k ) = f

l,(i)
k−1, Fl

k−1(x
n,(i)
k−1 , r

(i)
k ) = F

l,(i)
k−1, Γl

k−1(x
n,(i)
k−1 , r

(i)
k ) = Γ

l,(i)
k−1,

h1,k(x
n,(i)
k , r

(i)
k ) = h

(i)
1,k, Hk(x

n,(i)
k , r

(i)
k ) = H

(i)
k , Ēk(x

n,(i)
k ,x

n,(i)
k−1 , r

(i)
k ) = Ē

(i)
k . (5.102)

Note that after the initialization, the sampling of mode variables in the time update

step is left out, and one directly starts with the sampling of the nonlinear states.

Algorithm 5.5 Multiple-Model Rao-Blackwellized Particle Filter

1. Initialization:

- For i = 1, ..., N, initialize the particles x
n,(i)
0 ∼ p(xn

0), the mode probabilities

r
(i)
1 ∼ Pr{r1} and the weights w

(i)
0|0 =

1
N
, and set {xl,(i)

0|0 ,P
(i)
0|0} = {x̂l

0,P0}.

2. Particle Filter Time Update:

- For i = 1, ..., N, draw mode probabilities according to

r
(i)
k ∼ Pr{rk|r(i)k−1},

- For i = 1, ..., N, draw particles from the importance density according to

x
n,(i)
k ∼ N (x̄

n,(i)
k|k−1, P̄

n,(i)
k|k−1),

where

x̄
n,(i)
k|k−1 = f

n,(i)
k−1 + F

n,(i)
k−1 · xl,(i)

k−1|k−1,

P̄
n,(i)
k|k−1 = F

n,(i)
k−1 ·P(i)

k−1|k−1 · F
n,(i),T
k−1 + Γ

n,(i)
k−1 ·Qn

k−1 · Γn,(i),T
k−1 .

3. Kalman Filter Time Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k−1 = x̄

l,(i)
k|k−1 + P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · (xn,(i)

k − x̄
n,(i)
k|k−1),

P
(i)
k|k−1 = P̄

l,(i)
k|k−1 − P̄

nl,(i),T
k|k−1 · [P̄n,(i)

k|k−1]
−1 · P̄nl,(i)

k|k−1,
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where

x̄
l,(i)
k|k−1 = f

l,(i)
k−1 + F̄

l,(i)
k−1 · x

l,(i)
k−1|k−1 + Ē

(i)
k ,

P̄
nl,(i)
k|k−1 = F

n,(i)
k−1 ·P(i)

k−1|k−1 · F̄
l,(i),T
k−1 ,

P̄
l,(i)
k|k−1 = F̄

l,(i)
k−1 ·P

(i)
k−1|k−1 · F̄

l,(i),T
k−1 + Γ

l,(i)
k−1 · Q̄l

k−1 · Γl,(i),T
k−1 ,

Ē
(i)
k = Γ

l,(i)
k−1 ·Qnl,T

k−1 · [Γ
n,(i)
k−1 ·Qn

k−1]
−1 · (xn,(i)

k − f
n,(i)
k−1 ),

F̄
l,(i)
k−1 = F

l,(i)
k−1 − Γ

l,(i)
k−1 ·Qnl,T

k−1 · [Γ
n,(i)
k−1 ·Qn

k−1]
−1 · Fn,(i)

k−1 ,

Q̄l
k−1 = Ql

k−1 −Qnl,T
k−1 · [Qn

k−1]
−1 ·Qnl

k−1.

4. Particle Filter Measurement Update:

- For i = 1, ..., N, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k ) · p(z2,k|xn,(i)

k , r
(i)
k )

∑N
j=1w

(j)
k−1|k−1 · N (z1,k; ẑ

(j)
1,k,S

(j)
k ) · p(z2,k|xn,(j)

k , r
(j)
k )

,

where

ẑ
(i)
1,k = h

(i)
1,k +H

(i)
k · xl,(i)

k|k−1 + µk(r
(i)
k ),

S
(i)
k = H

(i)
k ·P(i)

k|k−1 ·H
(i),T
k +R1,k(r

(i)
k ).

5. Kalman Filter Measurement Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k = x

l,(i)
k|k−1 +K

(i)
k · (z1,k − ẑ

(i)
1,k),

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k · S(i)

k ·K(i),T
k ,

where

K
(i)
k = P

(i)
k|k−1 ·H

(i),T
k · [S(i)

k ]−1.

6. Estimation:

- Determine estimates of the linear and nonlinear state vectors according to

x̂n
MMSE,k|k =

N∑

i=1

w
(i)
k|k · x

n,(i)
k , x̂l

MMSE,k|k =
N∑

i=1

w
(i)
k|k · x

l,(i)
k|k .

7. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {xn,(i)
k ,x

l,(i)
k|k ,P

(i)
k|k, r

(i)
k }Ni=1, where the probability to

take sample i is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

8. Set k := k + 1 and iterate from step 2.
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5.5.3.4 Application to the Hybrid Localization Problem

In this section, the state and measurement models for the hybrid localization are

adopted to the conditional linear system model of the MM-RBPF, cf. 5.66. For

the hybrid localization problem, the state model is given by (2.49). The measurement

model, where the switching between LOS and NLOS propagation conditions is modeled

with a Markov chain, is given by (2.53). In order to relate the state and measurement

models to the MM-RBPF framework, the state vector is split into two parts according

to (4.112) and (4.113). Due to the fact that the state model is linear Gaussian and

independent of the mode variable rk, the models for the linear and nonlinear states can

be written as in (4.114) and (4.115). For the mode-dependent measurement model, the

measurement vector is split as follows

z1,k = [zTPR,k, z
T

RTT,LOS,k, z
T

RSS,LOS,k, zBIAS,k]
T, (5.103)

i.e, all measurements can be expressed with (5.68c), while the measurement vector z2,k

is empty. Thus, the corresponding measurement model can be rewritten as







zPR,k

zRTT,k

zRSS,k

zBIAS,k







︸ ︷︷ ︸

z1,k

=







dSAT,k(x
n
k)

hRTT,k(x
n
k)

hRSS,k(x
n
k, rk)

0







︸ ︷︷ ︸

h1,k(x
n
k
,rk)

+





0MPR×2 1MPR×1 0MPR×1

0(MRTT+MRSS)×4

01×2 1 0





︸ ︷︷ ︸

Hk

·







ẋMT,k

ẏMT,k

c0 · δtk
c0 · δṫk







︸ ︷︷ ︸

xl
k

+







vPR,k

vRTT,k(rk)
vRSS,k(rk)
vBIAS,k







︸ ︷︷ ︸

v1,k(rk)

.

(5.104)

The mode-dependent measurement noise v1,k(rk) is Gaussian distributed with mean

vector µ1,k(rk) = µk(rk) and covariance matrix R1,k(rk) = Rk(rk). Since all measure-

ments are expressed with model (5.68c), the likelihood function p(z2,k|xn
k, rk) can be

omitted in the calculation of the importance weights, cf. (5.101).

5.5.3.5 Incorporation of Road Constraints

In this section, it is explained how road constraints can be incorporated into the MM-

RBPF for hybrid localization. For incorporating road constraints into the MM-RBPF,

the approach presented in Section 4.5.6.2 is used. Since the mode variable is included

only in the measurement model, the incorporation of road constraints into the MM-

RBPF can be done as follows. The state vector is split into two parts according to

(4.172) and (4.173). The model for generating the state xk is replaced with the model

for generating road-constrained states xR,k, cf. (4.174) and (4.175). The measurement
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vector is split according to (5.103), so that the mode-conditioned measurement model

can be written as






zPR,k

zRTT,k

zRSS,k

zBIAS,k







︸ ︷︷ ︸

z1,k

=







dSAT,k(xMT,k)
hRTT,k(xMT,k)

hRSS,k(xMT,k, rk)
0







︸ ︷︷ ︸

h1,k(TLG,k(x
n
R,k

,TRN))

+





1MPR×1 0MPR×1

0(MRTT+MRSS)×2

1 0





︸ ︷︷ ︸

Hk

·
[
c0 · δtk
c0 · δṫk

]

︸ ︷︷ ︸

xlR,k

+







vPR,k

vRTT,k(rk)
vRSS,k(rk)
vBIAS,k







︸ ︷︷ ︸

v1,k(rk)

.

(5.105)

The mode-dependent measurement noise v1,k(rk) is Gaussian distributed with mean

vector µ1,k(rk) = µk(rk) and covariance matrix R1,k(rk) = Rk(rk), and the correspond-

ing mode-conditioned likelihood function is given by

p(z1,k|xk, rk) = p(z1,k|TG,k(xR,k, TRN), rk). (5.106)

A pseudocode description of the MM-RBPF with road-constraints for hybrid localiza-

tion is given in Algorithm 5.6. Note that after the initialization, the sampling of mode

variables in the time update step can be left out, and one can directly start with the

sampling of the road-constrained states.

Algorithm 5.6 Multiple-Model Rao-Blackwellized Particle Filter with Road Con-
straints

1. Initialization:

- For i = 1, ..., N, initialize the particles x
n,(i)
R,0 ∼ p(xn

R,0), mode probabilities

r1 ∼ Pr{r1} and weights w
(i)
0|0 =

1
N
, and set {xl,(i)

0|0 ,P
(i)
0|0} = {x̂l

R,0,PR,0}.

2. Particle Filter Time Update:

- For i = 1, ..., N, draw mode probabilities according to

r
(i)
k ∼ Pr{rk|r(i)k−1},

- For i = 1, ..., N, generate particles x
n,(i)
R,k from x

n,(i)
R,k−1 by using samples from

the process noise sequences w
n,(i)
k−1 ∼ pwn

k−1
(·) as shown in (4.174).

3. Kalman Filter Time Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k−1 = Fl

k−1 · xl,(i)
k−1|k−1,

P
(i)
k|k−1 = Fl

k−1 ·P(i)
k−1|k−1 · F

l,T
k−1 + Γl

k−1 ·Ql
k−1 · Γl,T

k−1.
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4. Particle Filter Measurement Update:

- For i = 1, ..., N, evaluate the weights

w
(i)
k|k =

w
(i)
k−1|k−1 · N (z1,k; ẑ

(i)
1,k,S

(i)
k )

∑N
j=1w

(j)
k−1|k−1 · N (z1,k; ẑ

(j)
1,k,S

(i)
k )

,

where

ẑ
(i)
1,k = h1,k(TLG,k(x

n,(i)
R,k , TRN)) +Hk · xl,(i)

k|k−1 + µ1,k(r
(i)
k ),

S
(i)
k = Hk ·P(i)

k|k−1 ·HT

k +R1,k(r
(i)
k ).

5. Kalman Filter Measurement Update:

- For i = 1, ..., N, evaluate

x
l,(i)
k|k = x

l,(i)
k|k−1 +K

(i)
k · (z1,k − ẑ

(i)
1,k),

P
(i)
k|k = P

(i)
k|k−1 −K

(i)
k · S(i)

k ·K(i),T
k ,

where

K
(i)
k = P

(i)
k|k−1 ·HT

k · [S(i)
k ]−1.

6. Estimation:

- Determine estimates of the linear and nonlinear state vectors according to

x̂n
MMSE,k|k =

N∑

i=1

w
(i)
k|k ·TLG,k(x

n,(i)
R,k , TRN), x̂l

MMSE,k|k =
N∑

i=1

w
(i)
k|k · x

l,(i)
k|k .

7. Resampling:

- Perform systematic resampling using Algorithm 4.4. Take N samples with

replacement from the set {xn,(i)
R,k ,x

l,(i)
k|k ,P

(i)
k|k}Ni=1, where the probability to take

sample i is w
(i)
k|k. Set w

(i)
k|k =

1
N

for i = 1, . . . , N .

8. Set k := k + 1 and iterate from step 2.

5.6 Performance Evaluation

5.6.1 Introduction

In this Section 5.6, the hybrid localization algorithms of Sections 5.4 and 5.5 are evalu-

ated by means of Monte Carlo simulations and their average performance is compared
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to the PCRLB. The performance metrics that will be used are the RMSE of the MT

location and time averaged RMSE of the MT location as defined in (3.95) and (3.96),

as well as the corresponding PCRLBs given by (4.182) and (4.183). Note that the

Bayesian information submatrix Jk for the M-PCRLB is defined in (5.30). For the

evaluation of the E-PCRLB, the terms [[Jk]
−1]1,1 and [[Jk]

−1]2,2 in (4.182) and (4.183)

have to be replaced with the terms [PE-PCRLB]1,1 and [PE-PCRLB]2,2, defined in (5.17),

respectively. All results have been obtained by performing NMC = 100 Monte Carlo

runs. The Monte Carlo simulations are performed for Scenario II, cf. Section 2.3.4.3,

and the results are presented in Section 5.6.2. Finally, comments on the computational

complexity of the different algorithms are given in Section 5.6.3.

5.6.2 Simulation Results for Scenario II

5.6.2.1 Simulation Results for LOS Propagation Conditions

In this section, the performance of the IMM-based algorithm and multiple model-based

algorithms introduced in Sections 5.4 and 5.5 is evaluated for the different combinations

of measurements of Scenario II assuming LOS propagation conditions, cf. Section

2.3.4.3. The PCRLB for this case is defined in Section 4.3.2 and is computed for the

different combinations of measurements to indicate the best possible performance that

one can expect for the given scenario and set of parameters. All filters are initialized

using the strategy explained in Section 4.6.2.1 and the initial mode probabilities are

set to Pr{r1} = 1/8, for r1 = 1, . . . , 8.

In order to apply the algorithms to the hybrid localization problem, the parameters

included in the mode-dependent measurement model hk(xk, rk), as well as the noise

statistics given by the mode-dependent mean vector µk(rk) and covariance matrices

Rk(rk) and Q have to be specified. In the following, Q is chosen as described in

Section 4.6.2.1 and the parameters of the mode-dependent covariance matrix Rk(rk)

are assumed to be equal to the parameters with which the measurements have been

generated, cf. Table 2.2. The parameters of the Markov chain used in the algorithms

are assumed to be a-priori known and are given in (2.51). In practice, however, these

parameters are unknown and have to be estimated in advance from field trial data. The

computation of the PCRLB follows the same strategy as described in Section 4.6.2.1.

In Fig. 5.1, the MT location RMSEs in m vs. the time index k for the Cellular

method is shown for the RBPF, MM-RBPF, PF with road constraints and MM-PF

with road constraints using N = 8000 particles, together with the IMM-EKF and the
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Figure 5.1. MT location RMSE vs. time index k for RBPF, MM-RBPF, IMM-EKF,
PF, MM-PF and PCRLB assuming LOS propagation conditions and Cellular method,
solid lines: No road constraints, dashed lines: Road constraints.

corresponding PCRLBs. Note that for comparison purposes, the results for the RBPF

and PF with road constraints introduced in Sections 4.5.3 and 4.5.6 are also shown.

These two filters use the likelihood pdf given in (3.83), i.e., there is an intentional mis-

match between the statistics with which the measurements have been generated and

the statistics used in the filter, in order to evaluate the expected degradation in perfor-

mance. The results show that the RBPF provides the worst results. The performance

can be improved using the IMM-EKF and MM-RBPF, which have approximately the

same performance. The performance improvements of the IMM-EKF and MM-RBPF

are a result of the efficient estimation of the current propagation conditions, which are

modeled with the mode variable rk. Since the filters additionally estimate the mode

variable rk based on the measurements, they can quickly adapt to new propagation

conditions. It can be further noticed that the filters cannot attain the PCRLB. This

is mainly due to the choice of the covariance matrix Q, which is different in the filters

and in the computation of the PCRLB. Comparing the performance of the PF with

road constraints and the MM-PF with road constraints, it can be seen that the MM-PF

outperforms the PF. Again, the additional estimation of the mode variable rk helps to

improve the performance.

In Fig. 5.2, the MT location RMSEs in m vs. the time index k for the Hybrid 1

method is shown for the RBPF, MM-RBPF, RBPF with road constraints and MM-
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Figure 5.2. MT location RMSE vs. time index k for RBPF, MM-RBPF, IMM-EKF
and PCRLB assuming LOS propagation conditions and Hybrid 1 method, solid lines:
No road constraints, dashed lines: Road constraints.

RBPF with road constraints using N = 8000 particles, together with the IMM-EKF

and the corresponding PCRLBs. For these results, the same conclusions as those for

the Cellular method can be drawn. It can be noticed, that using the Hybrid 1 method

rather than the Cellular method yields small performance improvements.

In Fig. 5.3, the MT location RMSEs in m vs. the time index k for the Hybrid 2

method is shown for the RBPF, MM-RBPF, RBPF with road constraints and MM-

RBPF with road constraints using N = 8000 particles, together with the IMM-EKF

and the corresponding PCRLBs. It can be seen that on average, the RBPF provides

the worst results. For the estimators without road constraints, the IMM-EKF provides

the best results, followed by the MM-RBPF. The RBPF provides on average the worst

results. However, it can be also noticed that the performance differences between the

RBPF and the IMM-EKF and MM-RBPF are smaller. This is due to the fact that

in the Hybrid 2 method, two very accurate pseudorange measurements are available.

From this it follows, that the performance is dominated by the information available

from the PR measurements and less influenced by the RSS and RTT measurements. It

can be further noticed that the performance of the RBPF and MM-RBPF with road

constraints is practically equivalent. Again, it can be concluded that the performance

is dominated by the information available from the PR measurements and the road,

and less influenced by the RSS and RTT measurements. In Fig. 5.4 the MT location
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Figure 5.3. MT location RMSE vs. time index k for RBPF, MM-RBPF, IMM-EKF
and PCRLB assuming LOS propagation conditions and Hybrid 2 method, solid lines:
No road constraints, dashed lines: Road constraints.

RMSE in m vs. particle number N for the Cellular, Hybrid 1 and Hybrid 2 methods are

shown for the MM-PF, MM-RBPF, RBPF and IMM-EKF, together with the PCRLB.

It can be noticed that for the Cellular and Hybrid 1 method, the RBPF provides the

worst performance and practically no performance improvements can be achieved by

increasing the number of particles in the filter. These results can be explained by

the intentional mismatch between the statistics with which the measurements have

been generated and the statistics used in the filter, that cannot be compensated to

yield better performance results. This also holds for the RBPF and the Hybrid 2

method. It can be further observed that the IMM-EKF provides the best results for

all three methods. The MM-PF and MM-RBPF achieve slightly worse results for

N = 8000. The MM-RBPF is always better than the MM-PF, which is a result of

the increased state dimension, the MM-PF has to deal with. It can be further noticed

that by increasing the number of particles in these filters, the performance can be

improved. It is expected that a performance similar to the IMM-EKF can be obtained,

by further increasing the number of particles beyond values of N = 8000. Another

option is to consider a different mode-conditioned importance density in these filters,

cf. (5.62) and (5.100), that takes into account the latest measurement. With this

strategy it is expected that a good approximation of the posterior pdf can be obtained

by using a fewer number of particles. In Fig. 5.5 the MT location RMSE in m vs.
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Figure 5.4. MT location RMSE vs. particle numberN for MM-PF, MM-RBPF, RBPF,
IMM-EKF and PCRLB assuming LOS propagation conditions, solid lines: Cellular
method, dash-dotted lines: Hybrid 1 method, dashed lines: Hybrid 2 method.

particle number N for the Cellular, Hybrid 1 and Hybrid 2 methods are shown for

the MM-PF, MM-RBPF, PF and RBPF with road constraints. It can be noticed that

the performance results for the different filters do no significantly change for different

numbers of particles. Thus, it is not necessary to use a large number of particles in

these filters, since acceptable results can be already obtained with N = 1000 particles.

The multiple model-based estimators generally outperform the PF and RBPF, due to

the mismatch of statistics inherent in the PF and RBPF. However, for the Hybrid 2

method, the performance of the different filters is practically equivalent. The reason for

this result is that the performance is dominated by the information available from the

PR measurements and the road, and less influenced by the mismatch of the statistics

that is related to the RSS and RTT measurements. In Fig. 5.6, the MT location RMSE

in m vs. GDOP for the Hybrid 3 method are shown for the MM-PF, MM-RBPF, RBPF

with and without road constraints using N = 8000 particles, together with the IMM-

EKF and corresponding PCRLBs. Note that for comparison purposes the performance

of the RBPF with and without road constraints for the Satellite method is also shown.

It can be seen that the Hybrid 3 method yields large performance improvements for

large GDOP values, as long as no road constraints are considered in the filters. In

this case, the IMM-EKF and RBPF yield the best performance. The performance is

slightly worse for the MM-PF and MM-RBPF. The performance differences can be
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Figure 5.5. MT location RMSE vs. particle number N for PF, RBPF, MM-PF and
MM-RBPF with road constraints assuming LOS propagation conditions, solid lines:
Cellular method, dash-dotted lines: Hybrid 1 method, dashed lines: Hybrid 2 method.
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Figure 5.6. MT location RMSE vs. GDOP for MM-PF, MM-RBPF, RBPF, IMM-
EKF and PCRLB assuming LOS propagation conditions, solid lines: Satellite method,
dashed lines: Hybrid 3 method.
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explained by the fact that the dimension of the augmented state vector in the multiple

model-based estimators is generally larger than the dimension of the state vector in

the RBPF. Thus, in the multiple model-based estimators a large number of particles

is required to obtain a good approximation of the posterior pdf. Even though there

is an intentional mismatch between the statistics with which the measurements have

been generated and the statistics used in the RBPF, this has less influence on its

performance in the LOS case, since three very accurate pseudorange measurements are

available. For the RBPF, MM-PF and MM-RBPF with road constraints, significant

performance improvements can be obtained. Using the Hybrid 3 method rather than

the Satellite method will yield only small improvements, which is true for all tested

GDOP values.

5.6.2.2 Simulation Results for Propagation conditions that switch between
LOS and NLOS

In this section, the performance of the IMM-based algorithm and multiple model-based

algorithms introduced in Sections 5.4 and 5.5 is evaluated for the different combinations

of measurements of Scenario II assuming switching LOS/NLOS propagation conditions,

cf. Section 2.3.4.3. The E-PCRLB and M-PCRLBare computed for the different

combinations of measurements to indicate the best possible performance that one can

expect for the given scenario and set of parameters. All filters are initialized using the

strategy explained in Section 4.6.2.1. The parameters included in the mode-dependent

measurement model hk(xk, rk), the parameters of the Markov chain, as well as the noise

statistics given by the mode-dependent mean vector µk(rk) and covariance matrices

Rk(rk) and Q are chosen for the algorithms as in Section 5.6.2.1. The computation of

the E-PCRLB and M-PCRLB follows the same strategy as described in Section 4.6.2.1.

In Fig. 5.7, the E-PCRLB and M-PCRLB on the MT location RMSE in m vs. time

index k for the Cellular, Hybrid 1 and Hybrid 2 are shown. The bounds have been

calculated using NMC = 10000 mode sequences/samples. It can be noticed that the

E-PCRLB is lower than the M-PCRLB for all three methods. The reason for this

can be explained by the fact that in the computation of the E-PCRLB, the mode

sequence is explicitly known, while in the calculation of the M-PCRLB it is not. In

Figs. 5.8, 5.9 and 5.10, the MT location RMSEs in m vs. the time index k for the

Cellular, Hybrid 1 and Hybrid 2 methods are shown for the PF, RBPF, MM-PF and

MM-RBPF using N = 8000 particles, together with the corresponding IMM-EKF and

M-PCRLBs. Note that the likelihood pdf of the PF and RBPF is given by (3.83). From

these results, the same conclusions as those for the case of LOS propagation conditions
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Figure 5.7. MT location RMSE vs. time index k for E-PCRLB and M-PCRLB, solid
lines: Cellular method, , dash-dotted lines: Hybrid 1 method, dashed lines: Hybrid 2
method.
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can be drawn. It can be further observed that compared to the LOS case, the RMSEs

for the different methods are larger. On the one hand, this can be explained by

the fact that in NLOS situations, the measurement noise is larger, which leads to the

inferior performance. On the other hand, compared to the LOS scenario, this scenario

is much more challenging, since the filters have to adapt themselves continuously to

the switching LOS/NLOS propagation conditions. It is expected that the performance

of all PF-based estimators can be improved by including the latest measurement into

the corresponding importance density. In Fig. 5.11, the MT location RMSE in m vs.

GDOP for the Hybrid 3 method are shown for the MM-PF, MM-RBPF, RBPF with

and without road constraints using N = 8000 particles, together with the IMM-EKF

and corresponding M-PCRLBs. Note that for comparison purposes the performance

of the RBPF with and without road constraints for the Satellite method is also shown.

From these results, the same conclusions can be drawn as those for the case of LOS

propagation conditions. It can be further observed that compared to the LOS case, the

RMSEs for the estimators without road constraints are larger, while for the PF-based

estimators with road constraints the RMSEs are practically equivalent.
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Figure 5.9. MT location RMSE vs. time index k for RBPF, MM-RBPF, IMM-EKF
and M-PCRLB assuming switching LOS/NLOS propagation conditions and Hybrid 1
method, solid lines: No road constraints, dashed lines: Road constraints.



5.6 Performance Evaluation 211

0 80 160 240 320 400 480
0

50

100

150

 

 

R
M
S
E

in
m

MM-RBPF
RBPF

IMM-EKF
M-PCRLB

time index k

Figure 5.10. MT location RMSE vs. time index k for RBPF, MM-RBPF, IMM-EKF
and M-PCRLB assuming switching LOS/NLOS propagation conditions and Hybrid 2
method, solid lines: No road constraints, dashed lines: Road constraints.
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Figure 5.11. MT location RMSE vs. GDOP for MM-PF, MM-RBPF, RBPF, IMM-
EKF and M-PCRLB assuming switching LOS/NLOS propagation conditions, solid
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5.6.3 Comments on Computational Complexity

In this section, comments are given on the computational complexity of the different

algorithms, which have been introduced in this chapter. The computational complexity

of the IMM-EKF grows exponentially with s = 2NBS . Thus, this algorithm is especially

useful in situations, where NBS is small. Since in the algorithm, 2NBS are operated in

parallel, the computational complexity of the IMM-EKF is roughly 2NBS-times larger

than the conventional EKF, cf. Section 4.6.4. The multiple model PF-based estimators

are generally orders of magnitudes more complex than the IMM-EKF. In terms of

execution time, a large amount of time is spent in the PF-based estimators to generate

random variables, which scales with the number of particles N [KSG05]. Comparing

the computational complexity of the MM-PF with the MM-RBPF, cf. Algorithm 5.3

and 5.5, it can be concluded that for a given number N of particles, the MM-RBPF

is generally more complex than the MM-PF, since in the MM-RBPF for each particle

an KF time update and measurement update step has to be performed, which may

considerably increase the computational complexity. The MM-PF and MM-RBPF are

generally more complex than the corresponding PF and RBPF, since in the PF and

RBPF the generation of realizations of the mode variable can be omitted.

5.7 Conclusions

In this chapter, the hybrid localization problem has been reformulated as an adap-

tive recursive state estimation problem, where the switching between LOS and NLOS

propagation conditions has been modeled in the estimator with a Markov chain. Three

different estimators, namely the IMM-EKF, MM-PF and MM-RBPF have been pro-

posed to solve the hybrid localization problem and have been compared to the PF and

RBPF proposed in Chapter 4. The MM-RBPF has been newly derived for the gen-

eral, mode-dependent, conditional linear system model, cf. (5.66). Road constraints

have been incorporated into the MM-PF and MM-RBPF to further improve the per-

formance. The performance of the different algorithms has been compared to the

theoretically best achievable performance, which is given by the PCRLB. Two dif-

ferent bounds have been calculated, namely the E-PCRLB and the newly proposed

M-PCRLB. All presented hybrid localization algorithms have been extensively ana-

lyzed in terms of performance and comments on the complexity are given. If it is not

otherwise stated, the following main conclusions hold for both cases assuming LOS and

switching LOS/NLOS propagation conditions:
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• For switching LOS/NLOS propagation conditions and all investigated methods,

the E-PCRLBs are lower than the M-PCRLBs.

• The proposed IMM-based algorithms and multiple model-based algorithms can-

not achieve the corresponding M-PCRLBs.

• For the case of having no road information available, the IMM-EKF provides the

best trade-off between complexity and performance.

• For the case of having no road information available, a relatively large number

of particles is required in the MM-PF and MM-RBPF to obtain a performance

similar to the IMM-EKF.

• Significantly performance improvements can be achieved for all investigated

methods by incorporating road-constraints into the MM-PF and MM-RBPF.

• The MM-RBPF always outperforms the MM-PF. The achievable performance

gains strongly depend on the dimension of the state space and the number of

particles used in the corresponding filters.
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Chapter 6

Conclusions

This thesis deals with the problem of finding the location of an MT by using PR

measurements from GPS and RTT, RSS and GRT measurements from GSM, which is

termed hybrid localization problem. The signals from the cellular radio network are

assumed to be further affected by interferences due to NLOS propagation, which can

severely affect the localization accuracy of the corresponding algorithms. Several new

localization algorithms based on statistical data fusion are proposed in this thesis to

solve the hybrid localization problem for the case of LOS propagation conditions as

well as for NLOS propagation conditions.

In order to analyze the hybrid localization algorithms, a mathematical framework is

introduced in Chapter 2 that describes the hybrid localization scenario. The hybrid

localization scenario is further decomposed into the simulations and the field trial.

In the former, models for the MT movement and clock, as well as models for the

measurements assuming LOS and NLOS propagation conditions are introduced, so

that MT trajectories and measurements can be generated artificially. In the latter,

the MT movement as well as the measurements from the cellular radio network are

available from a field trial, which was performed in an operating GSM network.

In Chapter 3, hybrid localization algorithms based on the ML principle have been de-

rived that do not take into account temporal dependencies between MT states and

between measurements. The corresponding ML estimators have been derived for mea-

surements affected by LOS propagation conditions as well as for measurements affected

by switching LOS/NLOS propagation conditions. For both cases, suboptimal algo-

rithms are proposed to numerically obtain ML estimates. The performance of these

algorithms has been compared to the CRLB, which has been determined for measure-

ments affected by LOS propagation conditions as well as propagation conditions that

switch between LOS and NLOS. The algorithms have been applied to simulated data

as well as data available from a field trial, and the performance of the algorithms has

been analyzed in terms of MT location RMSE and time averaged MT location RMSE.

The results have shown that additionally taking into account PR measurements from

GPS and GRT from GSM in the algorithms can significantly improve the localization

accuracy compared to algorithms that only take into account RTT and RSS measure-

ments from GSM. It has been further proven that additionally taking into account

only one PR measurement from GPS cannot improve the localization accuracy.
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The case where temporal dependencies are taken into account in the hybrid localiza-

tion algorithms is treated in Chapter 4. In these algorithms, models describing the

MT movement and clock have been taken into account to further improve the localiza-

tion accuracy. KF-based estimators and PF-based estimators are introduced to solve

the hybrid localization problem. KF-based estimators are proposed for the case that

measurements are affected by LOS propagation conditions. The PF-based estimators

have been derived for the case that measurements are affected by LOS propagation

conditions as well as switching LOS/NLOS propagation conditions. Road constraints

have been incorporated into the PF-based estimators to further improve the localiza-

tion accuracy. The performance of these algorithms has been compared to the PCRLB,

which has been determined for measurements affected by LOS propagation conditions

as well as switching LOS/NLOS propagation conditions. The results have shown that

PF-based estimators with road constraints generally outperform KF-based estimators

and PF-based estimators that do not take into account road constraints. In scenarios,

where the measurements are affected by LOS propagation conditions, the analysis of

the results revealed that the best trade-off between performance and computational

complexity was achieved by the EKF.

Since the switching between LOS propagation conditions and NLOS propagation con-

ditions is expected to have a significant impact on the achievable performance of the

hybrid localization algorithms, this issue has been further addressed in Chapter 5. The

IMM-EKF-based estimator and two different multiple model PF-based estimators are

introduced to solve the hybrid localization problem. These algorithms take into account

models for the MT movement and clock, and model the switching between LOS and

NLOS propagation conditions with a Markov chain. Road constraints have been in-

corporated into the PF-based estimators to further improve the localization accuracy.

The performance of these algorithms has been compared to the PCRLB, which has

been calculated using two different approaches. The results have shown that multiple

model PF-based estimators with road constraints generally outperform the IMM-EKF

and the multiple model PF-based estimators that do not take into account road con-

straints. When road constraints are not considered in the algorithms, the IMM-EKF

achieves the best trade-off between performance and computational complexity.
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Appendix

A.1 Coordinate Transformations for Hybrid Local-

ization

A.1.1 Introduction

In this section, the transformations between different coordinate systems is presented

[RAG04, GWA07]. In general, three coordinate systems are involved when hybrid

localization algorithms are applied to real data: the geodetic coordinate system, the

ECEF coordinate system and the ENU coordinate system. Since the transformation

between the geodetic coordinates and the ENU coordinates is done via the ECEF

coordinates, only two different transformations have to be considered in the following.

The transformation from geodetic coordinates to ECEF coordinates, which is described

in Section A.1.2, and the transformation from ECEF coordinates to ENU coordinates,

which is described in Section A.1.3.

A.1.2 Transformation from Geodetic Coordinates to ECEF
Coordinates

In this section, the transformation from geodetic coordinates to ECEF coordinates is

explained. In the geodetic coordinate system, the Earth’s surface is modeled by an

ellipsoid, herinafter called the reference ellipsoid. The parameters that completely de-

scribe the reference ellipsoid are the semi-major axis ageo and the semi-minor axis bgeo,

which are dependent on the underlying geodetic system. In the following, the parame-

ters of the World Geodetic System 1984 (WGS-84) are used, since this is the geodetic

system that describes the reference coordinate system used by GPS. The correspond-

ing parameters for the WGS-84, are ageo = 6378137m and bgeo = 6356752.314245m,

respectively.

In the WGS-84, the coordinate origin is located at the Earth’s center of mass. Lo-

cations near the reference ellipsoid are described in terms of latitude λgeo, longitude

φgeo and altitude hgeo above the reference ellipsoid. The latitude defines the angular

distance between the Equator and points north or south of it on the Earth’s surface.

The latitude is counted counterclockwise and ranges from 0̊ at the Equator to ±90̊ at

the poles. The longitude defines the angular distance between the Prime Meridian and
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points east or west of it on the Earth’s surface. The longitude is counted counterclock-

wise and ranges from 0̊ at the Prime Meridian to 180̊ eastward and −180̊ westward.

The ECEF coordinate system is closely related to the geodetic coordinate system. The

ECEF coordinate system is a Cartesian coordinate system, and a point in ECEF coor-

dinates is described by the vector xECEF = [xECEF, yECEF, zECEF]
T. The ECEF coordinate

system rotates with Earth and its origin is located at the mass center of the Earth.

The xECEF-axis intersects the reference ellipsoid at the Prime Meridian (0̊ longitude)

and the Equator (0̊ latitude). The zECEF-axis is defined to coincide with the earth

rotational axis and is pointing towards the North Pole. The yECEF-axis passes through

the Equator at 90̊ longitude and completes the right-handed coordinate system. For

the sake of clarity, the basic relationships between the geodetic coordinate system and

the ECEF coordinate system are depicted in Fig. A.1. Let egeo =
√
1− b2geo/a

2
geo denote

the eccentricity of the reference ellipsoid and let Ngeo denote the radius of curvature in

prime vertical, which is given by

Ngeo =
a

√

1− e2geo · sin2 (λgeo)
. (A.1)

Then, the coordinate transformations from geodetic to ECEF coordinates are as follows

xECEF = [Ngeo + hgeo] · cos (λgeo) · cos (φgeo), (A.2)

yECEF = [Ngeo + hgeo] · cos (λgeo) · sin (φgeo), (A.3)

zECEF = [(1− e2geo) ·Ngeo + hgeo] · sin (λgeo). (A.4)

A.1.3 Transformation from ECEF Coordinates to ENU Coor-
dinates

In this section, the transformation from ECEF coordinates to ENU coordinates is

explained. The ENU coordinate system is a local Cartesian coordinate system, and a

point in ENU coordinates is described by the vector xENU = [xENU, yENU, zENU]
T. The

ENU coordinate system is determined by the fitting of a tangent plane to the Earth’s

surface at a fixed reference point, where the reference point is the origin of the local

ENU coordinate system. The xENU-axis points to true east, the yENU-axis points north,

and zENU-axis points up, in order to complete the right-handed coordinate system. For

the sake of clarity, the basic relationships between the ECEF coordinate system and

the ENU coordinate system are depicted in Fig. A.1. Let the reference point in ECEF

coordinates be given by the vector xECEF,0 and let the rotation matrix for the conversion

of ECEF coordinates to ENU coordinates be given by

M =





sin (φgeo) cos (φgeo) 0
− sin (λgeo) cos (φgeo) − sin (λgeo) sin (φgeo) cos (λgeo)
cos (λgeo) cos (φgeo) cos (λgeo) sin (φgeo) sin (λgeo)



 . (A.5)
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Figure A.1. Relationship between Geodetic coordinate system, ENU coordinate system
and ECEF coordinate system.

Then, the coordinate transformations from ECEF coordinates to ENU coordinates are

as follows

xENU = M · (xECEF − xECEF,0). (A.6)

A.2 Derivation of (3.19) describing the FIM for

measurements corrupted by zero-mean Gaus-

sian errors

In this section, the FIM for measurements corrupted by zero-mean Gaussian distributed

errors is determined, since it forms the basis of determining the FIMs for PR, RTT

and RSS measurements in LOS propagation conditions. The general expression for the

FIM is given by

F(xk) = Ep(zk|xk)

{
[∇xk

loge p(zk|xk)][∇xk
loge p(zk|xk)]

T
}
, (A.7)
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[Kay93]. For measurement models of the form (2.9), the above expression can be

decomposed using the chain rule [LC98]. Let

H̃k(xk) =
















∂h
(1)
k (xk)

∂x
(1)
k

∂h
(1)
k (xk)

∂x
(2)
k

. . .
∂h

(1)
k (xk)

∂x
(nx)
k

∂h
(2)
k (xk)

∂x
(1)
k

∂h
(2)
k (xk)

∂x
(2)
k

. . .
∂h

(2)
k (xk)

∂x
(nx)
k

...
...

. . .
...

∂h
(nz)
k (xk)

∂x
(1)
k

∂h
(nz)
k (xk)

∂x
(2)
k

. . .
∂h

(nz)
k (xk)

∂x
(nx)
k
















. (A.8)

denote the Jacobian matrix of hk(xk) evaluated at the true state vector xk. Let further

F(hk(xk)) denote the FIM for the nz-vector function hk(xk). Then, the FIM can be

determined from the chain rule

F(xk) = H̃T

k (xk) ·F(hk(xk)) · H̃k(xk), (A.9)

[LC98]. Here, it is worth noting that the application of the chain rule is indepen-

dent of the assumption on the pdf of the errors pvk
(vk). For the measurement model

assuming LOS propagation conditions, cf. (2.50), the errors are zero-mean Gaussian

distributed, so that F(hLOS,k(xk)) = R−1
LOS,k holds [Kay93]. If the errors are further

assumed mutually independent, this matrix reduces to a diagonal matrix and is given

by

F(hLOS,k(xk)) = R−1
LOS,k = diag[σ

(1),−2
LOS,k , . . . , σ

(nz),−2
LOS,k ]. (A.10)

The (i, j)-th element of F(xk) is, thus, given by

[F(xk)](i,j) =
nz∑

ν=1

σ
(ν),−2
LOS,k ·

[

∂h
(ν)
LOS,k(xk)

∂x
(i)
k

·
∂h

(ν)
LOS,k(xk)

∂x
(j)
k

]

, i, j = 1, . . . , nx. (A.11)

A.3 Derivation of (3.23) describing the FIM for PR

measurements

In this section, the derivation of the FIM FPR(x̃k) for the PR measurements given

by (3.23) is sketched. The Jacobian matrix HPR,k(x̃k) for the MPR PR measurements

can be found from inserting (2.20) into (A.8). The elements of the Jacobian matrix
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HPR,k(x̃k) are given by

∂h
(m)
PR,k(xMT,k, c0 · δtk)

∂xMT,k

=
xMT,k − x

(m)
SAT,k

d
(m)
SAT,k(xMT,k)

= u
(m)
SATx,k

, (A.12a)

∂h
(m)
PR,k(xMT,k, c0 · δtk)

∂yMT,k

=
yMT,k − y

(m)
SAT,k

d
(m)
SAT,k(xMT,k)

= u
(m)
SATy,k

, (A.12b)

∂h
(m)
PR,k(xMT,k, c0 · δtk)

∂(c0 · δtk)
= 1, (A.12c)

wherem = 1, . . . ,MPR. Let HPR denote the Jacobian matrix of the MT location vector

xMT,k, which is given by

HPR =















∂h
(1)
PR,k(x̃k)

∂xMT,k

∂h
(1)
PR,k(x̃k)

∂yMT,k

∂h
(2)
PR,k(x̃k)

∂xMT,k

∂h
(2)
PR,k(x̃k)

∂yMT,k
...

...

∂h
(MPR)
PR,k (x̃k)

∂xMT,k

∂h
(MPR)
PR,k (x̃k)

∂yMT,k















. (A.13)

Then, the Jacobian matrix HPR,k(x̃k) of the vector x̃k can be partitioned as follows

HPR,k(x̃k) =
[
HPR 1MPR×1

]
, (A.14)

where 1MPR×1 denotes the all-ones vector of size MPR × 1. Let ΛPR denote the FIM

F(hPR,k(x̃k)), which is given by

ΛPR = diag[σ
(1),−2
PR,k , . . . , σ

(MPR),−2
PR,k ]. (A.15)

Then, the FIM FPR(x̃k) can be found from inserting (A.14) and (A.15) into (A.9)

yielding

FPR(x̃k) =

[
HT

PRΛPRHPR HT

PRΛPR1MPR×1

1T

MPR×1ΛPRHPR 1T

MPR×1ΛPR1MPR×1

]

. (A.16)
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By further evaluating (A.16), the elements of the FIM can be found. These are given

by

[FPR(x̃k)]1,1 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m),2

SATx,k
, (A.17a)

[FPR(x̃k)]1,2 = [FPR(x̃k)]2,1 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m)

SATx,k
· u(m)

SATy,k
, (A.17b)

[FPR(x̃k)]2,2 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m),2

SATy,k
, (A.17c)

[FPR(x̃k)]1,3 = [FPR(x̃k)]3,1 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m)

SATx,k
, (A.17d)

[FPR(x̃k)]2,3 = [FPR(x̃k)]3,2 =

MPR∑

m=1

σ
(m),−2
PR,k · u(m)

SATy,k
, (A.17e)

[FPR(x̃k)]3,3 =

MPR∑

m=1

σ
(m),−2
PR,k . (A.17f)

A.4 Derivation of (3.25) describing the FIM for

RTT measurements

In this section, the derivation of the FIMFRTT(x̃k) for the RTT measurements given by

(3.25) is sketched. The Jacobian matrix HRTT,k(x̃k) for the MRTT RTT measurements

can be found from inserting (2.23) into (A.8). The elements of the Jacobian matrix

HRTT,k(x̃k) are given by

∂h
(m)
RTT,k(xMT,k)

∂xMT,k

=
xMT,k − x

(m)
BS,k

d
(m)
BS,k(xMT,k)

= u
(m)
BSx,k

, (A.18a)

∂h
(m)
RTT,k(xMT,k)

∂yMT,k

=
yMT,k − y

(m)
BS,k

d
(m)
BS,k(xMT,k)

= u
(m)
BSy,k

, (A.18b)

∂h
(m)
RTT,k(xMT,k)

∂(c0 · δtk)
= 0, (A.18c)
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where m = 1, . . . ,MRTT. Let HRTT denote the Jacobian matrix of the MT location

vector xMT,k, which is given by

HRTT =















∂h
(1)
RTT,k(xMT,k)

∂xMT,k

∂h
(2)
RTT,k(xMT,k)

∂yMT,k

∂h
(1)
RTT,k(xMT,k)

∂xMT,k

∂h
(2)
RTT,k(xMT,k)

∂yMT,k
...

...

∂h
(MRTT)
RTT,k (xMT,k)

∂xMT,k

∂h
(MRTT)
RTT,k (xMT,k)

∂yMT,k















. (A.19)

Then, the Jacobian matrix HRTT,k(x̃k) of the vector x̃k can be partitioned as follows

HRTT,k(x̃k) =
[
HRTT 0MRTT×1

]
. (A.20)

LetΛRTT denote the FIMF(hRTT,k(xMT,k)) for the case of LOS propagation conditions,

which is given by

ΛRTT = diag[σ
(1),−2
RTT,LOS,k, . . . , σ

(MRTT),−2
RTT,LOS,k ]. (A.21)

Then, the FIM FRTT(x̃k) can be found from inserting (A.20) and (A.21) into (A.9)

yielding

FRTT(x̃k) =

[
HT

RTTΛRTTHRTT 02×1

01×2 0

]

. (A.22)

By further evaluating (A.22), the elements of the FIM can be found. The non-zero

elements are given by

[FRTT(x̃k)]1,1 =

MRTT∑

m=1

σ
(m),−2
RTT,LOS,k · u

(m),2
BSx,k

, (A.23a)

[FRTT(x̃k)]1,2 = [FRTT(x̃k)]2,1 =

MRTT∑

m=1

σ
(m),−2
RTT,LOS,k · u

(m)
BSx,k

· u(m)
BSy,k

, (A.23b)

[FRTT(x̃k)]2,2 =

MRTT∑

m=1

σ
(m),−2
RTT,LOS,k · u

(m),2
BSy,k

. (A.23c)

A.5 Derivation of (3.28) describing the FIM for

RSS measurements

In this section, the derivation of the FIM FRSS(x̃k) for the RSS measurements given by

(3.28) is sketched. The Jacobian matrix HRSS,k(x̃k) for the MRSS RSS measurements
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can be found from inserting hRSS,LOS,k(xMT,k) defined in (2.42) into (A.8). The elements

of the Jacobian matrix HRSS,k(x̃k) are given by

∂h
(m)
RSS,k(xMT,k)

∂xMT,k

= −b(m) ·
xMT,k − x

(m)
BS,k

[d
(m)
BS,k(xMT,k)]2

− g(m) ·
yMT,k − y

(m)
BS,k

[d
(m)
BS,k(xMT,k)]2

= −
b(m) · u(m)

BSx,k
+ g(m) · u(m)

BSy,k

d
(m)
BS,k(xMT,k)

, (A.24a)

∂h
(m)
RSS,k(xMT,k)

∂yMT,k

= −b(m) ·
yMT,k − y

(m)
BS,k

[d
(m)
BS,k(xMT,k)]2

+ g(m) ·
xMT,k − x

(m)
BS,k

[d
(m)
BS,k(xMT,k)]2

= −
b(m) · u(m)

BSy,k
− g(m) · u(m)

BSx,k

d
(m)
BS,k(xMT,k)

, (A.24b)

∂h
(m)
RSS,k(xMT,k)

∂(c0 · δtk)
= 0, (A.24c)

where m = 1, . . . ,MRSS. Let HRSS denote the Jacobian matrix of the MT location

vector xMT,k, which is given by

HRSS =















∂h
(1)
RSS,k(xMT,k)

∂xMT,k

∂h
(1)
RSS,k(xMT,k)

∂yMT,k

∂h
(2)
RSS,k(xMT,k)

∂xMT,k

∂h
(2)
RSS,k(xMT,k)

∂yMT,k
...

...

∂h
(MRSS)
RSS,k (xMT,k)

∂xMT,k

∂h
(MRSS)
RSS,k (xMT,k)

∂yMT,k















. (A.25)

Then, the Jacobian matrix HRSS,k(x̃k) of the vector x̃k can be partitioned as follows

HRSS,k(x̃k) =
[
HRSS 0MRSS×1

]
. (A.26)

Let ΛRSS denote the FIM F(hRSS,LOS,k(xMT,k)) for the case of LOS propagation con-

ditions, which is given by

ΛRSS = diag[σ
(1),−2
RSS,LOS,k, . . . , σ

(MRSS),−2
RSS,LOS,k ]. (A.27)

Then, the FIM FRSS(x̃k) can be found from inserting (A.26) and (A.27) into (A.9)

yielding

FRSS(x̃k) =

[
HT

RSSΛRSSHRSS 02×1

01×2 0

]

. (A.28)
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By further evaluating (A.28), the elements of the FIM can be found. The non-zero

elements are given by

[FRSS(x̃k)]1,1 =

MRSS∑

m=1

σ
(m),−2
RSS,LOS,k ·

[
b(m) · u(m)

BSx,k
+ g(m) · u(m)

BSy,k

d
(m)
BS,k(xMT,k)

]2

,

(A.29a)

[FRSS(x̃k)]1,2 = [FRSS(x̃k)]2,1 =

MRSS∑

m=1

σ
(m),−2
RSS,LOS,k ·

[(
b(m) · u(m)

BSx,k
+ g(m) · u(m)

BSy,k

d
(m)
BS,k(xMT,k)

)

×
(
b(m) · u(m)

BSy,k
− g(m) · u(m)

BSx,k

d
(m)
BS,k(xMT,k)

)]

, (A.29b)

[FRSS(x̃k)]2,2 =

MRSS∑

m=1

σ
(m),−2
RSS,LOS,k ·

[
b(m) · u(m)

BSy,k
− g(m) · u(m)

BSx,k

d
(m)
BS,k(xMT,k)

]2

.

(A.29c)

A.6 Derivation of (3.36) describing the MT loca-

tion Fisher information submatrix for hybrid

localization

In this section, the elements for the MT location Fisher information submatrix FL(x̃k)

of the hybrid localization are derived. The FIM for hybrid localization can be found

from inserting (A.16), (A.22), (A.28) and (3.29) into (3.20), yielding

F(x̃k) =

[
F1(x̃k) F2(x̃k)
F3(x̃k) F4(x̃k)

]

, (A.30)

where

F1(x̃k) = HT

PRΛPRHPR +HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS, (A.31a)

F2(x̃k) = HT

PRΛPR1MPR×1, (A.31b)

F3(x̃k) = 1T

MPR×1ΛPRHPR, (A.31c)

F4(x̃k) = 1T
MPR×1ΛPR1MPR×1 + σ−2

BIAS,k. (A.31d)

According to (3.32), the first 2 × 2 diagonal submatrix P1(x̃k) is given by

P1(x̃k) = [FL(x̃k)]
−1 =

[
HT

PRΛPRHPR +HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS

−HT

PRΛPR1MPR×1[1
T

MPR×1ΛPR1MPR×1 + σ−2
BIAS,k]

−11T

MPR×1ΛPRHPR

]−1
.

(A.32)
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The elements of the matrixFL(x̃k) can be found by evaluating the expression in (A.32).

These are given by

[FL(x̃k)]1,1 =

MPR∑

κ1=1

σ
(κ1),−2
PR,k · u(κ1),2

SATx,k
+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1),2
BSx,k

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1) · u(κ1)

BSx,k
+ g(κ1) · u(κ1)

BSy,k

d
(κ1)
BS,k(xMT,k)

]2

−



σ−2
BIAS,k +

MPR∑

κ3=1

σ
(κ3),−2
PR,k





−1
MPR∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
PR,k · σ(κ2),−2

PR,k · u(κ1)
SATx,k

· u(κ2)
SATx,k

,

(A.33a)

[FL(x̃k)]1,2 =

MPR∑

κ1=1

σ
(κ1),−2
PR,k · u(κ1)

SATx,k
· u(κ1)

SATy,k
+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1)
BSx,k

· u(κ1)
BSy,k

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[(
b(κ1) · u(κ1)

BSx,k
+ g(κ1)(xMT,k) · u(κ1)

BSy,k

d
(κ1)
BS,k(xMT,k)

)

×
(
b(κ1) · u(κ1)

BSy,k
− g(κ1) · u(κ1)

BSx,k

d
(κ1)
BS,k(xMT,k)

)]

−



σ−2
BIAS,k +

MPR∑

κ3=1

σ
(κ3),−2
PR,k





−1
MPR∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
PR,k · σ(κ2),−2

PR,k · u(κ1)
SATx,k

· u(κ2)
SATy,k

= [FL(x̃k)]2,1 , (A.33b)

[FL(x̃k)]2,2 =

MPR∑

κ1=1

σ
(κ1),−2
PR,k · u(κ1),2

SATy,k
+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1),2
BSy,k

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1) · u(κ1)

BSy,k
− g(κ1) · u(κ1)

BSx,k

d
(κ1)
BS,k(xMT,k)

]2

−



σ−2
BIAS,k +

MPR∑

κ3=1

σ
(κ3),−2
PR,k





−1
MPR∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
PR,k · σ(κ2),−2

PR,k · u(κ1)
SATy,k

· u(κ2)
SATy,k

.

(A.33c)

The expressions in (A.33) can be further simplified by combining the sum components

that depend on the PR measurements. For [FL(x̃k)]1,1, the sum component of the PR
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measurement can be written as

MPR∑

κ1=1

σ
(κ1),−2
PR,k · u(κ1),2

SATx,k
−

MPR∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
PR,k · σ(κ2),−2

PR,k · u(κ1)
SATx,k

· u(κ2)
SATx,k

σ−2
BIAS,k +

MPR∑

κ3=1

σ
(κ3),−2
PR,k

=

MPR∑

κ1=1

e(κ1) · u(κ1),2
SATx,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1),2
SATx,k

− u
(κ1)
SATx,k

· u(κ2)
SATx,k

), (A.34)

where e(κ1) and c(κ1,κ2) are defined in (3.35) and (3.34). For [FL(x̃k)]1,2, [FL(x̃k)]2,1
and [FL(x̃k)]2,2, similar expressions can be found for the sum components of the PR

measurement. As a result, the elements of the matrix FL(x̃k) can be rewritten as

[FL(x̃k)]1,1 =

MPR∑

κ1=1

e(κ1) · u(κ1),2
SATx,k

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1),2
BSx,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1),2
SATx,k

− u
(κ1)
SATx,k

· u(κ2)
SATx,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1) · u(κ1)

BSx,k
+ g(κ1) · u(κ1)

BSy,k

d
(κ1)
BS,k(xMT,k)

]2

, (A.35a)

[FL(x̃k)]1,2 =

MPR∑

κ1=1

e(κ1) · u(κ1)
SATx,k

· u(κ1)
SATy,k

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1)
BSx,k

· u(κ1)
BSy,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1)
SATx,k

· u(κ1)
SATy,k

− u
(κ1)
SATy,k

· u(κ2)
SATy,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[(
b(κ1) · u(κ1)

BSx,k
+ g(κ1) · u(κ1)

BSy,k

d
(κ1)
BS,k(xMT,k)

)

×
(
b(κ1) · u(κ1)

BSy,k
− g(κ1) · u(κ1)

BSx,k

d
(κ1)
BS,k(xMT,k)

)]

= [FL(x̃k)]2,1 , (A.35b)

[FL(x̃k)]2,2 =

MPR∑

κ1=1

e(κ1) · u(κ1),2
SATy,k

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · u

(κ1),2
BSy,k

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1),2
SATy,k

− u
(κ1)
SATy,k

· u(κ2)
SATy,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1) · u(κ1)

BSy,k
− g(κ1) · u(κ1)

BSx,k

d
(κ1)
BS,k(xMT,k)

]2

. (A.35c)
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A.7 Derivation of (3.37) describing the numerator

of the MT location CRLB

In this section, the numerator of the MT location CRLB is derived. The numerator can

be found from the addition of [FL(x̃k)]1,1 and [FL(x̃k)]2,2 which are defined in (3.36a)

and (3.36c), yielding

[FL(x̃k)]1,1 + [FL(x̃k)]2,2 =

MPR∑

κ1=1

e(κ1) · (u(κ1),2
SATx,k

+ u
(κ1),2
SATy,k

)

+

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k · (u

(κ1),2
BSx,k

+ u
(κ1),2
BSy,k

)

+

MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1),2
SATx,k

+ u
(κ1),2
SATy,k

)

−
MPR∑

κ1=1

MPR∑

κ2=1

c(κ1,κ2) · (u(κ1)
SATx,k

· u(κ2)
SATx,k

+ u
(κ1)
SATy,k

· u(κ2)
SATy,k

)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[
b(κ1),2 · (u(κ1),2

BSx,k
+ u

(κ1),2
BSy,k

)

d
(κ1)
BS,k(xMT,k)

+
g(κ1),2 · (u(κ1),2

BSx,k
+ u

(κ1),2
BSy,k

)

d
(κ1)
BS,k(xMT,k)

]

. (A.36)

By taking into account that ‖ p
(κ1)
SAT,k ‖2= u

(κ1),2
SATx,k

+u
(κ1),2
SATy,k

, ‖ u
(κ1)
BS,k ‖2= u

(κ1),2
BSx,k

+u
(κ1),2
BSy,k

=

1 and p
(κ1)
SAT,k · p

(κ2)
SAT,k = u

(κ1)
SATx,k

· u(κ2)
SATx,k

+ u
(κ1)
SATy,k

· u(κ2)
SATy,k

holds, the above expression

simplifies to

[FL(x̃k)]1,1 + [FL(x̃k)]2,2 =

MPR∑

κ1=1

e(κ1)· ‖ p
(κ1)
SAT,k ‖2 +

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k

+

MPR∑

κ1=1

MPR∑

κ2=1
κ2 6=κ1

c(κ1,κ2) · (‖ p
(κ1)
SATxy,k

‖2 −p
(κ1)
SAT,k · p

(κ2)
SAT,k)

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[

b(κ1),2 + g(κ1),2

d
(κ1),2
BS,k (xMT,k)

]

.

(A.37)

The double sum in (A.37) can be further modified by excluding the terms occurring

when κ1 = κ2, since ‖ p
(κ1)
SAT,k ‖2 −p

(κ1)
SAT,k · p

(κ1)
SAT,k = 0. In this case, the formula

∑

κ1

∑

κ2
κ2 6=κ1

aκ1bκ2 =
∑

κ1

∑

κ2
κ2>κ1

(aκ1bκ2 + aκ2bκ1), (A.38)
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valid for κ1 and κ2 spanning the same set of ordered values can be used and (A.37)

becomes

[FL(x̃k)]1,1 + [FL(x̃k)]2,2 =

MPR∑

κ1=1

e(κ1)· ‖ p
(κ1)
SAT,k ‖2 +

MRTT∑

κ1=1

σ
(κ1),−2
RTT,LOS,k

+

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

c(κ1,κ2)· ‖ p
(κ1)
SAT,k − p

(κ2)
SAT,k ‖2

+

MRSS∑

κ1=1

σ
(κ1),−2
RSS,LOS,k ·

[

b(κ1),2 + g(κ1),2

d
(κ1),2
BS,k (xMT,k)

]

. (A.39)

A.8 Derivation of (3.47) describing the denomina-

tor of the MT location CRLB

In this section, the derivation of the denominator of the MT location CRLB is sketched.

The denominator can be found from inserting (3.36) into (3.38). For notational conve-

nience, the time step k is suppressed in the following. For the same reasons, σ
(κ1),−2
RTT,LOS,k

is replaced by σ
(κ1),−2
RTT and σ

(κ1),−2
RSS,LOS,k is replaced by σ

(κ1),−2
RSS . The direct evaluation of

(3.38) results in 10 different terms, yielding

det[FL(x̃k)] =
10∑

κ1=1

FL,κ1 , (A.40)

where the summands are given as follows

FL,1 =

MPR∑

κ1=1

MPR∑

κ2=1

e(κ1)e(κ2)
[

u
(κ1),2
SATx

u
(κ2),2
SATy

− u
(κ1)
SATx

u
(κ1)
SATy

u
(κ2)
SATx

u
(κ2)
SATy

]

, (A.41)

FL,2 =

MRTT∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RTT e(κ2)

[

(u
(κ1),2
BSx

u
(κ2),2
SATy

− u
(κ2)
SATx

u
(κ2)
SATy

u
(κ1)
BSx

u
(κ1)
BSy

)

+ (u
(κ1),2
BSy

u
(κ2),2
SATx

− u
(κ2)
SATx

u
(κ2)
SATy

u
(κ1)
BSx

u
(κ1)
BSy

)
]

, (A.42)

FL,3 =

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

e(κ1)c(κ2,κ3)
[

u
(κ1),2
SATx

(u
(κ2),2
SATy

− u
(κ2)
SATy

u
(κ3)
SATy

)

−u(κ1)
SATx

u
(κ1)
SATy

(u
(κ2)
SATy

u
(κ2)
SATx

− u
(κ2)
SATy

u
(κ3)
SATx

) + u
(κ1),2
SATy

(u
(κ2),2
SATx

− u
(κ2)
SATx

u
(κ3)
SATx

)

−u(κ1)
SATy

u
(κ1)
SATx

(u
(κ2)
SATx

u
(κ2)
SATy

− u
(κ2)
SATx

u
(κ3)
SATy

)
]

, (A.43)
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FL,4 =

MRSS∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RSS e(κ2)

[(

b(κ1)u
(κ1)
BSx

+ g(κ1)u
(κ1)
BSy

d
(κ1)
BS (xMT)

)

u
(κ2)
SATy

−
(

b(κ1)u
(κ1)
BSy

− g(κ1)u
(κ1)
BSx

d
(κ1)
BS (xMT)

)

u
(κ2)
SATx

]2

, (A.44)

FL,5 =

MRTT∑

κ1=1

MRTT∑

κ2=1

σ
(κ1),−2
RTT σ

(κ2),−2
RTT

[

u
(κ1),2
BSx

u
(κ2),2
BSy

− u
(κ1)
BSx

u
(κ1)
BSy

u
(κ2)
BSx

u
(κ2)
BSy

]

, (A.45)

FL,6 =

MRTT∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

σ
(κ1),−2
RTT c(κ2,κ3)

[

u
(κ1),2
BSx

(u
(κ2),2
SATy

− u
(κ2)
SATy

u
(κ3)
SATy

)

−u(κ1)
BSx

u
(κ1)
BSy

(u
(κ2)
SATy

u
(κ2)
SATx

− u
(κ2)
SATy

u
(κ3)
SATx

) + u
(κ1),2
BSy

(u
(κ2),2
SATx

− u
(κ2)
SATx

u
(κ3)
SATx

)

−u(κ1)
BSy

u
(κ1)
BSx

(u
(κ2)
SATx

u
(κ2)
SATy

− u
(κ2)
SATx

u
(κ3)
SATy

)
]

, (A.46)

FL,7 =

MRTT∑

κ1=1

MRSS∑

κ2=1

σ
(κ1),−2
RTT σ

(κ2),−2
RSS

[

u
(κ1)
BSx

(

b(κ2)u
(κ2)
BSy

− g(κ2)u
(κ2)
BSx

d
(κ2)
BS (xMT)

)

−u(κ1)
BSy

(

b(κ2)u
(κ2)
BSx

+ g(κ2)u
(κ2)
BSy

d
(κ2)
BS (xMT)

)]2

, (A.47)

FL,8 =

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

MPR∑

κ4=1

c(κ1,κ2)c(κ3,κ4)
[

(u
(κ1),2
SATx

− u
(κ1)
SATx

u
(κ2)
SATx

)(u
(κ3),2
SATy

− u
(κ3)
SATy

u
(κ4)
SATy

)

−(u
(κ1)
SATx

u
(κ1)
SATy

− u
(κ1)
SATx

u
(κ2)
SATy

)(u
(κ3)
SATy

u
(κ3)
SATx

− u
(κ3)
SATy

u
(κ4)
SATx

)
]

, (A.48)

FL,9 =

MRSS∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

σ
(κ1),−2
RSS c(κ2,κ3)





(

b(κ1)u
(κ1)
BSx

+ g(κ1)u
(κ1)
BSy

d
(κ1)
BS (xMT)

)2

(u
(κ2),2
SATy

− u
(κ2)
SATy

u
(κ3)
SATy

)

−
(

(b(κ1)u
(κ1)
BSx

+ g(κ1)u
(κ1)
BSy

)(b(κ1)u
(κ1)
BSy

− g(κ1)u
(κ1)
BSx

)

d
(κ1),2
BS (xMT)

)

·
[

(u
(κ2)
SATy

u
(κ2)
SATx

− u
(κ2)
SATy

u
(κ3)
SATx

) + (u
(κ2)
SATx

u
(κ2)
SATy

− u
(κ2)
SATx

u
(κ3)
SATy

)
]

+

(

b(κ1)u
(κ1)
BSy

− g(κ1)u
(κ1)
BSx

d
(κ1)
BS (xMT)

)2

(u
(κ2),2
SATx

− u
(κ2)
SATx

u
(κ3)
SATx

)



 , (A.49)

FL,10 =

MRSS∑

κ1=1

MRSS∑

κ2=1

σ
(κ1),−2
RSS σ

(κ2),−2
RSS





(

b(κ1)u
(κ1)
BSx

+ g(κ1)u
(κ1)
BSy

d
(κ1)
BS (xMT)

·
b(κ2)u

(κ2)
BSy

− g(κ2)u
(κ2)
BSx

d
(κ2)
BS (xMT)

)2

−
(

(b(κ1)u
(κ1)
BSx

+ g(κ1)u
(κ1)
BSy

)(b(κ1)u
(κ1)
BSy

− g(κ1)u
(κ1)
BSx

)

d
(κ1),2
BS (xMT)

)

·
(

(b(κ2)u
(κ2)
BSy

− g(κ2)u
(κ2)
BSx

)(b(κ2)u
(κ2)
BSx

+ g(κ2)u
(κ2)
BSy

)

d
(κ2),2
BS (xMT)

)]

. (A.50)
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In the following, the summands are further simplified in order to arrive at the expression

given in (3.47). This is done as follows:

• The summandFL,1 can be expressed in terms ofA(κ1,κ2) defined in (3.39), yielding

FL,1 =

MPR∑

κ1=1

MPR∑

κ2=1

e(κ1) · e(κ2) ·
[

u
(κ1)
SATx

u
(κ2)
SATy

· A(κ1,κ2)
]

. (A.51)

The double sum in (A.51) can be further modified by excluding the terms occur-

ring when κ1 = κ2, since A(κ1,κ1) = 0. In this case, the formula in (A.38) can be

used and FL,1 can be rewritten as

FL,1 =

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

e(κ1) · e(κ2) · A(κ1,κ2),2. (A.52)

• The summandFL,2 can be expressed in terms of B(κ1,κ2) defined in (3.40), yielding

FL,2 =

MRTT∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RTT · e(κ2) · B(κ1,κ2),2. (A.53)

• The summandFL,3 can be expressed in terms ofA(κ1,κ2) defined in (3.39), yielding

FL,3 =

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

e(κ1) · c(κ2,κ3) ·
[
A(κ1,κ2),2 −A(κ1,κ2) · A(κ1,κ3)

]
. (A.54)

The triple sum in (A.54) can be further modified by excluding the terms occurring

when κ2 = κ3, since A(κ1,κ2),2 −A(κ1,κ2) · A(κ1,κ2) = 0. In this case, the formula
∑

κ1

∑

κ2

∑

κ3
κ3 6=κ2

aκ1bκ2cκ3 =
∑

κ1

∑

κ2

∑

κ3
κ3>κ2

aκ1(bκ2cκ3 + bκ3cκ2), (A.55)

valid for κ2 and κ3 spanning the same set of ordered values can be used and

(A.54) becomes

FL,3 =

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

e(κ1) · c(κ2,κ3) ·
[
A(κ1,κ2) −A(κ1,κ3)

]2
. (A.56)

• The summand FL,4 can be expressed in terms of B(κ1,κ2) and D(κ1,κ2) defined in

(3.40) and (3.42), yielding

FL,4 =

MRSS∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RSS · e(κ2) ·

[

b(κ1) · B(κ1,κ2) + g(κ1) · D(κ1,κ2)

d
(κ1)
BS (xMT)

]2

. (A.57)
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• The summand FL,5 can be expressed in terms of C(κ1,κ2) defined in (3.41). Fol-

lowing the same derivation steps as for FL,1, FL,5 is given by

FL,5 =

MRTT∑

κ1=1

MRTT∑

κ2=1
κ2>κ1

σ
(κ1),−2
RTT · σ(κ2),−2

RTT · C(κ1,κ2),2. (A.58)

• The summand FL,6 can be expressed in terms of B(κ1,κ2) defined in (3.40). Fol-

lowing the same derivation steps as for FL,3, FL,6 is given by

FL,6 =

MRTT∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3
κ3>κ2

σ
(κ1),−2
RTT · c(κ2,κ3) ·

[
B(κ1,κ2) − B(κ1,κ3)

]2
. (A.59)

• The summand FL,7 can be expressed in terms of C(κ1,κ2) and E (κ1,κ2) defined in

(3.41) and (3.43), yielding

FL,7 =

MRTT∑

κ1=1

MRSS∑

κ2=1

σ
(κ1),−2
RTT · σ(κ2),−2

RSS ·
[

b(κ2) · C(κ1,κ2) − g(κ2) · E (κ1,κ2)

d
(κ2)
BS (xMT)

]2

. (A.60)

• The summand FL,8 can be rewritten by evaluating the expression in the square

brackets of (A.48). After a cumbersome rearrangement of the terms, FL,8 can be

rewritten as

FL,8 =

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

MPR∑

κ4=1

c(κ1,κ2) · c(κ3,κ4) · u(κ1)
SATx

· u(κ4)
SATy

·
[

(p
(κ1)
SAT − p

(κ2)
SAT)× (p

(κ3)
SAT − p

(κ4)
SAT)

]T

· uz. (A.61)

The expression in the square brackets of (A.61) equals zero for the two cases

κ1 = κ2 and κ3 = κ4. Thus, the quadruple sum in (A.61) can be further modified

by excluding the terms occurring when κ1 = κ2 and κ3 = κ4. In this case, the

formula

∑

κ1

∑

κ2
κ2 6=κ1

∑

κ3

∑

κ4
κ4 6=κ3

aκ1bκ2cκ3dκ4 =
∑

κ1

∑

κ2
κ2>κ1

∑

κ3

∑

κ4
κ4>κ3

(aκ1bκ2+aκ2bκ1)(cκ3dκ4+cκ4dκ3),

(A.62)

valid for κ1, κ2, κ3, κ4 spanning the same set of ordered values can be used and

(A.61) can be expressed in terms of G(κ1,κ2,κ3,κ4) defined in (3.46), yielding

FL,8 =

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

MPR∑

κ3=1

MPR∑

κ4=1
κ4>κ3

c(κ1,κ2) · c(κ3,κ4) · G(κ1,κ2,κ3,κ4). (A.63)
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• The summand FL,9 can be rewritten by evaluating the expression in the square

brackets of (A.49). After a cumbersome rearrangement of the terms, FL,9 can be

rewritten in terms of B(κ1,κ2) and D(κ1,κ2) defined in (3.40) and (3.42), yielding

FL,9 =

MRSS∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1

σ
(κ1),−2
RSS · c(κ2,κ3) ·





(

b(κ1)B(κ1,κ2) + g(κ1)D(κ1,κ2)

d
(κ1)
BS (xMT)

)2

− (b(κ1)B(κ1,κ2) + g(κ1)D(κ1,κ2))(b(κ1)B(κ1,κ3) + g(κ1)D(κ1,κ3))

d
(κ1),2
BS (xMT)

]

.

(A.64)

The expression in the square brackets of (A.64) equals zero for the case κ2 = κ3.

Thus, the triple sum in (A.64) can be further modified by excluding the terms

occurring when κ2 = κ3. In this case, the formula in (A.55) can be used, so that

FL,9 can be written as

FL,9 =

MRSS∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

σ
(κ1),−2
RSS · c(κ2,κ3) ·

[

b(κ1)B(κ1,κ2) + g(κ1)D(κ1,κ2)

d
(κ1)
BS (xMT)

− b(κ1)B(κ1,κ3) + g(κ1)D(κ1,κ3)

d
(κ1)
BS (xMT)

]2

. (A.65)

• The summand FL,10 can be expressed in terms of C(κ1,κ2) and E (κ1,κ2) defined in

(3.41) and (3.43), yielding

FL,10 =

MRSS∑

κ1=1

MRSS∑

κ2=1

σ
(κ1),−2
RSS · σ(κ2),−2

RSS ·
[

b(κ1)u
(κ1)
BSx

+ g(κ1)u
(κ1)
BSy

d
(κ1)
BS (xMT)

·
b(κ2)u

(κ2)
BSy

− g(κ2)u
(κ2)
BSx

d
(κ2)
BS (xMT)

·
(

(b(κ1) · b(κ2) + g(κ1) · g(κ2)) · C(κ1,κ2)

d
(κ1)
BS (xMT) · d(κ2)

BS (xMT)

+
(b(κ2) · g(κ1) − b(κ1) · g(κ2)) · E (κ1,κ2)

d
(κ1)
BS (xMT) · d(κ2)

BS (xMT)

)]

. (A.66)

The double sum in (A.66) can be further modified by excluding the terms occur-

ring when κ1 = κ2, since C(κ1,κ1) = 0 and b(κ1) · g(κ1) − b(κ1) · g(κ1) = 0. In this

case, the formula in (A.38) can be used and FL,10 can be rewritten as

FL,10 =

MRSS∑

κ1=1

MRSS∑

κ1=1
κ2>κ1

σ
(κ1),−2
RSS · σ(κ2),−2

RSS ·
[

(b(κ1) · b(κ2) + g(κ1) · g(κ2)) · C(κ1,κ2)

d
(κ1)
BS (xMT) · d(κ2)

BS (xMT)

+
(b(κ2) · g(κ1) − b(κ1) · g(κ2)) · E (κ1,κ2)

d
(κ1)
BS (xMT) · d(κ2)

BS (xMT)

]2

. (A.67)
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According to (A.40), the denominator of the MT location CRLB is, thus, given by

det[FL(x̃k)] =

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

e(κ1) · e(κ2) · A(κ1,κ2),2

+

MRTT∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RTT,LOS,k · e(κ2) · B(κ1,κ2),2

+

MPR∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

e(κ1) · c(κ2,κ3) ·
[
A(κ1,κ2) −A(κ1,κ3)

]2

+

MRSS∑

κ1=1

MPR∑

κ2=1

σ
(κ1),−2
RSS,LOS,k · e(κ2) ·

[

b(κ1) · B(κ1,κ2) + g(κ1) · D(κ1,κ2)

d
(κ1)
BS,k(xMT,k)

]2

+

MRTT∑

κ1=1

MRTT∑

κ2=1
κ2>κ1

σ
(κ1),−2
RTT,LOS,k · σ

(κ2),−2
RTT,LOS,k · C(κ1,κ2),2

+

MRTT∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

σ
(κ1),−2
RTT,LOS,k · c(κ2,κ3) ·

[
B(κ1,κ2) − B(κ1,κ3)

]2

+

MRTT∑

κ1=1

MRSS∑

κ2=1

σ
(κ1),−2
RTT,LOS,k · σ

(κ2),−2
RSS,LOS,k ·

[

b(κ2) · C(κ1,κ2) − g(κ2) · E (κ1,κ2)

d
(κ2)
BS,k(xMT,k)

]2

+

MPR∑

κ1=1

MPR∑

κ2=1
κ2>κ1

MPR∑

κ3=1

MPR∑

κ4=1
κ4>κ3

c(κ1,κ2) · c(κ3,κ4) · G(κ1,κ2,κ3,κ4)

+

MRSS∑

κ1=1

MPR∑

κ2=1

MPR∑

κ3=1
κ3>κ2

σ
(κ1),−2
RSS,LOS,k · c(κ2,κ3) ·

[

b(κ1) · B(κ1,κ2) + g(κ1) · D(κ1,κ2)

d
(κ1)
BS,k(xMT,k)

+
b(κ1) · B(κ1,κ3) + g(κ1) · D(κ1,κ3)

d
(κ1)
BS,k(xMT,k)

]2

+

MRSS∑

κ1=1

MRSS∑

κ1=1
κ2>κ1

σ
(κ1),−2
RSS,LOS,k · σ

(κ2),−2
RSS,LOS,k ·

[

(b(κ1) · b(κ2) + g(κ1) · g(κ2)) · C(κ1,κ2)

d
(κ1)
BS,k(xMT,k) · d(κ2)

BS,k(xMT,k)

+
(b(κ2) · g(κ1) − b(κ1) · g(κ2)) · E (κ1,κ2)

d
(κ1)
BS,k(xMT,k) · d(κ2)

BS,k(xMT,k)

]2

. (A.68)
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A.9 Proof showing that the MT location CRLBs of

the Cellular and Hybrid 1 method are equal.

In this section, it is proven that the MT location CRLB of the Cellular and Hybrid 1

method are equal. The FIM of the Cellular method with respect to xMT,k is given by

FCellular(xMT,k) = FRTT(xMT,k) +FRSS(xMT,k), (A.69)

By inserting (A.22), (A.28) into (A.69), it follows for the FIM of the Cellular method

FCellular(xMT,k) = HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS. (A.70)

The CRLB matrix of the Cellular method is, thus, given by

PCRLB,Cellular =
[
HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS

]−1
. (A.71)

The FIM of the Hybrid 1 method with respect to x̃k is given by

FHybrid 1(x̃k) = FPR(x̃k) +FRTT(x̃k) +FRSS(x̃k). (A.72)

By inserting (A.16), (A.22), (A.28) into (A.72), the FIM of the Hybrid 1 method can

be found

FHybrid 1(x̃k) =

[

HT
PRσ

(1),−2
PRk HPR +HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS HT

PRσ
(1),−2
PR,k

σ
(1),−2
PR,k HPR σ

(1),−2
PR,k

]

.

(A.73)

According to (3.32), the first 2 × 2 diagonal submatrix P1(x̃k) gives the MT location

CRLB matrix of the Hybrid 1 method, which is given by

P1(x̃k)
∆
= PCRLB,Hybrid 1 =

[

HT
PRσ

(1),−2
PRk HPR +HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS

−HT

PRσ
(1),−2
PR,k σ

(1),2
PR,kσ

(1),−2
PR,k HPR

]−1

=
[
HT

RTTΛRTTHRTT +HT

RSSΛRSSHRSS

]−1
. (A.74)

Now, since PCRLB,Cellular = PCRLB,Hybrid 1, it directly follows that PCRLB,Cellular =

PCRLB,Hybrid 1 holds, which concludes our proof.

A.10 Monte Carlo Integration

In this section, the concept of Monte Carlo integration is reviewed [MU49,NB99,RC99,

RAG04]. Let g(x) denote an arbitrary function depending on x ∈ R
nx and let the

multidimensional integral of g(x) be given by

I =

∫

R
nx
g(x) dx. (A.75)
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The idea of Monte Carlo integration is to factorize g(x) = f(x) · p(x) in such a way

that p(x) is interpreted as a pdf. Thus, the above integral can be rewritten as the

expected value of a function of a random variable x, yielding

I = Ep(x){f(x)} =

∫

R
nx
f(x) · p(x) dx. (A.76)

By drawing NMC ≫ 1 i.i.d. samples {x(i)}NMC
i=1 from p(x), an unbiased estimate IMC of

the integral can be determined, which is given by the sample mean

I ≈ IMC = Ep(x){f(x)} =
1

NMC

NMC∑

i=1

f(x(i)). (A.77)

Let σ2
MC denote the variance of the Monte Carlo estimate IMC and let σ2

f < ∞ denote

the finite variance of f(x). Then,

σ2
MC =

σf
NMC

(A.78)

holds. The above result is the key to Monte Carlo integration and states that the

variance σ2
MC of the sample mean is by the factor 1/NMC smaller than the variance

of f(x), i.e, the variance σ2
MC decreases asymptotically to zero as 1/NMC. Thus, the

larger the sample size NMC, the better the approximation of the integral given by (A.77)

holds. Further theoretical results on the convergence of the Monte Carlo integration

method can be found in [NB99,RAG04].

A.11 Proof of (5.28) showing that the Bayesian in-

formation submatrix can be calculated recur-

sively.

In this section, it is proven that the Bayesian information submatrix Jk can be cal-

culated recursively for state and measurement models given by (2.1) and (2.17). The

proof presented in this section is similar to the proof given in [TMN98]. The proof

starts with relating the BIM IB,k, cf. (4.7), to the Bayesian information submatrix Jk.

Decomposing Xk as Xk = [XT

k−1,x
T

k ]
T, the BIM can be written as

IB,k =

[
Ak Bk

BT

k Ck

]

=

[

Ep(Xk,Zk){−△Xk−1

Xk−1
loge p(Xk,Zk)} Ep(Xk,Zk){−△Xk−1

xk
loge p(Xk,Zk)}

Ep(Xk,Zk){−△xk

Xk−1
loge p(Xk,Zk)} Ep(Xk,Zk){−△xk

xk
loge p(Xk,Zk)}

]

.(A.79)
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Recall that the Bayesian information submatrix Jk is the inverse of the (nx×nx) lower-

right submatrix of [IB,k]
−1. Thus, Jk can be obtained from block-matrix inversion

[Ber09], yielding

Jk = Ck −BT

kA
−1
k Bk. (A.80)

In order to evaluate the (nx × nx) matrix Jk, it is necessary to either calculate the

inverse of the (knx × knx) matrix Ak or the inverse of the [(k + 1)nx × (k + 1)nx)]

matrix IB,k, which makes it practically impossible to evaluate Jk for large values of k.

In the following, a recursive formula is developed which allows the computation of the

Bayesian information submatrix Jk without calculating the inverse of large matrices

such as IB,k and Ak. According to (5.27), the joint probability density function of Xk+1

and Zk+1 can be rewritten as

p(Xk+1,Zk+1) = p(zk+1|xk+1,Zk) · p(xk+1|xk) · p(Xk,Zk), (A.81)

Using (A.81) and decomposing the vector Xk = [XT
k−1,x

T

k ,x
T

k+1]
T, it is very easy to

verify that the Bayesian information matrix IB,k+1 can be written in block diagonal

form, yielding

IB,k+1 =





Ak Bk 0
BT

k Ck +D11
k D12

k

0 D21
k D22

k +D33
k



 , (A.82)

where 0 are all-zero matrices of appropriate dimension, and where the matrices D11
k ,

D12
k , D21

k , D22
k and D33

k can be obtained from the definitions in (4.10a)-(4.10d) and

(5.29), by replacing the time index k − 1 with the new index k, respectively. The

Bayesian information submatrix Jk+1 is computed as the inverse of the (nx×nx) right-

lower submatrix of [IB,k+1]
−1. Thus, it follows

Jk+1 = D22
k −

[
0 D21

k

]
[
Ak Bk

BT

k Ck +D11
k

]−1 [
0

D12
k

]

+D33
k

= D22
k −D21

k

[
Ck +D11

k −BT

kA
−1
k Bk

]−1
D12

k +D33
k . (A.83)

Inserting the definition of Jk+1 given in (A.80) into (A.83) and replacing the index k

with the new index k − 1, yields the desired recursive formula for computing Jk. This

concludes our proof of (5.28).
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List of Acronyms

AoA Angle of Arrival

APF Auxiliary Particle Filter

BIM Bayesian Information Matrix

BS Base Station

CKF Cubature Kalman Filter

CO Clock Offset

CRLB Cramér-Rao Lower Bound

CV Constant Veloctiy

ECEF Earth Centered Earth Fixed

EKF Extended Kalman Filter

ENU East-North-Up

E-OTD Enhanced Observed Time Difference

E-PCRLB Enumeration Posterior Cramér-Rao Lower Bound

FCC Federal Communications Commission

FIM Fisher Information Matrix

FLOP Floating-Point Operation

GDOP Geometric Dilution of Precision

GNSS Global Navigation Satellite System

GRT GNSS Reference Time

GPS Global Positioning System

GSM Global System for Mobile communications

i.i.d. independent and identically distributed

IMM Interacting Multiple Model

KF Kalman filter
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LOS Line-Of-Sight

MAP Maximum A Posteriori

MC Monte Carlo

ML Maximum Likelihood

MM-PF multiple-model particle filter

MM-RBPF multiple-model Rao-Blackwellized particle filter

MMSE Minimum Mean Square Error

M-PCRLB Marginalization Posterior Cramér-Rao Lower Bound

MSE Mean Square Error

MT Mobile Terminal

NLOS Non-Line-Of-Sight

PCRLB Posterior Cramér-Rao Lower Bound

pdf probability density function

PF Particle Filter

PR Pseudorange

RBAPF Rao-Blackwellized Auxiliary Particle Filter

RBPF Rao-Blackwellized Particle Filter

RMSE Root Mean Square Error

RRLP Radio Ressource Location Protocol

RSS Received Signal Strength

RTT Round Trip Time

RXLEV Received Signal Level

SAT Satellite

TA Timing Advance

ToA Time of Arrival
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TDoA Time Difference of Arrival

TPM Transition Probability Matrix

UKF Unscented Kalman Filter

UMTS Universal Mobile Telecommunications System

WGS-84 World Geodetic System 1984

WLAN Wireless Local Area Network
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List of Symbols

argmax
x

f(x) The x maximizing f(x)

argmin
x
f(x) The x minimizing f(x)

A(·) Mode-dependent reference path loss

A
(m)
LOS Reference path loss of the m-th RSS measurement affected by LOS

propagation conditions

A
(m)
NLOS Reference path loss of the m-th RSS measurement affected by NLOS

propagation conditions

b(m) Constant related to the FIM of RSS measurements, cf. Section 3.3.2

B(·) Mode-dependent path loss exponent

B
(m)
LOS Path loss exponent of the m-th RSS measurement affected by LOS

propagation conditions

B
(m)
NLOS Path loss exponent of the m-th RSS measurement affected by NLOS

propagation conditions

c0 speed of light

c(·,·) Constant related to the equivalent FIM of the MT location, cf. Section
3.3.2

CRLBk MT location CRLB at time step k

CRLB Time averaged MT location CRLB

d
(n)
BS,k(·) Euclidean distance between the MT and the n-th BS at time step k

d
(l)
SAT,k(·) Euclidean distance between the MT and the l-th SAT at time step k

det[·] Determinant of a matrix

diag[·] Diagonal matrix consisting of the elements of a vector

diagb[·] Composes a block diagonal matrix of the matrix arguments

D(·) Hessian matrix related to the Gauss-Newton algorithm, cf. Section
3.4.2.2

e Base of the natural logarithm, also called Napier’s constant

e(·) Constant related to the equivalent FIM of the MT location, cf. Section
3.3.2

fk−1(·) State transition function relating the state xk−1 to the state xk

f
(l)
k−1(·) State transition function relating the state x

(l)
k−1 to the state x

(l)
k

f
(n)
k−1(·) State transition function relating the state x

(n)
k−1 to the state x

(n)
k

fP,k−1(·) Projection function, that projects the on-road MT state vector into
the next road segment

fR,k−1(·) Function relating the state xR,k−1 to the state xR,k

F State transition matrix related to the state vector xk
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Fl
k−1(·) State transition matrix at time step k − 1 related to the vector xl

k

Fn
k−1(·) State transition matrix at time step k − 1 related to the vector xn

k

FCO State transition matrix related to the state vector xCO,k

FCV State transition matrix related to the state vector xCV,k

g(m) Constant related to the FIM of them-th RSS measurement, cf. Section
3.3.2

G(m)(·) Mode-dependent normalized antenna gain of the m-th BS antenna

GANT(·) Normalized antenna gain of the m-th BS antenna

Gmin Minimum antenna gain of the m-th BS antenna

g(·) Gradient vector related to the Gauss-Newton algorithm, cf. Section
3.4.2.2

hi Allan variance parameters (i = −2,−1, 0)

h
(l)
k (·) l-th element of the vector hk(·)
hBIAS,k(·) Function relating the MT state to the MT clock bias measurement

h
(m)
LOS,k(·) m-th element of the vector hLOS,k(·)
h
(m)
RSS,k(·) m-th element of the vector hRSS,k(·)
h
(m)
RTT,k(·) m-th element of the vector hRTT,k(·)

hk(·) Vector of measurement functions, related to the vector zk

h1,k(·) Vector of measurement functions, related to the vector z1,k

h2,k(·) Vector of measurement functions, related to the vector z2,k

hLOS,k(·) Vector of functions relating the MT state to the measurements, where
each measurement is affected by LOS propagation conditions at time
step k

hPR,k(·) Vector of functions relating the MT state to the PR measurements at
time step k

hRSS,k(·) Vector of mode-dependent functions relating the MT state to the RSS
measurements at time step k

hRSS,LOS,k(·) Vector of functions relating the MT state to the RSS measurements,
where each measurement is affected by LOS propagation conditions
at time step k

hRTT,k(·) Vector of functions relating the MT state to the RTT measurements
at time step k

hSAT,k(·) Vector of functions relating the MT state to the PR and GRT mea-
surements at time step k

Hk(·) Matrix relating the state vector xl
k to the measurement vector z1,k

H̃k(·) Jacobian matrix of hk(·)
HLOS,k(·) Jacobian matrix of hLOS,k(·)
ij, i(j) index of the resampled parent particle



245

In Identity matrix of size n

IB,k BIM at time step k

Jk Bayesian information submatrix at time step k

Jl
k Bayesian information submatrix at time step k conditioned on the l-th

mode sequence Rl
k

k discrete time index

kmax Total number of time steps

Kk Kalman gain matrix at time step k

l1 Edge length of initial simplex

log10 Logarithm to the base 10

loge Natural logarithm

L(m)(·) Mode-dependent path loss of the m-th RSS measurement

M Number of measurements

MPR Number of PR measurements

MRSS Number of RSS measurements

MRTT Number of RTT measurements

nw Dimension of state noise vector wk−1

nv Dimension of measurement noise vector vk

nx Dimension of state vector xk

nxl Dimension of state vector xl
k

nxn Dimension of state vector xn
k

nx̃ Dimension of reduced state vector x̃k

nz Dimension of measurement vector zk

N Number of particles

NBS Number of BSs

NMC Number of Monte Carlo simulations

Nr Number of candidate road segments

NSAT Number of satellites

ñ
(η)
n,k n-th vertex of the simplex after shrinkage at time step k and at the

η-th iteration of the Nelder-Mead simplex algorithm

p(·) pdf

p(·|·) conditional pdf

p
(m)
LOS stationary mode probability of the m-th Markov chain corresponding

to the m-th measurement being affected by LOS propagation condi-
tions

pMT MT location in local, road-based coordinates
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ṗMT MT velocity in local, road-based coordinates

p
(m)
NLOS stationary mode probabilities of the m-th Markov chain correspond-

ing to the m-th measurement being affected by NLOS propagation
conditions

p
(m)
SAT,k Projection of the unit vector u

(m)
SAT,k into the xy-plane

P
(m)
T Equivalent isotropic radiated power of the m-th BS antenna

Pr{·} Probability of an event

Pr{·|·} Conditional probability of an event

PCRLBk MT location PCRLB at time step k

PCRLB Time averaged MT location PCRLB

Pk|k−1 Prediction covariance matrix

Pk|k Posterior covariance matrix

Pm,k|k Moment-matched posterior covariance matrix in the IMM algorithm

PMMSE,k|k Covariance matrix of MMSE estimation error related to the state vec-
tor xk

Pl
MMSE,k|k Covariance matrix of MMSE estimation error related to the state vec-

tor xl
k

Pn
MMSE,k|k Covariance matrix of MMSE estimation error related to the state vec-

tor xn
k

Pxz,k|k−1 Cross-covariance matrix

Pzz,k|k−1 Innovation covariance matrix

q(·) importance density

q(·)opt. optimal importance density

Q Covariance matrix of the noise vector wk−1

Ql
k−1 Covariance matrix of the noise vector wl

k−1

Q̄l
k−1 Covariance matrix of the noise vector w̄l

k−1

Qn
k−1 Covariance matrix of the noise vector wn

k−1

Qnl
k−1 Cross-covariance matrix between the noise vectors wl

k−1 and wn
k−1

QCO Covariance matrix of the noise vector wCO,k−1

QCV Covariance matrix of the noise vector wCV,k−1

rk mode variable of the augmented Markov chain at time step k

r
(m)
k mode variable of the m-th Markov chain at time step k

rlκ Value of the mode variable at time κ = 1, . . . , k in the l-th mode
sequence Rl

k

RMSEk MT location RMSE at time step k

RMSE Time averaged MT location RMSE

Rk Covariance matrix of the noise vector vk
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R1,k(·) Covariance matrix of the noise vector v1,k

RLOS,k Covariance matrix of the noise vector vLOS,k

RPR,k Covariance matrix of the noise vector vPR,k

RRSS,k(·) Mode-dependent covariance matrix of the noise vector vRSS,k(·)
RRSS,LOS,k Covariance matrix of the noise vector vRSS,LOS,k

RRTT,k(·) Mode-dependent covariance matrix of the noise vector vRTT,k(·)
RRTT,LOS,k Covariance matrix of the noise vector vRTT,LOS,k

RSAT,k Covariance matrix of the combined noise vector [vT

PR,k,vGRT,k]
T

s Number of discrete states in the augmented Markov chain

s(m) Number of discrete states in the m-th Markov chain

sID Road identity value assigned to each road segment

S
(η)
1 Set of vectors forming the vertices of the simplex at the η-th iteration

of the Nelder-Mead simplex algorithm

S
(η)
2 Set of cost function values evaluated at the vertices of the simplex at

the η-th iteration of the Nelder-Mead simplex algorithm

S̃
(η)
1 Set of vertices of the simplex excluding the vertex x

(η)
H,k at the η-th

iteration of the Nelder-Mead simplex algorithm

S̃
(η)
2 Set of cost function values evaluated at the vertices contained in the

set S̃
(η)
1 at the η-th iteration of the Nelder- Mead simplex algorithm

Sk Innovation covariance matrix

tk Time scale sampled at time instance k · TS
tGNSS,k Sampled GNSS time scale

tMTC,k Sampled MT clock time scale

TS Sampling interval of GSM measurements

T ′
S Sampling interval of GNSS measurements

TG Transformation operator, that converts the state vector xR,k into the
state vector xk

TLG Transformation operator, that transforms local coordinates into global
coordinates

tr[·] Trace of a matrix

u
(m)
BSx,k

x-component of unit vector u
(m)
BS,k

u
(m)
BSy,k

y-component of unit vector u
(m)
BS,k

u
(m)
SATx,k

x-component of unit vector u
(m)
SAT,k

u
(m)
SATy,k

y-component of unit vector u
(m)
SAT,k

u
(m)
SATz,k

z-component of unit vector u
(m)
SAT,k

ux unit vector in x-direction

uy unit vector in y-direction
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uz unit vector in z-direction

u
(m)
BS,k Unit vector originating at the true MT location and directed towards

the m-th BS at time step k

u
(m)
SAT,k Unit vector originating at the true MT location and directed towards

the m-th satellite at time step k

v
(l)
k l-th element of the measurement noise vector vk

vBIAS,k MT clock bias measurement noise variable at time step k

vGRT,k GRT measurement noise variable at time step k

v
(m)
RSS,LOS,k Noise variable for the m-th RSS measurement affected by LOS prop-

agation conditions at time step k

v
(m)
RSS,NLOS,k Noise variable for the m-th RSS measurement affected by NLOS prop-

agation conditions at time step k

v
(m)
RTT,LOS,k Noise variable for the m-th RTT measurement affected by LOS prop-

agation conditions at time step k

v
(m)
RTT,NLOS,k Noise variable for them-th RTT measurement affected by NLOS prop-

agation conditions at time step k

V1(·) Cost function of ML estimator assuming that all measurements are
affected by LOS propagation conditions

V ′
1(·) Gradient of the cost function V1(·)
V2(·) Approximative cost function of ML estimator assuming that measure-

ments are affected by LOS or NLOS propagation conditions

Ṽ1(·) Cost function of Gauss-Newton algorithm

V̆1(·) Cost function of Levenberg-Marquardt algorithm

vk Measurement noise vector at time step k, which is related to the mea-
surement vector zk

v1,k Measurement noise vector at time step k, which is related to the mea-
surement vector z1,k

v2,k Measurement noise vector at time step k, which is related to the mea-
surement vector z2,k

vLOS,k Noise vector for measurements affected by LOS propagation conditions
at time step k

vPR,k PR measurement noise vector at time step k

vRSS,k(·) Mode-dependent RSS measurement noise vector at time step k

vRSS,LOS,k Noise vector for RSS measurements affected by LOS propagation con-
ditions at time step k

vRTT,k(·) Mode-dependent RTT measurement noise vector at time step k

vRTT,LOS,k Noise vector for RTT measurements affected by LOS propagation con-
ditions at time step k

w
(l)
k−1 l-th element of the state noise vector wk−1
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w1,k−1 State noise variable at time step k − 1 related to the on-road state
vector xMT,k

w2,k−1 Discrete state noise variable at time step k − 1 that selects between
Nr candidate road segments

wδt,k−1 clock bias component of wCO,k−1

wδṫ,k−1 clock drift component of wCO,k−1

wx,k−1 x-component of wCO,k−1

wy,k−1 y-component of wCO,k−1

w
(i)
k|k importance weight related to the i-th particle in the PF-based algo-

rithms

W
(i)
m i-th weight used to calculate the mean vector of the transformed sigma

point/cubature point vector

W
(i)
c i-th weight used to calculate the covariance matrix of the transformed

sigma point/cubature point vector

wk−1 State noise vector at time step k − 1 related to xk

wl
k−1 State noise vector at time step k − 1 related to xl

k

w̄l
k−1 Decorrelated state noise vector of wl

k−1

wn
k−1 State noise vector at time step k − 1 related to xn

k

wCO,k−1 State noise vector at time step k − 1 related to xCO,k

wCV,k−1 State noise vector at time step k − 1 related to xCV,k

wR,k−1 State noise vector at time step k − 1 related to xR,k

x
(l)
k l-th element of the state vector xk

x̃
(l)
k l-th element of the reduced state vector x̃k

x
(n)
BS x-coordinate of the n-th BS

xG x-coordinate of global coordinate system

xL x-coordinate of local coordinate system

xMT,k x-coordinate of the MT at time step k

ẋMT,k MT velocity in x-direction at time step k

x
(l)
SAT,k x-coordinate of the l-th satellite at time step k

xk State vector at time step k

x̂k(·) Estimate of the state vector xk (given the measurement zk)

x̃k Reduced state vector at time step k

ˆ̃x
(η)
k Estimate of the reduced state vector x̃k at the η-th iteration

xl
k State vector at time step k composed of linear states

xn
k State vector at time step k composed of nonlinear states

x̂k|κ Estimate of the state vector xk given the measurements Zκ
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x̂k|k−1 Predicted state vector

x̂m,k|k Moment-matched mean vector in the IMM algorithm

x̃
(η)
n,k n-th vertex of the simplex at the η-th iteration at time step k and the

η-th iteration of the Nelder-Mead simplex algorithm

x
(n)
BS Vector of coordinates of the n-th BS

xCO,k State vector of the CO model at time step k, cf. Section 2.3.2.4

xCV,k State vector of the CV model at time step k, cf. Section 2.3.2.3

x̃
(η)
E,k Expansion vector at time step k and at the η-th iteration of the Nelder-

Mead simplex algorithm

x̃
(η)
H,k Vertex providing the largest cost function value of the set S

(η)
2 at time

step k and at the η-th iteration of the Nelder-Mead simplex algorithm

x̃
(η)
IC,k Inside contraction vector at time step k and the η-th iteration of the

Nelder-Mead simplex algorithm

x̃
(η)
L,k Vertex providing the smallest cost function value of the set S

(η)
2 at time

step k and at the η-th iteration of the Nelder-Mead simplex algorithm

x̃
(η)
M,k Center of gravity of all vectors contained in the set S̃

(η)
1 at time step

k and at the η-th iteration of the Nelder-Mead simplex algorithm

x̂MAP,k MAP estimate of the state vector xk

x̂ML,k ML estimate of the state vector xk

ˆ̃xML,k ML estimate of the reduced state vector x̃k

x̂MMSE,k MMSE estimate of the state vector xk (given the measurement zk)

x̂MMSE,k|k MMSE estimate of the state vector xk given the measurements Zk

x̂l
MMSE,k|k MMSE estimate of the state vector xl

k given the measurements Zk

x̂n
MMSE,k|k MMSE estimate of the state vector xn

k given the measurements Zk

xMT,k Vector of MT coordinates at time step k

ẋMT,k Vector of MT velocity components at time step k

x̂MT,k Estimate of the MT location vector xMT,k (given the measurement zk)

x̂MT,k|k Estimate of the MT location vector xMT,k given the measurements Zk

x̃
(η)
OC,k Outside contraction vector at time step k and at the η-th iteration of

the Nelder-Mead simplex algorithm

x̃
(η)
R,k Reflection vector at time step k and at the η-th iteration of the Nelder-

Mead simplex algorithm

xR,k On-road state vector at time step k

xl
R,k On-road state vector at time step k composed of linear states

xn
R,k On-road state vector at time step k composed of nonlinear states

x̃
(η)
S,k Vertex providing the second largest cost function value of the set S

(η)
2

at time step k and at the η-th iteration of the Nelder-Mead simplex
algorithm
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x
(l)
SAT,k Vector of coordinates of the l-th satellite at time step k

Xk Sequence of states {x0, . . . ,xk} up to and including time k

X̂k(·) Estimate of Xk

y
(n)
BS y-coordinate of the n-th BS

yG y-coordinate of global coordinate system

yL y-coordinate of local coordinate system

yMT,k y-coordinate of the MT at time step k

ẏMT,k MT velocity in y-direction at time step k

y
(l)
SAT,k y-coordinate of the l-th satellite at time step k

yk augmented state vector at time step k, consisting of the state vector
xk and mode variable rk

z
(l)
k l-th element of the measurement vector zk

zBIAS,k MT clock bias measurement at time step k

zGRT,k GRT measurement at time step k

z
(m)
RSS,k m-th element of the vector zRSS,k

z
(m)
RTT,k m-th element of the vector zRTT,k

z
(l)
SAT,k z-coordinate of the l-th satellite at time step k

zk Vector of measurements at time step k

ẑk|k−1 Prediction estimate of the measurement vector zk

z1,k Vector of measurements at time step k, where each measurement de-
pends on the state vectors xn

k and/or xl
k

ẑ1,k Prediction estimate of the measurement vector z1,k

z2,k Vector of measurements at time step k, where each measurement de-
pends only on the state vector xn

k

zLOS,k Vector of measurements at time step k, where all measurements are
affected by LOS propagation conditions

zPR,k Vector of PR measurements at time step k

zRSS,k Vector of RSS measurements at time step k, where each measurement
is affected by LOS or NLOS propagation conditions

zRSS,LOS,k Vector of RSS measurements at time step k, where all measurements
are affected by LOS propagation conditions

zRTT,k Vector of RTT measurements at time step k, where each measurement
is affected by LOS or NLOS propagation conditions

zRTT,LOS,k Vector of RTT measurements at time step k, where all measurements
are affected by LOS propagation conditions

zSAT,k Vector of PR and GRT measurements at time step k

Zk Sequence of measurements {z1, . . . , zk} up to and including time k



252 List of Symbols

α Parameter describing the spread of sigma point vectors around the
mean in the scaled unscented transformation, cf. Section 4.4.3

α1 Reflection coefficient in the Nelder-Mead simplex algorithm, cf. Sec-
tion 3.4.3

α2 Expansion coefficient in the Nelder-Mead simplex algorithm, cf. Sec-
tion 3.4.3

α3 Contraction coefficient in the Nelder-Mead simplex algorithm, cf. Sec-
tion 3.4.3

α4 Shrinkage coefficient in the Nelder-Mead simplex algorithm, cf. Sec-
tion 3.4.3

β1 Scaling parameter in the scaled unscented transformation, cf. Section
4.4.3

β2 Weight parameter in the scaled unscented transformation, cf. Section
4.4.3

γ Scaling parameter in the scaled unscented transformation, cf. Section
4.4.3

Γk−1 Noise gain matrix at time step k − 1 related to wk−1

Γl
k−1 Noise gain matrix at time step k − 1 related to w

(l)
k−1

Γn
k−1 Noise gain matrix at time step k − 1 related to w

(n)
k−1

ΓCO Noise gain matrix related to wCO,k−1

ΓCV Noise gain matrix related to wCV,k−1

δ(·) Dirac delta

δtk MT clock bias state at time step k

δṫk MT clock drift state at time step k

∆ Laplace operator

ǫ1 Constant related to the stopping criterion of the Gauss-Newton algo-
rithm, cf. Section 3.4.2.2

ǫ2 Constant related to the stopping criterion of the Gauss-Newton algo-
rithm, cf. Section 3.4.2.2

ǫ3 Constant related to the stopping criterion of the Nelder-Mead simplex
algorithm, cf. Section 3.4.3

ζ(·) Damping parameter of the Levenberg-Marquardt algorithm

η iteration index

ηmax Maximum number of iterations

µ
(m)
ANT Mean value of the pdf describing the antenna gain of the m-th BS in

NLOS propagation conditions

µRTT,k(·) Element of the mean vector µRTT,k(·)
µ
(m)
RTT,NLOS,k Mean value of the m-th noise variable v

(m)
RTT,NLOS,k
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µk Mean vector of the noise vector vk

µ1,k Mean vector of the noise vector v1,k

µRTT,k(·) Mode-dependent mean vector of the noise vector vRTT,k(·)
πi Initial mode probabilities of the m-th Markov chain (i = 1, 2)

π
(m)
ij Transition probability from mode i to mode j for the m-th Markov

chain (i, j = 1, 2)

Πm TPM of the m-th Markov chain

Π TPM of the augmented Markov chain

ρ(·) Parameter related to the Levenberg-Marquardt algorithm, cf. Section
3.4.2.3

̺ Gain ratio used in the Levenberg-Marquardt algorithm, cf. Section
3.4.2.3

σ
(m)
ANT Standard deviation of the pdf describing the antenna gain of the m-th

BS in NLOS propagation conditions

σBIAS,k Standard deviation of the noise variable vBIAS,k

σGRT,k Standard deviation of the noise variable vGRT,k

σ
(m)
LOS,k Standard deviation of the noise variable related to the m-th measure-

ment, which is affected by LOS propagation conditions

σP Standard deviation of the noise vector w1,k−1

σ
(l)
PR,k Standard deviation of the l-th element of the noise vector vPR,k

σ
(m)
RSS,k(·) Mode-dependent standard deviation of the m-th element of the noise

vector vRSS,k(·)
σ
(m)
RSS,LOS,k Standard deviation of the m-th noise variable v

(m)
RSS,LOS,k

σ
(m)
RSS,NLOS,k Standard deviation of the m-th noise variable v

(m)
RSS,NLOS,k

σ
(m)
RTT,k(·) Mode-dependent standard deviation of the m-th element of the noise

vector vRTT,k(·)
σ
(m)
RTT,LOS,k Standard deviation of the m-th noise variable v

(m)
RTT,LOS,k

σ
(m)
RTT,NLOS,k Standard deviation of the m-th noise variable v

(m)
RTT,NLOS,k

σ
(m)
SHA,k Standard deviation of the m-th noise variable describing RSS mea-

surement errors due to shadowing

σx Standard deviation of the noise vector wx,k−1

σy Standard deviation of the noise vector wy,k−1

τ Constant related to the Levenberg-Marquardt algorithm, cf. Section
3.4.2.3

ϕ
(m)
0 Azimuth angle between the positive x-axis of the Cartesian coordinate

system with the m-th BS location as origin, and the vector pointing
in the boresight direction of the m-th BS antenna

ϕ
(m)
3 dB 3 dB beamwidth of the m-th BS antenna
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ϕ
(m)
BS (·) Azimuth angle between the vector pointing into the boresight direction

of the m-th BS antenna and the vector that is directed towards the
mode-dependent (LOS or NLOS) propagation path of the radio signal
that is received by the MT

ϕ
(m)
LOS(·) Azimuth angle between the vector pointing into the boresight direction

of the m-th BS antenna and the vector that is directed towards the
LOS propagation path of the radio signal that is received by the MT

ϕ
(m)
NLOS Azimuth angle between the vector pointing into the boresight direction

of the m-th BS antenna and the vector that is directed towards the
NLOS propagation path of the radio signal that is received by the MT

ψsID
Angle between the sID-th road segment and the xG-axis of the global
coordinate system

A(κ1,κ2) Signed area of the parallelogram determined by p
(κ1)
SAT,k and p

(κ2)
SAT,k

B(κ1,κ2) Signed area of the parallelogram determined by u
(κ1)
BS,k and p

(κ2)
SAT,k

C(κ1,κ2) Signed area of the parallelogram determined by u
(κ1)
BS,k and u

(κ2)
BS,k

CCKF(·) Computational complexity in FLOPs per time step of the CKF

CEKF(·) Computational complexity in FLOPs per time step of the EKF

CGN(·) Computational complexity in FLOPs per iteration of Gauss-Newton
algorithm

CLM(·) Computational complexity in FLOPs per iteration of Levenberg-
Marquardt algorithm

CUKF(·) Computational complexity in FLOPs per time step of the UKF

D(κ1,κ2) Dot product of u
(κ1)
BS,k and p

(κ2)
SAT,k

E (κ1,κ2) Dot product of u
(κ1)
BS,k and u

(κ2)
BS,k

F(·) FIM

FL(·) Equivalent FIM of the MT location

FGRT(·) FIM of GRT measurements

FPR(·) FIM of PR measurements

FRSS(·) FIM of RSS measurements

F
(m)
RSS(·) FIM of the m-th RSS measurement

FRTT(·) FIM of RTT measurements

F
(m)
RTT(·) FIM of the m-th RTT measurement

G(κ1,κ2,κ3,κ4) Product of the signed areas G(κ1,κ2,κ3,κ4)
1 and G(κ1,κ2,κ3,κ4)

2

G(κ1,κ2,κ3,κ4)
1 Signed area of the rectangle determined by [p

(κ1)
SAT,k−p

(κ2)
SAT,k]

T ·ux and

[p
(κ3)
SAT,k − p

(κ4)
SAT,k]

T · ux

G(κ1,κ2,κ3,κ4)
2 Signed area of the parallelogram determined by (p

(κ1)
SAT,k − p

(κ2)
SAT,k) and

(p
(κ3)
SAT,k − p

(κ4)
SAT,k)

N (z;µz, σ
2
z) pdf of a Gaussian random variable z with mean µz and variance σ2

z
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N (z;µz,Pz) pdf of a Gaussian random vector z with mean vector µz and covariance
matrix Pz

PCRLB,k MT location CRLB at time step k

P(·) CRLB matrix

PE-PCRLB E-PCRLB matrix

Rl
k l-th mode sequence {rl1, . . . , rlk} up to and including time k

TRN Road network database

U [a, b] Uniform distribution over the interval [a, b]

X (i)
k|k−1 i-th sigma/cubature point vector of the predicted state vector x̂k|k−1

Z(i)
k|k−1 i-th transformed sigma/cubature point vector of the predicted mea-

surement vector ẑk|k−1

Ep(·){·} Expectation operator with respect to the pdf p(·)
R Set of real numbers

N Set of natural numbers

0i×j All-zeros matrix with i rows and j columns

1i×j All-ones matrix with i rows and j columns

[·]T Transpose of a vector or matrix

[·]−1 Inverse of a square matrix

[·]i,j element at the i-th row and j-th column of a matrix

()i i-th row of a matrix
∆
= Equal by definition

≡ identically equal

∝ proportional to

∼ distributed as

∈ Element of

× Vector cross product

⊗ Kronecker product operator

∇ Gradient operator

|| · || Euclidean norm or 2-norm of a vector

|| · ||∞ Infinite norm of a vector
√· Square root of a scalar or square matrix
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[TMN98] P. Tichavský, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-Rao
bounds for discrete-time nonlinear filtering,” IEEE Trans. Signal Process.,
vol. 46, no. 5, pp. 1386–1396, May. 1998.

[Tor84] D. J. Torrieri, “Statistical theory of passive location systems,” IEEE
Trans. Aerosp. Electron. Syst., vol. 20, no. 2, pp. 183–198, 1984.

[Tör08] D. Törnqvist, “Estimation and detection with applications to navigation,”
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