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ABSTRACT

A particle filter (PF) and a Rao-Blackwellized particle fil-
ter (RBPF) are proposed for mobile terminal tracking in the
Global System for Mobile Communication (GSM) network
based on received signal level and timing advance measure-
ments. The proposed PF and RBPF are able to cope with
errors due to non-line-of-sight propagation, which are mod-
elled as non-Gaussian disturbances. The proposed algo-
rithms have been tested on synthetic and “real world“ GSM
measurements, and their enhanced performance compared
to an extended Kalman filter is shown.

1. INTRODUCTION

In recent years, radio network-based localization methods
that provide accurate mobile terminal (MT) location esti-
mates have become an important field for researchers and
engineers. On the one hand, this is due to emerging com-
mercial applications such as location sensitive billing, fraud
detection or intelligent transportation systems that rely on ac-
curate MT location estimates. On the other hand, the United
States Federal Communications Commission (FCC) standard
requires all wireless providers to report the location of all E-
911 callers within a specified accuracy [1].
Until now, several localization methods have been proposed
to solve the problem of locating an MT (an overview can be
found, e.g., in [1, 2]). Cellular radio network-based local-
ization methods use, e.g., the received signal strength (RSS),
angle of arrival (AoA), round trip time (RTT) or time (differ-
ence) of arrival (T(D)oA) measurements, in order to estimate
the MT location. The radio signals, however, are usually not
designed for localization purposes, so that it is difficult to
obtain MT location estimates that rely on a single type of
measurement. Furthermore, especially in urban scenarios,
multiple reflections at buildings and other obstacles prevent
the radio signal from arriving via the direct path. The re-
sulting error due to non-line-of-sight propagation (NLOS)
can severely affect the accuracy of the MT location esti-
mates. Thus, methods that efficiently combine different types
of measurements and take into account errors due to NLOS
propagation are needed.
In [3], an extended Kalman filter (EKF) that combines timing
advance (TA) and RSS measurements from the Global Sys-
tem for Mobile Communication (GSM) is proposed which
does not take into account errors due to NLOS propagation.
In [4], particle filters (PFs) for localization in wireless net-
works are proposed that are either based on RSS or ToA mea-
surements. Although the effect of NLOS propagation is in-
vestigated by means of simulations, the combination of RSS
and ToA measurements is not considered. A PF and a Rao-
Blackwellized PF (RBPF) for mobility tracking in cellular

networks based on RSS measurements is presented in [5].
A Rao-Blackwellized variable rate PF that combines line-
of-sight (LOS) signals from satellite, cellular radio and sen-
sor networks, in order to simultaneously determine the MT
location and the locations of the sensor nodes is described
in [6]. In [7], the interacting multiple model algorithm based
on ToA measurements and taking into account NLOS error
statistics is investigated. A jump Markov particle filter for
mixed LOS/NLOS conditions based on RSS and ToA mea-
surements for indoor scenarios is presented in [8].
This paper is focussed on MT tracking using received signal
level (RXLEV) and TA measurements from GSM, as they
can be easily obtained from off-the-shelf mobile handsets.
A PF and a RBPF is proposed that efficiently can deal with
the nonlinear relationship between the measurements and the
MT location and the errors due to NLOS propagation, which
are modelled as non-Gaussian disturbances. The two algo-
rithms have been tested on synthetic and ”real world” GSM
measurements, and their enhanced performance with respect
to the EKF is demonstrated.
The rest of this paper is organized as follows: In Section II,
the MT tracking problem is stated and the corresponding MT
motion model and the models for the RXLEV and TA mea-
surements are described. In Section III, the PF and RBPF
for the MT tracking problem are introduced. In Section IV
and V, the performance of the PF and RBPF is compared to
the EKF by means of simulations and experimental results.
Section VI concludes the work.

2. PROBLEM STATEMENT

2.1 Motion Model

The objective of MT tracking in cellular radio networks is
to recursively estimate the MT kinematic state from a set
of measurements. It is assumed that the measurements are
available at discrete time steps k ·Ts, with k ∈ N, where Ts de-
notes the sampling time and N is the set of natural numbers.
For the MT tracking problem, the states to be estimated are
assumed to be the two-dimensional location and velocity of

the MT, i.e., x=[xMT, yMT, ẋMT, ẏMT]
T

. The MT state dynamics
are described by a nearly constant velocity model [1], given
by

x(k+1) = Ax(k)+Bv(k), (1)

where A =

[

I2 Ts · I2

0 I2

]

, B =

[

T 2
s
/2 · I2

Ts · I2

]

, I2 is the

identity matrix of size 2 and v = [vx ,vy ]T denotes zero-
mean Gaussian process noise with covariance matrix Q =
diag(σ2

x ,σ
2
y ), where σ2

x and σ2
y are the noise variances in the

x- and y-direction, respectively. In the following, the models
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for the RXLEV and TA measurements are introduced.

2.2 Measurement Model

In GSM, the TA is a parameter that is used to maintain frame
alignment in the GSM system [9]. Basically, the TA is the
round trip time, i.e., the time the radio signal needs to travel
from the base station (BS) to the MT and back, quantized to
finite precision. Let zTA denote the TA measurement multi-
plied by c0/2, where c0 denotes the speed of light. Then, the
TA measurement can be modelled as

zTA(k) = hTA(x(k))+wTA(k), (2)

where hTA(x(k)) = d(n)(x(k)) denotes the Euclidean dis-
tance between the MT and the n-th BS. The random variable
wTA(k) accounts for errors due to quantization, changing
propagation conditions - LOS or NLOS situation - and
inaccuracies in the measurement equipment.
The TA error is modelled with a two-component
Gaussian mixture probability density function (pdf)
pTA(wTA(k)) = pLOS · N (wTA(k); µLOS,σ

2
LOS

) + (1 − pLOS) ·
N (wTA(k); µNLOS,σ

2
NLOS

) [1], where the error wTA(k) falls
in the LOS distribution with probability pLOS, and in the
NLOS distribution with probability (1 − pLOS), and where

N (wTA(k); µ ,σ2) denotes a Gaussian density with mean

µ and variance σ2. This assumption can be verified by
experimental data, cf. Fig. 1, that have been obtained from
field trials in an urban city center in Germany. From Fig. 1,
it is obvious that compared to the Gaussian mixture pdf, the
single Gaussian pdf only poorly approximates the true TA
error pdf.
Unfortunately, off-the-shelf mobile phones only receive the
TA from the serving BS, which is not enough information
to uniquely determine the MT location. In GSM, however,
additional MT location information can be obtained from
the RXLEV measurements, which are quantized RSS
measurements. In general, the MT measures the RSS from
up to NBS = 7 BSs. Let zRSS(k) denote the vector of NBS RSS
measurements. Then, the model for the RSS measurement
in dB scale is given by

zRSS(k) = hRSS(x(k))+wRSS(k) (3)

[1], with hRSS(x(k))=[h
(1)
RSS(x(k)), · · · ,h

(NBS)
RSS (x(k))]T, where

h
(n)
RSS(x(k)) = P

(n)
t − L(n)(x(k)), P

(n)
t denotes the equivalent

isotropic radiated power of the n-th BS and L(n)(x(k)) is the
path loss. The path loss is given by the well known formula

L(n)(x(k)) = A(n) +10 ·B(n) · log10

(

d(n)(x(k))/km
)

,

where A(n) and B(n) are model parameters that strongly
depend on the BS antenna settings and the investigated
scenario. The random variable wRSS(k) accounts for er-
rors, such as, quantization errors and errors due to slow
fading and NLOS propagation, which can be assumed to
be zero-mean Gaussian distributed with multivariate pdf
pRSS(wRSS(k)) = N (wRSS(k);0,RRSS) and covariance matrix
RRSS. It is assumed that the covariance matrix is given by

RRSS = diag((σ
(1)
RSS )2, · · · ,(σ

(NBS)
RSS )2). Note that the errors due

to NLOS are implicitly included in the model [10].
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Figure 1: Empirical TA error pdf from outdoor field trial and corre-
sponding Gaussian and Gaussian mixture approximations.

3. PARTICLE FILTERS FOR MOBILE TERMINAL
TRACKING

3.1 Recursive Bayesian Estimation

After having described the TA and RSS measurements that
are corrupted by (non-)Gaussian noise and that are nonlin-
early related to the MT location, the question is how one
can efficiently recursively estimate the MT location from
these measurements. Let Z(k) = {z(l), l = 1, ...,k} denote
the sequence of available measurements up to time k, with
z(l) = [zTA(l), z

T

RSS
(l)]T. Then, from a Bayesian point of view,

the solution to the above problem is to recursively compute
the posterior pdf p(x(k)|Z(k)) of the MT state vector, given
the data Z(k). The optimal Bayesian solution, provided that
certain assumptions hold, is given by the following two re-
currence relations

p(x(k)|Z(k)) =
p(z(k)|x(k))p(x(k)|Z(k−1))

p(z(k)|Z(k−1))
,

p(x(k+1)|Z(k)) =
∫

p(x(k+1)|x(k))p(x(k)|Z(k))dx(k)

[11, 12], where p(z(k)|Z(k− 1)) is a normalizing constant,
and where the pdfs p(x(k+ 1)|x(k)) and p(z(k)|x(k)) can
be determined from (1) and (2), (3), respectively. However,
due to the nonlinear and (non-)Gaussian structure of the mea-
surement model, cf. (2) and (3), an analytical solution of the
above recursions is intractable. Thus, in order to solve the
underlying MT tracking problem, one has to resort to subop-
timal algorithms.

3.2 Particle Filter

The MT tracking problem is solved using sequential Monte
Carlo methods that are commonly referred to as particle fil-
ters [11–14]. The PF is based on a recursive approximation
of the posterior pdf p(x(k)|Z(k)) by a set of N random sam-
ples xi(k) (particles) with corresponding importance weights
wi(k), i.e.,

p(x(k)|Z(k)) ≈
N

∑
i=1

wi(k) ·δ (x(k)−xi(k)),

where δ (·) denotes the Dirac delta function. In Table 1, the
PF for the MT tracking problem is presented that uses the

C. Fritsche, and A. Klein, ”On the Performance of Mobile Terminal Tracking in Urban GSM Networks using Particle Filters,” in Proc. of the European

Signal Processing Congference (EUSIPCO), Glasgow, Scotland, August 2009.



Table 1: Particle Filter for MT Tracking

1. Initialization (i= 1, ...,N)
Generate samples and initialize weights:

xi(0)∼ p(x(0)), wi(0)= 1/N

where “∼” means “is distributed according to” and p(x(0))
is the prior distribution of the MT state vector at k = 0.

2. Measurement update (i= 1, ...,N)
Update the weights and normalize:

wi(k) =
p(z(k)|xi(k))wi(k−1)

∑Nj=1 p(z(k)|x j(k))w j(k−1)

3. Effective sample size Neff and PF output calculation

Neff = 1/∑
N

i=1
(wi(k))

2, x̂(k)=∑
N

i=1
wi(k)xi(k)

4. Resampling with replacement
Only resample when Neff < Nth. Then, take N samples xi(k)
with replacement from the old set {x j(k), j = 1, ...,N},
where Pr{xi(k) = x j(k)} = w j(k). Set wi(k) = 1/N, for
i= 1, ...,N.

5. Prediction (i= 1, ...,N)
Predict the samples:

xi(k+1)∼N (xi(k+1); Axi(k),BQBT)

transitional prior as an importance density function. The PF
algorithm consists of three major steps: measurement update,
resampling and prediction [13].
Step 1: Measurement update. Upon the arrival of a new mea-
surement, the importance weight wi(k) of each particle xi(k)
is updated via the likelihood function p(z(k)|x(k)).
Step 2: Resampling. In the resampling step, particles xi(k)
with low importance weights wi(k) are eliminated and par-
ticles with high importance weights are multiplied, in or-
der to avoid a poor approximation of the posterior pdf
p(x(k)|Z(k)).
Step 3: Prediction. In the prediction step, the predicted
particles xi(k+ 1) are sampled from the transitional density
p(x(k+1)|x(k)) in order to approximate p(x(k+1)|Z(k)).

3.3 Rao-Blackwellized Particle Filter

It is well known that the computational complexity of the PF
becomes prohibitively high when a large number of particles
is used. In order to overcome this problem, a technique called
Rao-Blackwellization can be applied to PFs (a comprehen-
sive treatment of RBPFs can be found, e.g., in [14–18]).
The main idea behind Rao-Blackwellization is to partition
the state vector x(k) = [xkf(k), xpf(k)]T into linear states
xkf(k) and nonlinear states xpf(k) and then to analytically
marginalize out the linear states from the resulting joint pos-
terior pdf p(xkf(k), xpf(k)|Z(k)) [16]. It can be shown that the
linear states can then be estimated by a Kalman filter, and the
nonlinear states can be estimated by a PF. The result of this
technique is that, compared to a standard PF, the variance of
the state estimates can be reduced.
For the MT tracking problem, the MT velocity components
are estimated with the Kalman filter, i.e., xkf = [ẋMT, ẏMT]

T,
and the MT location is estimated with the particle filter, i.e.,
xpf = [xMT, yMT]

T. Thus, the motion and measurement model,

cf. (1), (2) and (3), can be rewritten as

(

xpf(k+1)
xkf(k+1)

)

=

(

I2 Apf

0 Akf

)(

xpf(k)
xkf(k)

)

+

(

Bpf

Bkf

)

v(k), (4)

z(k) = h(xpf(k))+w(k), (5)

where Apf = Ts · I2, A
kf = I2, B

pf = T 2
s
/2 · I2 and Bkf = Ts · I2.

The process noise v = [vpf,vkf]T is zero-mean Gaussian dis-

tributed with covariance matrix Q̃ = 12 ⊗Q, where ⊗ is the
Kronecker product and 12 denotes a matrix of size 2 whose
entries are all 1. The RBPF for the underlying MT tracking
problem is given in Table 2.

4. SIMULATION SCENARIO AND RESULTS

For the simulations, it is assumed that a car travels with a
constant speed of 70 km/h on a straight line, starting at (0
km, 0 km) and ending at approximately (1.3 km, 1.3 km).
The car is equipped with an MT that provides RXLEV and
TA measurements from the GSM network. The GSM net-
work is composed of NBS =7 BSs with known BS locations,
where each BS is equipped with a single omni-directional an-
tenna. The BS locations are given by (−0.75km, 0.75km),
(−0.25km, 1.5km), (0.75km, 1.75km), (0.5km, −0.75km),
(1.5km, 0km), (2km, 1.9km) and (−0.75km, −0.6km). It
is assumed that the MT receives one TA from the serving BS
and a total of seven RXLEV measurements from the serving

Table 2: Rao-Blackwellized Particle Filter for MT Tracking

1. Initialization of Kalman and Particle filters (i= 1, ...,N)

x̂kf

i (0|−1)∼p(x̂kf(0|−1)), xpf

i (0)∼p(xpf(0)), wi(0)=1/N

2. Particle filter measurement update (i= 1, ...,N)

wi(k) =
p(z(k)|xpf

i (k))wi(k−1)

∑Nj=1 p(z(k)|xpf

j (k))w j(k−1)

3. Effective sample size Neff and PF output calculation

Neff = 1/∑
N

i=1
(wi(k))

2, x̂pf(k)=∑
N

i=1
wi(k)x

pf

i (k)

4. Resampling with replacement (see Table 1)

5. Particle filter prediction (i= 1, ...,N)

x
pf

i (k+1) ∼ N (xpf

i (k+1); xpf

i (k)+Apfx̂kf

i (k|k−1),

ApfPkf(k|k−1)(Apf)T +BpfQ(Bpf)T)

6. Measurement update of the Kalman filters (i= 1, ...,N)

z̃i(k) = x
pf

i (k+1)−x
pf

i (k)

S(k) = ApfPkf(k|k−1)(Apf)T +BpfQ(Bpf)T

K(k) = Pkf(k|k−1)(Apf)T(S(k))−1

x̂kf

i (k|k) = x̂kf

i (k|k−1)+K(k)(z̃i(k)−Apfx̂kf

i (k|k−1))

Pkf(k|k) = Pkf(k|k−1)−K(k)AkfPkf(k|k−1)

7. Prediction of the Kalman filters (i= 1, ...,N)

C = Akf −Bkf(Bpf)−1Apf

x̂kf

i (k+1|k) = Cx̂kf

i (k|k)+Bkf(Bpf)−1z̃i(k)

Pkf(k+1|k) = CPkf(k|k)CT
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and neighboring BS antennas. The serving BS is assumed to
be the BS providing the largest RXLEV.
The simulation parameters are given in Table 3 and are as-
sumed to be equal for all BSs for the sake of simplicity. Note
that the error pdf for the TA measurement is modelled as a
two-component Gaussian mixture. The unknown parameters
of the Gaussian mixture have been estimated from the field
trial data, cf. Fig. 1, using the Expectation Maximization
algorithm. The accuracy of the proposed PF and RBPF algo-
rithms is evaluated in terms of the position root mean square
error (RMSE) determined from NMC =100 Monte Carlo trials.
The threshold for resampling is chosen as Nth = 2N/3. For
comparison, simulations have been carried out for an EKF
that approximates the error pdf of the TA measurement, cf.
Fig. 1, with a single Gaussian density with mean µEKF=210m
and standard deviation σEKF =190m.

Table 3: Simulation parameters

Parameter Value Parameter Value

A in dB 132.8 Ts in s 0.48

B in dB 3.8 pLOS 0.52

σRSS in dB 6 µLOS in m 51

Pt in dBm 33 σLOS in m 55

σx in m/s2 1 µNLOS in m 380

σy in m/s2 1 σNLOS in m 120

In Fig. 2, the RMSE in dependence of the time index k for
the EKF, PF and RBPF using N=250 and N=1000 particles
is shown. Compared to the PF and RBPF, the EKF provides
the worst results in terms of RMSE. On the one hand, this
is due to the fact that the EKF has to linearize the nonlin-
ear measurement equations, which results in a degradation
of the performance. On the other hand, the EKF only poorly
approximates the non-Gaussian TA error pdf which further
results in performance loss. The PF and RBPF, however, can
efficiently deal with the nonlinear measurement model and
non-Gaussian error which results in performance improve-
ment, but they have the disadvantage of being computation-
ally more complex. For a small number of particles and thus,
a lower computational complexity, the RBPF gives more ac-
curate results than the PF.
Even though the details of the algorithms are not presented

in this paper, simulations have been carried out using the aux-
iliary particle filter (AUX-PF) and regularized particle filter
with Epanechnikov kernel (RPF-EPA) and Gaussian kernel
(RPF-GAU) [11–13]. The results on the position RMSE av-
eraged over the whole time period for different numbers of

Table 4: Average RMSE in m for the different algorithms

Algorithm Number of Particles

250 500 1000 2000

PF 50.8 43.1 42.2 41.2

RBPF 46.8 43.1 42.1 41.4

AUX-PF 50.1 45.2 42.3 41.5

RPF-GAU 55.4 51.9 49.3 47.4

RPF-EPA 47.7 46.4 45.3 44.5

EKF 64.1
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Figure 2: Position RMSE for the EKF, PF and RBPF (N=250,1000
particles) and NMC =100.

particles and for NMC =100 Monte Carlo runs are summarized
in Table 4. From Table 4 it can be seen that in terms of av-
erage RMSE and for a small number of particles, the RBPF
provides the best results compared to the other PFs.

5. EXPERIMENTAL RESULTS

In this section, the proposed PF and RBPF are tested on GSM
measurements available from a field trial. The field trial
was conducted in an operating GSM network in a German
city center, where the test area has a size of approximately
3km× 3km. During the field trial every Ts = 0.48s, a car
equipped with a standard cellular phone collected RXLEV
and TA measurements from GSM. Note that in GSM the
RXLEV measurements are available from the serving BS and
between one and six strongest RXLEVs from the neighbor-
ing BSs, whereas the TA measurement is only available from
the serving BS. The investigated GSM network is composed
of NBS = 13 fixed BSs with known locations. The BSs are ei-
ther equipped with omni-directional or directional antennas.
In Fig. 3, the true MT trajectory and the trajectories esti-

mated from the EKF, PF and RBPF for N = 1000 particles
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−400

−200
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200
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Figure 3: Field trial scenario with true MT trajectory and estimated
trajectories from the EKF, PF and RBPF (N=1000 particles).
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Figure 4: Position RMSE for the EKF, PF and RBPF (N = 1000
particles) based on field trial data.

are shown. The true MT location was obtained from detailed
maps and GPS, where GPS was available. Speed constraints
are additionally included in the PF and RBPF in order to im-
prove the performance [5]. From Fig. 3 it can be clearly
seen that all three algorithms can track the MT. In Fig. 4, the
postion RMSE is depicted for the three algorithms. It can be
seen that the EKF provides the worst performance. The ac-
curacy can be further improved by the PF and RBPF, where
the RBPF provides approximately the same accuracy as the
PF. The peaks in the position RMSE can be explained by the
bad geometric constellation of the BSs relative to the MT and
the change of MT velocity during the field trial.

6. CONCLUSION

In this paper, a particle filter and a Rao-Blackwellized parti-
cle filter are proposed that combine RXLEV and TA mea-
surements from the GSM network, in order to accurately
track the MT. The achievable accuracy of the filters is com-
pared to the EKF technique and their enhanced performance
is shown based on synthetic and field trial data. In a next step,
for instance the performance of the proposed PF and RBPF
could be improved by considering importance density func-
tions that better approximate the optimal importance density.
Furthermore, for the special case of non-Gaussian measure-
ment noise, the theoretical performance could be assessed by
evaluating the posterior Cramér-Rao bound.
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[9] A. Küpper, Location-based services, 1st ed. John Wi-
ley & Sons, 2005.

[10] Y. Qi, H. Kobayashi, and H. Suda, “Analysis of wireless
geolocation in a non-line-of-sight environment,” IEEE
Trans. Wireless Commun., vol. 5, no. 3, pp. 672–681,
Mar. 2006.

[11] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the
Kalman Filter: Particle Filters for Tracking Applica-
tions. Boston, MA, USA: Artech-House, 2004.

[12] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequen-
tial Monte Carlo Methods in Practice. New York,
USA: Springer-Verlag, 2001.

[13] M. S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp, “A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking,” IEEE
Trans. Signal Processing, vol. 50, no. 2, pp. 174–188,
Feb. 2002.

[14] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Fors-
sell, J. Jansson, R. Karlsson, and P. Nordlund, “Particle
filters for positioning, navigation and tracking,” IEEE
Trans. Signal Processing, vol. 50, no. 2, pp. 425–437,
Feb. 2002.

[15] C. Andrieu and A. Doucet, “Particle filtering for par-
tially observed Gaussian state space models,” Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 64, no. 4, pp. 827–836, 2002.

[16] T. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginal-
ized particle filters for mixed linear/nonlinear state-
space models,” IEEE Trans. Signal Processing, vol. 53,
no. 7, pp. 2279–2289, Jul. 2005.

[17] P.-J. Nordlund and F. Gustafsson, “Sequential Monte
Carlo techniques applied to integrated navigation sys-
tems,” in Proc. American Control Conference, Arling-
ton, Virginia, USA, Jun. 2001, pp. 4375–4380.

[18] R. Karlsson, T. Schön, and F. Gustafsson, “Complexity
analysis of the marginalized particle filter,” IEEE Trans.
Signal Processing, vol. 53, no. 11, pp. 4408–4411, Nov.
2005.

C. Fritsche, and A. Klein, ”On the Performance of Mobile Terminal Tracking in Urban GSM Networks using Particle Filters,” in Proc. of the European

Signal Processing Congference (EUSIPCO), Glasgow, Scotland, August 2009.


