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Abstract—One of the primary aims of radio network planning
is to configure the parameters of the base stations such that the
deployment achieves the required quality of service. However,
the adjustment of radio network parameters in a heterogeneous
macro-only cellular network is a complex task, which involves
a large number of configuration parameters with interactions
among them. Existing commercial planning tools are based on
local search methods, e.g., simulated annealing, that require
problem-specific and heuristic definitions of the input parameters.
The problem with local search methods is that their performance
can significantly be degraded if the input parameters are mis-
configured. To overcome these difficulties, an iterative optimiza-
tion procedure based on Taguchi’s method is proposed to find
near-optimal settings. Taguchi’s method was originally applied in
manufacturing processes and has recently been used in several
engineering fields. Unlike local search methods that heuristically
discover the multidimensional parameter space of candidate solu-
tions, Taguchi’s method offers a scientifically disciplined method-
ology to explore the search space and select near-optimal values for
the parameters. In this paper, the application of Taguchi’s method
in radio network optimization is illustrated by setting typical radio
network parameters of the Long Term Evolution (LTE) system,
i.e., the uplink power control parameters, antenna tilts, and az-
imuth orientations of trisectored macro base stations. Simulation
results reveal that Taguchi’s method is a promising approach
for radio network optimization with respect to performance and
computational complexity. It is shown that Taguchi’s method has
a comparable performance to simulated annealing in terms of
power control and antenna azimuth optimizations; however, it
performs better in terms of antenna tilt optimization. Moreover,
it is presented that the performance of simulated annealing, as
opposed to Taguchi’s method, highly depends on the definition of
the input parameters.

Index Terms—Antenna azimuth orientation, antenna tilt,
radio network optimization, simulated annealing (SA), Taguchi’s
method (TM), uplink (UL) power control.

I. INTRODUCTION

IN THE last few years, wireless communication has wit-
nessed a remarkable growth, both in terms of mobile tech-

Manuscript received January 3, 2011; revised April 26, 2011 and
June 24, 2011; accepted July 2, 2011. Date of publication July 25, 2011; date
of current version October 20, 2011. The review of this paper was coordinated
by Dr. N.-D. Dao.

A. Awada is with the Department of Communications Technology,
Darmstadt University of Technology, 64289 Darmstadt, Germany.

B. Wegmann is with Nokia Siemens Networks, 81541 Munich, Germany.
I. Viering is with Normor Research GmbH, 81541 Munich, Germany.
A. Klein is with the Communications Engineering Laboratory, Darmstadt

University of Technology, 64289 Darmstadt, Germany.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVT.2011.2163326

nologies and the number of subscribers. In 2011, it is expected
that more than half of all communications will be carried out
by mobile cellular networks [1]. This case has incited mobile
operators and vendors to improve their radio network-planning
services and provide more efficient optimization processes that
aim at increasing the network capacity and coverage. A funda-
mental aspect of radio network planning is the configuration of
the parameters that are associated with each base station, e.g.,
antenna tilts and angular settings. Due to the limited frequency
reuse of modern cellular radio networks, the joint setting of
the parameters of all cells with irregular layout and coverage
areas becomes an important and challenging task. The number
of cells determines the total number of parameters, each of
them with a wide range of possible values. Hence, finding the
optimal parameter setting for each base station that maximizes
a predefined performance metric is a difficult problem.

Using a network-planning environment, we can manually
select different parameter values for the base stations and, by
experiments, determine their impacts on the network perfor-
mance. Each experiment corresponds to a simulation run in
the network-planning environment. Based on the results of the
experiments, the value of each parameter can be tuned in favor
of a better network performance. This process is then repeated
until the network performance reaches a certain acceptance
threshold. The major drawback of this trial-and-error approach
is that it may not provide near-optimal solutions, because it is
difficult to correctly adjust the parameters, particularly when
the existing interactions among the parameters and their effects
on the performance of the network cannot be taken into account.
In addition, the number of experiments to be performed before
a feasible solution of the problem is found can be quite large.
Alternatively, if the parameters can take only discrete values, all
possible combinations can be tested in a brute-force approach
to select the optimal settings. The disadvantage of this method
is that it is time consuming, because a very large number of
experiments are required to be performed (NP-hard problem)
and is therefore not viable in practice. Conventional radio
network-planning tools use optimization methods based on
local search such as simulated annealing (SA) [2], [3] and tabu
search [4], [5]. These methods start from a candidate solution
and then iteratively move to a neighbor solution by exploring
new candidates in the neighborhood of the current solution.
Other heuristic search methods such as the genetic algorithm
can also be applied to radio network optimization [6]. While
SA creates a new candidate solution by modifying the current
solution with a local move, the genetic algorithm creates new

0018-9545/$26.00 © 2011 IEEE



3826 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 8, OCTOBER 2011

candidate solutions by combining two different solutions. The
major drawback of these local search methods is that their
performance highly depends on the heuristic definitions of the
input parameters, i.e., parameters that should be initialized
for the proper functioning of local search methods, e.g., the
neighborhood structure of the current solution [7].

To overcome the aforementioned problems, Taguchi’s
method (TM) for experiment design is proposed to find radio
network parameters that maximize a predefined performance
metric. TM was first developed for the optimization of man-
ufacturing processes [8] and then imported into several en-
gineering fields, e.g., hardware design [9], power electronics
[10]–[12], and microwave circuits [13]. Although very few
applications of the method exist in communications [14], the
method can be applied to solve other challenging optimization
problems in this field. In this paper, the method is applied
to radio network optimization within the scope of the Third-
Generation Partnership Project Long-Term Evolution (3GPP
LTE). The method uses the so-called orthogonal array (OA)
[15], which should not be mixed up with an orthogonal antenna
array. The OA was invented by Rao and was used by Genichi
Taguchi to develop the base of what is currently known as
TM. By using an OA, a reduced set of representative parameter
combinations is selected to be tested from the full search space.
The number of selected parameter combinations determines
the number of experiments carried out and evaluated against
a performance metric. Using all the experiments’ results, a
candidate solution is found, and the process is repeated until
a desired criterion is fulfilled.

This paper is organized as follows. In Section II, the cellular
network optimization problems in LTE are presented. The SA
algorithm, which is used as a reference for comparison with
TM, is briefly described in Section III. In Section IV, the
optimization procedure based on TM is generalized to work
for an arbitrary number of configuration parameters, and its
application in network optimization is discussed. The system
models of the LTE network in the uplink (UL) and downlink
(DL) modes are described in Section V. Simulation results
for the LTE network are presented in Section VI to compare
TM with the SA algorithm. This paper is then concluded in
Section VII.

II. CELLULAR NETWORK OPTIMIZATION PROBLEMS IN

LONG-TERM EVOLUTION

A cellular network consists of a large number of cells, and
each cell c = 1, . . . , k underlies different radio conditions and
capacity requirements that determine, for example, the cell
range. The different characteristics of cells require cell-specific
parameter settings that lead to an optimal overall network
performance. In an LTE network, the following parameters
typically require a cell-specific adaptation and optimization:
1) a UL power control parameter P0,c that is used to control
the signal-to-noise ratio (SNR) target of user equipment (UE)
in cell c [16]; 2) the tilt Θc of the transmit antenna serving
cell c; and 3) its azimuth orientation Φc. These three para-
meters of each cell c need to be tuned so that the concerted
operation of all cells leads to the optimal network performance.

In particular, the adoption of frequency reuse in LTE leads to
strong interdependencies of neighboring cells and requires a
joint optimization among the cells. Because the main aim of
this paper is to investigate the feasibility of TM in radio network
optimization, the simplest case will be considered, where one of
the three parameters is jointly optimized for all cells, assuming
that the other two parameters are fixed. For example, P0,c

is jointly optimized for all cells, assuming that the antenna
azimuth orientations and tilts are fixed in the network. The joint
optimization of different types of configuration parameters,
e.g., Θc and Φc for all cells, is briefly addressed in Section VII
and will thoroughly be investigated in future work, because it
requires some modifications on the proposed approach.

Let the variable xc ∈ {P0,c,Θc,Φc} designate one of the
three configuration parameters for each cell c. In each optimiza-
tion, only one type of configuration parameter is considered and
jointly optimized for all cells; for example, xc is P0,c, Θc, or
Φc for all cells. Moreover, let γc be any performance metric
for cell c. For example, the performance metric can be the
mean, five percentile (5%-tile) or 50%-tile of the cumulative
distribution function (CDF) of the UE throughput in a cell.
Among all cells, there are interdependencies that need to be
exploited and considered in the optimization. For example,
adjusting the parameter xj affects not only γj but also the
performance metrics γc �=j of all other cells. To account for
these interactions, the performance metrics of all cells are
bundled into one optimization function y(γ1, . . . , γk). Hence,
the optimization problem is to jointly find the radio network
parameters that maximize y(γ1, . . . , γk) and is formulated as

{
x

(opt)
1 , . . . , x

(opt)
k

}
= arg max

x1,...,xk

y(γ1, . . . , γk). (1)

The definition of the optimization function is typically problem
specific and depends on the operator’s policy. In this paper,
γc,p% is defined to be p%-tile of the UE throughput distribution
in a cell c, and to distinguish between the UL and the DL, the
notations γc,p% = γ

(UL)
c,p% in the UL and γc,p% = γ

(DL)
c,p% in the

DL are used. The value of p has a prominent role in steering
the optimization toward cell coverage or capacity maximiza-
tion. If a low value of p is chosen, e.g., p = 5, more emphasis is
given to the performance of cell-edge UEs, and the optimization
primarily aims at increasing the cell coverage [17]. On the
other hand, a high value of p, e.g., 50, lessens the impact of
the performance of cell-edge UEs, and the optimization aims
at maximizing the cell capacity. Different values for p are
compared in Section VI.

According to the defined performance criterion, the aim
is to maximize γc,p% for each cell c. The intention of this
optimization is to avoid solutions that improve the performance
in some cells, at the expense of other cells. Thus, any cell c with
a very low γc,p% should render the value of the optimization
function small, although there might be other cells with high
performance. On the other hand, the optimization function
should have a high value if each cell is performing, to some
extent, as the other cells and all of these cells have high
performance metrics.
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Two averaging methods have been investigated as optimiza-
tion functions. First, the arithmetic mean (AM) of γc,p% would
be applicable only if it is guaranteed that TM would not
converge to a solution that improves the performance of the
UEs in some cells and degrades the performance of other cells.
However, because there is no routine in TM that checks for
these undesired solutions, the algorithm would most probably
converge to a solution that increases the mean of γc,p%, which
does not necessarily increase γc,p% in every cell c. This case is
because the AM alleviates the impact of a small γc,p% in a cell
c and aggravates the impact of large γc,p%. To overcome this
problem, the check for the aforementioned undesired solutions
is implicitly done by changing the definition of the optimization
function. In this paper, the harmonic mean (HM) is used instead
of the AM. Unlike the AM, the HM aggravates the impact of
small γc,p% and lessens the impact of large γc,p%. This case
would guarantee, to some extent, that the algorithm converges
to a solution that provides homogeneous user experience in
all cells. Thus, the optimization function y(γ1,p%, . . . , γk,p%)
is defined to be the HM of p%-tile of the UE throughput
distribution in a cell and is computed as

y(γ1,p%, . . . , γk,p%) = HM(γc,p%) =
k∑k

c=1
1

γc,p%

. (2)

Other optimization functions for network planning could also
be used. One alternative would be to compute p%-tile of the
UE throughput distribution in the whole network rather than
γc,p% in each cell. Using other definitions for y does not affect
TM or the SA algorithm, which work, in principle, regardless
of the definition of the optimization function.

III. OVERVIEW OF THE SIMULATED

ANNEALING ALGORITHM

In this section, the application of SA algorithm in net-
work optimization is briefly described. SA is a heuristic local
search algorithm that has an explicit strategy to avoid the local
maxima [18]. Unlike traditional local search methods such as
the gradient ascent, which always moves in the direction of
improvement, SA allows nonimproving moves to escape from
the local maximum [19]. The probability of accepting a move
that worsens the optimization function y is decreased during
the search. The acceptance probability is controlled by the so-
called temperature parameter T and the magnitude of the opti-
mization function decrease δ [18]. At a fixed temperature, the
higher the difference δ, the lower the probability to accept the
move. Moreover, the higher the temperature T , the greater
the acceptance probability. Let f(x) be the value of the
optimization function y evaluated for x, where x =
[x1, x2, . . . , xk] is a vector that contains the configuration para-
meter xc of each cell c. For example, if antenna tilt optimization
is considered, x = [Θ1,Θ2, . . . ,Θk].

SA starts by selecting an initial candidate solution x ∈ Ω,
where Ω is the solution space defined as the set of all feasible
candidate solutions. In each step, a new candidate x′ is gen-
erated from the neighborhood N (x) of the current solution. If
f(x′) ≥ f(x), x′ is accepted as the current solution in the next

step; otherwise, it is accepted with some probability, depending
on the parameters T and δ = f(x)− f(x′). During the search,
the temperature T is slowly decreased, and the process is
repeated until the algorithm converges into a steady state. The
steps of the SA algorithm are outlined in Pseudocode 1. Be-
cause SA is a heuristic search method, there are no general rules
that guide the choice of the input parameters [2]. Therefore,
decisions have to be made on the initial temperature T0, the
neighborhood structure N (x), and the temperature reduction
function ρ(T ). In this paper, the initial temperature T0 is set
such that a nonimproving move with a specific optimization
function decrease δmax is accepted in the beginning with a
predefined probability µ = exp(−δmax/T0) [3]. As a result

T0 =
−δmax

ln(µ)
(3)

where ln(.) is the natural logarithm operator. The neighborhood
structureN (x) is often defined as the set of candidate solutions
that slightly differ from the current solution x [20]. In this
paper, a new candidate solution x′ is obtained by giving a small
and random displacement ∆ for a randomly selected number
ndisp = 1, . . . , k of configuration parameters in x [21]. The
displacement ∆ is generated by selecting a random number
in the range (−∆max,+∆max), where ∆max is the maximum
displacement value. The value of the configuration parameter
is also checked so that it is within the feasible set of values
determined by the optimization range. For example, if ndisp =
k and ∆max = 1◦ are selected in antenna tilt optimization, x′

is obtained by adding a random number between −1◦ and +1◦

to each tilt value in x. To lower the temperature T every Q
iterations, a standard geometric temperature reduction function
is used, as shown in [2], i.e., ρ(T ) = κ · T , where κ is a reduc-
tion ratio that is typically set between 0.8 and 0.99. Finally, the
algorithm ends once the temperature has been reduced R times.

Pseudocode 1: SA with solution space Ω and neighborhood
structure N (x) [18].

1: Select an initial solution x = x0 ∈ Ω.
2: Select an initial temperature T = T0 > 0.
3: Select a neighborhood structure N (x).
4: Select a temperature reduction function ρ(T ).
5: Select the number Q of iterations executed at each temper-

ature T .
6: Select the number of times R when the temperature is

reduced.
7: Set the counter r of the number of times when the

temperature is reduced to 0.
8: repeat
9: Set the repetition counter q = 0.
10: repeat
11: Randomly generate x′ ∈ N (x).
12: Compute δ = f(x)− f(x′).
13: if δ ≤ 0 then
14: x← x′.
15: else
16: Generate a random number n that is uniformly

distributed between 0 and 1.
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17: if n < exp(−δ/T ) then
18: x← x′;
19: end if
20: end if
21: q ← q + 1.
22: until q = Q.
23: T ← ρ(T ).
24: r ← r + 1.
25: until r = R.

IV. OPTIMIZATION PROCEDURE BASED ON

TAGUCHI’S METHOD

The newly proposed approach for radio network optimization
is an iterative optimization procedure based on TM, which is
introduced in [22]. In this section, the optimization procedure is
generalized to work for a number k of configuration parameters
that are determined by the number of cells of the network. The
steps of this optimization procedure are depicted in Fig. 1 and
discussed in detail in the following discussion.

A. Select the Proper OA

The first step in TM is to select the proper OA. Let s be
the number of possible testing values for a parameter xc and
S = {1, . . . , s} be the set of index numbers for the testing
values, also called a set of levels. For example, if a parameter
xc can take three values 5, 6, and 7, level 1 refers to value 5,
level 2 refers to value 6, and level 3 refers to value 7. Each
row i = 1, . . . , N of the OA, where N is the total number of
rows, describes a possible combination of parameter levels to be
tested in a corresponding experiment. Hence, an OA determines
the testing level of each parameter in each experiment. To
perform the experiments, each level of a parameter determined
by the OA should be mapped to a corresponding testing value.
The optimization function y(γ1,p%, . . . , γk,p%) is evaluated
for each parameter combination determined by row i of the
OA, resulting in a measured response yi. In every iteration
of the algorithm, the levels of each parameter are mapped to
different testing values based on the candidate solution found
in the previous iteration. Hence, a new set of N parameter
combinations is tested in each iteration. The properties of the
OA are described as follows.

By definition, an N × k matrix P , having elements from S,
is said to be an OA(N, k, s, t) with s levels, strength t, and in-
dex λ if every N × t subarray of P contains each t-tuple based
on S exactly λ times as a row [23]. Thus, λ denotes the number
of times that each t-tuple based on S is tested. The higher the
strength t, the more the OA considers the interactions among
the configuration parameters. In mobile radio applications, the
number k of configuration parameters that define the number
of columns in the OA is determined by the number of cells
of the radio network in question. Therefore, each column in
the OA corresponds to a configuration parameter xc of cell c.
For example, if the antenna tilt optimization is considered, the
first column corresponds to Θ1, the second column corresponds
to Θ2, and so on. The same condition applies to P0,c and Φc

optimizations. For illustration, one example of an OA(9, 4,

Fig. 1. Optimization procedure based on TM.

TABLE I
ILLUSTRATIVE OA (9, 4, 3, 2) WITH THE MEASURED RESPONSES

AND THEIR CORRESPONDING SN RATIOS

3, 2) with N = 9, which is nine times smaller than 34 = 81
possible combinations, k = 4 configuration parameters, s = 3
levels, and t = 2 strength, is depicted in Table I. In any 9 × 2
subarray of the OA in Table I, the nine-row combinations (1,
1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), and (3, 3)
are found, and each pair appears the same number of times, i.e.,
λ = 1. In other words, every level of a parameter j is tested with
every other level of a parameter c �= j exactly λ = 1 times. This
property of the OA accounts for the interactions that might exist
between the parameters. Therefore, the OA depicted in Table I
analyzes not only the individual impact of each parameter on
the performance but also the effect of any two parameters.

One basis property of the OA is that each parameter is
tested at each level the same number of times. This case allows
for a fair and balanced manner of testing the values of the
parameters. In Table I, each level is tested three times for every
parameter. Moreover, any subarray N × k′ of P is also an OA.
Therefore, a new OA with a smaller number of configuration
parameters can be obtained from an existing OA by removing
one or more columns. This property is particularly useful when
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the optimization problem has k′ < k configuration parameters.
In this case, an OA can directly be obtained from P without the
need to construct it.

Another fundamental issue is the construction and existence
of an OA. Several techniques are known for constructing OAs
based on Galois fields and finite geometries. More details about
how an OA is constructed are found in [23]. In addition, it is not
always possible to construct an OA with the desired number N
of experiments. If the values of k, s, and t are specified, there
is a lower bound on the minimum number N of experiments so
that an OA exists. Rao’s bounds, as defined in [24] for an OA
of strength 2 and 3, set a restriction on the number N of ex-
periments and, therefore, the computational complexity of the
algorithm. In principle, N is much smaller than the total number
sk of possible parameter combinations, i.e., N � sk. Several
OAs with different numbers k of configuration parameters have
been constructed and archived in the database maintained in
[25]. Thus, the required OA can directly be selected from this
database if found; otherwise, it needs to be constructed.

Having constructed an OA, the reduced set of representative
parameter-level combinations is determined.

B. Map Each Level to a Parameter Value

To conduct the experiments, the levels in the OA need to be
mapped to parameter values; see Fig. 1. To this end, let minc

and maxc be the minimum and the maximum feasible values
for parameter xc, respectively, � ∈ S be the level of a parameter
value, and m be the index number of the iteration. In the first
iteration m = 1, the center value of the optimization range for
xc is defined as

V (m)
c =

minc + maxc

2
. (4)

In any iteration m, the level � = 	s/2
 is always assigned to
V

(m)
c . The other s− 1 levels are distributed around V

(m)
c by

adding or subtracting a multiple integer of step size β
(m)
c , which

is defined in the first iteration m = 1 as

β(m)
c =

maxc−minc

s + 1
. (5)

In iteration m, the mapping function fm
c (�) for a level � to a

dedicated value of the parameter xc can be described as follows:

fm
c (�) =




V
(m)
c − (	s/2
 − �) · β(m)

c , 1 ≤ � ≤ 	s/2
 − 1
V

(m)
c , � = 	s/2


V
(m)
c + (�− 	s/2
) · β(m)

c , 	s/2
+ 1 ≤ � ≤ s.
(6)

For example, consider an antenna tilt parameter x1 =
Θ1 with a minimum value min1 = 0◦ and a maximum
max1 = 20◦. If x1 is tested with three levels, i.e., s = 3 and
S = {1, 2, 3}, level 2 is mapped in the first iteration to V

(1)
1 =

(0◦ + 20◦)/2 = 10◦, level 1 is mapped to 10◦ − β
(1)
1 = 5◦,

and level 3 is mapped to 10◦ + β
(1)
1 = 15◦. The values of

V
(m)
c and β

(m)
c are updated at the end of each iteration if the

termination criterion (see Section IV-E) is not met. This update

is necessary to test a new set of values in the following iter-
ations and therefore cover the full optimization range of each
parameter xc.

C. Apply TM

After conducting all the N experiments, TM converts the
measured responses to so-called signal-to-noise (SN) ratios,
which should not be confused with SNRs of the received
signals. If the aim is to maximize the measured response
yi, the following definition of SN ratio applies for each
experiment i:

SNi = 10 · log10

(
y2

i

)
[dB]. (7)

SNi is referred to as the-larger−the-better ratio [26]. The higher
the measured response yi, the larger the ratio SNi.

After computing SNi for every experiment i, the average SN
ratio is calculated for each parameter and level. The average SN
ratio of xc at level � is calculated as

SN�,c =
s

N

∑
i|OA(i,c)=�

SNi (8)

where OA(i, c) is the testing level of parameter xc in experi-
ment i. In the example in Table I, the average SN ratio SN1,2 of
parameter x2 at level 1 is computed by averaging (in decibels)
over SN1, SN4, and SN7.

The best level �best,c for each parameter xc is the level with
the highest average SN ratio and is computed as

�best,c = arg max
�

SN�,c. (9)

According to the mapping function fm
c (�), the best settings for

the configuration parameters in iteration m are derived. The
best value of a parameter xc found in iteration m is denoted
by V

(best,m)
c .

D. Shrink the Optimization Range

At the end of each iteration, the termination criterion is
checked. If it is not met, the best values found in iteration m
are used as center values for the parameters in the next iteration
m + 1, i.e.,

V (m+1)
c = V (best,m)

c . (10)

In iteration m + 1, the levels of each parameter xc will be
mapped to a different set of values, depending on V

(m+1)
c . It

may happen that V
(best,m)
c is close to minc or maxc. As a

result, the mapping function fm+1
c (�) might assign a level � to

a value that lies outside the optimization range defined by minc

and maxc. In this case, there is need for a procedure to con-
sistently check if the mapped value is within the optimization
range. For example, if fm+1

c (1) is less than minc, the mapped
values of levels 1 to 	s/2
 − 1 are distributed such that they are
equally spaced between minc and V

(m+1)
c .
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Moreover, the optimization range is reduced by multiplying
the step size of each parameter xc by a reduction factor ξ < 1
as follows:

β(m+1)
c = ξβ(m)

c . (11)

The value of ξ depends on the optimization problem considered.
A high value of ξ makes the convergence of the algorithm
slower; however, the parameters are tested, with more values
rendering the optimization more accurate. On the other hand,
a lower value of ξ shrinks the optimization range faster, at
the expense of a possible degradation in performance, as the
parameters are tested with a smaller number of possible values.

E. Check the Termination Criterion

With every iteration, the optimization range is reduced, and
possible values of a parameter are closer to each other. Hence,
the set that is used to select a near-optimal value for a parameter
xc becomes smaller. The optimization procedure terminates
when all step sizes of the parameters are less than a predefined
threshold ε, i.e.,

β(m)
c < ε ∀ c. (12)

Different values of ε are used for each optimization problem.

V. LONG-TERM EVOLUTION UPLINK AND

DOWNLINK SYSTEM MODELS

In this section, the LTE UL and DL system models are
presented, along with the simulation parameters. The optimiza-
tions are carried out offline in a network-planning environment.
Therefore, a static system-level simulator is used to generate
the results in the following discussion.

A. General Definitions

The following deployment scenario used in both UL and DL
investigations is based on the model described in [27].

• The network has k = 33 cells in a 4 × 4 km (see Fig. 2),
where every cell c is served by an enhanced Node B
(eNodeB) located at position 
pc. This network layout has
been proposed in [28]. Each eNodeB serves three cells,
and all the transmit antennas of the eNodeBs are mounted
at a height hBS. Therefore, some sectors have the same
eNodeB position due to sectorization.

• A UE u is located at a position 
qu on the ground, i.e., the
UE height is zero. In the UL and DL modes, a 10-MHz
system bandwidth with a total number of 50 physical re-
source blocks (PRBs) is considered for each sector c. The
number of UEs is assumed to be 50 per cell, irrespective
of the cell size. Moreover, a resource fair scheduler is
assumed, where each UE is served by a single PRB.

• k shadowing maps, which are denoted by Mc(
qu) and are
functions of a particular position of a UE in the network
with respect to a cell c, are randomly generated from a
log-normal distribution with zero mean and a standard
deviation of 8 dB [29]. The shadowing maps of two cells
are fully correlated if they are served by the same eNodeB;

Fig. 2. Heterogeneous network with cells of different coverage areas. The
default azimuth orientations of the antennas are shown in solid black lines,
whereas the optimized orientations obtained by TM that applies HM(γ

(DL)

c,50%
)

as an optimization function are shown in dashed blue lines.

otherwise, they are correlated with coefficient 0.5. The
decorrelation distance is assumed to be equal to ds =
50 m, i.e., two UEs have some correlation in the shadow-
ing values if they are separated by a distance smaller than
ds [29].

• The path loss is a function of the distance d = |
pc −

qu| (in kilometers) between an eNodeB and a UE. It is
given by

PL(d) = 148.1 + 37.6 log10(d) (13)

assuming that all UEs have a penetration loss of
20 dB [29].

• The thermal noise power is N = −114 dBm/PRB, includ-
ing the noise figure.

• The transmit power P
(PRB)
TX,c per PRB of a sector c

is 29 dBm.
• A 3-D antenna pattern is used. It is approximated using the

model defined in [17] and [30] by summing up the azimuth
and vertical patterns.

• An antenna gain Again = 14 dBi is assumed for all sectors.

B. Antenna Beam Patterns

Let Φc, ∆φ, and B0 denote the azimuth orientation of the
antenna serving cell c, the azimuth beam width, and the maxi-
mum antenna backward attenuation, respectively. The azimuth
pattern Bφ(Φc, φ) of the antenna serving cell c is defined as in
[17], i.e.,

Bφ(Φc, φ) = −min

(
B0, 12 ·

(
φ− Φc

∆φ

)2
)

(14)

where the angle φ = ∠(
pc − 
qu). The three-sector antennas of
a single eNodeB have the default azimuth orientations Φc ∈
{0, 120◦,−120◦}.
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Similarly, let Θc and ∆θ denote the tilt of the antenna serving
cell c and the elevation beam width, respectively. The vertical
pattern Bθ(Θc, θ) of the antenna is given by

Bθ(Θc, θ) = −min

(
B0, 12 ·

(
θ −Θc

∆θ

)2
)

(15)

where the angle θ = arctan(hBS/|
pc − 
qu|). The azimuth and
the elevation patterns have the same backward attenuation B0.
In this paper, ∆φ, ∆θ, and B0 are set to 70◦, 9◦, and 25 dB,
respectively.

The 3-D pattern of the antenna in sector c can now be written
as a sum of the two aforementioned patterns as

B(Φc, φ,Θc, θ) = −min {− (Bφ(Φc, φ) + Bθ(Θc, θ)) , B0} .
(16)

Having defined the path-loss function, shadowing, and antenna
beam patterns, the overall signal attenuation Lc(d, 
qu,Φc,Θc)
of a UE u, located at position 
qu with respect to a cell c is
computed as

Lc(d, 
qu,Φc,Θc) = PL(d)−Again −B(Φc, φ,Θc, θ)

+ Mc(
qu). (17)

Moreover, each UE u in the network is served by a cell c =
X(u), where X(u) is the connection function that assigns a
UE u to a single cell c. The connection function is determined
by selecting the cell whose reference signal received power
(RSRP) level measured by a UE in DL transmission is the
strongest [31], [32] without considering any hysteresis value.

C. UL Power Control

The UL power control in LTE is composed of an open-loop
component that compensates for long-term channel variations
such as path loss and shadowing and another closed-loop
correction term that accounts for the errors in the UE path-
loss estimates [33]. The performance of UL open- and closed-
power control is discussed in detail in [34]–[37]. In this paper,
only the open-loop component is considered, and the closed-
loop term is neglected. This case is because the open-loop
power control is necessary for proper network performance,
whereas the closed-loop term is optional. As a result, the setting
of the total transmit power P

(Total)
TX,u for the physical uplink

shared channel (PUSCH) transmission of a UE u connected to
a cell c simplifies to

P
(Total)
TX,u = min (Pmax, P0,c + αc · Lc(d, 
qu,Φc,Θc)

+ 10 · log10(Mu)) (18)

where Pmax is the maximum configured transmission power
of a UE, P0,c is a parameter that is used to control
the SNR target of the UEs connected to a cell c, αc ∈
{0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} is a cell-specific path-loss
compensation coefficient, and Mu is the number of PRBs
allocated by a scheduler to a UE u. The default value of Pmax

used in the simulation results is 23 dBm for all UEs.

Because each UE is served by a single PRB, the transmit
power per PRB of a UE u, which is denoted by P

(PRB)
TX,u , is

computed by setting Mu to 1, thus resulting in

P
(PRB)
TX,u = min (Pmax, P0,c + αc · Lc(d, 
qu,Φc,Θc)) . (19)

D. Signal-to-Interference-Plus-Noise Ratio (SINR)
and UE Throughput in the UL

The received power of a UE u, which is served by a cell c, is
calculated as

PRX,u = P
(PRB)
TX,u − Lc(d, 
qu,Φc,Θc). (20)

The interference that a UE u would produce at any other cell
j �= c is defined as

Ij,u = P
(PRB)
TX,u − Lj(d, 
qu,Φj ,Θj). (21)

This interference is only generated if the serving cell c sched-
ules a UE u at the PRB and time of interest. Thus, the interfer-
ence produced by the UEs of cell j to a target cell c, denoted
by Ic,j , is a random variable that depends on the scheduling

probabilities of the UEs in cell j. Let P
(lin)
RX,u, I

(lin)
c,j and N (lin)

designate the linear forms of PRX,u, Ic,j , and N , respectively.
In this paper, the average of the SINR of a UE u, which is served
by a cell c, is considered and defined as

SINR(UL)
u =E

[
P

(lin)
RX,u

N (lin) +
∑

j �=c I
(lin)
c,j

]

=P
(lin)
RX,u · E

[
1

N (lin) +
∑

j �=c I
(lin)
c,j

]
. (22)

To compute the expected value of the SINR, it is assumed that
there exists a UE in each cell j �= c that is scheduled at the same
PRB and time of interest. However, the interferer in each cell j
can be any of the connected UEs. To have a good approximation
of the interference, Monte Carlo integration is followed, where
NS = 10 000 random k-tuples, containing samples of interfer-
ers from each cell j, are generated. The interference signals that
are induced by all UEs of cells j �= c are summed up using
a k-tuple, and the inner term of the expectation is averaged
over NS k-tuples. More details about the computation of the
expectation term are found in [16].

After defining the SINR, the UL throughput R
(UL)
u of a UE

u is computed using an approximation based on the Shannon
capacity formula as

R(UL)
u = Weff ·B · log2

(
1 +

SINR(UL)
u

Seff

)
(23)

where Weff = 0.88 and Seff = 1.25 are the bandwidth and
SINR efficiency factors [38], respectively, and B = 180 kHz
is the bandwidth that is occupied by one PRB.
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E. SINR and UE Throughput in the DL

In the DL, the received power Pc,u of a UE u served by a
sector c can now be expressed as

Pc,u = P
(PRB)
TX,c − Lc(d, 
qu,Φc,Θc). (24)

A UE u has not only Pc,u from the serving cell c but also
received powers from other cells j �= c defined as

Pj,u = P
(PRB)
TX,j − Lj(d, 
qu,Φj ,Θj). (25)

The respective sum of these received powers constitutes the
total generated interference. The most influential interferers are
the neighboring cells, because they have the strongest received
power levels. The SINR of a UE u in the DL can now be
computed as

SINR(DL)
u =

P
(lin)
c,u

N (lin) +
∑

j �=c P
(lin)
j,u

(26)

where P
(lin)
c,u is the linear form of Pc,u. The DL throughput of a

UE u, which is denoted by R
(DL)
u , is computed as in (23).

VI. SIMULATION RESULTS

In this section, the deployment scenario in Fig. 2 is optimized
in terms of tuning the parameters xc ∈ {P0,c,Θc,Φc} for all
k = 33 cells using the optimization procedure based on TM
and the SA algorithm. Each type of configuration parameter is
jointly optimized for all cells, assuming that the other two para-
meters are fixed. Because there are 33 parameters to optimize,
the OA to be selected for TM should have 33 columns. More-
over, to efficiently explore the search space, each parameter
should be tested in each iteration with a relatively high number
of values. For these reasons, the OA that is used in this paper is
OA(512, 33, 16, 2) and can be found in the database maintained
in [25]. This OA allows the testing of s = 16 different values
for each parameter xc in every iteration. In addition, it has
a strength of t = 2, which is necessary to account for the
interactions that exist between any two parameters.

A. Evaluation Methodology

TM and SA are compared with respect to performance
and computational complexity. Both algorithms are run using
the same optimization function y defined in (2), and the cell
performance γc,p% is evaluated for three different values of p,
i.e., p = 5, 10 and 50. For example, if p = 5 is used, the opti-
mization function y is the HM of 5%-tile of the UE throughput
distribution in a cell and is denoted by y = HM

(
γ

(DL)
c,5%

)
in the

DL and HM(γ(UL)
c,5% ) in the UL. The parameter configurations

obtained by both algorithms in each optimization problem are
evaluated using the following two performance criteria: 1)
the cell coverage reflected by the CDF of 5%-tile of the UE
throughput distribution in a cell c, which is denoted by γ

(DL)
c,5% in

the DL and γ
(UL)
c,5% in the UL, and 2) the cell capacity reflected

by the CDF of 50%-tile of the UE throughput distribution in a

cell c, which is denoted by γ
(DL)
c,50% in the DL and γ

(UL)
c,50% in the

UL.
The criterion that is used for complexity evaluation is the

number of times that the optimization function y is evaluated,
which has been referred to as the number of experiments. In
case of TM, N experiments are performed in each iteration,
and the algorithm terminates after a predefined number M
of iterations. As a result, the total number of experiments
performed by TM is N ·M . Note that TM does not have
an initial solution x0 and generates a new candidate solution
every N experiments. The lower the number N of rows in the
OA, the lower the complexity of the algorithm. Similarly, SA
evaluates the optimization function Q times in the inner loop of
Pseudocode 1, i.e., lines 9 and 21, and this process is repeated
R times in the outer loop defined in lines 7 and 24. Therefore,
the total number of experiments evaluated by SA is Q ·R.

To have a fair performance comparison between the two
algorithms, the same complexity is applied: TM and SA are
run for the same number of experiments, and the performance
of their optimized parameter settings obtained at the end of the
simulation is compared. To this end, the termination criterion
ε of TM is set such that M iterations are performed in total.
Having determined N and M and decided on a predefined
value for Q, the number of iterations R in SA can simply be
computed as

R =
N ·M

Q
. (27)

To check the convergence time of each algorithm, the value
of y is plotted as a function of the number of experiments.

B. Input Parameters of the Algorithms

The input parameters of TM and the SA algorithm used in the
three optimizations are summarized in Table II. The parameters
δmax, κ, and Q of SA are selected after some experimentation,
because there are no clear rules that guide their choice [2]. Note
also that the proper input parameter setting of SA is not straight-
forward and is even differentiated between various optimization
functions. For example, a degradation of δmax = 1 kbps in
the value of the optimization function is initially allowed for
HM(γc,5%), whereas δmax = 5 kbps for HM(γc,50%).

The performance of SA highly depends on the definition of
the neighborhood structure N (x) determined by the 2-tuple
(ndisp,∆max) [7]. Therefore, SA might not provide an accept-
able performance from the first trial if N (x) is misconfig-
ured. For this reason, SA is run multiple times with different
N (x) definitions and is compared with TM. The neighborhood
structures used by SA are shown in Table III, which presents
the values of the 2-tuple (ndisp,∆max) for each tuple. Note
that the neighborhood structure NC is not used in Θc and Φc

optimizations, because it did not yield a fast convergence or
noteworthy performance improvement compared to NA and NB

in P0,c optimization.
In the remainder of this paper, the following notations

are used: 1) TM(γ(UL/DL)
c,p% ) denotes TM, which applies
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TABLE II
INPUT PARAMETERS OF TM AND THE SA ALGORITHM IN EACH OF THE THREE OPTIMIZATION PROBLEMS. IN THE CASE OF SA,

THE PARAMETERS ARE EVEN DIFFERENTIATED BETWEEN VARIOUS OPTIMIZATION FUNCTIONS

TABLE III
VALUES OF 2-TUPLE (ndisp, ∆max) FOR EACH NEIGHBORHOOD STRUCTURE USED BY SA IN EACH OPTIMIZATION PROBLEM

the HM of γ
(UL/DL)
c,p% as an optimization function and 2)

SA(γ(UL/DL)
c,p% ,x0,N (x)) refers to SA, which applies the HM

of γ
(UL/DL)
c,p% as an optimization function, x0 as an initial candi-

date solution, and N (x) = {NA,NB,NC} as a neighborhood
structure. For example, the notation SA(γ(UL)

c,5% ,−65 dBm,NA)

refers to SA, which applies the HM of γ
(UL)
c,5% as an optimization

function, −65 dBm for each P0,c as an initial solution, i.e.,
x0 = −65 dBm ∀c, and NA as a neighborhood structure.

C. P0 Optimization in a Heterogeneous Network

The key motivation for power control is to avoid a very
large dynamic range (DR) of the received signal power val-
ues among all UEs that are connected to the same eNodeB
rather than to mitigate intercell interference [32]. This case is
because a large DR reduces the orthogonality in a single-carrier
frequency-division multiple access (SC-FDMA) radio system
and introduces intracell interference, which, in turn, decreases
the throughputs of the UEs [39]. In this paper, the DR of each
cell is measured in decibels as the difference between 5%-tile
and 95%-tile of the CDF of the UE received signal power. The
optimization range of P0,c for a cell c is selected such that the
DR does not exceed a predefined threshold set to 25 dB. To
this end, P0 is swept from −70 dBm to −50 dBm for each cell
in the network, whereas the path-loss coefficient αc based on
(18) is assumed to be fixed, i.e., αc = 0.6. The P0 value that
does not exceed a DR threshold of 25 dB is selected to be the
maximum value of the optimization range for each parameter
xc, i.e., maxc. The lower bound of the optimization range is
assumed to be−70 dBm for all cells, i.e., minc = −70 dBm ∀c.

As aforementioned, the other two configuration parameters
Θc and Φc are kept fixed. The antenna azimuth orientations

are assumed to have the default values, as given in Fig. 2,
and the impact of elevation is not considered, i.e., hBS = 0
and Θc = 0 ∀c. In addition to SA, the performance of TM is
compared to the performance of the so-called 95%-tile rule
[16]. The definition of the 95%-tile rule is to have 5%-tile of
the edge users in each cell transmitting at full power Pmax as
a means of compensating for their large path-loss attenuation.
To have 5% of the UEs in power limitation, P0,c of a cell c is
computed as

P0,c = Pmax − αc · Lc,95%−tile (28)

where Lc,95%−tile is 95%-tile of the UE overall signal attenua-
tion distribution in a cell c.

The convergence curves of TM and SA that apply HMs of
γ

(UL)
c,5% and γ

(UL)
c,50% are shown in Figs. 3 and 4, respectively. It

can be noticed from both figures that the initial solution x0

affects the convergence rate of the SA that applies NA at the
beginning of the simulation run but does not have a significant
impact on the converged value of the optimization function. The
main reason for this is that nonimproving moves are allowed,
which makes SA less dependent on the initial solution.

In Fig. 3, the SA that applies NC has a slower convergence
rate than its counterpart, which applies NA; however, the latter
approach converges to a slightly lower value than the former
approach. In contrast, the SA that applies NC in Fig. 4 has
a slower convergence rate than its counterpart, which applies
NA or NB and even converges to a lower value. Thus, the
performance of SA highly depends on the heuristic definition of
the neighborhood structureN (x). Finding a good definition for
the neighborhood structure is cumbersome, and we may need to
try different neighborhood structures to get an acceptable result.
If compared with SA, TM converges to slightly higher values
of the optimization function in both figures. In Fig. 3, TM also
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Fig. 3. HM of γ
(UL)

c,5%
as a function of the number of experiments for TM

and SA indicated by SA(γ
(UL)

c,5%
, x0,N (x)), with P0,c as a configuration

parameter.

Fig. 4. HM of γ
(UL)

c,50%
as a function of the number of experiments for TM

and SA indicated by SA(γ
(UL)

c,50%
, x0,N (x)), with P0,c as a configuration

parameter.

has a faster convergence rate than SA at the beginning of the
simulation run, whereas in Fig. 4, it has a slower convergence
rate than the SA that applies NA or NB and is faster than the
SA that applies NC.

The rounded settings of P0,c are plotted as a function of
Lc,95%−tile in Fig. 5 for the 95%-tile rule, TM, and SA evalu-

ated using the HM of γ
(UL)
c,5% as an optimization function. Based

on the figure, it can be observed, for all the three methods,
that the P0,c of the cells with higher Lc,95%-tile are smaller in
general than cells with lower Lc,95%-tile. In other words, cells
that cover large areas use lower P0,c values than cells that cover
smaller areas. Moreover, most of the P0,c values obtained by
TM are equal to the values of SA and the 95%-tile rule.

The CDF’s of γ
(UL)
c,5% and γ

(UL)
c,50% are shown in Figs. 6 and 7,

respectively, for the 95%-tile rule, TM, and SA evaluated using
the neighborhood structures, yielding the best performance. In
both figures, it can be noticed that the performance of TM and

Fig. 5. P0,c as a function of Lc,95%−tile for the 95%-tile rule, TM, and SA

indicated by SA(γ
(UL)

c,5%
, x0,N (x)).

Fig. 6. CDFs of γ
(UL)

c,5%
obtained from applying the 95%-tile rule, TM, and SA

indicated by SA(γ
(UL)

c,p%
, x0,N (x)), with P0,c as a configuration parameter.

Fig. 7. CDFs of γ
(UL)

c,50%
obtained from applying the 95%-tile rule, TM,

and SA indicated by SA(γ
(UL)

c,p%
, x0,N (x)), with P0,c as a configuration

parameter.
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Fig. 8. Settings of the antenna tilts obtained by TM that applies HMs of

γ
(DL)

c,50%
and γ

(DL)

c,5%
as optimization functions.

SA depends on the optimization function used. In Fig. 6, TM
that applies the HM of γ

(UL)
c,5% as an optimization function has

a better coverage performance than approaches that apply the
HM of γ

(UL)
c,10% or γ

(UL)
c,50%. However, TM that applies the HM

of γ
(UL)
c,5% has lower median UE throughputs compared to ap-

proaches that apply the HM of γ
(UL)
c,10% or γ

(UL)
c,50% in Fig. 7. Note

that the γ
(UL)
c,10% metric achieves, among others, the best tradeoff

between cell-edge and median UE throughputs. Moreover, TM
achieves a slightly better performance than the 95%-tile rule
and SA evaluated with the same optimization function.

D. Optimization of the Antenna Tilts in a
Heterogeneous Network

In this section, the antenna tilts are optimized by TM and
SA for various optimization functions. The antenna azimuth
orientations are assumed to have default values, as given in
Fig. 2. The height of the eNodeB is assumed to be 30 m,
i.e., hBS = 30 m, and the optimization range for tilt Θc of
a transmit antenna of cell c is set between minc = 0◦ and
maxc = 20◦. The optimized antenna tilts for each cell obtained
by TM are shown in Fig. 8 for two different performance
metrics. According to the figure, 23 out of 33 sectors have
smaller tilt values when the HM of γ

(DL)
c,5% is used instead of the

HM of γ
(DL)
c,50%. Maximizing the cell coverage requires smaller

tilt values to increase the throughputs of cell-edge UEs.
The convergence curves of TM and SA that apply HMs

of γ
(DL)
c,5% and γ

(DL)
c,50% as optimization functions are shown in

Figs. 9 and 10, respectively. In both figures, SA uses the best
constant tilt equal to 4◦ as an initial solution, i.e., x0 = 4◦ ∀c,
and is evaluated with two neighborhood structures NA and
NB. According to the results, TM performs better than SA and
achieves a noteworthy throughput gain when both approaches
use the HM of γ

(DL)
c,50% as an optimization function. Moreover,

this throughput gain is achieved without any increase in com-
putational complexity compared with SA.

Fig. 9. HM of γ
(DL)

c,5%
as a function of the number of experiments for TM and

SA indicated by SA(γ
(DL)

c,5%
, x0,N (x)), with Θc as a configuration parameter.

Fig. 10. HM of γ
(DL)

c,50%
as a function of the number of experiments for

TM and SA indicated by SA(γ
(DL)

c,50%
, x0,N (x)), with Θc as a configuration

parameter.

Fig. 11. CDFs of γ
(DL)

c,5%
obtained from applying TM and SA indicated by

SA(γ
(DL)

c,p%
, x0,N (x)), with Θc as a configuration parameter.
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Fig. 12. CDFs of γ
(DL)

c,50%
obtained from applying TM and SA indicated by

SA(γ
(DL)

c,p%
, x0,N (x)), with Θc as a configuration parameter.

The CDF’s of γ
(DL)
c,5% are shown in Fig. 11 for TM and

SA that apply the best neighborhood structure NA. Accord-
ing to the figure, TM that applies the HM of γ

(DL)
c,5% as an

optimization function achieves a better performance than SA
evaluated for the same metric. Note also that TM and SA
that apply the HM of γ

(DL)
c,50% as an optimization function have

coverage performance degradation compared with approaches
that apply γ

(DL)
c,5% . This case is because the performance metric

γ
(DL)
c,50% maximizes the median UE throughput rather than the

throughputs of the cell-edge UEs, as shown in Fig. 12. TM
that applies the performance metric γ

(DL)
c,50% achieves a notable

increase in UE throughput compared with SA evaluated for
the same metric. The minimum value of γ

(DL)
c,50% has increased

around 5%, and all the percentile values that are lower than 33
have improved.

E. Optimization of the Antenna Azimuth Orientations
in a Heterogeneous Network

In a homogeneous network, where cells have the same
properties such as coverage areas, the antenna azimuth
orientations of a trisectored eNodeB are typically set to the
default values Φ ∈ {0◦, 120◦,−120◦} referred to by a default
setting. However, this setting would most likely not achieve
the best performance in a heterogeneous network due to the
irregular placement of the eNodeBs. In this section, the azimuth
orientations of the eNodeBs’ transmit antennas are subject to
optimization by TM and SA.

The optimization should cover the full range of the azimuth
orientation of one 120◦ sector of a trisectored eNodeB. The
maximum and minimum values of the azimuth orientation Φc

of the transmit antenna of sector c are determined by adding and
subtracting 59◦ from its default setting, respectively. This case
is illustrated in Fig. 13, which shows the optimization range
for every transmit antenna of a single eNodeB. In addition, the
impact of elevation is not considered, i.e., hBS = 0 and Θc =
0 ∀c. The optimized antenna azimuth orientations obtained by
TM that applies the HM of γ

(DL)
c,50% are shown in Fig. 2. It is

Fig. 13. Azimuth optimization range for each of the three transmit antennas
of a single eNodeB.

Fig. 14. HM of γ
(DL)

c,5%
as a function of the number of experiments for TM and

SA indicated by SA(γ
(DL)

c,5%
, x0,N (x)), with Φc as a configuration parameter.

Fig. 15. HM of γ
(DL)

c,50%
as a function of the number of experiments for

TM and SA indicated by SA(γ
(DL)

c,50%
, x0,N (x)), with Φc as a configuration

parameter.

shown that most of the optimized azimuth orientations deviate
from the default settings.

The convergence curves of TM and SA that apply HMs of
γ

(DL)
c,5% and γ

(DL)
c,50% are shown in Figs. 14 and 15, respectively.

In both figures, SA uses the default setting as an initial so-
lution and is evaluated with two neighborhood structures NA

and NB. According to the figures, the neighborhood structure
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Fig. 16. CDFs of γ
(DL)

c,5%
obtained from applying TM and SA indicated by

SA(γ
(DL)

c,p%
, x0,N (x)), with Φc as a configuration parameter.

Fig. 17. CDFs of γ
(DL)

c,50%
obtained from applying TM and SA indicated by

SA(γ
(DL)

c,p%
, x0,N (x)), with Φc as a configuration parameter.

NB provides better performance than NA in antenna azimuth
optimization, whereas the latter structure yields better results
than NB in tilt optimization. Therefore, different neighborhood
structures are needed for each optimization problem, rendering
the performance of SA inconsistent. In Fig. 14, it is shown that
SA that applies NB and TM converge to the same value of the
optimization function and outperform the SA that applies NA.
However, TM performs better than SA when both approaches
apply the HM of γ

(DL)
c,50% as an optimization function in Fig. 15.

The CDF’s of γ
(DL)
c,5% and γ

(DL)
c,50% are shown in Figs. 16 and

17, respectively, for TM and the SA that applies the best neigh-
borhood structure NB. It can be observed that TM and SA have
relatively comparable performance when both approaches are
evaluated with the same optimization function. Moreover, TM
and the SA that applies the HM of γ

(DL)
c,50% have a degradation in

coverage performance compared with approaches that apply the
HM of γ

(DL)
c,5% ; however, they still outperform the default setting.

VII. CONCLUSION

The iterative optimization procedure based on TM has been
a valuable means for radio network parameter optimization
of a real-world heterogeneous network layout. Unlike the SA
algorithm, which locally searches for new candidates in the
neighborhood of the current parameter setting, TM explores
a wider search space through the parameter combinations
arranged by the OA, which refer to candidate solutions that are
far apart from each other in the search space.

The definition of an optimization function that represents
the network performance, which has been used to evaluate the
experiments of TM, has a key role in steering the optimization
toward cell coverage or capacity maximization. The optimiza-
tion procedure based on TM has been illustrated for three use
cases, where it successfully maximizes the function defined for
network optimization. The use cases refer to the optimization of
the following three typical cell-specific radio parameters of an
LTE network: 1) the UL power control parameter P0,c; 2) the tilt
of a transmit antenna, and 3) the azimuth orientation of a trans-
mit antenna. Simulations have proved the good suitability of
TM for radio network optimization. The results have shown that
TM converges in most of the cases to values of the optimization
function that are higher than the values achieved by the SA
algorithm for the same complexity. Moreover, the performance
of the SA algorithm considerably depends on the choice of
the neighborhood structure as opposed to TM, which does not
require a neighborhood definition and therefore provides a more
stable and consistent operation in each optimization problem.
Another advantage of TM is the decoupling of the number of
parameters to be optimized and the computational complexity.
This case is because the complexity of the algorithm is binded
to the number of carried-out experiments determined by the OA
rather than the number of configuration parameters.

Because TM allows any type of parameter combinations, it
can also easily be extended to jointly optimize different cell-
specific radio network parameters, e.g., P0,c in combination
with a path-loss compensation coefficient αc or tilt in combina-
tion with azimuth orientation. For example, one straightforward
way of jointly optimizing the antenna tilts and azimuths of k
sectors is to build an OA with 2 · k columns and assign the
antenna tilt parameters to the first k columns and the azimuth
orientations to the rest. This approach, indeed, paves the way
to exploit the mutual dependencies among the radio network
parameters, achieve additional UE throughput gain, and re-
duce the computational complexity, because the parameters
are simultaneously optimized. The joint optimization of the
parameters will thoroughly be investigated in future work.
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