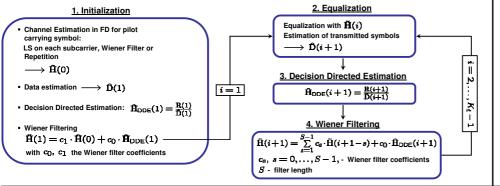
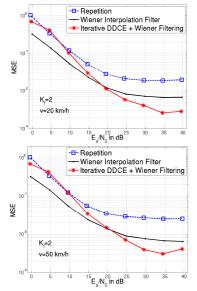

Channel Estimation for B-IFDMA – **Interpolation Filters versus Decision Directed Estimation**

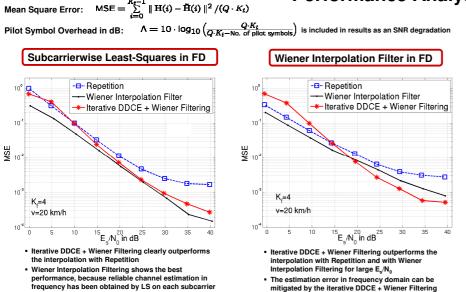

TECHNISCHE UNIVERSITÄT DARMSTADT

Ania Sohl and Ania Kleir

Performance Analysis


Iterative Decision Directed Channel Estimation with Wiener Filtering

Simulation Parameters


Carrier frequency	3.7 GHz
Bandwidth	40 MHz
Total no. N of subcarriers	1024
Subcarrier spacing Δf	39.1 kHz
No. $oldsymbol{Q}$ of subcarriers per user	16
No. K_t of successive symbols	10
Guard interval	3.2 μs
Channel	WINNER SCM, Urban Macro
Coherence bandwidth	$B_{\rm coh} < 20 \cdot \Delta f$
Filter length S	2

Repetition in FD

The iterative DDCE+Wiener Filtering is reasonable if the channel estimation performance in frequency domain is degrading, because it mitigates estimation errors in frequency domain

For velocities up to 50 km/h, the iterative DDCE+Wiener Filtering outperforms the conventional Wiene Interpolation Filter

Single Carrier FDMA Workshop, Mar 2009, New York, U.S.A.

Communications Engineering Lab

Technische Universität Darmstadt, Communications Engineering Lab Merckstr. 25, 64283 Darmstadt, Germany Email: a.sohl@nt.tu-darmstadt.de