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Kurzfassung

Von zukünftigen drahtlosen Kommunikationssystemen wird erwartet, dass sie

verschiedenste Datendienste zuverlässig zur Verfügung stellen, wobei diese Dienste

Raten im Bereich von wenigen kbit/s bis zu mehreren Mbit/s fordern. Wegen

der hohen Kosten für Funkfrequenzen müssen diese Systeme außerdem besonders

effizient bezüglich der Spektrumsnutzung sein. Die Anwendung von Orthogonal

Frequency Division Multiple Access (OFDMA) und Multiple Input Multiple Output

(MIMO) basierten Verfahren wird als besonders vielversprechend angesehen, um diesen

Anforderungen zu genügen.

Auf der einen Seite sind MIMO-OFDMA Systeme sehr flexibel und besitzen eine

hohe spektrale Effizienz. Auf der anderen Seite ist die Zuweisung der Funkressourcen

aufgrund der erheblichen Anzahl von Sub-Trägern und der Berücksichtigung

der räumlichen Komponente besonders komplex. Die optimale Zuweisung der

Funkressourcen, die die Summenrate des Systems maximiert, ist meist zu komplex

für praktische Anwendungen. Daher werden suboptimale und effiziente Verfahren zur

Funkressourcenzuweisung mit geringer Komplexität benötigt, die den Mobilstationen

die verfügbaren Frequenz-, Zeit- und Raumressourcen des Systems zuteilen.

Diese Arbeit befasst sich mit suboptimalen Verfahren zur Funkressourcenzuweisung

mit dem Ziel, die Summenrate des Systems zu maximieren. Um ein effizientes

Verfahren zur Funkressourcenzuweisung mit akzeptabler Komplexität zu entwerfen,

wird das ursprüngliche Problem der Summenratenmaximierung des Systems neu

formuliert, wobei es in vier Unterprobleme zerlegt wird. Diese sind das Space

Division Multiple Access (SDMA)-Gruppierungsproblem, das Vorkodierungsproblem,

das Leistungszuweisungsproblem und das Ressourcenvergabeproblem. Für jedes dieser

Unterprobleme werden verschiedene existierende und neu vorgeschlagene Algorithmen

angewendet, die alle die Maximierung der Summenrate des Systems zum Ziel haben.

Durch die Kombination dieser Algorithmen entstehen suboptimale Verfahren zur

Funkressourcenzuweisung, die jedoch äußerst effizient arbeiten.

Für das SDMA-Gruppierungsproblem werden vier neue SDMA-Algorithmen

vorgestellt: ein Algorithmus basiert auf konvexer Optimierung und drei

Greedy-Algorithmen basieren auf einfachen heuristischen Ansätzen. Die

vorgeschlagenen Algorithmen erzeugen die SDMA-Gruppen anhand von räumlichen

Korrelationseigenschaften und Kanalgewinnen der Mobilstation und benötigen keine

Vorkodierung oder Leistungszuweisung. Es wird gezeigt, dass die vorgestellten

Algorithmen bezüglich der mittleren Summenrate genauso gute Ergebnisse liefern

wie einige existierende SDMA-Algorithmen, wobei sie beachtlich niedrigeren

Rechenaufwand als die existieren Verfahren benötigen.

Zur Lösung des Vorkodierungsproblems werden zwei existierende Algorithmen

angewendet. Für das Leistungszuweisungsproblem wird ein neuer iterativer Soft

Dropping Algorithm (SDA) vorgeschlagen, der nachträglich mit Generalized Eigen-

Precoding (GEP) kombiniert wird und zu einem neuen Algorithmus führt, der
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Vorkodierung und Leistungszuweisung vereint. Des Weiteren wird die Konvergenz

dieses neuen Algorithmus gezeigt. Eine besondere Eigenschaft ist, dass der

SDA und damit auch der Algorithmus, der Vorkodierung und Leistungszuweisung

vereint, entweder zur Maximierung der Summenrate oder zur Sicherstellung

von Dienstgütekriterien (QoS-Kriterien) an der Mobilstation mit Hilfe einfacher

Parametereinstellungen genutzt werden können. Des Weiteren wird bei den

Algorithmen zur Vorkodierung und Leistungszuweisung ein neuer Sequential Removal

Algorithm (SRA) vorgeschlagen, der es ermöglicht, Mobilstationen aus SDMA-

Gruppen zu entfernen, wenn dies die Summenrate erhöht.

Um das Ressourcenvergabeproblem zu lösen, werden Algorithmen vorgestellt und

verglichen, die entweder getrennte oder gemeinsame SDMA-Gruppierung und

Ressourcenvergabe verwenden. Es wird gezeigt, dass die getrennte Vergabe

der Ressourcen zu den SDMA-Gruppen genauso gute Ergebnisse bezüglich der

Maximierung der Summenrate des Systems liefert wie die gemeinsame Verarbeitung

der SDMA-Gruppierung und der Ressourcenvergabe, wobei der getrennte Ansatz

deutlich einfacher ist. Des Weiteren werden durch die Algorithmen zur

Ressourcenvergabe verschiedene Kriterien zur Priorisierung von Mobilstationen oder

SDMA-Gruppen berücksichtigt, und es wird gezeigt, dass durch geschickte Anpassung

der Prioritätskriterien die Fairness zwischen den Mobilstationen bezüglich ihres

Durchsatzes maßgeblich erhöht werden kann, ohne dabei die Summenrate des Systems

nennenswert zu reduzieren.

Es zeigt sich, dass die neuen suboptimalen Verfahren zur Funkressourcenzuweisung,

die durch die Kombination der vorgeschlagenen Algorithmen entstehen, einen

erheblichen Teil der maximal erreichbaren Summenrate des Systems erzielen, wobei

ihr Rechenaufwand beachtlich niedriger ist als der eines optimalen Verfahrens. Die

vorgestellten Verfahren zur Funkressourcenzuweisung ereichen über 90% der mittleren

Summenrate, die mit einem Exhaustive Search Verfahren für die SDMA-Gruppierung,

das die Summenrate maximiert, erzielt wird.
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Abstract

Future wireless communication systems are expected to reliably provide data services

with rate requirements ranging from a few kbit/s up to some Mbits/s and, due to the

high costs of frequency spectrum, these systems also need to be extremely efficient in

terms of the spectrum usage. In particular, the application of transmission schemes

based on Orthogonal Frequency Division Multiple Access (OFDMA) and on Multiple

Input Multiple Output (MIMO) is considered as a promising solution to meet these

requirements.

On the one hand, MIMO-OFDMA systems are flexible and spectrally efficient. On the

other hand, the considerably large number of subcarriers and the inclusion of the space

dimension make the Resource Allocation (RA) in such systems very complex. In fact,

the optimum RA that maximizes the sum rate of the system is often too complex for

practical application and, consequently, suboptimal rather efficient and low-complexity

RA strategies are required in order to allocate the frequency, time, and space resources

of the system to the Mobile Stations (MSs).

This thesis deals with suboptimal RA strategies in the downlink of MIMO-OFDMA

systems aiming at the maximization of the sum rate. In order to solve the problem of

maximizing the sum rate with affordable complexity, a new formulation for the problem

is proposed which divides it into four subproblems, namely the Space Division Mul-

tiple Access (SDMA) grouping problem, the precoding problem, the power allocation

problem, and the resource assignment problem. For each subproblem, several existing

or newly proposed algorithms are applied, which are also oriented towards the maxi-

mization of the sum rate of the system. Through the combination of these algorithms,

new suboptimal rather efficient RA strategies are obtained.

For the SDMA grouping problem, four new SDMA algorithms are proposed: one al-

gorithm based on convex optimization and three greedy algorithms based on simple

heuristics. The proposed algorithms build the SDMA groups based only on the spatial

correlation and channel gain of the MSs and depend neither on precoding nor on power

allocation. The proposed algorithms are shown to perform as good as some existing

SDMA algorithms in terms of the achieved average sum rate and to have considerably

lower computational complexity than the existing ones.

For the precoding problem, two existing algorithms are adopted. For the power allo-

cation problem, a new iterative Soft Dropping Algorithm (SDA) is proposed, which is

subsequently combined with Generalized Eigen-Precoding (GEP) into a new iterative

joint precoding and power allocation algorithm. Moreover, the proof for the conver-

gence of the joint precoding and power allocation algorithm is provided. In particular,

the SDA and, consequently, the joint precoding and power allocation algorithm can pur-

sue either the maximization of the sum rate or the provision of Quality of Service (QoS)

to the MS by means of a simple parameter setting. Also as part of the precoding and

power allocation algorithm, a new Sequential Removal Algorithm (SRA) is proposed,

which might remove MSs from SDMA groups as to enhance the sum rate.
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For the resource assignment problem, algorithms performing either separated or joint

SDMA grouping and resource assignment are proposed and compared. For the max-

imization of the sum rate of the system, it is shown that a sequential assignment

of resources to SDMA groups performs as good as assignment algorithms performing

joint SDMA grouping and resource assignment while being considerably more simple.

Moreover, different criteria to prioritize MSs or SDMA groups are considered by the

assignment algorithms, and it is shown that by adopting a suitable priority criterion

the throughput fairness among the MSs can be considerably improved at the expense

of only small reductions of the average sum rate of the system.

The new suboptimal RA strategies that result from the combination of the proposed

algorithms are shown to obtain a considerable fraction of the maximum achievable

sum rate of the system with computational costs considerably lower than that of an

optimum RA. Indeed, the proposed RA strategies achieve over 90% of the average sum

rate obtained by an RA strategy performing an Exhaustive Search (ES) for the SDMA

group that maximizes the sum rate.
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Chapter 1

Introduction

1.1 Resource Allocation in MIMO-OFDMA Systems

1.1.1 Key Technologies

Future wireless communication systems are expected to reliably provide data services

with rate requirements ranging from a few kbit/s up to some Mbits/s and, due to the

high costs of frequency spectrum, these systems also need to be extremely efficient in

terms of the spectrum usage. In particular, the application of transmission schemes

based on Orthogonal Frequency Division Multiple Access (OFDMA) and on Multiple

Input Multiple Output (MIMO) is considered by most of the proposals for future

wireless communication systems as a promising solution to meet these requirements

[Tel95, FG98, NP00, LL05, DSK+06].

OFDMA employs Orthogonal Frequency Division Multiplexing (OFDM) as transmis-

sion technique, which divides a wideband channel into a number of orthogonal narrow-

band subchannels, termed subcarriers. Simple OFDM-based transceivers can be effi-

ciently implemented using the Fast Fourier Transform (FFT) and, because the channel

transfer function of the subcarriers is non-frequency-selective, sophisticated equaliza-

tion structures are not needed [NP00, LL05, FKKC06]. Moreover, by allocating a

variable number of subcarriers to a given radio link, the system can accommodate ser-

vices with different rate requirements and provide the required rate flexibility [LL05].

MIMO communication employs multiple transmit and receive antennas to enhance the

system performance by exploiting spatial diversity to improve communication reliability

and/or spatial multiplexing to improve throughput [PNG03]. Over the same radio

channel, spatial multiplexing can be used to simultaneously transmit multiple data

streams separated in space, thus enabling to obtain huge system throughput gains

[Tel95, FG98]. In this way, high spectral efficiency values can be achieved without

requiring additional frequency resources [FDH05, MK06, DSK+06]. Since the data

streams transmitted by a Base Station (BS) might be intended for different Mobile

Stations (MSs) sharing the same radio resource in space, a spatial component in the

multiple access scheme is obtained, namely Space Division Multiple Access (SDMA)

[LR99, Van02, PNG03]. The multiple antenna systems employed at the BS and MSs

are usually termed Antenna Arrays (AAs) and the individual antennas of the AAs are

termed AA elements [LR99, Van02].

Further on, a system combining MIMO and OFDMA transmission schemes will be

termed a MIMO-OFDMA system, which in fact combines Frequency Division Multiple
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Access (FDMA), Time Division Multiple Access (TDMA), and Space Division Multiple

Access (SDMA) in its multiple access scheme as to exploit their best properties.

1.1.2 Scenario Description

In this section, the scenario considered in this thesis is described. The Downlink (DL)

of a Multi-User (MU) MIMO-OFDMA system considering a single sectorized cell of

the cellular system is assumed. Fig. 1.1 illustrates the considered scenario, in which

there is a BS located at the corner and the MSs are uniformly distributed within the

cell.

Figure 1.1. General scenario.

In Fig. 1.1, the BS is equipped with an AA and the MSs are equipped with a sin-

gle antenna each. The BS employs its AA to adaptively form beams towards a

group of MSs that share the same subcarrier in space and this subcarrier is said

to be allocated to the MSs. In the DL, adaptive beamforming weights the signals

transmitted by each AA element as to improve the power of the received signal at

the MS and/or mitigate interfering signals [LR99, Van02, PNG03]. At the transmit-

ter side, adaptive beamforming is also termed precoding and the weights applied to

a transmitted signal are usually organized in a vector termed the precoding vector

[PNG03, SSH04, MBQ04, JUN05, BHV06]. Thus, the BS sends signals to each of

these MSs on the same subcarrier while separating the signals intended for the MSs in

space through precoding.

1.1.3 Resource Allocation Problem

In this section, the Resource Allocation (RA) problem in frequency, time, and space

is discussed in non-mathematical terms. On the one hand, MIMO-OFDMA systems

are flexible and spectrally efficient. On the other hand, the considerably large number
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of subcarriers and the inclusion of the space dimension make the RA in such systems

very complex. In general terms, the radio resource units in such a system are elements

organized in a three-dimensional structure with a frequency, a time, and a space axis,

as illustrated at the left side of Fig. 1.2. How units are defined in each axis direc-

tion depends on the system design. Frequency resource units can be represented by

subcarriers, as in OFDMA [Rap99, LL05], time resource units by Time-Slots (TSs),

as in TDMA [Rap99, HRM02], and space resource units by spatial layers/dimensions

[DSK+06]. Each of the resource units illustrated in Fig. 1.2 may be assigned to a

different MS and, therefore, a huge number of possible assignments exists even for a

relatively small number of resource units and MSs.

Resource unit
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Figure 1.2. Radio resource units in time, frequency, and space.

Through adequate frequency and time synchronization, frequency and time resources

can be effectively made orthogonal by design. This orthogonality simplifies the RA in

frequency and time, since an MS allocated on a resource does not interfere with another

MS allocated on a different resource. From the point of view of the RA, such resources

can be considered as relatively independent of each other, since they are not coupled

through interference, as illustrated in the middle of Fig. 1.2. This does not hold for

space resources and obtaining such orthogonality is relatively more complicated in this

case. In fact, space resources result from the reuse of a same resource in frequency

and time by a group of MSs, so that MSs allocated on space resources associated with

the same frequency-time resource will essentially interfere with each other. From the

point of view of the RA, such resources are dependent on each other since they are

coupled through interference, as illustrated at the right side of Fig. 1.2. Due to this

characteristic, frequency-time resources can be interpreted as the real radio resources in

the system, which are in fact shared in space by several MSs through SDMA. Further

on, a group of MSs sharing the same frequency-time resource in space is termed an

SDMA group.

The performance of the system depends on the following aspects:

• The composition of the SDMA groups to which resources are allocated.

• The precoding technique employed to spatially separate the signals intended for the

different MSs of an SDMA group.
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• The distribution of the available power among the resources and the MSs to which

the resources are allocated.

• The selection of the frequency-time resource which is allocated to each SDMA group.

In the following, the dependency of the performance of the system on the above four

aspects is shortly discussed. If the channels of the MSs are highly spatially uncorrelated,

these MSs can be efficiently separated in space through precoding. However, if their

channels are highly spatially correlated, these MSs cannot be efficiently separated in

space through precoding. MSs that can be efficiently separated in space are said to be

spatially compatible [Cal04, SS04a, FDH05, MK06]. In order to obtain SDMA gains

and improve the sum rate of the system, SDMA groups have to be composed of spatially

compatible MSs. Otherwise, the MSs in the SDMA group strongly interfere with each

other and the sum rate of the system is compromised [SS04a, FDH05, MK06, MK07a].

Consequently, the composition of the SDMA groups affects the performance of the

system.

The spatial separation through precoding of the signals intended for the MSs is sim-

plified whenever the MSs are spatially compatible. There are different precoding tech-

niques which might, e.g., suppress interference among MSs totally, in part, or ignore it

[SSH04, MBQ04, JUN05]. Therefore, such precoding techniques present different per-

formances and the selection of one of them influences the performance of the system.

The interference between MSs sharing a given resource through SDMA is a function

of the power distribution among the MSs in the SDMA group, as well as, of the power

distribution among resources. Considering a certain amount of power available for an

SDMA group, allocating more power to one MS enhances the quality of its signal, e.g.,

in terms of Signal-to-Interference plus Noise Ratio (SINR), but also reduces the SINR

of the other MSs in the SDMA group [ZKAQ01]. Analogously, allocating more power

to a certain resource enhances the SINR of the MSs sharing this resource, but reduces

the SINR of the MSs allocated on the other resources [ZKAQ01]. Consequently, an

efficient distribution of the power among the MSs and resources has to be performed

in order to improve the performance of the system, e.g., in terms of sum rate.

Finally, the spatial compatibility among MSs is resource-dependent, i.e., MSs that are

spatially compatible on a given resource might be incompatible on another resource

[MK06, LZ06, MK07a, MK07b]. Consequently, the selection of the resources which are

allocated to the SDMA groups also influences the performance of the system.

In fact, these four aspects can be associated with the four following problems:

• The SDMA grouping problem, which corresponds to building groups of MSs as

spatially compatible as possible on each resource.

• The precoding problem, which corresponds to determining precoding vectors able

to spatially separate the signals intended for the MSs efficiently.
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• The power allocation problem, which corresponds to allocating power to MSs

and resources efficiently.

• The resource assignment problem, which corresponds to assigning resources to

the best SDMA groups, e.g., the groups achieving the highest rate on each resource.

The SDMA grouping problem and the resource assignment problem are essentially

integer problems, since only whole resources can be assigned to whole MSs. The pre-

coding problem and the power allocation problem are not integer problems, as long as

the precoding vectors and allocated powers are not discretized. Integer optimization

problems are usually hard to solve due to its combinatorial nature [NW99].

From the previous discussion, it can be noted that the RA problem in MU MIMO-

OFDMA systems has in fact the four problems above as subproblems. The previous

discussion also reveals some interdependencies among the referred subproblems, such

as the efficiency of the precoding technique which is conditioned on the SDMA group

composition and the dependency between the performance of an SDMA group and

the power distribution among resources. Due to such interdependencies, the RA in

frequency, time, and space in MU MIMO-OFDMA systems becomes complicated. In-

deed, an optimal RA strategy would have to jointly solve all the four subproblems and,

consequently, becomes a complex combinatorial and non-convex optimization prob-

lem [LZ06]. The computational complexity of such an optimal RA strategy rapidly

increases with the number of MSs, resources, and transmit antennas, and becomes un-

feasible for most practical cases. Therefore, suboptimal rather efficient low-complexity

RA strategies are required [LZ06].

In MU MIMO-OFDMA systems, different RA objectives can be pursued, such as the

maximization of the sum rate of the system [FN96, STKL01, KT02, Cal04, TC04a,

Lau04, ZL05, CC05, TUBN06, MSLT07], the maximization of minimum SINR in the

system [Cal04, SBO06], or the minimization of the total transmit power under rate

constraints [ZTC06]. In this work, the maximization of the sum rate of the system is

considered as the RA objective.

1.2 Framework for Suboptimal Resource Allocation

Strategies

In this section, a new framework for suboptimal RA strategies is introduced. Herein,

the model illustrated in Fig. 1.3 is proposed as a framework for suboptimal RA strate-

gies, which divides the RA problem into the four subproblems mentioned in Sec-

tion 1.1.3. Then, existing or new algorithms oriented towards the maximization of

the sum rate can be applied to each subproblem and combined to form suboptimal

rather efficient RA strategies.
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Figure 1.3. Framework for suboptimal RA strategies for MIMO-OFDMA systems.

In Fig. 1.3, two cases are considered regarding the number of resources taken into

account by the RA strategy: a case considering a single resource, which is indicated

by the dashed line, and another case considering multiple resources, which is indicated

by the dot-dashed line.

The single-resource case does not mean that the system has only a single resource,

but that resources are considered individually by the RA strategies. Since in this case,

for the RA strategy there exist not multiple resources to be assigned, the resource

assignment problem has no importance. In the multiple-resource case, the RA strategy

takes all the multiple resources into account and the resource assignment problem has

to be considered.

In the following, the algorithms employed by the RA strategies to solve each of the RA

subproblems are discussed.

In order to solve the SDMA grouping problem, an SDMA algorithm is employed. How-

ever, the SDMA grouping problem is known to be a Non-deterministic Polynomial time

Complete (NP-C) problem [GJ79, STKL01, Cal04]. NP-C problems are problems that

cannot be solved in polynomial time or, in other words, whose complexity might expo-

nentially increase with the problem dimensions [GJ79, NW99, Leu04]. Thus, in order

to find the SDMA group that maximizes the sum rate of the system, an Exhaustive

Search (ES) over all the possible SDMA groups is required [FDH05, MK06, MK07a].
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Therefore, it is important to investigate how MSs can be efficiently organized into

SDMA groups with low complexity, i.e., suboptimal rather efficient SDMA algorithms

are required. Most suboptimal SDMA algorithms share a common structure which is

composed of two main elements, namely:

1. A grouping metric, which measures the spatial compatibility among MSs in an

SDMA group, i.e., which quantifies how efficiently the MSs in an SDMA group

can be separated in space. Additionally, the grouping metric can also be used to

compare different SDMA groups.

2. A grouping algorithm, which, based on the grouping metric, builds and compares

SDMA groups composed of spatially compatible MSs without needing to perform

an ES.

In this work, these two elements are considered to define an SDMA algorithm, as

illustrated in Fig. 1.3.

In the multiple-resource case, it is required to solve the resource assignment problem

and decide which resource to allocate to which SDMA group. For this purpose, the

two following elements are usually considered, namely:

1. An MS or group priority, which measures the efficiency of allocating a given resource

to an MS or an SDMA group, respectively.

2. An assignment algorithm, which based on the MS or group priority assigns the

system resources to an MS or an SDMA group, respectively.

The SDMA algorithm, the MS or group priority, and the assignment algorithm are

the elements composing the Grouping & Assignment (GA) algorithm, as illustrated in

Fig. 1.3.

The GA algorithm involves both the SDMA grouping and the resource assignment

problems. The resource assignment problem becomes almost irrelevant whenever a

single resource is considered, while the SDMA grouping problem becomes irrelevant

if SDMA groups containing only a single MS are considered. The division of the GA

algorithm in Fig. 1.3 is similar to that considered by some RA strategies designed for

Multi-User Single Input Single Output (SISO)-OFDMA systems, which split the GA

algorithm into smaller steps, as in [BGWM07].

Because the GA algorithm involves both the SDMA grouping and the resource assign-

ment problems, different designs are possible. The designs of the GA algorithm may

differ, for example, in the assignment of resources to single MSs [KT02, TUBN06] or

to whole SDMA groups [MK07b, MK08]. They may also differ by performing Sep-

arated Grouping and Assignment (SGA), in which first SDMA groups are built and

afterwards some of them are assigned to the resources [MK07b], or Joint Grouping and

Assignment (JGA), in which SDMA groups are simultaneously built on the multiple
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resources [KT02]. Considering JGA, the ideas of grouping metric and MS or group

priority merge into each other and one can talk of a global priority which at the same

time involves RA aspects in frequency, time, and space. The same happens with the

grouping and assignment algorithms, which based on the new global priority performs

in parallel SDMA grouping and resource assignment on the different system resources.

The GA algorithm and its elements, as well as the possibility of performing JGA are

also indicated in Fig. 1.3.

In order to solve the precoding and the power allocation problems, a precoding al-

gorithm and a power allocation algorithm are employed, respectively. The precod-

ing algorithm and the power allocation algorithm are illustrated in Fig. 1.3 as two

separated blocks. However, precoding and power allocation do not need to be per-

formed necessarily separated from each other, so that joint precoding and power allo-

cation algorithms can also be considered, as indicated in Fig. 1.3. In this case, pre-

coding vectors and power allocation are usually optimized alternately and iteratively

[BO02, CTRF02, SB04, MK07c].

Despite the fact that some blocks in Fig. 1.3 appear isolated, the exchange of informa-

tion among them is not excluded in this work. On the one hand, the separation between

the GA algorithm and the precoding and power allocation algorithm helps to simplify

the RA strategy. For example, whenever the SDMA grouping and resource assignment

problems, i.e., the combinatorial subproblems of the RA problem, are solved by the

GA algorithm, the precoding and power allocation are considerably simplified. On the

other hand, if the GA algorithm, and especially the SDMA algorithm, is aware of the

actual precoding and power allocation, the performance of the RA may be improved

but at the expense of increased complexity. For example, if the SDMA algorithms

employs a grouping metric that depends on the actual precoding and power allocation,

it may be possible to accurately estimate the performance of an SDMA group, e.g.,

in terms of the group capacity [FDH05, MK06] or of the SINRs perceived by the MSs

[STSK98, STKL01, KTSK01] and, consequently, avoid putting MSs into the group

that, e.g., do not contribute to enhance the group capacity. However, the complexity

of the SDMA algorithm increases because precoding vectors and power allocation have

to be recomputed whenever the composition of SDMA group changes. The contrary

occurs with grouping metrics that do not depend on the actual precoding and power

allocation, which may have low complexity but may not be able to quantify the spatial

compatibility as accurately as the former ones.

Therefore, if due to the RA strategy design the SDMA algorithm is made unaware

of the precoding and power allocation, resources might be unadvisedly allocated to

MSs that do not contribute to improve the sum rate of the system. In this case,

some SDMA groups have more MSs than they should contain and the SDMA group

size has to be adjusted by removing some MSs from the group. Consequently, the

determination of the size of the SDMA group is also a problem that has to be taken

into account by the RA strategy. In order to remove MSs and adjust the size of the

SDMA group, a Sequential Removal Algorithm (SRA) is employed, as illustrated in
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Fig. 1.3. The SRA selects the MSs to remove from the SDMA group based on a given

removal criterion [Cal04, SBO06, MK06, MK07a, MK07c]. Because a more reliable

decision about which MS to remove from the group can be made considering the actual

precoding and power allocation, the SRA is introduced as part of the precoding and

power allocation algorithm, as shown in Fig. 1.3. Anyway, an SRA is only needed if

the SDMA algorithm is unaware of the precoding and power allocation. The precoding

algorithm, the power allocation algorithm, and the SRA are the elements composing

the precoding and power allocation algorithm, as shown in Fig. 1.3.

1.3 State-of-the-Art

In this section, a literature review on suboptimal RA strategies is provided. A joint so-

lution of the four subproblems described in Section 1.1.3 is too complex for application

in a realistic scenario, so that RA strategies structured as shown in Fig. 1.3 are usually

employed to solve the RA problem. However, there are some algorithms that could be

used to maximize the sum rate of the system by jointly solving the four subproblems

described in Section 1.1.3, e.g. in [CS03, JRV+05].

Differently from Single-User (SU) SISO-OFDMA and SU MIMO-OFDMA systems,

the direct maximization of the sum rate in the DL of MU MIMO-OFDMA systems is

a hard optimization problem [LL05, JRV+05, AHSB+06, LZ06, CC05, CC07]. In the

SU cases, the sum rate of the system is maximized by transmitting to the MSs with

highest channel gain on each resource, employing Singular Value Decomposition (SVD)

precoding [Tel95, FG98, PNG03], and the Water Filling Algorithm (WFA) over all the

resources [PNG03, PF05]. However, for MU MIMO-OFDMA systems, such a simple

policy for the RA does not exist [LL05, JRV+05, AHSB+06, LZ06, CC05, CC07]. In

[CS03], it has been shown that the maximum sum rate of the system, which reaches

Sato’s bound [Sat78], can be achieved through the application of non-linear Dirty

Paper Coding (DPC) techniques [Cos83], such as Tomlinson-Harashima precoding

[Joh04, SH05] or vector-perturbation [PHS05, HPS05]. However, maximizing the sum

rate of a MIMO-OFDMA system using DPC renders a computationally complex non-

convex optimization problem [JRV+05]. In [JRV+05], the duality between the MIMO

Multiple Access Channel (MAC) and the MIMO Broadcast Channel (BC) is exploited

to derive an iterative algorithm that achieves the maximum sum rate of the BC channel

by solving a convex dual MAC problem. Although simpler than the DPC-based solu-

tions, the algorithm in [JRV+05] is still relatively complex. It is an iterative approach

that relies on the alternate optimization of the instantaneous covariance matrix and

of the power of the transmit signals. The algorithm requires to perform Eigenvalue

Decompositions (EVDs) of the Gram dual MAC effective channel matrices of all the

MSs on each resource, as well as to apply the WFA on the eigenvalues obtained at each

iteration [JRV+05, PF05, TUBN06]. Due to its potentially unaffordable computational

complexity, the algorithms in [CS03, JRV+05] may not be suitable for application in



10 1. Introduction

a more realistic scenario and only draw a theoretical upper bound for the achievable

sum rate of the system.

In a more realistic situation, a fixed precoding algorithm or a fixed set of precoding

algorithms is employed, e.g., in order to fulfill some real system constraint such as

to limit by design the complexity of the system. In these cases, the optimal solution

of [JRV+05] does not apply anymore. For a fixed precoding algorithm, the problem

solution does not necessarily become more simple. In fact, in this case the selection of

the MSs to share a given resource in space, i.e., on different spatial layers of the same

resource, determines the achievable rate on the resource. This problem corresponds to

the SDMA grouping problem, which is NP-C [GJ79, STKL01, Cal04], cf. Section 1.2,

and an ES over all the possible groups on each resource would be required in order to

find the optimum RA. Therefore, suboptimal RA strategies able to approximate the

maximum sum rate of the system without incurring prohibitively high computational

efforts remain an important research topic nowadays [LZ06].

In the following, RA strategies fitting into the framework illustrated by Fig. 1.3 are

discussed. In order to overcome complexity problems, several works concentrated on

suboptimal RA strategies and divided the RA problem into smaller subproblems. Other

works concentrated directly only on one or on a subset of the four subproblems of

Section 1.1.3, e.g., by considering a single resource. The framework illustrated in

Fig. 1.3 encompasses a large number of suboptimal RA strategies available in the

literature. Table 1.1 gives a set of RA strategies and its classification into the framework

of Section 1.2. The columns of Table 1.1 are associated with the elements of the

proposed framework and appear in the same order in which the elements have been

discussed in Section 1.2. Because most of the works in Table 1.1 concentrated on the

single-resource case and, consequently, did not regard the resource assignment problem,

a column for the assignment algorithm is not included. A few others works considered

the presence of multiple resources and also proposed an assignment algorithm and will

be addressed later in this section. Moreover, a column indicating whether the GA

algorithm is aware of the actual precoding and power allocation is also included in

Table 1.1.

It can be seen in Table 1.1, that SDMA algorithms considering a large variety of

grouping metrics and grouping algorithms have already been proposed. They also

have been combined with a considerable number of precoding and power allocation

algorithms. One can note that the Best Fit Algorithm (BFA) [STSK98, STKL01,

KTSK01] (or algorithms like the BFA) has been often employed as grouping algorithm.

The BFA is part of several SDMA algorithms studied in this thesis and it will be

described in more details in Section 3.2.2

In the following, the previous works listed in Table 1.1 are shortly discussed in the

order in which they are referenced in the last column of Table 1.1.

In [FN96, STSK98, STKL01, KTSK01, SBO06], SDMA algorithms incorporating Qual-

ity of Service (QoS) constraints, e.g., in terms of a target SINR, have been investigated.
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Table 1.1. RA strategies – State-of-the-art – Single resource.

Grouping & Assignment Algorithm Precoding and Power Allocation

Ref.
SDMA algorithm

Aware
Precoding
algorithm

Power
allocation
algorithm

SRA
criterionGrouping metric

Grouping
algorithm

Max. subspace separation

Best Fit
Algorithm

(BFA)

No GEP EPA
Fixed

group size
(max.)

[FN96]
Forward, backward, total interference

Max. orthogonality factor
No/Yes GEP EPA

[STSK98],
[STKL01],
[KTSK01]

Min. channel gain ratio

SINR margin

MaxMin SINR Yes Semidefinite Programming
Random,

HPF
[SBO06]

Assignment preference factor Yes GEP
Adaptive bit

loading

Fixed
group size

(max.)

[KT02]

Sum of channel gains with SPs No
ZF with

DPC
WFA

[CS03],
[TUBN06]

Min. normalized scalar product No ZF
WFA, EPA,

MaxMin
SINR

[Cal04]

Sum of channel gains with SPs No ZF WFA [YG05]

Sum of channel gains with SPs No BD WFA [TJ05]

Group capacity Yes ZF WFA [DS05]

Projection-based group capacity No/Yes BD WFA, EPA [FDH07]

SINR margin First Fit
Algorithm

(FFA)

Yes GEP EPA
Fixed

group size
(max.)

[STSK98],
[STKL01],
[KTSK01]

MaxMin SINR Yes Semidefinite Programming
Random,

HPF
[SBO06]

Weighted sum of channel gains Random Grp. Alg.
(RGA)

No
UL SIC EPA

Fixed
group size

(max.)

[Lau02]

Max. sum of eigenvalues BD WFA [TJ05]

Frobenius norm-based total spatial
correlation

COA No - - [SS04a]

Normalized scalar product MS partitioning No ZF
Adaptive bit

loading
[ZL05]

Projection-based group capacity Tree-based
grouping

No BD EPA, WFA

-

[FDH05],
[FDH07]Average group SNR

Max. sum rate
Three-step
algorithm

Yes ZF WFA
[TC04a],
[TC04b]

Max. sum rate
Greedy and convex

optimization
Yes ZF WFA

[CC05],
[CC07]

Exhaustive Search [Lau04],
[Lau05]

Max. (weighted) sum rate
Genetic Alg.

Yes ZF
(Weighted)

WFA

MaxMin SINR
Simulated
Annealing

No ZF
MaxMin
SINR Fixed

group size
(max.)

[CPIPN03]

Max. sum of scores MS insertion No GEP EPA [Wil06]

Min. power under rate constraints
Integer

optimization
Yes ZF

Integer
optimization

[ZTC06]

MaxMin SINR
Admit all

Yes Semidefinite Programming
Random,

HPF
[SBO06]

Max. sum rate
Convex

optimization
Yes Semidefinite Programming

Max.
SINR gap

[MSLT07]

In [FN96], a measure of the distance between the subspaces spanned by the channels of

the MSs and different measures of the interference generated by introducing new MSs

in an SDMA group have been used as grouping metric and combined with the BFA.

Therein, the total interference generated by the admission of each candidate MS has

provided the best results as grouping metric.

The BFA has been introduced in [STSK98, STKL01, KTSK01], where it has been

combined with different grouping metrics. Therein, the admission of a new MS to the

SDMA group is subject to an SINR margin constraint, so that an MS is only accepted

in the group if the SINR of all MSs in the group becomes not lower than a given target
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SINR. Indeed, in [STSK98, STKL01, KTSK01] different SDMA algorithms have been

proposed, which involved different grouping metrics and grouping algorithms. For

example, the maximum orthogonality factor, which is a function of the cosine of the

angle between the vector channels of any two MSs, has been used as grouping metric,

so that MSs whose spatial channels are close to orthogonal are put in the same group,

similarly to [FN96] when considering the subspace distance metric. A minimum channel

gain ratio has also been considered, which puts in the same group MSs with similar

channel gains. In both cases, however, the admission of the MSs has been constrained

by the SINR margin. In [STSK98, STKL01, KTSK01], the First Fit Algorithm (FFA)

has also been proposed as grouping algorithm. The FFA is also considered in this

thesis and described in more details in Section 3.2.2. Finally, the SINR margin has

been directly used with the BFA in [STSK98, STKL01, KTSK01] in order to build

the SDMA groups, so that the MS leading to the maximum minimum margin between

the perceived and target SINRs of the MSs is admitted to the group. This SDMA

algorithm provided the best results, but at the expense of increased complexity. In

[FN96, STSK98, STKL01, KTSK01], a Generalized Eigen-Precoding (GEP) [Zet95,

Zet99] and Equal Power Allocation (EPA) are used as precoding and power allocation

algorithms, respectively.

In [SBO06], SDMA algorithms employing different grouping algorithms are consid-

ered. Therein, the RA strategy aims at maximizing the minimum SINR among the

MSs in the SDMA group while respecting fixed minimum target SINR values for the

MSs. Differently from [FN96, STSK98, STKL01, KTSK01], a joint optimization of

precoding and power allocation based on Semidefinite Programming (SDP) relaxations

is employed in [SBO06], which performs a weighted balancing of the SINRs perceived

by the MSs in the group. Weighted SINR balancing with fixed target SINRs is usually

the objective considered by most joint precoding and power allocation algorithms, as

e.g. [SB04, SBO06]. In [SBO06], RA strategies using a random and a Highest Power

First (HPF) removal criterion for the SRA are investigated in combination with the

BFA and FFA. Moreover, Eigen-Precoding (EP) [PNG03] and GEP [Zet95, Zet99] are

also considered as precoding and power allocation algorithm besides the optimal joint

solution based on SDP. Again, it is shown in [SBO06] that the RA strategy employ-

ing the BFA in the SDMA algorithm and considering the optimal joint precoding and

power allocation algorithm based on SDP provides the best results, but at the expense

of increased complexity.

In [KT02, CS03, DS04, Cal04, YG05, TJ05, DS05, TUBN05, B+06, TUBN06, Wil06,

FDH07], SDMA algorithms employing the BFA, different grouping metrics, and aiming

at the maximization of the sum rate have been proposed.

In [KT02], an assignment preference factor has been proposed as grouping metric. The

assignment preference factor captures the interference and the rate increment induced

by the admission of an MS into an SDMA group. The less interference and the higher

the rate increment an MS generates, the most suited for admission in the SDMA group

this MS is.
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In [CS03], it has been shown that the maximum sum rate of the system can be achieved

by using DPC. Therein, it is proposed to admit the MSs to the SDMA group in

order of channel gain after a projection onto the null space of the channels of the

already admitted MSs, so that previously admitted MSs do not see any interference

from MSs posteriorly admitted to the group. After building the group, the interference

from previously admitted MSs to the posteriorly admitted MSs is suppressed using

DPC, and after that the WFA is used for power allocation. Thus, the RA strategy

in [CS03] has the sum of the channel gains after null space Successive Projections

(SPs) as grouping metric, the BFA as grouping algorithm, Zero-Forcing (ZF) and

DPC as precoding algorithm, and the WFA as power allocation algorithm. A more

comprehensive description of the RA strategy in [CS03] can be found in [DS05]. RA

strategies very similar to the one in [CS03] can be found in [YG05, TJ05, TUBN05,

B+06, TUBN06].

In [YG05], it is shown that for a relatively large number of MSs in the system, the

maximum sum rate of the system can be achieved using linear ZF precoding instead of

non-linear DPC techniques, as in [CS03]. In [TJ05, TUBN05, B+06, TUBN06], multiple

antennas are considered at the receivers. The algorithms in [TJ05, TUBN05, B+06,

TUBN06] take into account the receive beamformers, i.e., the vectors containing the

beamforming weights used at receive AAs, at the transmitter side when performing the

SDMA grouping. Similarly to [YG05], linear precoding is considered in [TJ05], where

Block Diagonalization (BD) with transmit-receive cooperation is applied [SSH04]. In

[TUBN05, B+06, TUBN06], adaptive beamforming based on an SVD is performed at

the receiver side and is taken into account at the transmitter side by the null space SPs,

after which DPC techniques are applied, as in [CS03]. In [DS04, DS05], it is shown

that using the group capacity as grouping metric and the BFA as grouping algorithm,

the achieved sum rate of the system is only 13% lower than the value achieved by the

DPC-based proposal of [CS03]. Similar results have been independently achieved in

[MK06] and in [FDH07]. However, in [FDH07] the complexity of the SDMA algorithm

is reduced by employing a projection-based group capacity, which has lower complexity

than the conventional group capacity considered in [DS05, MK06]. The RA strategy

in [FDH07] considers BD and EPA as precoding and power allocation algorithms,

respectively. In order to further reduce complexity, the groups built on previous runs

of the SDMA algorithm in [FDH07] are just updated by removing one MS, adding

a new MS, or potentially replacing one MS while preserving the current group size.

For this update step, the group capacity considering BD and the WFA is adopted as

grouping metric, since it has to be computed for at most three groups.

The SDMA algorithm in [Cal04] uses the sum of the maximum normalized scalar prod-

uct between the vector channel of the candidate MS and the spatial channels of the

MSs in the SDMA group as grouping metric. The BFA is used as grouping algorithm

and the MS with the minimum metric value is admitted to the group. Therein, ZF pre-

coding combined with the WFA and with an SINR balancing are applied as precoding

and power allocation algorithm. In [Cal04], different SRA criteria have also be consid-

ered in order to implement spatial bit loading. Additionally, in [CPIPN03] simulated
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annealing and MS partitioning have also been considered as grouping algorithms.

The normalized scalar product, or a simple function of it, has also been considered as

grouping metric in [OOI97, STSK98, STKL01, KTSK01, DH04, Wil06], as well as by

the author in [MK06, MK07a, MK07b, MK07c]. Differently from [Cal04], the maximum

normalized scalar product is compared in [Wil06] to an orthogonality threshold as part

of an MS insertion algorithm that first builds a set of candidate MSs for admission

to the SDMA group and then admits to the group the MS from the candidate set

having the highest traffic priority. The main advantages of grouping metrics based

simply on the maximum normalized scalar product are their ability to capture the

spatial correlation among the channels of the MSs and their low complexity compared

to metrics like the group capacity used e.g. in [DS05], the projection-based metrics used

e.g. in [CS03, YG05, FDH05, TJ05, TUBN05, B+06, TUBN06, FDH07], or the rate and

SINR-based metrics used in [KT02] and [STSK98, STKL01, KTSK01], respectively.

Many proposals to solve the RA problem with reduced complexity can be found in the

literature. Therein, optimal and suboptimal solutions with high and low complexity,

respectively, are usually proposed and compared. For example, in [STSK98, STKL01,

KTSK01] the BFA (with high complexity) and the FFA (with low complexity) are

proposed and investigated. Similarly, in [SBO06] RA strategies involving the BFA, the

FFA, and a third grouping algorithm, as well as different precoding and power alloca-

tion algorithms, are compared. In [DS05], a RA strategy involving linear ZF precoding

(with low complexity) is compared to the case using DPC (with high complexity).

Similarly, in [YG05] it is shown that linear ZF precoding (with low complexity) may

achieve the same performance of DPC (with high complexity).

In [SS04a], a scaled Frobenius-norm [GL96, Mey01] is used to measure the spatial

correlation between the MIMO channels of each pair of MSs. The metric values are

organized in a matrix, which is then given to a Compatibility Optimization Algorithm

(COA) that divides the MSs in as many groups as resources while minimizing the total

spatial correlation among the MSs in each group. In [FDH05, FDH07], a tree structure

is used to limit the number of candidate SDMA groups to a low value compared to

an Exhaustive Search Algorithm (ESA). Moreover, a projection-based group capacity

is used to reduce the complexity of the SDMA algorithm. In [ZL05], the maximum

normalized scalar product is compared to a threshold as to divide the MSs into sets of

highly spatially correlated MSs and an SDMA group is built by picking one MS from

each set.

In [Lau02, TJ05], examples considering the Random Grouping Algorithm (RGA) as

grouping algorithm can be found, which of course have a complexity considerably lower

than the BFA, FFA, and than some other grouping algorithms. However, because they

neglect the spatial compatibility among the MSs, their performance, e.g., in terms of

average sum rate, is hardly compromised.

More complex RA strategies to maximize the sum rate of the system can be found,

e.g., in [TC04a, TC04b, CC05, ZTC06, CC07, MSLT07]. In [TC04a, TC04b], a three-
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step algorithm is proposed which first reduces the search space by determining the

optimal SDMA groups for each acceptable SDMA group size on each resource. Then,

it employs convex relaxations on an iterative step to find an optimal assignment of

groups of this reduced search space to the resources. In [TC04a, TC04b], ZF precoding

and the WFA are considered for precoding and power allocation, respectively. Because

the non-relaxed problem is non-convex and the obtained solution might correspond to

a local optimum, a perturbation step is proposed in [TC04a, TC04b] to try to escape

from local optima and achieve the global optimum. Approaches very similar to this

strategy have been presented later in [CC05, CC07].

In [Lau04, Lau05], an ESA is used as grouping algorithm in order to find the SDMA

group that maximizes a given utility function. Because the search space inspected by

the ESA may become huge when the number of MSs increases, an alternative grouping

algorithm based on a genetic algorithm is also considered to reduce the complexity of

the RA strategy.

In [ZTC06], the SDMA grouping and resource assignment problems are formulated

as an integer optimization problem, which is solved using integer optimization tools

[NW99]. Therein, the minimization of the total transmit power subject to achieving

certain rates is considered as optimization objective and ZF precoding is employed to

spatially separate the signals intended for the MSs.

In [MSLT07], the maximization of the sum rate subject to target SINR constraints is

formulated as an SDP problem, which is solved using convex optimization. Because

predicting the feasibility of the problem is as hard as solving the problem itself, the

problem is solved in [MSLT07] by considering all MSs in the SDMA group and se-

quentially removing the MS whose gap between target and attained SINR is maximum

until obtaining a feasible solution, i.e., an SRA is employed together with the SDMA

algorithm.

Many of the proposals listed in Table 1.1 consider only a single resource and focused

on the SDMA grouping problem and a few precoding and power allocation algorithms.

However, some of them also consider multiple resources and embed the resource as-

signment problem in the proposed RA strategies. These works are listed in Table 1.2,

in which it is indicated if the GA algorithm solves the SDMA grouping problem and

the resource assignment problem jointly or separately. Moreover, some remarks about

the RA strategies are also provided in Table 1.2.

In the following, the previous works listed in Table 1.2 are shortly discussed in the

order in which they are referenced in the last column of Table 1.2.

It can be seen in Table 1.2 that some RA strategies simplify the RA problem by

separately solving the SDMA grouping and the resource assignment problem, as in

[STSK98, STKL01, KTSK01, TUBN05, B+06, TUBN06]. While in [STSK98, STKL01,

KTSK01] an SDMA-TDMA system disposing of the same amount of power for each
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Table 1.2. RA strategies – State-of-the-art – Multiple resources.

SDMA grouping &
resource assignment

Multiple
Access

Remarks Ref.

Separated Grouping
and Assignment (SGA)

SDMA-
TDMA

SDMA, precoding, and power allocation algo-
rithms are applied on a resource-by-resource basis.

[STSK98],
[STKL01],
[KTSK01]

SDMA-
FDMA

SDMA algorithm and precoding algorithm are ap-
plied on a resource-by-resource basis. Power allo-
cation is applied over the resources altogether.

[TUBN05],
[B+06],

[TUBN06]

Joint Grouping and
Assignment (JGA)

-
MSs admitted according to the BFA applied over
the multiple resources. Precoding and power allo-
cation applied on a resource-by-resource basis.

[FN96]

-

MSs admitted according to the BFA applied over
the multiple resources using the assignment prefer-
ence factor. Power allocation involves an adaptive
bit loading algorithm.

[KT02]

SDMA-
FDMA

Single MSs are allocated to the subcarriers and the
groups are extended by building SDMA groups on
each resource. ZF precoding and adaptive bit and
power loading are applied.

[Cal04]

-
SDMA groups simultaneously built on the different
resources by partitioning the MSs into groups using
a Compatibility Optimization Algorithm (COA).

[SS04a]

SDMA-
FDMA

Highly spatially correlated MSs partitioned into
sets allocated on orthogonal bands. MSs from dif-
ferent sets share resources through SDMA. Single-
User adaptive bit and power loading are applied.

[ZL05]

SDMA-
FDMA

The SDMA grouping, resource assignment and
power allocation problems are jointly solved as a
convex optimization problem. ZF precoding is em-
ployed.

[TC04a],
[TC04b],
[CC05],
[CC07]

SDMA-
FDMA

SDMA groups, resource assignment and power al-
location are solved altogether as an integer opti-
mization problem.

[ZTC06]

TS is assumed, in [TUBN05, B+06, TUBN06] a grouping metric based on null space

SPs and totally independent of the precoding and power allocation is adopted in an

SDMA-FDMA system. Both designs lead to a predefined power distribution among

resources for the SDMA and assignment algorithms, thus making the SDMA grouping

independent from resource to resource and simplifying the RA problem. In particular in

[TUBN05, B+06, TUBN06], after solving the SDMA grouping, the resource assignment,

and the precoding problems, a power allocation based on the WFA is applied over the

resources altogether, i.e., in space and frequency dimensions.

Some other strategies jointly solve the SDMA grouping and resource assignment prob-

lems, as in [FN96, KT02, Cal04, SS04a, ZL05], and sometimes the power allocation

problem too, as in [TC04a, TC04b, CC05, ZTC06, CC07]. In this case, one decides

not only the SDMA group in which an MS can be adequately accommodated, but also

which resource is assigned to the considered MS.

Additional complexity results whenever the SDMA grouping and the resource assign-
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ment problems are jointly solved. This additional complexity may be compensated

by the use of simpler SDMA and assignment algorithms. In [FN96], an initial MS

is considered on each resource and the additional MSs are allocated into the SDMA

group of a given resource based on a BFA. In [Cal04], the initial MS on each resource

is assigned based on its channel gain and the SDMA groups are extended afterwards

based on an adaptive bit and power loading algorithm. In [SS04a], the MSs are parti-

tioned in SDMA groups to be allocated on different TSs based on a relatively simple

grouping metric, which is a function of the spatial correlation, and using a relatively

simple COA. In [ZL05], MSs are partitioned into sets containing only highly spatially

correlated MSs, orthogonal resources are allocated to each set, and MSs from different

sets are selected to share the resources through SDMA. In [ZL05], after the SDMA

grouping and the resource assignment problems are solved, SU bit and power loading

are applied to the scheduled MSs.

In [TC04a, TC04b, CC05, ZTC06, CC07], either integer or convex optimization tools

are used to jointly solve the SDMA grouping, resource assignment, and power allocation

problems while considering ZF precoding. In [ZTC06], integer optimization methods

are directly applied while in [TC04a, TC04b, CC05, CC07], an integer relaxation is

first applied to convert the intrinsically integer problem into a convex problem, whose

solution might be either rounded at the end or considered as a resource sharing over a

long-term time perspective. In spite of achieving a high fraction of the maximum sum

rate of the system, such solutions incur a considerably high computational effort.

1.4 Open Problems

In this section, some open problems and important aspects for investigation are dis-

cussed.

From the review of the RA strategies in Table 1.1 and Table 1.2, it can be noted that

RA in MIMO-OFDMA systems has become a very active research field in the last

few years and a considerable number of investigations has already been conducted.

However, there are still open problems which could be characterized as follows:

1. There is a large number of suboptimal RA strategies, which follow the most varied

approaches to solve the RA problem. This complicates their comparison and a

model is required in order to identify the main elements of the RA strategies and

to help classifying and comparing them.

2. In order to reduce complexity, many suboptimal SDMA algorithms simplify their

grouping metric and grouping algorithm and might present different performance-

complexity trade-offs. In this context, two additional problems can be characterized

as follows:
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(a) The grouping metric has a large impact on the performance-complexity trade-

off of the SDMA algorithms, especially if it has to be computed for a large

number of candidate groups and if it depends on the actual precoding and

power allocation, cf. Section 1.2 and Section 1.3. Thus, an important issue

in this context is to determine whether grouping metrics that do not depend

on the actual precoding and power allocation can perform as good as metrics

that depend on the actual precoding and power allocation, i.e., if there are

low-complexity rather efficient grouping metrics.

(b) The grouping algorithm has also influence on the complexity of the SDMA

algorithms. Indeed, there are grouping algorithms based on simple heuristics,

such as the BFA, and based on complex methods, such as ES or SDP, cf. Sec-

tion 1.3. Analogously to the grouping metric, it is also important to determine

whether simple grouping algorithms can perform as good as the complex ones.

These are important issues since they may provide important insight into the

performance-complexity trade-off of the different RA strategies.

3. Because suboptimal SDMA algorithms are usually employed by the RA strategies,

cf. Section 1.2 and Section 1.3, an important issue is to determine whether such

strategies can attain a considerably high fraction of the maximum achievable sum

rate of the system.

4. Most of the analyses performed in the works listed in Table 1.1 and Table 1.2

consider perfect Channel State Information (CSI) at the transmitter side, which is

required in order to perform RA. Because the quality and availability of CSI might

be constrained by several practical aspects, such as limited signaling bandwidth or

imperfect channel estimation, it is important to study how robust (or sensitive) the

RA strategies are to the available CSI and how their performance degrades with

imperfect CSI. It is also important to investigate whether more complex SDMA

algorithms offer any particular advantage over the simpler ones in this case.

5. Most joint precoding and power allocation algorithms consider fixed target SINRs

values and perform a weighted SINR balancing, cf. Section 1.3. For the max-

imization of the sum rate, fixed target SINRs values are hard to determine and

joint precoding and power allocation algorithm with target SINRs varying within a

certain range of values might be more adequate.

6. Precoding and power allocation can be performed either separately or jointly. One

importante issue is to compare the performance and complexity of joint and sep-

arate precoding and power allocation algorithms in RA strategies aiming at the

maximization of the sum rate of the system.

7. Many of the RA strategies in Table 1.1 consider a fixed SDMA group size. However,

the selection of the size of the groups built by SDMA algorithms unaware of the

precoding and power allocation may affect the performance of the RA strategies, cf.

Section 1.2, and is also a relevant aspect for investigation.

8. Because the complexity of Joint Grouping and Assignment (JGA) approaches is

usually higher than that of Separated Grouping and Assignment (SGA), cf. Sec-

tion 1.3, it is important to investigate whether there are considerable advantages of
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JGA over SGA.

9. The maximization of the sum rate of the system is an important problem in MU

MIMO-OFDMA systems. However, QoS and fairness aspects are also relevant and

have been taken into account by some RA strategies discussed in Section 1.3. In

many RA strategies, parameters introduced to simplify the RA problem may be

used to provide throughput fairness among the MSs. For RA strategies aiming at

the maximization of the sum rate of the system, a relevant aspect for investigation is

to determine whether considerable improvements on the throughput fairness among

the MSs can be obtained at the expense of only small reductions of the sum rate.

1.5 Contents and Contributions of the Thesis

This thesis consists of five chapters, whose contents and contributions are briefly de-

scribed in this section.

In this chapter, a framework for suboptimal RA strategies intended for MU MIMO-

OFDMA systems has been proposed in order to provide some insight into the overall

problem of maximizing the sum rate of the system, the problem complexity, the compo-

nent subproblems and their interdependencies. This framework is depicted in Fig. 1.3

and helps to address problem 1. Indeed, with help of this framework several subopti-

mal RA strategies have been put together in Table 1.1 and Table 1.2 and have been

discussed in Section 1.3.

Chapter 2 introduces the models adopted in the investigations conducted in this thesis.

It describes the model for the DL of the MU MIMO-OFDMA system considered in this

thesis, which assumes a single cell and multiple MSs being multiplexed in frequency

using block OFDMA, in time using TDMA, and in space using SDMA. The modeling

of the DL wireless channel is also provided in Chapter 2, as well as the models for

the CSI required in order to perform RA. In Chapter 2, the standard mathematical

formulation of the problem of maximizing the sum rate of the system is provided,

as well as a new alternative formulation based on mixed integer optimization. This

new formulation allows to further discuss some of the particular characteristics of the

framework proposed in Section 1.2.

Chapter 3 concentrates on the RA problem considering a single resource, cf. Sec-

tion 1.2, and which is indicated by the dashed line in Fig. 1.3. In Chapter 3, RA

strategies employing several SDMA algorithms are studied. These SDMA algorithms

consider different grouping metrics and grouping algorithms. In particular, two new

grouping metrics are proposed, which do not depend on the actual precoding and

power allocation but only on the spatial correlation and channel gain of the MSs and

which have low complexity. Thus, these metrics offer a solution to problem 2a. A new

grouping algorithm is also proposed, namely the Convex Grouping Algorithm (CGA),
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which is based on convex optimization and also considers only the spatial correlation

and channel gain of the MSs. This grouping algorithm is relatively general and can be

combined with different grouping metrics, as it will be discussed in Chapter 3. The

CGA offers a suitable solution to problem 2b.

The new grouping metrics are combined with existing grouping algorithms, namely

the Best Fit Algorithm (BFA) and First Fit Algorithm (FFA) [STSK98, STKL01,

KTSK01]. Additionally, one of the proposed metrics is also combined with the CGA.

These combinations define new SDMA algorithms, which are compared to SDMA al-

gorithms employing more complex grouping metrics and grouping algorithms. Such

comparisons address problem 2 of Section 2.3.

The performance of RA strategies employing the new algorithms is evaluated through

simulations and compared in terms of the average sum rate to the performance of

RA strategies employing existing algorithms. These investigations will determine the

efficiency of the proposed algorithms and are related to problem 3. The performance

of the RA strategies in terms of the average sum rate of the system considering both

perfect and imperfect CSI is also investigated in Chapter 3 in order to determine

whether any of the RA strategies is particularly more efficient or more robust than the

others, cf. problem 4 in Section 2.3. In particular, it is interesting to see whether RA

strategies employing simple SDMA algorithms are as robust as RA strategies using

more complex SDMA algorithms when imperfect CSI is considered.

Regarding the precoding and power allocation, two existing precoding algorithms are

considered, namely the linear Zero-Forcing (ZF) precoding and the Generalized Eigen-

Precoding (GEP). These precoding algorithms are combined with the Water Filling

Algorithm (WFA) and a new Soft Dropping Algorithm (SDA), respectively, which per-

form power allocation. In particular, an iterative joint precoding and power allocation

algorithm combining the GEP and the SDA is proposed, which dynamically adapts

the target SINR of the MSs and can pursue either a maximization of the sum rate or

a weighted SINR balancing among the MSs, thus offering a solution to problem 5. RA

strategies considering both separated and joint precoding and power allocation are con-

sidered in Chapter 3 and their performances in terms of average sum rate are compared

considering both perfect and imperfect CSI at the transmitter. These investigations

address problem 6 of Section 2.3.

Regarding the potentially required removal of MSs from the SDMA groups in order to

obtain a suitable group size, a new SRA algorithm is proposed, which considers two

different criteria to determine which MS to remove from the SDMA group. The SRA

offers a solution to problem 7 and its impact on the performance of the RA strategies

is also investigated in Chapter 3.

The overall complexity of the RA strategies is also assessed in Chapter 3, in which

formulas for the complexity of several RA strategies are provided, as well as formulas

for their rough complexity order. Thus, from the results presented in Chapter 3, it is
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possible to compare the performance-complexity trade-off of the different RA strategies,

cf. problem 2 and problem 3 in Section 2.3.

Throughput fairness aspects are also studied as special cases in Chapter 3, where

particular parameters of the SDMA algorithms are used by the time-domain scheduler

in order to prioritize some MSs in the system. At this point, it is interesting to observe

whether a considerably higher improvement on the throughput fairness among MSs

can be achieved at the expense of only a small reduction of the average sum rate of

the system, cf. problem 9.

Chapter 4 studies the performance of a selected subset of the RA strategies of Chapter 3

in a scenario considering the existence of multiple resources. For the scenario consid-

ered in Chapter 4, the resource assignment problem recovers its role in the RA problem

and different assignment algorithms are proposed and introduced into the Grouping &

Assignment (GA) algorithm in combination with the selected SDMA algorithms. In

particular, RA strategies are considered in which SDMA grouping and resource assign-

ment are performed either separately or jointly and their performances are compared.

These investigations are related to problem 8. In Chapter 4, priority schemes are also

considered and, in particular, assignment algorithms that assign resources either to ini-

tial MSs or to whole SDMA groups, that work on a resource basis or over the multiple

resources altogether, and that consider an a-priori power allocation among resources

or a joint power allocation among the resources are proposed and their performances

are compared, thus addressing problem 8 and problem 9.

Chapter 5 summarizes the main results obtained in this thesis and concludes this work.
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Chapter 2

Multi-User MIMO-OFDMA System

Modeling and Resource Allocation Problem

Formulation

2.1 Introduction

This chapter describes the system model considered in this thesis, which concerns

adaptive RA performed by the transmitter in the DL of a MU MIMO-OFDMA system.

This chapter also presents the optimization problem that will be the focus in this work,

as well as it discusses additional aspects of the proposed framework for suboptimal RA

strategies for MIMO-OFDMA systems, which has been introduced in Chapter 1.

This chapter is organized as follows. Section 2.2 presents the system model adopted

in this work. It describes the general scenario and the main assumptions made in

this thesis, which are discussed in Section 2.2.1. In Section 2.2.2, the definition of the

considered frame structure and of the radio resource units are made. In Section 2.2.3,

the models adopted to characterize the radio channel are provided. Section 2.2.4 in-

troduces the models employed to represent the CSI available at the transmitter side,

which are used later by the strategies proposed in Chapter 3 and Chapter 4 to perform

adaptive RA. Section 2.3 introduces the optimization objective pursued in this work.

The general optimization problem of maximizing the sum rate of the system in the DL

is formulated in this section. Then, a new alternative formulation of the problem as a

mixed integer optimization problem is given, which is used to discuss some particular

aspects of the proposed framework for suboptimal RA strategies.

2.2 System Model

2.2.1 Overall Scenario and Assumptions

In this section, the overall scenario and the main assumptions made in this thesis are

presented.

The DL of a single BS located on the corner of a hexagonal cell sector is considered.

Considering only a single BS is a reasonable assumption, since performing RA jointly

over multiple cells would require a rather large signaling overhead to share control
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information among them [Liu04]. Therefore, RA is usually performed by each BS

individually [ZKAQ01, HRM02, HT02].

It is assumed that the BS disposes of a maximum transmit power P , which has to

be adequately distributed among the MSs being served by the BS. Interference from

other BSs is assumed to be Gaussian-distributed and is directly incorporated into the

Additive White Gaussian Noise (AWGN) perceived in the system. In other words, the

interference plus noise are considered as the perceived AWGN in the system. Despite

the fact that only a limited number of interferers exist in realistic scenarios, this is

a widely adopted assumption, which becomes more and more accurate the larger the

number of interferers becomes [WIN05a].

The BS is equipped with an M -element AA and associated with the BS there is a total

number K of MSs. Let k, k = 1, . . . , K, indicate the kth MS in the system. Each MS k

has an Nk-element AA, so that there is a total number N =
K∑

k=1

Nk of receive antennas

in the sector. Fig. 2.1 shows the considered scenario. The AAs at the BS and MSs

can be seen as spatial filters responsible for performing spatial processing of the signals

transmitted from and received by each AA element [LR99, Van02, Hay02]. Indeed,

using the AAs, the system can simultaneously transmit on the same frequency-time

resource up to min {N,M} data streams [Tel95, FG98, PNG03].
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Figure 2.1. DL of a single BS and K MSs equipped with AAs.

In this thesis, the focus is on transmitter side processing and a receiver-oriented design

[MBQ04, Qiu04] is pursued, so that processing is mostly concentrated at the BS. It is

assumed that the BS knows the spatial processing techniques used by each MS. This

permits the BS to adequately perform spatial processing while taking into account

spatial processing applied by the MSs [MBQ04, Qiu04]. It is assumed that the BS has

CSI about the DL channels to the MSs, which is a requirement in order to perform

adaptive RA. The modeling of the CSI available at the BS will be presented later in
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Section 2.2.4. Additionally, because it is well-known that adaptive RA is best suited

to low mobility environments [LL05], only low mobility is considered in this work.

Gaussian signaling is considered and the data symbols transmitted by the BS to the

MSs are assumed to be uncorrelated with unit average power. Moreover, it is assumed

that the BS always has data to transmit to the MSs, i.e., a full-buffer traffic model is

assumed at the BS for all MSs.

Further, more specific assumptions directly related to the particular topics discussed

in the next sections will be introduced in the corresponding section.

2.2.2 Frame Structure and Resource Definition

In this section, the frame structure adopted in the system is described and the resource

units in frequency, time, and space are defined.

The system employs a combination of OFDMA, TDMA, and SDMA as multiple access

scheme. Fig. 2.2 shows the frame structure in time and frequency.
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Figure 2.2. Frame structure.

Regarding the OFDMA component of the multiple access scheme, the BS bandwidth

Bsys is divided into S subcarriers, which are assumed to be perfectly orthogonal, i.e.,

there is no Inter-Carrier Interference (ICI) in the system. The channel coherence

bandwidth Bc is the bandwidth over which the channel transfer function remains almost

flat [Pro95, Skl97]. By selecting a subcarrier bandwidth ∆f ≪ Bc, an almost flat
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channel transfer function over a frequency block composed of Qsub adjacent subcarriers

can be obtained [VVE+00, AHSB+06]. One frequency block is indicated in Fig. 2.2.

Frequency blocks are the minimum allocable resource unit in frequency. Thus, a block

OFDMA multiple access in frequency domain is used by the system [LL05, FKC06].

Denoting by ⌊·⌋ the nearest integer smaller than or equal to the argument, there is a

total number B =
⌊

S
Qsub

⌋

of frequency blocks in the system, which will be indicated by

b, b = 1, . . . , B.

Regarding the TDMA component of the multiple access scheme, frames of duration

Tfrm are considered. Each frame is divided into a number T of TSs of duration

Tts = Tfrm

T
. One TS and one frame are indicated in Fig. 2.2. TSs are the minimum

allocable resource unit in time and each TS transports a number Qsym of subsequent

OFDMA symbols. Each OFDMA symbol transports S data symbols. Perfect time

synchronization is assumed and a Guard Interval (GI) in form of a Cyclic Prefix (CP)

of adequate length is employed. Thus, there is no Inter-Symbol Interference (ISI) in

the system. The channel coherence time Tc is the time over which the channel trans-

fer function remains almost constant [Pro95, Skl97]. By selecting an OFDMA symbol

duration Ts ≪ Tc, an almost constant channel transfer function over several OFDMA

symbols can be assumed. Considering Ts ≪ Tc, low MS mobility, and a short frame

duration Tfrm, the channel transfer function over a whole frame is not expected to vary

considerably [LL05, WIN05b].

The multiple access scheme in frequency and time domains defined above is very sim-

ilar to that considered in the adaptive transmission modes of several candidates for

future mobile radio systems [IEE04, WIN05a, DSK+06, 3GP06a]. In this thesis, a ra-

dio resource is defined as a frequency-time resource unit described by one frequency

block and one TS, as shown in Fig. 2.2. In the literature, such radio resources are also

called slots [IEE04], chunks [WIN05a, DSK+06], or Physical Resource Blocks (PRBs)

[3GP06a, 3GP06b]. Further on, radio resources will be termed resources and are the

minimum allocable radio resource unit in the system. Consequently, the amount of

signaling needed to inform MSs about resources allocated to them might be substan-

tially reduced compared to a case in which each subcarrier and OFDMA symbol could

be allocated to a different MS [LL05, WIN05b, 3GP06a, 3GP06b]. Because the chan-

nel transfer function within a resource is not expected to vary substantially, signaling

requirements and channel estimation efforts can also be reduced.

The SDMA component of the multiple access scheme is implemented by multiplexing

on each resource up to M data streams, which are separated in space through spatial

processing techniques, such as linear precoding [PNG03, JUN05]. In this way, virtual

resources are created for each frequency-time resource. These virtual resources are

usually termed spatial layers [WIN05a, DSK+06] and are the space resource units in

the system. Because in general the BS can transmit M interference-free data streams

[SSH04], it is assumed that there are M spatial layers for each resource, as illustrated

in Fig. 2.3. On each spatial layer of a resource, the BS can transmit a data stream to

a different MS.
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Figure 2.3. Spatial layers of one frequency-time resource.

It is assumed that MSs have not more antennas than the BS has, i.e., Nk ≤ M , for

k = 1, . . . , K. This is a reasonable assumption, due to space limitations at the MSs to

install larger AAs, which are much more restrictive than for the BS. Thus, each MS k

can occupy at most Nk spatial layers of each resource.

It is assumed that the BS power P can be arbitrarily shared among resources. Let N0

denote the one-sided power spectral density of the AWGN in the system. Then, the

average Signal-to-Noise Ratio (SNR) γ can be defined as

γ =
P

BsysN0

=
P

S∆fN0

=
P

S

1

σ2
, (2.1)

where σ2 is the average AWGN power per subcarrier. γ is used to model the average

SNR in the system.

2.2.3 Channel Model

This section describes how the radio channel is modeled in this work. In the investiga-

tions that will be performed in this thesis, only fast fading will be considered, which is

a common assumption when studying RA in MIMO-OFDMA systems. Indeed, most

of the RA strategies in Table 1.1 and Table 1.2 have considered only fast fading.

The capacity gains that MIMO techniques can provide to a radio system strongly

depend on the spatial properties of the radio channel [PNG03] and, therefore, the

adopted spatial channel model is very important. However, because the distributions

of Angle of Arrivals (AoAs) and Angle of Departures (AoDs) depend on the geometric

properties of the propagation environment, a unique general model for the spatial

characteristics of the radio channel cannot be developed. Instead of this, several spatial

channel models have been proposed for different particular scenarios, e.g., in [FLFV00,

DH03, YO02, PNG03, WIN05c, 3GP07]. For a survey of spatial channel models, the
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works [YO02], [PNG03, chapters 2 and 3], [WIN05c], and the references therein can be

consulted.

In this thesis, the WINNER Phase I Channel Model (WIM) described in [WIN05c] has

been selected to model MIMO channels for the following reasons. It is a geometric-

based stochastic MIMO channel model whose parameters have been determined based

on a large measurement campaign conducted within the Wireless World Initiative New

Radio (WINNER) project. Geometric-based stochastic MIMO channel models have

also been widely adopted, e.g., within the 3rd Generation Partnership Project (3GPP)

[3GP07]. Since the WIM parameters are based on measurements, the WIM models

realistic propagation scenarios. The WIM models both the space and time character-

istics of the radio channel. Besides that, a free implementation of the model has also

been made available in [SDS+05] and can be used to reproduce the results presented

later in this thesis.

In the following, a brief description of the main characteristics of the WIM is presented.

In the WIM, scenarios representing different propagation environments are modeled.

The spatial characteristics of the propagation environment in each scenario are para-

metrically modeled by groups of scatterers, which are termed clusters. According to

the scenario, the WIM models up to L = 20 clusters, which will be indexed further on

by l, l = 1, . . . , L. Fig. 2.4 shows one cluster as modeled by the WIM and considering

Uniform Linear Arrays (ULAs) at the BS and MS.
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Figure 2.4. Cluster modeling in the WIM.

In Fig. 2.4, ∆T and ∆R are the distance between adjacent elements of the AAs at the

BS and the MS, respectively. According to the positions of BS and MS, each cluster

l has associated with it an average AoD φ̄l, an average AoA ϕ̄l, and an excess delay

τl, thus building a single bounce between transmitter and receiver [LR99], as illus-

trated in Fig. 2.4. φ̄l and ϕ̄l are measured with respect to the transmit and receive AA
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broadsides, respectively [WIN05c, Bal05]. φ̄l, ϕ̄l and τl are all statistically modeled

by Random Variables (RVs) in the WIM. Each cluster l is composed of 10 scatterers,

indexed by j, j = 1, . . . , 10, which have associated AoDs φl,j and AoAs ϕl,j randomly

distributed around φ̄l and ϕ̄l, respectively. The AoDs φl,j and AoAs ϕl,j are statisti-

cally modeled by RVs whose distributions have been determined based on the existing

literature and on the performed measurement campaigns [WIN05c]. The multipath

components associated with each scatterer j of a cluster l are assumed to have the

same gain α2
l and the same excess delay τl. However, for each scatterer j of cluster l a

different random phase θl,j for its associated multipath component is assumed.

In this thesis, the channel modeling is considered in the frequency domain. For an MS

k, k = 1, . . . , K, and a subcarrier s, s = 1, . . . , S, let the channel coefficient hn,m denote

the sampled frequency response of the channel between the mth antenna of the BS and

the nth antenna of the MS. Thus, the MIMO channel between the BS and an MS k on

subcarrier s can be illustrated as shown in Fig. 2.5.
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Figure 2.5. MIMO channel between the BS and MS k on subcarrier s.

Then, the channel coefficients hn,m of the MIMO channel between the BS and an MS

k, k = 1, . . . , K, on a subcarrier s, s = 1, . . . , S, can be organized in a channel matrix

Hk,s ∈ C
Nk×M as

Hk,s =









h1,1 h1,1 . . . h1,M

h2,1 h2,1 . . . h2,M

...
...

. . .
...

hNk,1 hNk,1 . . . hNk,M









(2.2)

which is obtained using the implementation of the WIM provided in [SDS+05]. The

channel matrix Hk,s of (2.2) encompasses all the relevant propagation characteristics

of the channel.

On subcarrier s each link between the BS and an MS k has an associated channel

matrix Hk,s given by (2.2). Let (·)T denote vector/matrix transposition. Then, using

(2.2), the channel matrix Hs ∈ C
N×M of all MSs on subcarrier s can be written by

stacking the channel matrices Hk,s as

Hs =
[

HT
1,s HT

2,s . . . HT
K,s

]T

. (2.3)
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Analogously to (2.3), an estimated channel matrix Ĥs of all MSs on subcarrier s can

be built by stacking the estimated channel matrices Ĥk,s of the MSs. Both Hs and Ĥs

are used later in the description of the Channel State Information at the Transmitter

(CSIT) models considered in this work.

It must be mentioned that, in general, the performance of RA strategies strongly

depends on the considered scenario and channel model [PNG03]. However, the relative

performance among the RA strategies studied in this work is expected to be relatively

well preserved when considering other scenarios and channel models. The study of the

RA strategies of this thesis considering other scenarios and channel models is left for

future investigation.

2.2.4 Channel State Information Models

In this thesis, Perfect Channel State Information at the Receiver (P-CSIR) is assumed,

which means that the MSs perfectly know the channel transfer function of the link

between the BS and themselves. In this section, the models adopted to represent the

CSI required at the transmitter side in order to perform adaptive RA are discussed.

For the CSIT, three models are considered:

• Perfect Channel State Information at the Transmitter (P-CSIT), in which the BS

has perfect knowledge about the instantaneous channel transfer function on each

subcarrier s for all the MSs.

• Block Channel State Information at the Transmitter (B-CSIT), in which the BS

perfectly knows, for each link to an MS, the instantaneous channel transfer function

of the middle subcarrier of each frequency block, cf. Section 2.2.2.

• Second-order Channel State Information at the Transmitter (S-CSIT), in which the

BS has only knowledge about the second-order statistics of the links to the MSs due

to signaling or complexity constraints.

First, the P-CSIT is discussed, which is employed to study the RA strategies proposed

in this thesis under idealized conditions. P-CSIT corresponds here to the case in which

the BS perfectly knows the matrices Hs, i.e., Ĥs = Hs, for s = 1, . . . , S. Assuming

perfect knowledge about Hs is to some extent realistic for Time Division Duplexing

(TDD), because Uplink (UL) and DL channels are reciprocal whenever the duplexing

time Td, i.e., the interval in which the system alternates the usage of the channel

between UL and DL, is much shorter than the channel coherence time Tc [PNG03]. In

this case, channel transfer functions estimated by the BS in the UL are equivalent to

the channel transfer functions in the DL and could be used as CSI to perform adaptive

RA for each subcarrier individually. However, adaptation on a subcarrier basis implies

large signaling overheads to notify the MSs about the subcarriers assigned to them

and, therefore, does not represent a realistic system design [LL05].
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In this thesis, CSIT is mostly assumed to be obtained on a frame basis through chan-

nel estimation and to be available at the first TS of each frame. This CSIT is then

considered for all the TSs of a frame. Such an assumption is also considered by the

proposals for future mobile radio systems [IEE04, DSK+06, 3GP06a] and results in

lower amounts of signaling compared to obtaining CSIT at higher rates, e.g., on a

TS basis. Considering that CSIT is obtained on a frame basis and that the channel

transfer function is expected to be almost constant within a resource, the CSIT models

derived in the sequence are based on the channel transfer function of the frequency

blocks during the first TS of each frame.

Secondly, the B-CSIT model is introduced, which is a more realistic CSIT model. It

is the main model considered in this thesis. According to Section 2.2.2, an almost

flat channel transfer function is assumed for the frequency blocks. Thus, the channel

transfer function of a frequency block can be efficiently represented by the channel

transfer function of a single subcarrier of the frequency block. Let sb denote the first

subcarrier of the bth frequency block. Then, the middle subcarrier sb of the frequency

block is given by

sb = sb + ⌊Qsub/2⌋ . (2.4)

The channel transfer function of the subcarrier sb is assumed to be known by the BS

and is used as CSI to represent the channel transfer function of all the Qsub subcarriers

of the frequency block. The reason for choosing the middle subcarrier is that the

average distance between it and any other subcarrier within the frequency block is

minimum. Because there is a clear and unique mapping between sb and b, let Ĥk,b

denote the estimated channel matrix of MS k on frequency block b, and let Ĥb denote

the estimated channel matrix of all MSs on frequency block b, where the index b is

used instead of sb for simplicity of notation. Ĥk,b and Ĥb are given by

Ĥk,b = Hk,b = Hk,sb
, (2.5a)

and

Ĥb =
[

ĤT
1,b ĤT

2,b . . . ĤT
K,b

]T

=
[

ĤT
1,sb

ĤT
2,sb

. . . ĤT
K,sb

]T

, (2.5b)

respectively.

Thirdly, the S-CSIT model is discussed, which is a realistic model when signaling

constraints are present in the system [BO02]. This model might help to get insight

into the performance of adaptive RA when only a very limited amount of CSIT is

available, for example when considering Frequency Division Duplexing (FDD). While

for TDD assuming P-CSIT or B-CSIT might be realistic, for FDD it might be not.

For FDD, channel reciprocity cannot be exploited, since UL and DL frequencies are

located in different and usually far apart portions of the spectrum. Therefore, the DL

channel matrices have to be estimated by the MSs and transmitted back to the BS. A

prohibitively large signaling amount through a feedback channel would be required to
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report the complex channel transfer factors of each MS on each subcarrier or frequency

block back to the BS.

In the following, a representation for the S-CSIT is provided. Let E {·} denote the

expectation operator, here over time, and (·)H denote the conjugate transpose of a

vector/matrix. Assuming that MSs’ channels are wide-sense stationary [PP02, PNG03],

let Rk,b denote the spatial covariance matrix for MS k on frequency block b. Applying

an EVD to Rk,b, one obtains the eigenvector matrix Vk,b and eigenvalue matrix Λk,b.

Rk,b can be expressed as

Rk,b = E
{
HH

k,bHk,b

}
= Vk,bΛk,bV

H
k,b (2.6)

[BO02, SB04, RFH08]. For S-CSIT, the matrix Rk,b is assumed to be known by the BS

for each MS k and frequency block b. Note that the channel matrix Hk,b is obtained

for the middle subcarrier s̄b of the frequency block b, cf. (2.4).

According to [VM01, BO02, SB04], the spatial covariance matrix Rk,b preserves the

spatial structure of the channel, i.e., characteristics of the slowly changing geometry of

the environment and, according to [SB04, BO02], it can be assumed to be roughly the

same for both UL and DL. Because spatial covariance matrices are long-term statistics,

they do not need to be reported very often. Therefore, their estimation imposes neither

prohibitive computational effort nor signaling overhead. However, the radio channel

is not necessarily wide-sense stationary and, indeed, the channel mean may vary due

to MS mobility and large-scale fading. Moreover, the spatial covariance matrix Rk,b,

cf. (2.6), only exists in a statistical sense while for practical purposes it has to be

approximated. Let f̃ indicate the f̃ th frame, which should not be confused with the

frequency f . Consider a given number W of past frames taken into account to compute

a spatial covariance matrix Rk,b to be used as CSIT by the RA strategies during the

frames f̃ , . . . , f̃ +W −1, i.e., during the W subsequent frames. In the following, W will

be termed the window size. Let Ĥ
(j)
k,b denote the estimated channel matrix of MS k on

frequency block b for the frame j. Then, an approximation for the spatial covariance

matrix Rk,b can be written as

Rk,b ≈
1

W

f̃−1
∑

j=f̃−W

Ĥ
(j),H
k,b Ĥ

(j)
k,b. (2.7)

If wide-sense stationarity can be assumed and W is sufficiently large, Rk,b in (2.7)

converges to Rk,b in (2.6). Otherwise, Rk,b in (2.7) is only a statistic taken over

a window containing W past samples of the channel matrix Ĥ
(j)
k,b. Anyway, for the

scenarios investigated in this work the approximation in (2.7) is considered valid.

Using (2.7), the channel matrices Ĥk,b considered in the case of S-CSIT are derived in

the sequence. According to [NLTW98, VM01, GJJV03, PNG03, RFH08, KT08], when

only second-order channel statistics are available it is recommended to transmit along

the Nk ≤ M dominant eigenmodes of Rk,b, since they represent the most relevant com-

ponents in the spatial structure of the considered channel. The dominant eigenmodes



2.2. System Model 33

are characterized by the dominant eigenvalues λ1(Rk,b) ≥ λ2(Rk,b) ≥ . . . ≥ λNk
(Rk,b)

of Rk,b and their associated eigenvectors v1(Rk,b),v2(Rk,b), . . . ,vNk
(Rk,b). Then, for

S-CSIT the channel estimate Ĥk,b for MS k on frequency block b is defined as

Ĥk,b =









λ
1/2
1 (Rk,b) 0 . . . 0

0 λ
1/2
2 (Rk,b) . . . 0

...
...

. . .
...

0 0 . . . λ
1/2
Nk

(Rk,b)

















vH
1 (Rk,b)

vH
2 (Rk,b)

...

vH
Nk

(Rk,b)









, (2.8)

which can be used in the same way as, e.g., Ĥk,b in (2.5a). For single-antenna MSs,

the rank-one approximation that results from using (2.8) effectively represents the

MSs’ channels only if their spatial covariance matrices in (2.7) have low rank too

[NLTW98, VM01].

Up to now, the CSIT models considered in this thesis have been introduced and dis-

cussed. Because adaptive RA depends on the available CSIT, the accuracy of the

channel estimates is also relevant. In the following, a model for erroneous CSIT is

introduced, which applies in particular to the B-CSIT model and enables to evaluate

the impact of erronenous CSIT on the performance of the RA strategies.

Channel estimation is not perfect and involves channel estimation errors which might

originate from AWGN and interference in the system, from suboptimal channel esti-

mation algorithms, from inherent processing or feedback delays, and from too short or

too correlated training sequences, among others. Usually, estimation errors are simply

neglected by the system so that estimated channel matrices are assumed to be the

actual ones. However, this simplifying assumption leads to suboptimal performance

[HH03].

Both channel estimation errors and imperfections due to processing or feedback delays

can be modeled by an additive Zero Mean Circularly Symmetric Complex Gaussian

(ZMCSCG) error term [HH03, YG06, KK07b, KK07a], which is denoted here by Ek,b ∈
C

Nk×M for MS k on frequency block b. The entries of Ek,b have a variance σ2
E. Let σ2

H

denote the variance of the entries of the channel matrix Hk,b described in Section 2.2.3.

Moreover, consider that σ2
H is known, which is a common assumption, e.g., when

ZMCSCG fading is considered and σ2
H = 1 [HH03, YG06, KK07b, KK07a]. Let σ2

Ĥ

denote the variance of the entries in the estimated channel matrices Ĥk,b given by

(2.5a). Let σ2
E be defined to be equal to σ2

H and let 0 ≤ ν ≤ 1 be a model parameter

controlling the amounts of the actual channel matrix Hk,b and of the additive error term

Ek,b in the estimated channel matrix Ĥk,b. Thus, different amounts of imperfection in

the CSIT can be obtained by varying ν. The estimated channel matrices Ĥk,b of each

MS k, on frequency block b, in the presence of errors can be modeled as

Ĥk,b =
√

1 − νHk,b +
√

νEk,b, (2.9)

where
√

1 − νHk,b and
√

νEk,b model the contributions present in Ĥk,b due to Hk,b

and Ek,b, respectively. The model in (2.9) is structurally equivalent to the models
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in [HH03, YG06, KK07b, KK07a]. The main difference relies on the fact that (2.9)

ensures σ2
Ĥ

= σ2
H, while in [HH03, YG06, KK07b, KK07a] σ2

Ĥ
changes according to

the variance of the entries in Ek,b. Anyway, defining σ2
E = σ2

H and Ĥk,b according to

(2.9) is reasonable because a normalization of Ĥk,b is usually included in the channel

estimation.

Similarly to [SH05], the model in (2.9) allows to describe the amount of imperfection

in the CSIT as follows. Let [Hk,b]i,j and [Ek,b]i,j denote an entry of the actual channel

matrix and of the error term associated with the link of MS k on frequency block b,

respectively. Considering (2.9), on can define a measure

γcsi =

E
{[√

1 − ν [Hk,b]i,j

]2
}

E
{[√

ν [Ek,b]i,j

]2
} =

(1 − ν)

ν

E
{

[Hk,b]
2
i,j

}

E
{

[Ek,b]
2
i,j

} =
(1 − ν)

ν

σ2
H

σ2
H

=
1 − ν

ν
, (2.10)

which expresses the relationship between the magnitude of the term due to the actual

channel matrix Hk,b and the magnitude of the additive estimation error matrix Ek,b

present in the estimated channel matrix Ĥk,b under the assumption that all entries

in Hk,b are identically distributed [SH05]. Thus, γcsi describes the quality of the CSI

available at the BS. The values that γcsi can assume in a realistic situation depend

on the amount of training symbols and on the transmit power dedicated to them,

as well as on the particular properties of the employed channel estimation algorithm

[HH03, YG06, KK07b, KK07a].

2.3 Optimization Problem

In this section, the problem of maximizing the sum rate of the system is mathematically

formulated. Maximizing the sum rate of the system is the main problem studied in

this thesis and the problem for which new adaptive RA strategies are developed. The

referred formulation will be used later in this section to derive a new mixed integer

formulation of the same problem, which is the basis for the framework for suboptimal

RA strategies introduced in Section 1.2 and further discussed in this section.

For a scenario with MSs having multiple antennas, it would be necessary to jointly

optimize the spatial filters at both the transmitter and receiver sides in order to max-

imize the sum rate of the system. However, such a joint optimization would lead to

increased complexity of MSs and would be in opposition to the receiver-oriented design

[MBQ04, Qiu04] pursued in this work. Moreover, if both spatial transmit and receive

filters are jointly computed at the BS and informed to the MSs, a too large amount of

control information would have to be exchanged between BS and MSs, which is also

not desired in practice. Therefore, the problem of maximizing the sum rate of the

system considered in this thesis assumes some simplifications, which are discussed in

the sequence.
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In this work, only linear algorithms are considered for spatial filtering because they

are less complex than non-linear algorithms, such as those based on DPC techniques,

and allow for a more tractable and simplified mathematical formulation of the problem

of maximizing the sum rate of the system. Indeed, linear spatial filtering techniques

[PNG03, MBQ04, JUN05] are the ones most often considered in the proposals for future

mobile radio systems [IEE04, DSK+06, 3GP06a].

Considering linear spatial filtering, the receiver-oriented design from [MBQ04, Qiu04]

can be used to take into account the receive beamformers of the MSs in the problem

of maximizing the sum rate of the system without incurring additional complexity

of MSs or signaling overheads. Let w̌k,b,n ∈ C
1×Nk denote the receive beamformer

employed by MS k on frequency block b for the spatial layer n, which is computed at

the MS. Because it is assumed that the BS knows the spatial processing technique

employed by the MSs, it can compute an approximate receive beamformer w̃k,b,n for

w̌k,b,n based on the available CSI. Let W̃k,b =
[

w̃T
k,b,1 w̃T

k,b,2 . . . w̃T
k,b,Nk

]T

∈ C
Nk×Nk

be a receive beamforming matrix containing the Nk approximated receive beamformers

computed by the BS considering the MS k and frequency block b. Then, according

to [MBQ04, Qiu04], the BS can adequately take the receive beamformers of MS k

into account by using an equivalent channel matrix Ĥ′
k,b = W̃k,bĤk,b as estimated

channel matrix instead of the original Ĥk,b. Considering this approach, each receive

antenna n of an MS k can be assumed as a sort of virtual single-antenna MS [SS04b]

and the MU MIMO system can be represented as an equivalent MU Multiple Input

Single Output (MISO) system. Such an approach has been often employed in different

contexts [SSH04, SS04b, CC05, TUBN06, CC07]. However, it copes only partially with

the cooperation among antennas of the same MS and allows to obtain approximate

solutions to the referred problem of maximizing the sum rate of the system. Anyway,

the referred approach is followed in the remainder of this work and only single-antenna

MSs are assumed, which might represent either real MSs or virtual single-antenna MSs.

In the following, the problem of maximizing the sum rate of the system is formulated.

Because CSIT is made available on a frame basis, cf. Section 2.2.4, it is possible to

formulate the problem for the resources described by the frequency blocks b = 1, . . . , B,

and the first TS of each frame only and a solution obtained for these resources applies

to the resources associated with the remaining TSs of the frame. Then, according to

Section 2.2.4 an estimated channel matrix Ĥb ∈ C
N×M of the actual channel matrix

Hb of all MSs is available at the BS for each frequency block b of the system. The

estimated channel matrix Ĥb represents the CSI available at the BS and is given by

one of the models introduced in Section 2.2.4. Ĥb is assumed as the actual channel

matrix Hb without loss of generality, since it reduces to it in the case of perfect channel

estimation, thus not affecting the problem formulation [HH03, YG06]. Let pk,b denote

the allocated power and wk,b denote the precoding vector associated with MS k on

frequency block b. pj,b and wj,b, with j 6= k, are the allocated power and the precoding

vector of MS j interfering with MS k on frequency block b. Let ‖·‖2 denote the 2-norm



36 2. Multi-User MIMO-OFDMA System Modeling and Resource Allocation Problem Formulation

of a vector. Then, the DL SINR γk,b of MS k on frequency block b is given by

γk,b =
pk,b‖ĥk,bwk,b‖2

2

σ2 +
K∑

j=1,j 6=k

pj,b‖ĥk,bwj,b‖2
2

, (2.11)

where the second term in the denominator corresponds to the interference caused by

MSs j 6= k sharing in space the frequency block b with MS k. Then, using (2.11) the

problem of maximizing the sum rate of the system can be formulated as

{p⋆
k,b,w

⋆
k,b} = arg max

{pk,b,wk,b}







B∑

b=1

K∑

k=1

log2








1 +
pk,b‖ĥk,bwk,b‖2

2

σ2 +
K∑

j=1,j 6=k

pj,b‖ĥk,bwj,b‖2
2














(2.12a)

subject to: pk,b ≥ 0,∀k, b, (2.12b)

B∑

b=1

K∑

k=1

pk,b =
PB

S
, (2.12c)

‖wk,b‖2 = 1,∀k, b, (2.12d)

where the constraint (2.12b) ensures non-negative power for all MSs and frequency

blocks, the constraint (2.12c) limits the total transmit power that the BS can spend,

and (2.12d) is the unit-norm constraint for the precoding vector [PNG03, Cal04, TC04a,

TC04b, FDH05, DS05, CC05, CC07, FDH07]. The objective function in problem (2.12)

is neither a convex nor a concave function of the optimization variables pk,b and wk,b

[BV04], so that convex optimization methods cannot be directly employed to solve

(2.12) efficiently. Convex and concave optimization problems are easily convertable

into each other [BV04]. Since a set of up to M MSs has to be selected for each frequency

block b, problem (2.12) is a complex non-convex combinatorial problem [CC05, LZ06,

CC07].

In the following, a new formulation for problem (2.12) is developed, which leads to a

mixed integer optimization problem [NW99] and that allows to explicitly characterize

the four subproblems implicitly embedded in (2.12), i.e., the SDMA grouping problem,

the precoding problem, the power allocation problem, and the resource assignment

problem discussed in Section 1.1.3. Through the division of the problem into four

subproblems, the proposed formulation allows to obtain useful insight information that

can be used in the design and comparison of efficient suboptimal RA strategies.

The combinatorial nature of (2.12) can be better seen by introducing some auxiliary

binary variables. Let uk,b ∈ {0, 1} be a binary variable indicating whether MS k is

allocated on frequency block b. Of course, whenever uk,b = 1, one has pk,b > 0, so that

uk,b =







1, for pk,b > 0,

0, for pk,b = 0.
(2.13)
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Note that there exists a maximum number

G =
M∑

j=1

(
K

j

)

=
M∑

j=1

K!

j!(K − j)!
(2.14)

of sets of MSs that can be formed using uk,b, with each set determing an SDMA group.

On frequency block b, one of these sets of MSs shares the resource in space through

SDMA.

Let g, g = 1, . . . , G, indicate the SDMA groups, Gg denote the gth group, and vg,b ∈
{0, 1} be a binary variable indicating whether the gth SDMA group is allocated on

frequency block b. Note that according to (2.13), if the frequency block b is allocated

to an SDMA group G ′
b and ∃k 6∈ G ′

b, pk,b > 0, then there exists another SDMA group

Gb 6= G ′
b for which pk,b > 0 ⇔ k ∈ Gb, and the SDMA group Gb can be seen as the group

effectively allocated on frequency block b. Considering this, vg,b can defined as

vg,b =







1, if pk,b > 0 ⇔ k ∈ Gg,

0, otherwise.
(2.15)

Now, using uk,b and vg,b, problem (2.12) can be rewritten as

{p⋆
k,b,w

⋆
k,b, u

⋆
k,b, v

⋆
g,b}= arg max

{pk,b,wk,b,uk,b,vg,b}







B∑

b=1

G∑

g=1

vg,b

K∑

k=1

uk,b log2










1+
pk,b‖ĥk,bwk,b‖2

2

σ2 +
K∑

j=1,
j 6=k

pj,b‖ĥk,bwj,b‖2
2
















(2.16a)

subject to: pk,b ≥ 0,∀k, b, (2.16b)

B∑

b=1

K∑

k=1

pk,b =
PB

S
, (2.16c)

‖wk,b‖2
= 1,∀k, b, (2.16d)

uk,b ∈ {0, 1},∀k, b, (2.16e)

G∑

g=1

vg,b ≤ 1,∀b, (2.16f)

vg,b ∈ {0, 1},∀g, b. (2.16g)

The new formulation in (2.16) for maximizing the sum rate of the system clearly

characterizes the problem as a mixed integer optimization problem [NW99]. Another

formulation for the maximization of the sum rate of the system as a mixed integer

optimization problem can be found, e.g., in [CC05, CC07]. However, in [CC05, CC07]

it is assumed that MSs sharing the same resource in space do not interfere with each

other, i.e., the interference term shown in (2.11) is forced to zero for all MSs on each

resource by means of precoding.

Differently from [CC05, CC07], the introduction of uk,b and vg,b in (2.16) together with

wk,b and pk,b allow to explicitly characterize the four subproblems in (2.12) as follows.
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• The variables uk,b are related to the SDMA grouping problem, in which on each

frequency block b up to M of the K MSs have to be optimally selected. Let G⋆
g,b denote

the optimal SDMA group on frequency block b. Then, uk,b = 1,∀k ∈ G⋆
g,b, i.e., for

the up to M selected MSs that build the optimal group G⋆
g,b, and uk,b = 0,∀k 6∈ G⋆

g,b,

i.e., for all the other MSs.

• In order to adequately multiplex the MSs in G⋆
g,b in space, precoding vectors wk,b

are required, now with k ∈ G⋆
g,b. Thus, the variables wk,b are directly related to the

precoding problem.

• Similarly, powers pk,b have to be determined and allocated from the BS power P to

the MSs in G⋆
g,b on frequency block b, so that pk,b are directly associated with the

power allocation problem.

• Finally, vg,b relates to the resource assignment problem which corresponds to

allocating an SDMA group on each frequency block b while ensuring through the

constraint (2.16f) that not more than one SDMA group is assigned on each resource.

This new formulation in (2.16) provides interesting insight into the elements of the

original optimization problem (2.12), as discussed in the sequel.

The first interesting aspect made clearer by the proposed formulation of (2.16) is that

the distribution of the transmit power is the element that keeps the four subprob-

lems interdependent. It can be seen from (2.16) that if the power is distributed a

priori among resources, e.g., using EPA, the resource assignment can be performed

on a resource-by-resource basis. Additionally, the precoding vector wk,b of MS k on

frequency block b plays no role if the power pk,b allocated to MS k is zero. The same

applies to the precoding vector wj,b of an interfering MS i on frequency block b when-

ever the power pj,b of the interfering MS is zero. In the same way, the binary selection

variables uk,b, which determine SDMA groups, and vg,b, which determine which SDMA

group is allocated on frequency block b, depend only on pk,b, as shown in (2.13) and

(2.15), respectively.

A second interesting aspect is that the SDMA grouping problem is responsible for

yielding (2.16) combinatorial. It can be seen from (2.14) that the combinatorial increase

of G affecting vg,b is due to uk,b. If SDMA groups are already defined on each resource,

the problem is no longer NP-C.

A third aspect of interest in the proposed framework resides on the fact that dividing

problem (2.16) into subproblems allows to adapt the solutions given to each subprob-

lem individually, as discussed in Section 1.2. By efficiently solving the subproblems,

efficient solutions for the complete problem can be obtained. This is the main ap-

proach in this work, in which solutions for each of the four subproblems are proposed,

carefully combined, and shown to perform a suboptimal but efficient RA. Moreover,

the individual adaptation of the solution given to each subproblem allows to derive RA

strategies providing a trade-off between the maximization of the sum rate of the system

and the degree of throughput fairness among the MSs. According to problems (2.12)
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and (2.16), after performing the RA, a large amount of resources might be assigned

to some MSs while other MSs might get no resources, which is in accordance with the

objectives in (2.12) and (2.16). However, this fact might generate insatisfaction among

the MSs, which is an undesired effect in a realistic scenario. Therefore, it might be

desired to have some degree of fairness on the distribution of resources in the system

without significantly compromising the performance of the system in terms of its sum

rate, which might be obtained by considering the proposed framework given by problem

(2.16).
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Chapter 3

Resource Allocation in MIMO-OFDMA

Systems: Single Resource

3.1 Introduction

In the chapter, the problem of maximizing the sum rate of the system is investigated

for the particular case in which a single resource is considered at a time. The single-

resource case is indicated by the dashed line in Fig. 1.3. Considering a single resource,

problem (2.16) can be considerably simplified. Nevertheless, RA strategies designed

for this case can be employed in a MIMO-OFDMA systems with multiple resources by

considering resources one-by-one and shall present lower complexity than RA strategies

that take multiple resources into account at a time.

Because the transmit power is the element coupling the subproblems of (2.16), as

discussed in Section 2.3, each resource can be considered individually if the power

allocated to each of them is determined a priori, e.g., through an EPA. Considering a

single frequency block b and the first TS of a frame, the resource assignment problem

is no longer part of the optimization problem in (2.16). Therefore, the summation in b

can be disregarded in (2.16), as well as the allocation variables vg,b and the associated

constraints (2.16f) and (2.16g). Removing the index b from the optimization variables

and denoting by Pb the available power for the resource under consideration, problem

(2.16) can be simplified to

{p⋆
k,w

⋆
k, u

⋆
k} = arg max

{pk,wk,uk}







K∑

k=1

uk log2








1 +
pk‖ĥkwk‖2

2

σ2 +
K∑

j=1,j 6=k

pj‖ĥkwj‖2
2














(3.1a)

subject to: pk ≥ 0,∀k, (3.1b)

K∑

k=1

pk = Pb, (3.1c)

‖wk‖2 = 1,∀k, (3.1d)

uk ∈ {0, 1},∀k. (3.1e)

In spite of being more simple than problem (2.16), problem (3.1) is still a combinatorial

problem since the SDMA grouping problem remains included into it. Thus, problem

(3.1) cannot be solved in an optimal way unless through an ES for the optimal SDMA

group, precoding vectors, and power allocation. Similarly to problem (2.16), problem

(3.1) also asks for a suboptimal rather efficient solution.
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For large numbers of MSs, the number G of SDMA groups, given by (2.14), becomes

too large and an ES requiring to compute precoding vectors and power allocation for

each of the G groups becomes too complex. However, if the SDMA grouping problem

is suboptimally solved and a suboptimal but adequate SDMA group is determined, the

precoding vectors and power allocation must be computed only for this single group.

In this chapter, most of the proposed RA strategies follow the approach of solving

the SDMA grouping problem independently of the precoding and power allocation

algorithm. Nevertheless, some RA strategies involving SDMA algorithms that depend

on the precoding and power allocation are also considered for comparison.

This chapter is organized as follows. Section 3.2 describes the proposed SDMA algo-

rithms, which combine a grouping metric and a grouping algorithm, cf. Section 1.2.

Section 3.2.1 describes the grouping metrics. In this section, two new grouping metrics

are proposed, namely the weighted norm of the total spatial correlation and the convex

combination of the total spatial correlation and channel gains. Section 3.2.2 describes

the grouping algorithms. In this section, a new grouping algorithm is proposed, namely

the Convex Grouping Algorithm (CGA), which is formulated as a convex optimization

problem and, therefore, is not NP-C. In Section 3.2.3, the SDMA algorithms are

defined by adequately combining a grouping metric of Section 3.2.1 and a grouping al-

gorithm of Section 3.2.2. In this section, combinations of the new grouping metrics and

grouping algorithms are discussed, as well as some combinations of existing grouping

metrics and grouping algorithms not yet considered in previous works.

In Section 3.3, the precoding and power allocation algorithms are discussed. Sec-

tion 3.3.1 and Section 3.3.2 describe the precoding algorithms and the power alloca-

tion algorithms considered in this work, respectively. In these two sections, precoding

and power allocation are considered separately. In Section 3.3.2, a new Soft Dropping

Algorithm (SDA) is proposed to perform power allocation. The SDA can be seen as

an extension of the Soft Dropping Power Control (SDPC) of [YGRS97] to MU MIMO

systems. The SDA includes an initial power allocation and takes into account the total

power constraint of (3.1c). In Section 3.3.3, the SRA algorithm is proposed, which is

responsible for adjusting the size of groups built by SDMA algorithms unaware of the

actual precoding and power allocation. The SRA is aware of the actual precoding and

power allocation and is able to improve the sum rate of the system by eventually re-

moving MSs from SDMA groups. In Section 3.3.4, the precoding and power allocation

algorithms are defined by combining a precoding algorithm, a power allocation algo-

rithm, and, whenever necessary, the SRA with an adequate criterion for MS removal,

cf. Section 1.2. In Section 3.3.4, also the alternative of performing joint precoding

and power allocation is discussed, and a new iterative algorithm for joint precoding

and power allocation is proposed, which combines Generalized Eigen-Precoding and

the SDA. Moreover, a convergence proof for the SDA applied to MU MIMO scenarios

is newly provided in the same section.

In Section 3.4, the RA strategies considered in this chapter are defined by combining

an SDMA algorithm of Section 3.2 and a precoding and power allocation algorithm of

Section 3.3.
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In Section 3.5, the performance and complexity of the RA strategies considered in

this chapter are investigated. In Section 3.5.1, the values of the system parameters

and the values of the parameters of the RA strategies are defined. In Section 3.5.2,

Section 3.5.3, and Section 3.5.4 the performance of the RA strategies in terms of the

achieved average sum rate is investigated considering the P-CSIT, B-CSIT, and S-

CSIT models of Section 2.2.4, respectively. Similarly, in Section 3.5.5, the performance

of the RA strategies is investigated considering erroneous B-CSIT, cf. Section 2.2.4.

In Section 3.5.6, the impact of the SRA on the average sum rate achieved by the

RA strategies is discussed. In Section 3.5.7, the impact of a parameter β, which

will be introduced in Section 3.2.1, on the performance of two of the newly proposed

SDMA algorithms is investigated. In Section 3.5.8, expressions for the complexity of

the studied RA strategies are newly derived and, using them, the RA strategies are

compared in terms of complexity. In Section 3.5.9, the fairness of the RA strategies is

investigated considering different criteria for the MS priority. Finally, in Section 3.5.10

some results of this chapter are shortly summarized.

3.2 SDMA Algorithm

3.2.1 Grouping Metric

This section deals with the grouping metrics, which are employed by SDMA algorithms

to measure the spatial compatibility among MSs in an SDMA group, cf. Section 1.2.

Several grouping metrics have been considered in previous works, as it has been shown

in Table 1.1. In general, all the grouping metrics make use of the channel matrices

Ĥb representing the CSI available at the BS, cf. Section 2.2.4. Therefore, grouping

metrics are usually functions of the CSIT that try to map the characteristics of the

spatial channels of the MSs to a scalar value quantifying how efficiently these MSs can

be separated in space.

In this section, four grouping metrics are considered:

1. The group capacity, which considers the capacity of an SDMA group as spatial

compatibility metric and takes into account the actual precoding and power alloca-

tion algorithm of the system.

2. The sum of channel gains with null space Successive Projections (SPs),

which successively performs projections of the estimated channel matrices of one

MS onto the null space of the channel matrices of other MSs.

3. The new weighted norm of the total spatial correlation, which has been pro-

posed by the author in [MK06]. It is a heuristic grouping metric with low complexity

which is based only on the spatial correlation and gain of the channels of the MSs.
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4. The new convex combination of the total spatial correlation and channel

gains, which has been proposed by the author in [MK07a]. It is a convex combina-

tion of the total spatial correlation and gain of the channels of the MSs in a SDMA

group and also has low complexity.

In the following, the group capacity is described. Let G denote a candidate SDMA

group on the considered resource and let KG denote the number of MSs in G. The

channel matrix Ĝ for the SDMA group G can be obtained from the estimated channel

matrix Ĥ in (2.5b) by considering only the rows of Ĥ corresponding to the channels of

the MSs that belong to G. For example, if the MSs 1, 2, and K belong to the SDMA

group G, the matrix Ĝ ∈ C
KG×M contains the 1st, the 2nd, and the Kth rows of Ĥ. Let

i, i = 1, . . . , KG, indicate the MSs in G, while the index k, k = 1, . . . , K, still indicates

the kth MS in the system. The vector channel of the ith MS in G is given by the ith

row ĝi ∈ C
1×N of Ĝ. Further on the term vector will be omitted when referring to the

vector channels of the MSs. wi ∈ C
M×1 and pi ∈ R

+ are the precoding vector and the

allocated power of the ith MS in G, respectively. Then, the group capacity fCAP(G) of

the SDMA group G is written as

fCAP(G) =

KG∑

i=1

log2








1 +
pi ‖ĝiwi‖2

2

σ2 +
KG∑

j=1,j 6=i

pj ‖ĝiwj‖2
2








, with i, j ∈ G, (3.2)

where CAP stands for capacity.

Assuming adequate precoding and power allocation, the higher the group capacity

fCAP(G) is, the more spatially compatible the MSs in an SDMA group G are. Since the

group capacity fCAP(G) reflects the effective capacity of the SDMA group considering

precoding and power allocation, it is a reliable grouping metric [FDH05, MK06, FDH07,

MK07a, MK07b, MK08].

A drawback of fCAP(G) is that new precoding vectors and a new power allocation

must be computed for all MSs in G whenever the composition of G changes. Because

precoding and power allocation might involve complex operations, such as matrix in-

versions or decompositions, the complexity of an SDMA algorithm employing fCAP(G)

as grouping metric might become high if fCAP(G) must be computed for a large number

of candidate SDMA groups.

Considering multi-antenna MSs, the group capacity has been considered, e.g., in [FDH05,

MK06, FDH07]. In this case, the main changes concern precoding and power allocation

which must take into account the multiple antennas at the MSs.

In the following, the sum of channel gains with null space SPs is described. The gain of

the channel ĥk of MS k can be simply calculated as its squared 2-norm, i.e, ‖ĥk‖2
2. In

general, the higher the channel gain ‖ĥk‖2
2 of MS k, the higher its achievable capacity.
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However, considering null space projections the effective gains of the channels of the

MSs in an SDMA group are conditioned to the degree of spatial correlation among the

channels [DH04, FDH05, FDH07]. This fact is illustrated in Fig. 3.1 for two MSs. Let

N1 and N2 denote the null spaces of the channels ĥ1 and ĥ2, respectively, and consider

that ĥ1 is projected onto N2 and ĥ2 is projected onto N2, as shown in Fig. 3.1. Then,

if the channels ĥ1 and ĥ2 are highly spatially uncorrelated, as in Fig. 3.1 left, after

the projections much of the gain of the original channels is preserved. However, if the

channels ĥ1 and ĥ2 are highly spatially correlated, as in Fig. 3.1 right, a considerable

part of the channel gains get lost after the projection. Therefore, the sum of the channel

gains considering null space projections becomes high if the channels of the MSs in the

SDMA group are highly spatially uncorrelated and have high gain. This principle is

also valid for SDMA groups containing several MSs. However, for an SDMA group G
containing several MSs the channel ĝi of each MS i ∈ G would have to be projected

onto the joint null space of the MSs i′ ∈ G, i′ 6= i, which can be determined, e.g., using

SVDs [SSH04, FDH05, FDH07].

ĥ1

ĥ1

ĥ2 ĥ2

N
2

N
2

N1

N
1

Projection of ĥ2

onto N1

Projection of ĥ2

onto N1

Projection of ĥ1

onto N2

Projection of ĥ1

onto N2

Figure 3.1. Null space projections.

Using SPs, only the channel ĝi of MS i is projected onto the null space of the channels

ĝi′ of all MSs i′, i′ = 1, 2, . . . , i − 1. Let IM denote an M × M identity matrix and let

Ti ∈ C
M×M denote the matrix that projects the channel of MS i onto the null space

of the channels of MSs i′. Then, Ti is written as

Ti =







IM , for i = 1,

Ti−1 −
TH

i−1ĝ
H
i−1ĝi−1Ti−1

‖ĝi−1Ti−1‖2
2

, for i = 2, . . . , KG,
(3.3)

where for i = 1 no projections are needed and T1 = IM [DS05, FDH05, YG05, TJ05,

TUBN06, FDH07, MK07b, MK08]. Then, using (3.3), the sum of channel gains with
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null space SPs fSP(G) is written as

fSP(G) =

KG∑

i=1

‖ĝiTi‖2
2 (3.4)

[DS05, FDH05, YG05, TJ05, TUBN06, FDH07, MK07b, MK08].

The channel gain of an MS i 6∈ G after a SP onto the null space of the channels of the

MSs i′ ∈ G is ‖ĝiTi‖2
2. The higher the channel gain ‖ĝi‖2

2 of MS i is and the more

spatially uncorrelated the channel of MS i with respect to the channels of the MSs

i′ ∈ G is, the higher ‖ĝiTi‖2
2 might become and the more spatially compatible MS i

and the MSs i′ are considered to be. Therefore, the higher the gains of the channels

of the MSs in G and the more orthogonal the channels of the MSs in G are, the higher

the values that fSP(G) assumes and the more spatially compatible the MSs in G are

considered to be. Since fSP(G) favors SDMA groups whose MSs have high channel

gain and are highly spatially uncorrelated, it can be efficiently used as grouping metric

[DS05, FDH05, YG05, TJ05, TUBN06, FDH07, MK07b, MK08].

For single-antenna MSs, fSP(G) involves no SVDs or matrix inversions, depends neither

on precoding vector nor on the power allocation, and requires a reduced number of null

space projections using (3.3) since the channels of an MS i′ in G is not projected onto

the null space of the channels of the MSs i > i′. Thus, fSP(G) has a relatively low

complexity, e.g., compared to fCAP(G) [MK08]. A potential drawback of fSP(G) is

that it explicitly depends on the admission order of the MSs in the SDMA group and,

therefore, yields a total number

G′ =
M∑

j=1

j!

(
K

j

)

=
M∑

j=1

K!

(K − j)!
, (3.5)

of possible candidate groups, which might be much larger than G in (2.14). Nev-

ertheless, by taking care of the admission order in the design of the SDMA algo-

rithm, fSP(G) can be efficiently used as grouping metric [DS05, FDH05, YG05, TJ05,

TUBN06, FDH07, MK07b, MK08].

Considering multi-antenna MSs, null-space successive projections have been considered,

e.g., in [FDH05, TUBN06, FDH07]. In particular, a low-complexity group capacity

metric based on null-space projections is considered in [FDH05, FDH07] while the sum

of channel gains with null-space SPs is used in [TUBN06].

In the following, the weighted norm of the total spatial correlation is discussed. Let

|·| denote the absolute value of a complex number, Re {·} denote the real part of a

complex number, D {·} denote a diagonal matrix whose diagonal elements are given in

the vector argument, and ‖·‖
f

denote the Frobenius norm of a matrix/vector. Given

the channels ĥj and ĥk of MSs j and k, respectively, the spatial correlation among
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these two MSs is given by the maximum normalized scalar product

ρj,k =
|ĥjĥ

H
k |

‖ĥj‖2‖ĥk‖2

(3.6)

[Cal04, MK06, MK07a, MK07b, MK07c, MK08], which is an upper bound on the stan-

dard normalized scalar product ρ̃j,k [Mey01]. The standard normalized scalar product

ρ̃j,k corresponds to the cosine of the angle between the vector channels of the two MSs

and is given by ρ̃j,k =
Re{ĥj ĥ

H

k }
‖ĥj‖2‖ĥk‖2

[Mey01]. Because ρ̃j,k suppress the imaginary part of

ĥjĥ
H
k , the normalized scalar product does not capture the spatial correlation among the

two complex vector channels as efficiently as the maximum normalized scalar product

ρj,k [SS04a].

Let the attenuation vector aG ∈ R
KG×1
+ be defined as a vector containing the inverse of

the channel gains of all the KG MSs in G, i.e.,

aG =
[

‖ĝ1‖−2
2 ‖ĝ2‖−2

2 . . .
∥
∥ĝKG

∥
∥
−2

2

]T

. (3.7)

Then, using (3.6), (3.7), and Ĝ, one can write the spatial correlation matrix CG ∈
R

KG×KG
+ as

CG =
∣
∣
∣

√

D {aG}ĜĜH
√

D {aG}
∣
∣
∣ , (3.8)

which contains the spatial correlation ρi,j,∀i, j ∈ G, with the operator |·| being applied

elementwise to CG.

Let µG denote the geometric mean of the square root of the channel gains of the MSs

in G, i.e.,

µG =

(
KG∏

i=1

‖ĝi‖2

)1/KG

, with i ∈ G. (3.9)

Then, using (3.8) and (3.9), the weighted norm of the total spatial correlation is defined

as

fWN(G) =
µGKG

‖CG‖f

(3.10)

[MK06], where WN stands for weighted norm. This heuristic grouping metric has been

proposed by the author in [MK06] and it has been designed to present the following

properties:

1. It captures the total spatial correlation among the channels of all MSs in the SDMA

group.

2. It favors large SDMA groups.

3. It favors SDMA groups containing MSs whose channel gains are high and uniformly

distributed.

In the following, the motivation for the choice of the above properties is provided.

The lower ρj,k for the channels of the MSs j and k is, the less spatially correlated
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the channels of the MSs j and k are. Therefore, ρj,k efficiently measures the spatial

compatibility between the MSs j and k and it has often been used as grouping metric

[STSK98, KTSK01, Cal04, MK06, MK07a, MK07b, MK07c, MK08]. However, ρj,k

can only be calculated pairwise. Because an SDMA group can contain more than two

MSs, a measure of the total spatial correlation among the channels of all MSs in G is

required. In (3.10), the total spatial correlation among the MSs in G is captured by

the Frobenius norm ‖CG‖f
, which involves the spatial correlation of all MSs in G. A

similar approach employing the Frobenius norm to capture the total spatial correlation

among several vector channels has been employed in [SS04a]. The lower the values

of the elements ρi,j of CG are, the lower its Frobenius norm ‖CG‖f
is, and the less

spatially correlated the MSs in G are.

The larger the SDMA group size KG is, the higher the spatial multiplexing gains that

can be achieved [FDH05]. Therefore, larger SDMA groups should be preferred, which

is accomplished by the factor KG placed in the numerator of (3.10).

The higher the gain of the channel of an MS, the higher its achievable rate. Therefore,

MSs with high channel gain should be preferred. It is also well-known that in order

to maximize capacity an unequal power distribution among MSs must be preferred

[PNG03, Cal04, CT06]. In an SDMA group, allocating power to the MS with the worst

channel gain might be less efficient with respect to the group capacity than giving the

same power to an MS with higher channel gain. Thus, if the channel gains of the

MSs in a group strongly differ, it becomes more probable that the MS with the worst

channel gain gets no power allocated to it. This is often the case when applying the

Water Filling Algorithm (WFA) for power allocation [PNG03, BV04, PF05, JRV+05].

Nevertheless, if MSs getting non-zero and zero power belong to the same group, an

unnecessary separation in space of the ones with respect to the others might still

be performed. With a more uniform distribution of the channel gains of the MSs

in an SDMA group, such a situation becomes more unlikely. Therefore, a uniform

distribution of the channel gains of the MSs in G is also desirable. The channel gains

have been considered as grouping metric, e.g., in [TJ05], while putting MSs with similar

channel gains in the same group has been considered in [STSK98, STKL01, KTSK01].

In (3.10), the geometric mean µG favors SDMA groups containing MSs with high and

more uniformly distributed channel gains.

Since fWN(G) is inversely proportional to ‖CG‖f
and directly proportional to KG and

µG, the less spatially correlated the MSs in G are, the larger the SDMA group size KG

is, and the higher and the more uniformly distributed the gains of the channels of the

MSs in G are, the higher values fWN(G) assumes and the more spatially compatible

the MSs in G are considered to be. fWN(G) does not depend on precoding or power

allocation and does not involve matrix inversions, decompositions, or projections, and

it has lower complexity than fCAP(G) and fSP(G).

Considering multi-antenna MSs, this metric has been investigated by the author in

[MK06] and has been shown to perform as good as fCAP(G).
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In the following, the convex combination of the total spatial correlation and channel

gains is discussed. For this metric, the motivation for combining spatial correlation

and channel gains is the same as described for fWN(G), i.e., to favor SDMA groups

containing MSs whose channels have high gain and are highly spatially uncorrelated.

Extending the definitions of (3.7) and (3.8) to all the K MSs, the attenuation vector

a ∈ R
K×1
+ and the spatial correlation matrix C ∈ R

K×K
+ can be expressed as

a =
[

‖ĥ1‖−2
2 ‖ĥ2‖−2

2 . . . ‖ĥK‖−2
2

]T

, (3.11a)

and

C =
∣
∣
∣

√

D {a}ĤĤH
√

D {a}
∣
∣
∣ , (3.11b)

respectively.

Let the binary selection vector u be defined as

u = [u1 u2 . . . uK ]
T
, (3.12)

where the index b is omitted. For any group G, it holds that uk = 1,∀k ∈ G, otherwise

uk = 0. Thus, each value that u can assume is uniquely associated with a given SDMA

group G. Then, combining (3.11) and (3.12) the convex combination of the total spatial

correlation and channel gains fCC(G) is defined as

fCC(G) =
(1 − β)

‖C‖
f

uTCu +
β

‖a‖
f

aTu, (3.13)

where 0 ≤ β ≤ 1 is a control parameter establishing the trade-off between spatial

correlation and channel gain. The factors 1
‖C‖

f

and 1
‖a‖

f

are normalization factors

introduced to balance C and a, i.e., to compensate for their absolute difference and

have an unbiased β [MK07a, MK07b, MK08]. In this thesis, the scaling factors 1
‖C‖

f

and 1
‖a‖

f

have been experimentally chosen as to obtain the highest average sum rate

figures for values of β around 0.5. In (3.13), CC stands for convex combination.

In contrast to fCAP(G), fSP(G), and fWN(G), which increase when the spatial com-

patibility among the MSs in an SDMA increases, the convex combination of the total

spatial correlation and channel gains fCC(G) decreases. Thus, the lower the value that

fCC(G) assumes, the more spatially compatible the MSs in G are.

Similarly to fWN(G), fCC(G) is less complex than fCAP(G) and fSP(G) and depends

neither on precoding matrices, as do the metrics in [STKL01, FDH05], nor on a com-

putationally complex operation, such as the SVD in [TJ05, SS04a]. Differently from

the grouping metric in [TJ05] that considers only the channel gains, the spatial corre-

lation among the MSs is suitably taken into account by fCC(G). In contrast to fWN(G),
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fCC(G) allows to control the importance given to spatial correlation and to channel

gains through the parameter β.

Among the four grouping metrics described in this section, the group capacity fCAP(G)

is the only one that takes into account the precoding and power allocation algo-

rithm employed by the system. Grouping metrics that take into account the pre-

coding and the power allocation algorithms, such as the group capacity [FDH05]

or the SINR of the MSs in an SDMA group [STKL01, FDH05], efficiently measure

spatial compatibility and help to achieve good performance in terms of average sum

rate. However, because precoding and power allocation usually depend on relatively

complex vector/matrix operations, the good performance achieved by such metrics

comes at the expense of increased complexity [MK08]. The sum of channel gains

with SPs fSP(G) does not involve the actual precoding and power allocation, but re-

quires relatively complex vector/matrix operations to quantify the spatial compatibility

among MSs in an SDMA group. Grouping metrics that involve operations like projec-

tions [FDH05, YG05, TUBN06] or SVDs of the channel matrix of the SDMA group

[SS04a, TJ05] have also been shown to provide good performance in terms of average

sum rate. Anyway, both fCAP(G) and fSP(G) can be considered as relatively com-

plex grouping metrics, especially if they have to be computed for a large number of

candidate SDMA groups.

Alternatively, grouping metrics that are based only on the spatial correlation, e.g.,

measured using (3.6), and on the channel gains of the MSs involve much simpler

vector/matrix operations. Indeed, spatial correlation and channel gains have been

successfully used to design low-complexity rather efficient grouping metrics [FN96,

STSK98, STKL01, KTSK01, DH04, Cal04, SS04a, MK06, MK07a, MK07c]. The pro-

posed weighted norm of the total spatial correlation fWN(G) and the convex combina-

tion of the total spatial correlation and channel gains fCC(G) belong to this group of

metrics and offer an efficient and less complex way of measuring the spatial compati-

bility among MSs.

The performance and complexity of SDMA algorithms employing one of the four group-

ing metrics discussed in this section will be investigated later in this chapter.

3.2.2 Grouping Algorithm

In this section, the grouping algorithms are discussed, which combined with the group-

ing metrics presented in Section 3.2.1 will compose the SDMA algorithms investigated

in this work. The task of the grouping algorithm is to determine an efficient SDMA

group on a given resource with acceptable complexity compared to an ES. Five group-

ing algorithms are considered here:

1. The Exhaustive Search Algorithm (ESA), which performs an ES for the best SDMA

group, i.e., which looks for the group maximizing a certain grouping metric f(·)(Gg)

by comparing all possible candidate groups.
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2. The Convex Grouping Algorithm (CGA), which is a new grouping algorithm pro-

posed by the author in [MK07a] and formulated as a quadratic convex optimization

problem. This grouping algorithm finds an SDMA group composed of spatially

compatible MSs using convex optimization methods.

3. The Best Fit Algorithm (BFA), which is a greedy algorithm that, starting from a

group containing an initial MS, extends the group by sequentially admitting the

most spatially compatible MS with respect to the MSs already admitted to the

SDMA group [STKL01]. This grouping algorithm is based on a simple heuristic

rule and can build SDMA groups containing spatially compatible MSs with less

computational effort than the previous two grouping algorithms.

4. The First Fit Algorithm (FFA), which is a simplification of the BFA that does not

admit the most spatially compatible MS to the SDMA group, but the first spatially

compatible MS that it finds [STKL01].

5. The Random Grouping Algorithm (RGA), which just randomly builds an SDMA

group of specific size while ignoring any grouping metric. This is the simplest

grouping algorithm.

In the following, each of the above grouping algorithms will be discussed. The ESA is

the optimal grouping algorithm, since it finds a globally optimal SDMA group G⋆ that

maximizes the considered grouping metric, i.e.,

G⋆ = arg max
Gg

{
f(·)(Gg)

}
, with g = 1, . . . , G. (3.14)

It can be observed in (3.14) that the ESA uses the grouping metric to compare the

different candidate SDMA groups Gg. For a given grouping metric f(·)(Gg), the ESA

can be used to upper bound the performance of other grouping algorithms. In spite of

being the optimal grouping algorithm, the ESA might be prohibitively complex, since

it computes the grouping metric f(·)(Gg) for each SDMA group Gg and, according to

(2.14), the number G of SDMA groups combinatorially increases with K.

In the following, the proposed CGA is described, which has been designed by the author

in [MK07a] together with fCC(G) of (3.13). Herein, a more detailed derivation of the

CGA compared to that in [MK07a] is provided. According to Section 3.2.1, there is a

unique mapping between u in (3.12) and an SDMA group G and, consequently, fCC(G)

can be expressed as a function of u. Let ‖·‖1 denote the 1-norm of a vector. Then,

using (3.13) one can write the following quadratic integer optimization problem

u⋆ = arg min
u

{
(1 − β)

‖C‖
f

uTCu +
β

‖a‖
f

aTu

}

, (3.15a)

subject to: ‖u‖1 = K⋆
G, (3.15b)

uk ∈ {0, 1},∀k, (3.15c)

whose solution u⋆ can be directly mapped to the best SDMA group G⋆ of size K⋆
G con-

taining MSs that have low total spatial correlation and low total channel attenuation,

which are weighted by (1−β)
‖C‖

f

and β
‖a‖

f

in (3.15a), respectively. The constraint (3.15b)
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introduces an additional parameter, namely the target SDMA group size K⋆
G, which

is the number of MSs that G⋆ must contain and which can assume values between 1

and M . Several SDMA algorithms make use of a target SDMA group size in order to

simplify the determination of the best group G⋆.

In the following, the CGA is derived as a quadratic convex approximation of problem

(3.15). A convex optimization problem is desired because it has a unique global optimal

solution, is not NP-C, and can be efficiently solved using convex optimization meth-

ods. In the following, the changes required to obtain a quadratic convex optimization

problem from (3.15) are described.

Let the components uk of binary selection vector u of (3.15) be relaxed to belong to

the interval [0, 1] and let ũk ∈ [0, 1] and ũ denote the relaxed versions of uk and u,

respectively. Then, a relaxed quadratic optimization problem derived from (3.15) can

be written as

ũ⋆ = arg min
ũ

{
(1 − β)

‖C‖
f

ũTCũ +
β

‖a‖
f

aTũ

}

, (3.16a)

subject to: ‖ũ‖1 = K⋆
G, (3.16b)

0 ≤ ũk ≤ 1,∀k. (3.16c)

Because quadratic integer optimization problems might still be NP-C and have conse-

quently a prohibitively high complexity [GJ79], this relaxation is necessary to obtain

a quadratic convex optimization problem from (3.15). However, this is not sufficient.

Indeed, if C in (3.16a) is not positive semidefinite, problem (3.16) is still non-convex

and NP-C [GJ79, BV04], and the application of convex optimization methods might

find only a local minimum for (3.16). Because C in (3.11b) is not necessarily positive

semidefinite, a quadratic convex optimization problem for the CGA can be derived

from (3.16) by replacing C in (3.16a) by a positive semidefinite matrix C̃, which can

be obtained through diagonal loading, i.e., by defining C̃ , C+ǫIK , where ǫ ≥ 0 is the

diagonal loading factor. Then, by replacing C by C̃ in problem (3.16), the quadratic

convex optimization problem considered by the CGA is obtained as

ũ⋆ = arg min
ũ

{
(1 − β)

‖C‖
f

ũTC̃ũ +
β

‖a‖
f

aTũ

}

, (3.17a)

subject to: ‖ũ‖1 = K⋆
G, (3.17b)

0 ≤ ũk ≤ 1,∀k. (3.17c)

The CGA is presented in Table 3.1.

Table 3.1. Convex Grouping Algorithm.

1. Solve problem (3.17).

2. Determine G⋆ by rounding to one the K⋆
G largest components

and to zero the other K − K⋆
G components of ũ⋆.
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In the following, the impact of the changes made to problem (3.15) to formulate the

CGA are discussed. Integer relaxation and diagonal loading are techniques often used

to simplify and solve optimization problems [NW99, Set04, BV04]. In problem (3.17),

the components ũ⋆
k of the obtained continuous solution ũ⋆ can be interpreted as the

probability of the corresponding MS k belonging to the best SDMA group G⋆. Thus,

in order to determine G⋆, the solution ũ⋆ of (3.17) has to be converted into an integer

solution u⋆. This is done in step 2 of Table 3.1 by rounding to one the K⋆
G largest

components ũ⋆
k and to zero the other K − K⋆

G components of ũ⋆, thus determining

which MSs belong to G⋆ with highest probability.

Consider the cost function in (3.15a) and the constraints (3.15b) and (3.15c). Then,

replacing uTCu in (3.15a) by uTC̃u results in

(1 − β)

‖C‖
f

uTC̃u +
β

‖a‖
f

aTu =
(1 − β)

‖C‖
f

uTCu +
β

‖a‖
f

aTu +
(1 − β)ǫ

‖C‖
f

‖u‖2
2

=
(1 − β)

‖C‖
f

uTCu +
β

‖a‖
f

aTu +
(1 − β)ǫK⋆

G

‖C‖
f

,

(3.18)

which is equivalent to (3.15a), since the term
(1−β)ǫK⋆

G

‖C‖
f

is a constant for all u and,

consequently, does not change problem (3.15). However, replacing ũTCũ by ũTC̃ũ

in (3.17a) affects the optimization problem. Indeed, expanding (3.17a) analogously to

(3.18), the obtained last term (1−β)ǫ
‖C‖

f

‖ũ‖2
2 is no longer constant for all ũ. Consequently,

problem (3.17) is not equivalent but only an approximation of problem (3.15). The

smaller the term (1−β)ǫ
‖C‖

f

‖ũ‖2
2 is, the closer the approximation of problem (3.17) to

problem (3.15) becomes. Due to (3.17b) and (3.17c), the ‖ũ‖2
2 is constrained and

limited to
(K⋆

G)2

K
≤ ‖ũ‖2

2 ≤ K⋆
G, so that the approximation of problem (3.17) to problem

(3.15) is improved by selecting a loading factor ǫ as small as possible. Let λ−(C) denote

the minimum eigenvalue of C. Therefore, the smallest ǫ value that makes C̃ positive

semidefinite is given by

ǫ = −min
{
0, λ−(C)

}
, (3.19)

which turns problem (3.17) into a convex problem and well approximates problem

(3.17) to problem (3.15). However, in order to determine ǫ, cf. (3.19), an EVD of C

is required, which is an undesired operation due to its complexity. This EVD can be

avoided by upper bounding ǫ. Unfortunately, the author does not know the existence

of a tight upper bound for the absolute value of the minimum eigenvalue of a real

non-negative symmetric matrix like C.

In the following, alternatives that do not involve complex operations are proposed to

upper bound ǫ with a value ε. Let ek, k = 1, . . . , K, denote the kth column of the

K ×K identity matrix IK and let 1K denote a K × 1 vector of ones. According to the

Perron-Frobenius theorem, the dominant eigenvalue λ+(C) of C is always non-negative

and is lower bounded by min
{
1T

KCe1, . . . ,1
T
KCeK

}
[Mey01]. Because a loading factor

ǫ is only needed if λ−(C) < 0, the lower bound of λ+(C) can be used to upper bound
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ǫ, i.e., a reliable upper bound ε for ǫ can be defined as

0 ≤ ǫ ≤ ε = min
{
1T

KCe1,1
T
KCe2, . . . ,1

T
KCeK

}
≤ λ+(C), (3.20)

and C̃ can be redefined as C̃ , C + εIK . Because the upper bound ε in (3.20) is often

not a tight bound to ǫ, a non-negative value for ε can be alternatively determined based

on measurements. In the investigations conducted in this thesis, no value larger than

or equal to 1 has been observed for ǫ so that it was decided to arbitrarily set ε to one,

which means C̃ , C + IK .

In the following, the potential combination of CGA with other grouping metrics is

discussed and the conditions that grouping metrics must fulfill in order to be used with

the CGA are stated. Until now, it might seem that CGA can only be used with the

fCC(G). However, the CGA is in essence the convex relaxation of the quadratic integer

optimization problem (3.15) and it can be used with any grouping metric that allows

stating a real, symmetric, and positive semidefinite matrix C. Indeed, even a hermitian

matrix could also be used. However, due to the quadratic form of (3.15), only its real

part would be taken into account in the optimization. Moreover, no restrictions on

the definition of a are imposed. Let ̺j,k be a spatial compatibility metric among the

channels of MSs j and k used to compose C analogously to ρj,k of (3.6). Thus, ̺j,k

must fulfill

̺k,j = ̺j,k, (3.21a)

̺k,j ≥ 0, (3.21b)

in order to be used with CGA. Condition (3.21a) ensures symmetry for C, but not

necessarily positive semidefiniteness. In this case, diagonal loading of C with ε can be

applied again to build a positive semidefinite matrix C̃ to be used in the approximation

problem. Condition (3.21b) ensures that the entries in C are non-negative so that the

upper bound ε in (3.20) can be applied. As an example, the squared cosine of the

angle between two vector channels ĥj and ĥk given by
Re2{ĥj ĥ

H

k }
‖ĥj‖2

2‖ĥk‖
2
2

, the grouping metrics

proposed in [SS04a], as well as the equal norm grouping metric in [STKL01], respect

(3.21) and could be used with the CGA. Anyway, in the investigations conducted in

this thesis only fCC(G) will be combined with the CGA.

In spite of solving only an approximation problem for (3.15), the CGA builds efficient

SDMA groups, as it will be seen later in this chapter. Moreover, the complexity of the

CGA, which relies on numerical convex optimization methods, will also be investigated

later in this chapter.

In the following, the BFA is described. The BFA has been proposed in [STSK98,

STKL01]. Starting with an SDMA group containing a single MS, the BFA sequentially

extends the group by admitting to it the MS that most increases the grouping metric.

Let G = {k′} be the initial SDMA group containing only the MS k′ and let KG be

the size of G. Then, the BFA temporarily admits one MS k 6∈ G to the SDMA group
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G and computes the grouping metric f(·)(G) for this extended group. This MS k is

removed from G and the process is repeated with the next MS. After the grouping

metrics for the groups built by temporarily admitting each of the K − KG MSs have

been computed, the MS which resulted in the highest value for the grouping metric

when admitted to G is permanently inserted into the group. Then, the same procedure

is repeated with the remaining MSs for the extended group until the group size KG

reaches the target SDMA group size K⋆
G or until no more MSs able to increase the

grouping metric exist. The BFA is presented in Table 3.2.

Table 3.2. Best Fit Algorithm.

1. Select an initial MS k′ and build G = {k′}.
2. While KG < K⋆

G

(a) Set G′ = G ∪
{

arg max
k 6∈G

{
f(·)(G ∪ {k})

}

}

.

(b) If f(·)(G′) > f(·)(G), set G = G′, otherwise stop.

3. Define the best group as G⋆ = G.

An example of the BFA is shown in Fig. 3.2 for a total number K = 9 of single-

antenna MSs and M = 4 antennas at the BS. A target SDMA group size K⋆
G = M = 4

is assumed. Therein, MS k′ = 1 is selected as the MS for the initial SDMA group G.

Then, MSs 2 to 9 are temporarily admitted to G. The grouping metric is computed

and one finds out that MS 3 is the MS that at most increases the grouping metric when

admitted to G. MS 3 is then permanently added to G, and the process is repeated now

for MSs 2, and 4 to 9, with MS 9 being added in the sequence, followed by MS 4, when

the size of G size reaches the target SDMA group size K⋆
G and the BFA finishes.
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Figure 3.2. Example of BFA.

Because the BFA tests only a small number of candidate SDMA groups and relies on

a simple heuristic, it is less complex than the ESA and CGA.
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In the following, the FFA is described. The FFA has also been proposed in [STKL01].

Starting with an initial SDMA group G containing a single MS k′, the FFA sequentially

extends G by immediately admitting an MS k 6∈ G whenever the admission of this MS

improves the grouping metric. Then, this procedure is repeated considering the next

MS and the extended group until the target SDMA group size K⋆
G is reached or until

no more MSs able to increase the grouping metric exist. The FFA is presented in

Table 3.3.

Table 3.3. First Fit Algorithm.

1. Select an initial MS k′ and build G = {k′}.
2. While KG < K⋆

G

(a) Set G′ = G ∪ {k}, with k 6∈ G.

(b) If f(·)(G′) > f(·)(G), set G = G′.

3. Define the best group as G⋆ = G.

Differently from the BFA, which test all MSs that do not belong to G and admits the

one that at most increases the grouping metric, the FFA admits permanently an MS k

as soon as the grouping metric computed for G∪{k} is larger than the grouping metric

computed for the group G without the new MS k. Thus, in order to build G⋆ the FFA

involves less computations than the BFA.

The RGA needs not many comments. As stated before, it just randomly selects a

group of K⋆
G MSs to build the SDMA group G⋆. Consequently, it is less complex than

the other grouping algorithms in this section.

3.2.3 SDMA Algorithm Definition

In this section, the SDMA algorithms that will be investigated in this work are defined

by combining the grouping metrics from Section 3.2.1 and the grouping algorithms

from Section 3.2.2.

The SDMA algorithms will be named after the grouping metric and grouping algo-

rithm. For example, the SDMA algorithm employing the group capacity fCAP(G) as

grouping metric and ESA as grouping algorithm will be named CAP-ESA. The SDMA

algorithms and their names are listed in Table 3.4.

Table 3.4 does not contain all the possible SDMA algorithms that could be defined by

combining the grouping metrics from Section 3.2.1 and the grouping algorithms from

Section 3.2.2, but only those SDMA algorithms in which grouping metric and grouping

algorithm can be suitably combined. In the following, the reasons for not combining

certain grouping metrics and grouping algorithms are discussed.

The CAP-ESA exhaustively searches for the group that maximizes the sum rate on the

considered resource. In this chapter, the main function of the CAP-ESA is to upper
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Table 3.4. SDMA algorithms.

SDMA algorithm Grouping metric Grouping algorithm

CAP-ESA fCAP(G) ESA

CC-CGA fCC(G) CGA

CAP-BFA fCAP(G)

SP-BFA fSP(G)

WN-BFA fWN(G)

CC-BFA fCC(G)

BFA

WN-FFA fWN(G) FFA

RGA - RGA

bound the performance of the other SDMA algorithms in terms of the sum rate and,

although possible, combinations of other grouping metrics with the ESA would not

fulfill this requirement and are consequently unnecessary.

In general, fCAP(G) and fSP(G) do not fulfill the constraints in (3.21) and, therefore,

cannot be efficiently combined with CGA. In spite of being possible, a combination

of fWN(G) with the CGA would not be in accordance with properties described in

Section 3.2.1 and which underlie the design of fWN(G).

Grouping metrics that necessarily increase when a new MS is added to the SDMA group

G, such as fSP(G) and fCC(G), cannot be efficiently combined with the FFA, since the

first K⋆
G MSs would always be selected to build the best SDMA group. Combining

fCAP(G) with FFA is also not recommendable. In this case, FFA would admit an MS

to the SDMA group whenever the group capacity increases. Because it is often the

case that each MS increases the group capacity at least very slightly, this would lead

very often to wrong admissions and correspondingly degrade the performance of the

SDMA algorithm.

The RGA does not make use of any grouping metric and its main function is to lower

bound the performance of the other SDMA algorithms in terms of the sum rate.

In Table 3.4, the CAP-ESA and the CAP-BFA are the only SDMA algorithms that

are aware of the actual precoding and power allocation because the group capacity

fCAP(G) of (3.2) used by these SDMA algorithms depends on the precoding vectors

and on the allocated powers. The remaining algorithms of Table 3.4 are consequently

unaware of the actual precoding and power allocation since the grouping metrics that

they employ do not depend on the precoding vectors or on the allocated powers.

It is also worth noting that the convex combination of the total spatial correlation and

channel gains fCC(G) of (3.13) is to be minimized for the MSs in an SDMA group.

Therefore, when combined with the BFA, the best MS to be admitted to the SDMA

group in step 2a of Table 3.2 is the one that increases the grouping metric minimally.

Anyway, this fact has no impact on the SDMA algorithms, since changing from maxi-

mization to minimization in the algorithms is straightforward.
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In the following, some remarks are made regarding the novelty of the SDMA algorithms

employing the CGA, BFA, and FFA as grouping algorithms. The CC-CGA is a new

SDMA algorithm proposed here. As approximation for the SDMA grouping problem,

the CC-CGA formulates a quadratic convex optimization problem which depends only

on the spatial correlation and channel gains of the MSs and which can be efficiently

solved using convex optimization.

The BFA has been proposed in [STKL01], but its combination with the metrics fWN(G)

and fCC(G) is newly introduced here. The CAP-BFA has been investigated by the

author in [MK06] while there were parallel studies in [DS04, DS05, FDH07]. The SP-

BFA has been considered, e.g., in [YG05, TUBN06, MSLT07]. The SDMA algorithms

employing BFA are considered here as low-complexity heuristic alternatives to solve

the SDMA grouping problem and whose computational effort is mainly concentrated

on the computation of the grouping metric.

The SDMA algorithm WN-FFA is a suboptimal SDMA algorithm with even lower

complexity than those employing ESA, CGA, or BFA as grouping algorithm. The

combination of the FFA with fWN(G) is newly introduced in this thesis.

In the following, some aspects related to the computational efficiency to be taken into

account when defining the SDMA algorithm are discussed. For grouping algorithms

that admit one MS at a time to the SDMA group, such as the BFA and the FFA, a

grouping metric that can be written in a recursive form is preferred, since the decision

about the new MS to be admitted can be taken by reusing the metric values previously

computed and by calculating only a complementary term associated with the respective

new MS. In this way, considerable computational effort can be saved. In general,

fCAP(G) cannot be put in a recursive form due to its dependency on the precoding and

power allocation. fSP(G) is essentially recursive. As it will be shown in the sequel,

for fWN(G) a simple recursive version can be derived, which can be combined with the

BFA and the FFA. Similarly, a simple recursive version of fCC(G) can also be derived

and combined with the BFA.

In the following, a recursive form for fWN(G) is derived. Let G be the SDMA group

containing the KG MSs already admitted by the BFA or FFA. Let j 6∈ G denote the

index of the MS that might be admitted to G. Let G ′ = G ∪ {j} denote the extended

SDMA group of size K ′
G = KG + 1 obtained by admitting the MS j to G. Using (3.9)

and the geometric mean µG associated with the SDMA group G, the geometric mean

µG′ associated with the extended SDMA group G ′ can be written as

µG′ =

(
∏

j∈G′

‖ĝj‖2

)1/KG′

=

(

‖ĝj‖2

∏

i∈G

‖ĝi‖2

)1/KG′

=
(

‖ĝj‖2
︸ ︷︷ ︸

ℓ1

µ
KG

G

)1/KG′

. (3.22)

Let [·]r,c denote the element in the rth row and cth column of a matrix. Remembering

that the MS j is the unique MSs that belongs to G ′ and does not belong to G, the
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Frobenius norm in the denominator of (3.10) can be written for the extended SDMA

group G ′ as

‖CG′‖
f

=

(
∑

ı̃∈G′

∑

̃∈G′

[CG′ ]2ı̃,̃

)1/2

=

(
∑

ı̃∈G

∑

̃∈G

[CG]2ı̃,̃ + 1 + 2
∑

i∈G

[CG]2i,j

)1/2

=

(

‖CG‖2
f
+ 1 + 2

∑

i∈G

[CG]2i,j

)1/2

=

(

‖CG‖2
f
+ 1 + 2

∑

i∈G

ρ2
i,j

︸ ︷︷ ︸

ℓ2

)1/2

,
(3.23)

and, if µG and ‖CG‖f
associated with the SDMA group G are known, only the terms

ℓ1 in (3.22) and ℓ2 in (3.23) need to be computed to determine the value of fWN(G ′).

In the following, a recursive form for fCC(G) is derived. Let u of (3.12) denote the

binary selection vector associated with the SDMA group G, so that uk|k=j = 0. Using

(3.13), fCC(G ′) can be written for the extended SDMA group G ′ as

fCC(G ′) =
(1 − β)

‖C‖
f

(
uTCu + 2uT

KCej + 1
)

+
β

‖a‖
f

(
aTu + aTej

)

= fCC(G) +
(1 − β)

‖C‖
f

(
2uT

KCej + 1
)

+
β

‖a‖
f

‖ĥj‖−2
2

= fCC(G) +
(1 − β)

‖C‖
f

(

1 + 2
∑

i∈G

ρi,j

)

+
β

‖a‖
f

‖ĥj‖−2
2

︸ ︷︷ ︸

ℓ3

,

(3.24)

and, if fCC(G) is known, only the term ℓ3 in (3.24) needs to be computed to determine

fCC(G ′).

In the following, some remarks related to the target SDMA group size K⋆
G and the

initial MS k′ are done. Both K⋆
G and k′ are parameters that restrict the number of

candidate SDMA groups to be considered when looking for the best SDMA group

G⋆ and they correspond to simplifications introduced into the design of the grouping

algorithms, e.g., in order to allow an adequate mathematical formulation or to limit

their complexity. Indeed, there exist only
(

K
K⋆

G

)
candidate groups of size K⋆

G, which can

be a much smaller number than the total number G of SDMA groups given by (2.14).

The group capacity does not monotonically increase with the SDMA group size KG

[MK06, MK07a, MK07c]. Actually, the group capacity depends on both size and

composition of the SDMA group, as well as on the precoding and power allocation

algorithm employed by the system [Cal04, FDH05, LZ06, MK06, MK07a, MK07c].

The ideal value for the target SDMA group size K⋆
G can not be determined a priori

[MK06, FDH07, MK07a]. However, because the larger the SDMA group, the higher

the potential spatial multiplexing gains [FDH05], it is a common practice to set K⋆
G

to the maximum admissible size, i.e., to set K⋆
G = M [YG05, MK06, Wil06, TUBN06,

MK07b, MK08].
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For the BFA and FFA of Table 3.2 and Table 3.3, respectively, the target SDMA group

size K⋆
G corresponds to the largest group size that the grouping algorithms will build,

so that groups of smaller size can be obtained, e.g., if there are no more MSs that

increase the grouping metric and the condition in step 2b of Table 3.2 or the condition

in step 2b of Table 3.3 is not fulfilled. Differently from BFA and FFA, for the CGA

and RGA the target SDMA group size K⋆
G is definitely the size of the best group G⋆.

As discussed in Section 1.2, a posterior adjustment of the SDMA group size by means

of an SRA might improve the sum rate of the system. The SRA is indicated in the

lowest block of Fig. 1.3 and will be discussed in Section 3.3.3.

The selection of the initial MS k′ leaves only K − 1 MSs to be potentially admitted

to an SDMA group and, consequently, also reduces the number of candidate groups

considered by a grouping algorithm.

The BFA and FFA require that an initial MS k′ be defined. Anyway, for the CGA an

initial MS k′ can be selected by adding a constraint ũk′ = 1 to problem (3.17), while

for the ESA and RGA there is no need to define an initial MS k′.

3.3 Precoding and Power Allocation Algorithms

3.3.1 Precoding Algorithm

In this section, the precoding algorithms shown in the lower half of Fig. 1.3 are dis-

cussed. They have the task of efficiently separating in space the signals transmitted to

MSs of an SDMA group.

There exist different spatial processing techniques that allow to separate signals sent

over the same resource [PNG03]. Nevertheless, in this thesis only linear precoding

techniques are going to be considered [SSH04, JUN05], cf. Section 2.3. They are

usually simpler to implement and to mathematically deal with, but might not perform

as well as non-linear techniques [Qiu04, Joh04, SH05].

In this thesis, two precoding algorithms are considered: the Zero-Forcing (ZF) pre-

coding algorithm [PNG03, SSH04, JUN05] and a Generalized Eigen-Precoding (GEP)

algorithm [SB04, BS05, Ger05].

In the following, ZF precoding is described. Using the channel matrix Ĝ of the SDMA

group G, which has been defined in Section 3.2.1, the DL SINR γi of an MS i, i =

1, . . . , KG, in G can be written, similarly to (2.11), as

γi =
pi ‖ĝiwi‖2

2

σ2 +
KG∑

j=1,j 6=i

pj ‖ĝiwj‖2
2

. (3.25)
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ZF precoding imposes a ZF constraint on the interference among MSs in the SDMA

group G, so that in (3.25) one must have

KG∑

j=1,j 6=i

pj ‖ĝiwj‖2
2 = 0,∀i ∈ G. (3.26)

The condition in (3.26) implies that the precoding vector wi of MS i must belong to the

joint null space of the channels of all the other MSs in G [SSH04]. Let G̃i ∈ C
(KG−1)×M

denote a matrix containing the channels of all the MSs j 6= i, j ∈ G. Let Ũi ∈
C

(KG−1)×(KG−1), Λ̃i ∈ R
(KG−1)×M
+ and Ṽi ∈ C

M×M denote the unitary matrix of the left

singular vectors, the matrix of the singular values, and the unitary matrix of the right

singular vectors of G̃i, respectively, which result from the SVD of G̃i. Let r̃i ≤ (K⋆
G−1)

denote the rank of G̃i. Then, the first r̃i columns of Ṽi are organized in the matrix

Ṽ
(1)
i and draw an orthonormal basis to the range space of G̃i [GL96, SSH04]. The last

KG − r̃i columns of Ṽi are organized in the matrix Ṽ
(0)
i and draw an orthonormal basis

to the null space of G̃i [GL96, SSH04]. Then, one has

G̃i =
[

ĝT
1 ĝT

2 . . . ĝT
i−1 ĝT

i+1 . . . ĝT
K⋆

G−1 ĝT
K⋆

G

]T

=ŨiΛ̃iṼ
H
i =ŨiΛ̃i

[

Ṽ
(1)
i Ṽ

(0)
i

]H

, (3.27)

and in order to fulfill (3.26), wi must belong to the space spanned by the columns of

Ṽ
(0)
i [SSH04]. Note that, if Ĝ is full-rank, the null space of G̃i has dimension one, i.e.,

(KG − r̃i) = 1,∀i, and wi is uniquely determined and equal to the last column of Ṽi.

With the pseudo-inverse Ĝ† of Ĝ given by

Ĝ† = ĜH
(

ĜĜH
)−1

(3.28)

[GL96, PNG03] and denoting by ĝ
†
i the ith column of Ĝ†, the precoding vector wi can

be more simply obtained as

wi =
ĝ
†
i

‖ĝ†
i‖2

(3.29)

[PNG03]. The precoding vectors wi given by (3.29) are considered in this work to

perform ZF precoding. Note that, by defining the precoding matrix W as

W =
[

w1 w2 . . . wK⋆
G

]

, (3.30)

the equivalent channel given by the product ĜW is a diagonal matrix, i.e.,

ĜW =









ĝ1

ĝ2

...

ĝK⋆
G









[

w1 w2 . . . wK⋆
G

]

=









ĝ1w1 0 . . . 0

0 ĝ2w2 . . . 0
...

...
. . .

...

0 0 . . . ĝK⋆
G
wK⋆

G









, (3.31)

and fulfills the ZF condition in (3.26). An interesting characteristic of ZF precoding

is that it fully decouples the MU MIMO channel matrix Ĝ into KG effective SISO
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channels. Because the effective channels of the MSs become independent, the power

allocated to one MS in the SDMA group G has no counter effect in terms of interference

to the other MSs in G, and the precoding algorithm and the power allocation algorithm

are fully separated of each other. Nevertheless, precoding algorithms that do not

diagonalize Ĝ are also relevant and may outperform ZF precoding in terms of sum rate

[PNG03, SPSH04, MBQ04, JUN05].

In the following, the GEP is discussed [Zet95, Zet99, SBO06]. The GEP is an algorithm

that maximizes the SINR of the MSs in an SDMA group G for a fixed power allocation

by solving a set of generalized eigenproblems. The GEP formulation considered here is

based on the duality between the UL MAC and DL BC MIMO channels [VT03, VJG03,

SB04, BS05, Ger05], which is more general. Anyway, the formulation considered here

is structurally equivalent to that in [Zet95, Zet99, SBO06] by means of a simple change

of parameters.

According to the duality theory between MAC and BC MIMO channels, precoding

vectors optimal for the dual UL problem remain optimal for the DL, so that the same

sum rate can be achieved in both the dual UL and the actual DL channels using the

same precoding vectors and an adequate power allocation [VT03, VJG03, SB04, BS05].

The dual UL channel corresponds to the actual UL channel, if the actual UL and DL

channels are reciprocal. Otherwise, the dual UL channel is a sort of virtual UL channel

associated with the actual DL channel. More details about the duality theory between

MAC and BC MIMO channels can be found, e.g., in [VT03, VJG03, SB04, BS05].

Further on, the term dual will be omitted.

Let qi denote the UL power allocated to MSs i, i = 1, . . . , KG, in SDMA group G. Then,

the UL SINR γ′
i of MS i in G can be written as

γ′
i =

qiw
H
i ĝH

i ĝiwi

wH
i

(

σ2IK⋆
G

+
K⋆

G∑

j=1,j 6=i

qjĝ
H
j ĝj

)

wi

. (3.32)

[SB04, BS05]. Comparing (3.25) and (3.32), it can be noted that the precoding vector

wi of an MS i that achieves a given DL SINR depends on the precoding vectors wj

of MS j 6= i, while in the UL this dependency does not exist, which in many cases

simplifies the determination of optimal precoding vectors for DL problems by solving

equivalent UL problems [VT03, VJG03, SB04, BS05].

In the following, (3.32) is used to determine the precoding vectors wi of the GEP, i.e.,

the precoding vectors w⋆
i that maximize (3.32) for each MS i given a fixed UL power

allocation qi, with i = 1, . . . , KG. The optimal precoding vectors w⋆
i for the GEP are

the solution of the optimization problem

w⋆
i = arg max

w

{

qiw
HR̃iwi

wH
i Q̃iwi

}

, (3.33a)
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with

R̃i = ĝH
i ĝi, (3.33b)

and

Q̃i = σ2IK⋆
G

+

K⋆
G∑

j=1,j 6=i

qjĝ
H
j ĝj = σ2IK⋆

G
+

K⋆
G∑

j=1,j 6=i

qjR̃j. (3.33c)

In [Ger05], it is shown that solving a problem of the form (3.33) is equivalent to

maintaining constant the distortionless response to the desired signal in the numerator

of (3.33a) while minimizing the interference plus noise in the denominator of (3.33a),

i.e., to solve

w⋆
i = arg min

w

{

wH
i Q̃iwi

}

, (3.34a)

subject to: wHR̃iwi = 1. (3.34b)

Taking the first Karush-Kuhn-Tucker (KKT) condition [BV04] for the problem (3.34),

i.e., by setting the derivative ∂L(wi,λi)
∂wi

of the Lagrangian function L(wi, λi) of (3.34)

equal to zero, where λi is the Lagrange multiplier, the generalized eigenvalue problem

∂L(wi, λi)

∂wi

= 0 ⇔ Q̃iwi − λiR̃iwi = 0 ⇔ Q̃iwi = λiR̃iwi (3.35)

is obtained. According to [Ger05, SB04, BS05], the optimal precoding vector w⋆
i that

solves (3.33) corresponds to the dominant eigenvector of the generalized eigenvalue

problem (3.35). Consequently, the precoding vectors of the GEP algorithm are found

by determining the dominant eigenvector of (3.35) for each MS individually.

In the following, two remarks regarding the GEP presented in this section are provided.

The problem formulation in (3.33) is different of the GEP originally formulated in

[Zet95, Zet99, SBO06]. The differences lie on the fact that in [Zet95, Zet99, SBO06]

qi = 1,∀i, Ri of (2.6) is employed instead of R̃i of (3.33b), and a scaling factor σ̃ is

considered instead of σ2. Since in (3.33), wi is the optimization variable and R̃i, qi, and

σ2 are only the problem data [BV04], problem (3.33) matches the formulation in [Zet95,

Zet99, SBO06] by means of a simple change of parameters. Thus, the formulation in

[Zet95, Zet99, SBO06] can be seen as particular instance of problem (3.33).

The GEP of (3.33) is based on the framework proposed in [SB04, BS05]. Differently

from the ZF precoding, the GEP does not diagonalize the group channel matrix Ĝ and,

in spite of being independent of each other, the optimal precoding vectors w⋆
i of MS i

still depend on the allocated power qj of the MSs j 6= i. According to [SB04, BS05], this

dependency suggests an iterative alternate optimization of precoding vectors and power

allocation and, consequently, a joint optimization of precoding and power allocation. A

joint precoding and power allocation algorithm for a weighted SINR balancing problem
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has been investigated in [SB04, BS05]. Later in Section 3.3.4, a joint precoding and

power allocation algorithm employing the GEP will be discussed.

Considering multi-antenna terminals, a comprehensive set of linear and non-linear pre-

coding algorithms can be found in [Sta06]. In particular, generalizations of ZF and

Minimum Mean Square Error (MMSE) precoding can be found, e.g., in [SSH04, SH08].

The precoding algorithms in [Sta06] fully cope with receive antenna cooperation at

the MSs and can be efficiently employed in RA strategies to maximize the sum rate

[FDH05, FDH07].

3.3.2 Power Allocation Algorithm

In this section, the two power allocation algorithms considered in this thesis are de-

scribed, namely, the Water Filling Algorithm (WFA) and the Soft Dropping Algorithm

(SDA).

The WFA is a well-known iterative solution to the convex problem of maximizing the

sum rate of a set of independent channels [PNG03, BV04, PF05, CT06]. The WFA

finds application in many multi-channel systems, e.g., for subcarrier power allocation

in SISO OFDMA systems [Liu04] or for power allocation to MSs on the spatial layers of

one or more resources [SSH04, Cal04, DS05, MK06, TUBN06, FDH07, MK07a]. This

latter is the case of interest in this chapter, which considers a single resource.

Let the power allocation vector p containing the power pi allocated to each MS i, i =

1, . . . , KG, in the SDMA group G be defined as

p =
[

p1 p2 . . . pKG

]H

. (3.36)

The WFA corresponds to solving the convex optimization problem

p⋆ = arg max
{p}







K⋆
G∑

i=1

log2

(

1 + pi
‖ĝiwi‖2

2

σ2

)





(3.37a)

subject to: pi ≥ 0,∀i ∈ G (3.37b)

KG∑

i=1

pi = Pb (3.37c)

[PNG03, BV04, PF05, CT06], which is accomplished by employing the iterative algo-

rithm of Table 3.5 [PF05].

In the following, a new SDA is described. The SDA is an iterative power allocation

algorithm derived from the SDPC algorithm of [YGRS97], which performs distributed

Power Control (PC) among co-channel links in a multi-cell SISO system. The SDA can
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Table 3.5. Water Filling Algorithm.

1. Sort the MSs in G so that ‖ĝ1w1‖2
2 ≥ ‖ĝ2w2‖2

2 ≥ . . . ≥
∥
∥ĝKG

wKG

∥
∥2

2
.

2. For K̃ = KG to 1,

If

(

σ2

‖ĝ
K̃

w
K̃‖2

2

)

K̃ −
(

Pb +
K̃∑

i=1

σ2

‖ĝiwi‖
2
2

)

< 0, go to step 3.

3. Compute the water level µ = 1
K̃

(

Pb +
K̃∑

i=1

σ2

‖ĝiwi‖
2
2

)

.

4. For i = 1 to KG

If i ≤ K̃, set pi = µ − σ2

‖ĝiwi‖
2
2

, else set pi = 0.

5. Sort the MSs back to their original order.

be seen as an extension of the SDPC to a MU MIMO system and includes an initial

power allocation and takes into account the total power constraint of (3.1c). In this

case, differently from [YGRS97], the interferers are no longer located in other cells, but

correspond to the MSs which belong to the same SDMA group.

In order to allocate power to the MSs in an SDMA group, the SDA considers a power-

dependent target SINR which decreases with the amount of power allocated to an MS,

so that an MS with bad channel condition and which requires more power will target at

lower SINR values than another MS whose channel condition is good. Consequently,

a self-regulation of the target SINR of the MS takes place and a margin to a more

efficient power usage among several MSs is created.

In the following, the power-dependent target SINR γ̄i and the power allocation of SDA

are described. Let γ̌ and γ̂ denote the minimum and maximum target SINR that an

MS can aim at, respectively, and let Γ̌ and Γ̂ be their respective values in dB. Similarly,

let p̌ and p̂ denote the minimum and maximum power that can be allocated to an MS,

respectively, and let P̌ and P̂ be their corresponding values in dBW. The parameters

γ̌, γ̂, p̌, and p̂ might be adjusted for each MS individually. However, the analysis in

this work is limited to the case in which γ̌, γ̂, p̌, and p̂ are the same for all MSs.

For the SDA, the power-dependent target SINR Γ̄i is defined as illustrated in Fig. 3.3

[YGRS97].

P̌ P̂

Γ̌

Γ̂

Pi

Γ̄i

Figure 3.3. Power-dependent target SINR Γ̄i for SDA.



66 3. Resource Allocation in MIMO-OFDMA Systems: Single Resource

Let t̃ denote the iteration of the SDA, which should not be confused with the time t.

At iteration t̃, let γ̄
(t̃)
i and Γ̄

(t̃)
i denote the target SINR of MS i in linear and in dB

scale, respectively, and let p
(t̃)
i and P

(t̃)
i denote the power allocated to MS i in W and

in dBW, respectively. Then, according to Fig. 3.3, the target SINRs Γ̄
(t̃)
i and γ̄

(t̃)
i for

the SDA can be written as

Γ̄
(t̃+1)
i = min

{

max

{(

Γ̂ − Γ̌

P̌ − P̂

)

P
(t̃)
i + Γ̌, Γ̌

}

, Γ̂

}

⇔

γ̄
(t̃+1)
i = min






max






γ̌

(

p
(t̃)
i

p̂

)ζ

, γ̌






, γ̂






, with ζ =

log10(γ̂/γ̌)

log10(p̌/p̂)

(3.38)

[MK07c], while the power allocated to MS i at iteration t̃ [MK07a] is given similarly

by

P
(t̃+1)
i = P

(t̃)
i + ξ(Γ̄

(t̃)
i − Γ

(t̃)
i ) ⇔ p

(t̃+1)
i = p

(t̃)
i

(

γ̄
(t̃)
i

γ
(t̃)
i

)ξ

, (3.39)

where ξ is a feedback parameter controlling the fraction of the difference between the

target and the current SINRs that should be compensated at each iteration of the SDA

[AEW94, ZKAQ01, Gun00, PED04, MK07c].

In the following, the SDA is presented. Using (3.36), let p(t̃) denote the power allocation

vector at iteration t̃. Starting from an initial power allocation vector p(0), the current

and the target SINRs of each MS can be calculated using (3.25) and (3.38), respectively.

For p(0), an EPA among the MSs in G is a good choice since it is fair and does not bias

the power allocation to any MS in particular. Then, each component p
(t̃)
i of the power

vector p(t̃) can be iteratively updated according to (3.39) until the power allocation

vector p(t̃) converges to an optimal power allocation vector p⋆ to a specified precision

ǫp. Using these definitions, the SDA is presented in Table 3.6.

Table 3.6. Soft Dropping Algorithm.

1. Set t̃ = 0 and p(t̃) = p(0) = (Pb/KG)1KG
.

2. Set t̃ = t̃ + 1.

3. For i = 1 to KG , compute w
(t̃−1)
i using (3.33).

4. For i = 1 to KG , compute γ
(t̃−1)
i using (3.25).

5. For i = 1 to KG , compute γ̄
(t̃)
i using (3.38).

6. For i = 1 to KG , update the power p
(t̃)
i using (3.39).

7. Set p(t̃) = p(t̃)

‖p(t̃)‖
1

Pb in order to fulfill the constraint (3.1c).

8. If min
{∣

∣
∣p

(t̃)
i − p

(t̃−1)
i

∣
∣
∣ , . . . ,

∣
∣
∣p

(t̃)
KG

− p
(t̃−1)
KG

∣
∣
∣

}

> ǫp, go to step 2, otherwise stop.

Note that the normalization of p(t) in step 7 of Table 3.6 is required in order to fulfill

the constraint (3.1c). Furthermore, note that by adequately setting the parameters

γ̌, γ̂, p̌ p̂, the target SINRs aimed at the MSs can be varied and different sum rate
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values can be achieved in the system. In fact, as it has been discussed by the author

in [MK07c], an SINR balancing as well as the maximization of the sum rate of the

system might be pursued by the SDA through an adequate setting of the parameters

γ̌, γ̂, p̌, and p̂. Anyway, the parameter settings considered in this work will aim only

at maximizing the sum rate of the system.

3.3.3 Sequential Removal Algorithm

In this section, the Sequential Removal Algorithm (SRA) is described, which is re-

sponsible for adjusting the size of the SDMA groups as to enhance the sum rate of

the system. Some of the SDMA algorithms introduced in Section 3.2.3 are unaware of

the actual precoding and power allocation and, consequently, these SDMA algorithms

might build groups containing MSs that do not contribute to enhance the sum rate of

the system, as discussed in Section 1.2. Consider for example the case in which ZF

precoding and the WFA are used. Whenever the WFA allocates null power to an MS,

this MS does not contribute to enhance the group capacity anymore. On the contrary,

since the channels of the others MSs in the SDMA group are projected onto the null

space of the channel of this one MS, its removal from the group can only improve the

group capacity [Cal04, MK06].

In order to decide which MSs should be removed from the SDMA group by the SRA,

the two following criteria are considered:

1. The Lowest Gain First (LGF), in which the MS in the group with the lowest effective

channel gain is removed, i.e., the MS i⋆ to be removed is defined as

i⋆ = arg min
i∈G

{
‖ĝiwi‖2

2

}
. (3.40)

2. The Highest Power First (HPF), in which the MS demanding the highest amount

of power is removed, i.e., the MS i⋆ to be removed is defined as

i⋆ = arg max
i∈G

{pi} . (3.41)

The LGF criterion is reasonable, since the lower the effective channel gain of an MS in

an SDMA group is, the lower its achievable capacity is. Thus, removing the MS with

the lowest channel gain might improve the performance of the other MSs in the group.

This criterion has been adopted, e.g., in [Cal04, MK06].

The HPF criterion is also a reasonable criterion, since the worse the channel condition

of an MS in an SDMA group is, e.g., in terms of channel gain, the more power the

MS requires to attain a certain SINR. Thus, removing the MS requiring the largest

amount of power makes available a considerable amount of power that might be used
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to improve the performance of the other MSs in the SDMA group. This criterion has

been adopted, e.g., in [SBO06, MK07c].

In the following, the SRA is presented. It removes one MS from the SDMA group G
according to the LGF or the HPF criterion. Then, using (3.2), the SRA computes

and stores the capacity for the resulting SDMA group taking into account the actual

precoding and power allocation algorithms. Then, the process is repeated and another

MS is removed, and so on. At the end, the SDMA group with the highest capacity is

kept as the best SDMA group G⋆. The proposed SRA is presented in Table 3.7.

Table 3.7. Sequential Removal Algorithm.

1. Set G = G⋆ and compute the group capacity fCAP(G) using (3.2).

2. While the size KG of G is greater than or equal to one

(a) Determine the MS i⋆ using (3.40) or (3.41) and
remove it from G, i.e., set G = G \ {i⋆}.

(b) Compute the group capacity fCAP(G) of G using (3.2).

(c) If fCAP(G) > fCAP(G⋆), define G⋆ = G.

Note that, for an SDMA group G of size KG, the SRA needs to compute KG group

capacities using (3.2). However, because KG is relatively small and because the size of

the SDMA group G is sequentially reduced, these computations add only slightly to

the complexity of the RA strategies that consider the SRA. Nevertheless, the SRA can

provide considerable gains to the system in terms of sum rate, as it has been shown by

the author in [MK06, MK07a].

3.3.4 Precoding and Power Allocation Algorithm Definition

In this section, the precoding and power allocation algorithms are defined, which com-

bine a precoding algorithm from Section 3.3.1, a power allocation algorithm from Sec-

tion 3.3.2 and, if adequate, the SRA from Section 3.3.3 with a suitable MS removal

criterion. Furthermore, in this section iterative joint precoding and power allocation is

also approached for the algorithms in which precoding vectors and the allocated pow-

ers present an interdependency. In this chapter, the precoding and power allocation

algorithms listed in Table 3.8 are considered.

Table 3.8. Precoding and power allocation algorithms.

Power SRA
Algorithm Precoding

allocation criterion

ZF ZF WFA LGF

GEP GEP SDA HPF

As it can be seen in Table 3.8, the precoding and power allocation algorithms are

named only after the precoding algorithm since a single power allocation algorithm and



3.3. Precoding and Power Allocation Algorithms 69

a single removal criterion for the SRA are associated with each precoding algorithm.

Therefore, the term ZF will be used to indicate either the ZF precoding algorithm

defined in Section 3.3.1, or the combination of ZF precoding, WFA, and SRA using

the LGF criterion, cf. Table 3.8. Analogously, the term GEP might also mean GEP

algorithm from Section 3.3.1 or the its combination with the SDA and the SRA using

the HPF criterion, cf. Table 3.8. Nevertheless, whenever required by the context, a

clear distinction about these cases will be explicitly made.

In the following, the combinations of the precoding algorithm, power allocation algo-

rithm, and the SRA criteria are briefly justified. The combination of ZF precoding and

WFA is justified by the fact that the WFA is designed for parallel channels, which are

obtained with ZF precoding as effective channels, cf. (3.31). If the employed precoding

algorithm does not decouple the MIMO channel matrix into a set of independent SISO

channels, the WFA will no longer maximize the sum rate in problem (3.37) since inter-

ference among MSs sharing a same resource in space takes place and the assumption

of having parallel independent channels does not hold anymore. Because the WFA

is employed, the LGF criterion for the SRA is a suitable choice, since the MS with

the lowest effective channel gains are the ones that will most probably get no power

[Cal04, MK06].

The combination of GEP and SDA is justified by the fact that there is a dependency

between precoding vectors and allocated powers by the GEP, cf. Section 3.3.1, which

can be iteratively handled by the SDA in order to attain a suitable trade-off between the

achieved sum rate, the intra-cell interference, and the efficient usage of the available

power. Nevertheless, the SDA might be combined with other precoding algorithms.

Moreover, because the SDA is employed, the HPF criterion for the SRA is a suitable

choice, since the MS demanding the highest amount of power is probably the one with

the worst SINR and its removal will make available the highest amount of power, which

might be more efficiently used by the other MS in the SDMA group [MK07c].

In fact, the combination of GEP and SDA results into a joint optimization of precoding

and power allocation which follows the iterative alternate optimization framework of

[SB04, BS05]. In the following, the joint optimization of precoding and power allocation

considering the GEP and the SDA is described. Similarly to [SB04, BS05], the precod-

ing and power allocation problems are solved in the UL and a power allocation for the

DL is obtained afterwards. The new joint precoding and power allocation algorithm

considers target SINRs that dynamically vary according to (3.38) and, consequently,

is more flexible than the algorithms in [SBO06, SB04, BS05].

Initially a convergence proof for the SDA in UL is provided. Then, the power allocation

in the DL is determined from the power allocation in the UL and, finally, the joint

precoding and power allocation algorithm combining the GEP and SDA is presented.

In the following, the required conditions for the convergence of the SDA in the UL are

newly provided. Because the SDA is iterative, its convergence acquires an important
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role. Analogously to (3.36), let the power allocation vector q containing the power qi

allocated in the UL to each MS i, i = 1, . . . , KG, in the SDMA group G be defined as

q =
[

q1 q2 . . . qKG

]H

(3.42)

In [Yat95], a framework for UL PC has been proposed, which shows that a power

iteration of the form

q(t̃+1) = I(q(t̃)) (3.43)

always converges to the optimal power vector q⋆ whenever I(q) is a standard inter-

ference function, i.e., whenever I(q) satisfies the following properties for any q with

qi ≥ 0 and i = 1, . . . , KG:

1. Positivity: I(q) ≥ 0.

2. Monotonicity: I(q) ≥ I(q′), for q ≥ q′, i.e., qi ≥ q′i,∀i.

3. Scalability: aI(q) ≥ I(aq), for a ≥ 1.

In [PED04], the SDPC of [YGRS97] is extended to the UL of a SU MIMO system and

is shown to be a standard interference function in this scenario. Because the SDA is

derived from the SDPC, the convergence proof provided in [PED04] can be adapted to

the SDA, thus extending the results in [PED04] to the MU MIMO case. In fact, this

extension has been done by the author in [MK07c], where the joint optimization of

precoding and power allocation of [SB04, BS05] has been adapted to employ the SDA.

Moreover, in [MK07c] it has also been shown that the proposed algorithm combining the

GEP and SDA converges after a few iterations, just like the weighted SINR balancing

algorithm of [SB04, BS05].

The proof of the three properties of standard interference functions for SDA are pro-

vided in the sequel. These proofs are very similar to that provided in [PED04] for the

UL of a SU MIMO channel, since no large structural differences between the SU MIMO

and the MU MIMO channels exist. Let W(t̃) be the precoding matrix at iteration t̃

of the SDA. W(t̃) has the same form of (3.30), however each column w
(t̃)
i of W(t̃) is

obtained according to the GEP by solving (3.33) for the ith MS considering the power

allocation vector q(t̃). Therefore, using (3.32), (3.33), (3.38), and (3.39), one has

q
(t̃+1)
i = I(q

(t̃)
i ) = q

(t̃)
i



min






max






γ̌

(

q
(t̃)
i

p̂

)ζ

, γ̌






, γ̂







(

w
(t̃),H
i Q̃

(t̃)
i w

(t̃)
i

q
(t̃)
i w

(t̃),H
i R̃

(t̃)
i w

(t̃)
i

)



ξ

. (3.44)

In spite of being possible to put (3.44) in matrix form, it cannot be solved as a linear

system, as done for the weighted SINR balancing problem in [SB04, BS05], since (3.44)

is non-linear in qi. Anyway, the standard interference properties can be demonstrated

component-wise as follows.

Positivity for I(q
(t̃)
i ) in (3.45) follows directly, since all involved terms are positive for

all γ̄i.
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Using (3.44), for γ̌ ≤ γ̄i ≤ γ̂ one has

I(q
(t̃)
i ) = q

(t̃)
i



γ̌

(

q
(t̃)
i

p̂

)ζ (

w
(t̃),H
i Q̃

(t̃)
i w

(t̃)
i

q
(t̃)
i w

(t̃),H
i R̃

(t̃)
i w

(t̃)
i

)



ξ

=
(

q(t̃)
)1+ζξ−ξ

[

γ̌w
(t̃),H
i Q̃

(t̃)
i w

(t̃)
i

p̂ζw
(t̃),H
i R̃

(t̃)
i w

(t̃)
i

]ξ

=
(

q(t̃)
)1+ζξ−ξ

Ii(W
(t̃),q(t̃)). (3.45)

For each iteration t̃ of the power allocation in (3.45), the precoding matrix W(t̃) is

constant, and vice-versa. Omitting the iteration index t̃ and considering that the

powers qj of all the MSs j 6= i are constant, monotonicity is obtained for qi ≥ q′i if

I(qi) ≥ I(q′i) ⇔ q1+ζξ−ξ
i Ii(W,q) ≥ q′i

1+ζξ−ξ
I ′
i(W,q) ⇔ q1+ζξ−ξ

i ≥ q′i
1+ζξ−ξ ⇔

⇔ 1 + ζξ − ξ ≥ 0 ⇔ ξ ≤ (1 − ζ)−1 ,
(3.46)

while for scalability one needs

aI(qi) ≥ I(aqi) ⇔ aq1+ζξ−ξ
i Ii(W,q) ≥ (aqi)

(1+ζξ−ξ)Ii(W,q) ⇔
⇔ 1 + ζξ − ξ ≤ 1 ⇔ ξ ≥ ζξ ⇔ ζ ≤ 1 .

(3.47)

The conditions on ξ and ζ in (3.46) and (3.47) will be used later to ensure the conver-

gence of (3.44). Considering for each MS that the powers allocated to the other MSs

are constant does not compromise the proofs. In fact, this assumption corresponds to

the same type of relaxation introduced in [SB04, BS05] when an extended power vector

[q 1]
T

is used to solve the weighted SINR balancing problem. Moreover, the normal-

ization step 7 of Table 3.6 ensures that this assumption will not lead to a violation of

the sum power constraint of (3.1c).

For γ̄i ≤ γ̌ or γ̄i ≥ γ̂, one has

I(q
(t̃)
i ) = q

(t̃)
i

(

γ̄iw
(t̃),H
i Q̃

(t̃)
i w

(t̃)
i

q
(t̃)
i w

(t̃),H
i R̃

(t̃)
i w

(t̃)
i

)ξ

=
(

q(t̃)
)1−ξ

(

γ̄iw
(t̃),H
i Q̃

(t̃)
i w

(t̃)
i

w
(t̃),H
i R̃

(t̃)
i w

(t̃)
i

)ξ

=
(

q(t̃)
)1−ξ

Ii(W
(t̃),q(t̃)),

(3.48)

with monotonicity being ensured whenever ξ ≤ 1 and scalability being obtained when-

ever ξ ≥ 0, i.e.,

0 ≤ ξ ≤ 1. (3.49)

Finally, combining (3.46), (3.47), and (3.49) results in

−∞ ≤ ζ ≤ 0, (3.50a)

and

0 < ξ ≤ (1 − ζ)−1, (3.50b)
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where (3.50a) is fulfilled by adequately setting the parameters γ̌, γ̂, p̌, and p̂, which

consequently fixes the valid range of values for ξ in (3.50b). The parameters ζ and ξ

control the SDA and by obeying the conditions in (3.50), the convergence of SDA is

ensured. Providing the same proof for the DL of a MU MIMO system is straightforward

because Ii(W,q) in (3.45) and in (3.48) is the only term that changes to Ii(W,p) when

considering the DL.

In the following, the power allocation for the DL is derived from the power allocation

in the UL. Let γ̄⋆
i denote the optimal target SINRs and let w⋆

i , i = 1, . . . , KG, denote

the optimal precoding vectors, which are the same for both UL and DL and are known

after q converged to q⋆. Let the gain matrix Υ and noise vector η be defined as

[Υ]i,j =







1
γ̄⋆

i
, for i = j,

w⋆,H
j R̃iw

⋆
j

w⋆,H
i R̃iw⋆

i

, for i 6= j,
(3.51a)

and

η =

[

σ2

w⋆,H
1 R̃1w⋆

1

σ2

w⋆,H
2 R̃2w⋆

2

. . . σ2

w⋆,H
KG

R̃KG
w⋆

KG

]T

, (3.51b)

respectively [MK07c]. Then, writting (3.25) in matrix form [ZKAQ01], using (3.51),

and using the fact that γi = γ̄⋆
i ,∀i, when q = q⋆ [VT03, VJG03, SB04, BS05], one can

obtain the optimal power vector p⋆ in the DL as

p⋆ =





[

Υ

1T
K⋆

G

]T [

Υ

1T
K⋆

G

]



−1[

Υ

1T
K⋆

G

]T [

η

Pb

]

(3.52)

[MK07c]. Finally, the procedure for the joint optimization of precoding and power

allocation combining the GEP and the SDA is presented Table 3.9.

Table 3.9. Joint precoding and power allocation using GEP and SDA.

1. Set t̃ = 0 and q(t̃) = q(0) = Pb

KG
1KG

.

2. Set t̃ = t̃ + 1.

3. For i = 1 to KG , compute w
(t̃−1)
i using (3.33).

4. For i = 1 to KG , compute γ′
i
(t̃−1) using (3.32).

5. For i = 1 to KG , compute γ̄
(t̃)
i using (3.38).

6. For i = 1 to KG , update the powers q
(t̃)
i using (3.44).

7. Set q(t̃) = q(t̃)

‖q(t̃)‖
1

Pb in order to fulfill the constraint (3.1c).

8. If min
{∣

∣
∣q

(t̃)
1 − q

(t̃−1)
1

∣
∣
∣ , . . . ,

∣
∣
∣q

(t̃)
KG

− q
(t̃−1)
KG

∣
∣
∣

}

> ǫp, go to step 2.

9. Calculate p⋆ using (3.52).

Note that the algorithms in Table 3.6 and Table 3.9 are quite similar. Similarly to
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step 7 of Table 3.6, the normalization step 7 of Table 3.9 ensures that (3.1c) is fulfilled.

Differently from Table 3.6, the SDA in Table 3.9 is performed in the UL with the power

allocation in the DL being determined in step 9 of Table 3.9.

3.4 Resource Allocation Strategy Definition

In this section, the RA strategies considered in this chapter are defined. They consist

of combining one of the SDMA algorithms listed in Table 3.4 with one of the precoding

and power allocation algorithms listed in Table 3.8.

The RA strategies will be named after the SDMA algorithm and the precoding and

power allocation algorithm that they employ. For example, the RA strategy employing

the CAP-ESA of Table 3.4 and the ZF algorithm of Table 3.8 will be named CAP-

ESA-ZF. The RA strategies considered in this chapter and their names are listed in

Table 3.10.

Table 3.10. RA strategies: single resource.

Precoding and power allocation algorithm
SDMA algorithm

ZF GEP

CAP-ESAa CAP-ESA-ZF (CAP-ESA-GEP)b

CC-CGA CC-CGA-ZF CC-CGA-GEP

CAP-BFAa CAP-BFA-ZF CAP-BFA-ZF

SP-BFA SP-BFA-ZF SP-BFA-GEP

WN-BFA WN-BFA-ZF WN-BFA-GEP

CC-BFA CC-BFA-ZF CC-BFA-GEP

WN-FFA WN-FFA-ZF WN-CGA-GEP

RGA RGA-ZF RGA-GEP

aFor CAP-ESA and CAP-BFA, the SRA is not needed and no longer employed.
bThis RA strategy is too complex and is not considered further.

The RA strategies of Table 3.10 cover all the combinations between the SDMA algo-

rithms of Table 3.4 and the precoding and power allocation algorithms of Table 3.8.

In particular, the CAP-ESA-GEP strategy is not considered further because it is too

complex due to the large number of SDMA groups considered by the CAP-ESA and the

joint iterative optimization of precoding and power allocation of the GEP of Table 3.8.
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3.5 Performance and Complexity of the Resource

Allocation Strategies

3.5.1 System and Resource Allocation Strategy Parameters

In this section, the values of the system parameters and the values of the parameters

of the RA strategies are defined. These parameter values are used in the simulations

conducted in this work to assess the performance of the RA strategies.

In the following, the values of the system parameters are defined. A center frequency

f0 = 5 GHz and a system bandwidth Bsys = 468.75 MHz are considered. A total

number S = 48 of subcarriers with bandwidth ∆f ≈ 9.766 kHz is considered for data

transmission. For the channel realizations considered in the simulations, the WIM

considering the Non Line Of Sight (NLOS) propagation scenario C2 is employed, which

presents a root mean squared excess delay τrms of approximately 0.8 µs [WIN05c, Skl97].

Considering the coherence bandwidth Bc , 1
5τrms

, cf. [Skl97], one has for the adopted

scenario that Bc ≈ 250 kHz. The subcarriers of the system are organized into B = 8

frequency blocks of Qsub = 6 adjacent subcarriers. However, it must be remembered

that for the analyses conducted in this chapter, a single resource is considered. The

values of Qsub and ∆f result in a frequency block of bandwidth Qsub∆f < 0.25Bc.

An average MS speed vms ≈ 2.78 m/s is assumed. Considering the coherence time

Tc , λ
2vms

, cf. [Skl97], one has for the referred scenario that Tc ≈ 11 ms. Frames of

duration Tfrm = 1 ms are considered, which corresponds to have Tfrm < 0.1Tc. Each

frame is composed of T = 4 TSs. A single BS located at the corner of a hexagonal cell

sector and equipped with a 4-element ULA is considered. A total number K = 16 of

single-antenna MSs are associated with the BS. The values of the system parameters

are listed in Table 3.11.

In the following, the values of the parameters of the RA strategies are defined. These

parameters are related to the SDMA algorithms and to the precoding and power allo-

cation algorithms discussed in Section 3.2 and Section 3.3, respectively. The values of

the parameters are presented in Table 3.12 and are discussed in the sequel.

In the following, the values given to the parameters related to the SDMA algorithms are

discussed. For the RA strategies whose SDMA algorithm employs the CGA, BFA, FFA,

or the RGA grouping algorithms, a target SDMA group size K⋆
G = M = 4 is considered.

This value is adopted for the same reasons as discussed in Section 3.2.3. Moreover, if

needed the SRA of Section 3.3.3 can reduce the SDMA group size afterwards.

For the RA strategies whose SDMA algorithm employs the CGA, BFA or the FFA as

grouping algorithm, the MS with the highest channel gain is chosen as the initial MS

k′. This is a reasonable choice because the composition of the SDMA group is unknown

at the time of the selection of k′ and for a SU case the MS with the highest channel
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Table 3.11. System parameters.

Parameter Symbol Value Unit Remark

Center frequency f0 5.0 GHz -

System bandwidth Bsys 468.75 kHz -

# of subcarriers S 48 - -

Subcarrier spacing ∆f 9.766 kHz -

Channel model - WIM - Scenario C2, NLOS

# of resources B 8 - In this chapter, a single resource is
considered

# of subcarriers per block Qsub 6 - < 25% of the coherence bandwidth Bc

Average speed of the MSs vms ≈2.78 m/s 10 km/h

Frame duration Tfrm 1 ms < 10% of the coherence time Tc

# of TSs per frame T 4 - -

TS duration Tts 0.25 ms -

BS array size M 4 - ULA with omnidirectional elements
separated by half wavelength

# of MSs K 16 - Single-antenna

Table 3.12. Parameters for the RA strategies.

Parameter Symbol Value Unit Remark

SDMA algorithms

Target SDMA group size K⋆
G 4 MSs K⋆

G = 4 = M , cf. Table 3.11

Initial MS k′ arg max
k

{‖ĥk‖
2
2} - MS with the highest channel

gain ‖ĥk‖2
2

Parameter for fCC(G) β 0.5 - -

Loading factor for the CGA ε 1 - -

Precoding and power allocation (for the SDA)

Minimum target SINR γ̌ 0.26 - Γ̌ ≈ −5.85 dB, log2(1 + γ̌) = 1
3

Maximum target SINR γ̂ Mγ - Γ̂ = 10 log10(γ) + 10 log10(M),
i.e., 10 log10(γ) increased by the
average array gain

Minimum allocable power p̌ 10−3 W P̌ = 0 dBm

Maximum allocable power p̂ 1 W P̂ = 30 dBm

Feedback parameter ξ (1 − ζ)−1 - Leads to fastest convergence

Power precision ǫp 10−4 W -

gain is the one maximizing the rate of the system. Consequently, this choice is in

accordance with the objective of maximizing the sum rate. It might also be considered

as an MS priority, which is part of the GA algorithm illustrated in Fig. 1.3 and will

only be considered as such in Section 3.5.9.

In particular, for the CC-CGA-ZF and CC-CGA-GEP strategies, the parameter β of

(3.13) is set to 0.5 in order to give almost the same weight to the spatial correlation and

channel gains in the fCC(G) of (3.13). The impact of the choice of β on the performance
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of the RA strategies whose SDMA algorithm employs fCC(G) as grouping metric will

be investigated in Section 3.5.7.

For the CC-CGA-ZF and CC-CGA-GEP strategies, the parameter ε is set to 1. This

value has been determined by inspecting the histogram of the minimum eigenvalue

λ−(C) considered in (3.19), which has been obtained by computing λ−(C) for a large

number of channel realizations while considering the parameters in Table 3.11. In

Fig. 3.4, the histogram of the minimum eigenvalue of the diagonally loaded matrix

C̃ = C + IK is shown and it can seen that setting ε = 1 efficiently upper bounds ǫ of

(3.19) so that C̃ is always positive semidefinite and the need of performing an EVD of

C is eliminated, as discussed in Section 3.2.2.
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Figure 3.4. Histogram of the minimum eigenvalue λ−(C + IK).

In the following, the values given to parameters related to the precoding and power

allocation algorithms are discussed. The RA strategies employing the GEP as pre-

coding and power allocation need to adequately set the parameters γ̂, γ̌, p̂, p̌, and ξ.

The highest allowed target SINR γ̂ has been set to the value of the average SNR γ of

(2.1) scaled by the average array gain that an MS would perceive if it were alone in an

SDMA group [PNG03]. The lowest allowed target SINR γ̌ has been just set to a very

low value, which corresponds to a rate of 1
3

bit per channel access. In this way, the

dynamic SNR range that might be expected in each scenario is relatively well covered.

The maximum allocable power p̂ has been set to the total available power Pb = 1 W.

The minimum allocable power p̌ has been set as to provide a dynamic power range of

30 dBm, which is a common dynamic range for PC in wireless communication systems

[HRM02, HT02]. The value of the parameter ζ is derived directly from γ̌, γ̂, p̌, and

p̂. Because the higher the value of ξ, the faster the convergence of the SDA, ξ has

been set to its maximum allowed value, cf. (3.50b) [YGRS97, PED04, MK07c]. The

convergence of the GEP algorithm of Table 3.9 is considered when the maximum dif-

ference between components of q and q⋆ is lower than or equal to the power precision
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ǫp = 10−4, i.e., one power of ten lower than the minimum allocable power p̌. Usually,

the GEP algorithm of Table 3.9 requires less than ten iterations to converge [MK07c].

3.5.2 Performance with Different Amounts of Channel State

Information at the Transmitter

In this section, the impact of the amount of CSIT on the performance of the RA

strategies of Table 3.10 is investigated considering the P-CSIT and B-CSIT models

introduced in Section 2.2.4. In this section, it is of interest to observe how the perfor-

mance of the RA strategies degrades in terms of the average sum rate when moving

from the case in which P-CSIT is available to the case in which B-CSIT is available

on a frame basis. This allows to study the trade-off existing between the average sum

rate and the amount of signaling required to achieve that sum rate. For this sake, the

three cases below are considered:

1. P-CSIT with adaptive RA per subcarrier and TS: SDMA, precoding, and power

allocation algorithms are applied for each subcarrier and TS of the frame. This case

assumes that the channel matrix Hs of (2.3) is known for each subcarrier s and for

each TS of a frame.

2. B-CSIT with adaptive RA per TS: SDMA, precoding, and power allocation algo-

rithms are applied for each TS, but reused over all the subcarriers of the resource.

This case assumes that the channel matrix Ĥb of (2.5b) is known for the middle

subcarrier s̄b of each frequency block and for each TS of a frame.

3. B-CSIT with adaptive RA per frame: SDMA, precoding, and power allocation

algorithms are applied once per frame and reused over the subcarriers of the resource

and over all TSs of the frame. This case assumes that the channel matrix Ĥb of

(2.5b) is known for the middle subcarrier s̄b of the frequency block b and for the

first TS of a frame.

For these three cases, Fig. 3.5 shows the average sum rate of the system in bits/channel

use achieved by the CAP-ESA-ZF strategy as a function of the average SNR γ given

by (2.1). A channel use corresponds to one subcarrier being used for the duration Ts

of one OFDMA symbol. The average sum rate of the system in bits/channel use will

be the metric mostly adopted for comparing the RA strategies in this section.

In Fig. 3.5, the average sum rate of the system obtained using the algorithm in [JRV+05]

is additionally included as an absolute upper bound for the average sum rate that can

be achieved using DPC techniques, cf. Section 1.3, and considering P-CSIT with

adaptive RA per subcarrier and TS. In Fig. 3.5, it can be observed that the CAP-

ESA-ZF with P-CSIT achieves about 90% of the maximum achievable average sum

rate. The lower average sum rate achieved by the CAP-ESA-ZF strategy compared to

the algorithm in [JRV+05] results because the CAP-ESA-ZF strategy does not jointly

optimize precoding vectors and power allocation as the algorithm in [JRV+05] does.
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Figure 3.5. Average sum rate of the system considering CAP-ESA-ZF.

Considering now the different cases of the CAP-ESA-ZF strategy, it can be seen that

they achieve almost the same average sum rate for low to moderate values of γ. For

higher average SNR values the average sum rates achieved considering B-CSIT with

adaptive RA per TS and per frame are only 7% and 11% lower than the average sum

rate achieved with P-CSIT and adaptive RA per subcarrier and TS, respectively.

The same comparison conducted for the CAP-ESA-ZF strategy in Fig. 3.5 has been

conducted for all RA strategies of Table 3.10. The same trend shown for the CAP-

ESA-ZF in Fig. 3.5 has been observed for all the RA strategies, which achieve almost

the same average sum rate with P-CSIT and B-CSIT for low to moderate average

SNR values and slightly lower average sum rate values for high SNR values. Fig. 3.6

shows the fraction of the average sum rate considering P-CSIT with adaptive RA per

subcarrier and TS that is achieved by the RA strategies of Table 3.10 when considering

B-CSIT with adaptive RA per TS and per frame for an average SNR γ of 20 dB.

The reduction of about 5% to 10% of the average sum rate observed in Fig. 3.5 and

Fig. 3.6 result from the reduced adaptivity of the RA strategies due to reduced amount

of CSIT compared to the case with P-CSIT.

As it can be noted in Fig. 3.5 and Fig. 3.6, all the RA strategies are affected almost in

the same way. On the one hand, performing adaptive RA per frame using B-CSIT leads

to a reduction of the average sum rates. On the other hand, a considerable reduction

of signaling requirements is obtained. Indeed, for the adaptive RA per subcarrier and

TS the MSs need to be informed about the individual subcarriers allocated to them

on each TS, which requires roughly a factor of T ·Qsub more signaling than in the case

with B-CSIT and adaptive RA on a frame basis.
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Figure 3.6. Fraction of the average sum rate considering P-CSIT with adaptive RA per
subcarrier and TS that is achieved by the RA strategies when considering B-CSIT with
adaptive RA per TS and per frame. Average SNR γ = 20 dB.

Further on, P-CSIT with adaptive RA per subcarrier and TS will not be considered,

adaptive RA per TS will be locally considered in Section 3.5.9, and adaptive RA per

frame will be considered in most of the cases. Moreover, the performance of the CAP-

ESA-ZF considering adaptive RA per frame will be considered to upper bound the

performance of the other RA strategies in terms of average sum rate.

3.5.3 Performance with Block Channel State Information at

the Transmitter

In this section, the performance of the RA strategies is compared considering B-CSIT

with adaptive RA per frame. Fig. 3.7 shows the average sum rate achieved by the

RA strategies of Table 3.10 as a function of the average SNR γ in dB, with the re-

sults achieved considering the ZF and the GEP defined in Section 3.3 being shown in

Fig. 3.7(a) and Fig. 3.7(b), respectively. Additionally, the average sum rate achieved

considering in the Single-User (SU) case, i.e., when transmitting to the MS with the

highest channel gain, is also presented for comparison.

In the following, the average sum rate performance shown in Fig. 3.7(a) is discussed

from the best- to the worst-performing RA strategy. Because all the RA strategies in

Fig. 3.7(a) employ the ZF algorithm of Table 3.8, the performance differences in terms

of the average sum rate can be attributed to the different SDMA algorithms employed

by each RA strategy.

In Fig. 3.7(a), CAP-BFA-ZF is the strategy that best approximates the average sum

rate of the CAP-ESA-ZF strategy. Because the number of candidate SDMA groups

considered by the BFA might be much smaller than the number of candidate groups

which are considered by the ESA, cf. (2.14), this result shows that a high fraction of

the average sum rate of the system can be achieved by employing simple suboptimal

RA strategies. The reason for the good performance of the CAP-BFA-ZF strategy is
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Figure 3.7. Average sum rate of the system for the RA strategies with B-CSIT.

that it is aware of the actual precoding and power allocation, which allows to accurately

estimate the capacity of the candidate groups and the MSs admitted to the group in

step 2a of Table 3.2 are the ones that at most increase the capacity of the group.

The average sum rate achieved by the CAP-BFA-ZF strategy is followed very closely

by that achieved by the SP-BFA-ZF strategy. Differently from the CAP-BFA-ZF strat-

egy, the SP-BFA-ZF strategy is unaware of the precoding and power allocation. The
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grouping metric considered in the SP-BFA is based on the sum of the channel gains

with null space SPs and, consequently, is quite similar to the null space projections

performed by the ZF precoding algorithm discussed in Section 3.3.1. Combined with

the BFA, this metric effectively captures the spatial correlation among the MSs, which

leads to its good performance in terms of average capacity.

In Fig. 3.7(a), the next best performing RA strategies are CC-BFA-ZF and CC-CGA-

ZF, which have very similar performances. These two strategies are also unaware of

the precoding and power allocation, but differently from the SP-BFA-ZF strategy, the

grouping metric employed by their SDMA algorithms involves only the pairwise spatial

correlation among the MSs measured using (3.6). Consequently, the CC-BFA-ZF and

CC-CGA-ZF strategies are slightly less accurate in estimating the spatial compatibility

among the MSs, which leads to their slightly lower performance in terms of average

sum rate compared to the CAP-BFA-ZF and SP-BFA-ZF strategies.

For the WN-BFA-ZF and the WN-FFA-ZF strategies, the employed grouping metric

also captures only the pairwise spatial correlation among the MSs. Moreover, the

total spatial correlation is not added up, but averaged by the Frobenius norm in (3.10)

[SS04a, MK06], which is responsible for the slightly lower average sum rate achieved by

the WN-BFA-ZF strategy. The lower average sum rate achieved by the WN-FFA-ZF

strategy compared to some of the RA strategies is due to the FFA, which simplifies

the search for the best SDMA group and consequently leads to worse performance.

Nevertheless, the WN-FFA-ZF obtains over 85% of the average sum rate achieved by

the CAP-ESA-ZF strategy.

Comparing now the average sum rate figures achieved by the SP-BFA-ZF, CC-BFA-ZF,

and CC-CGA-ZF strategies with that of the CAP-ESA-ZF strategy, it can be concluded

that RA strategies employing SDMA algorithms unaware of the actual precoding and

power allocation are able to efficiently approximate the average sum rate achieved

through an ES for the SDMA group of highest capacity. In fact, these RA strategies

reach over 90% of the average sum rate achieved by the CAP-ESA-ZF strategy.

The RGA-ZF performs the worst, which is an expected result. Anyway, it can be

observed in Fig. 3.7(a) that the RGA-ZF strategy achieves about 70% of the capacity

of the CAP-ESA-ZF strategy, which is a relatively good performance for such a simple

RA strategy. However, as it will be seen in Section 3.5.6, a considerable fraction of

the average sum rate achieved by the RA strategies, and in particular by the RGA-ZF

strategy, is due to the SRA, which is aware of the precoding and power allocation.

In general, the higher the average SNR, the more the CAP-ESA-ZF strategy can take

advantage of its complete knowledge about all possible SDMA groups, so that the

gap between the performance of this and the other RA strategies slightly increases for

higher average SNR values. Moreover, the sum rate increases more than linearly with

the average SNR γ, which also contributes to increase the performance gap between the
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CAP-ESA-ZF strategy and the other RA strategies in terms of the achieved average

sum rates for high average SNR values.

Compared to average sum rate achieved in the SU case, it can be seen in Fig. 3.7 that

the RA strategies provide gains ranging from 30% for low SNR to more than 100% for

high SNR. In particular, the RGA-ZF strategy presents lower gains compared to the

SU case and performs even slightly worse than it for low values of γ. For low SNR

γ, SDMA groups containing a single MS are often built by the RGA-ZF strategy and

because the MS with highest channel gain does not necessarily belongs to the group

built by this strategy, its achieved average sum rate might be lower than the sum rate

achieved in the SU case.

The same remarks made for the RA strategies considering ZF-WFA-LGF in Fig. 3.7(a)

can be made for the corresponding RA strategies considering GEP-SDA-HPF shown in

Fig. 3.7(b). Indeed, the RA strategies present quite similar performance independent

of the precoding and power allocation algorithm being considered.

3.5.4 Performance with Second-order Channel State

Information at the Transmitter

In this section, the performance of the RA strategies is investigated considering S-

CSIT. The performance of the RA strategies strongly depends on the available CSIT.

Obtaining up to date CSIT is particularly challenging for FDD systems, in which

channel reciprocity cannot be exploited and CSI has to be acquired by the MSs and

fed back to the BS. Consequently, the signaling overhead to obtain CSIT in these

systems may become prohibitively large. As discussed in Section 2.2.4, this signaling

overhead can be considerably reduced by using S-CSIT, however at the expense of

reduced performance of the RA strategies in terms of average sum rate, as it will be

shown in the sequel.

Fig. 3.8 shows the average sum rate in bits/channel use achieved by the RA strategies

for a varying window size W , cf. (2.7), and for average SNRs γ = 0 dB, γ = 10 dB,

and γ = 20 dB. The performances of the RA strategies considering ZF-WFA-LGF and

GEP-SDA-HPF are shown on the left and right sides of Fig. 3.8, respectively.

In Fig. 3.8, it can be seen that the average sum rate achieved by the RA strategies

rapidly decays when the window size W increases. In the following, the reasons for

this reduction of the average sum rates are discussed.

Firstly, the S-CSIT model considers that the CSI obtained during the W past frames is

used during the W subsequent frames and, consequently, it inherently involves a delay

that affects the quality of the CSIT. For example, for W = 1, the S-CSIT corresponds

indeed to the B-CSIT of the previous frame, since the dominant eigenmode of Rk given

by (2.7) is equivalent to ĥ
(f̃−1)
k . Because a frame takes less than 10% of the coherence
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(a) ZF-WFA-LGF, γ = 0 dB.
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(b) GEP-SDA-HPF, γ = 0 dB.
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(c) ZF-WFA-LGF, γ = 10 dB.
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(d) GEP-SDA-HPF, γ = 10 dB.
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(e) ZF-WFA-LGF, γ = 20 dB.
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(f) GEP-SDA-HPF, γ = 20 dB.

Figure 3.8. Average sum rate achieved by the RA strategies considering S-CSIT with different
window sizes W .

time Tc, the B-CSIT of the past frame is highly correlated with the B-CSIT of the

current frame, which explains the correspondingly better results obtained with W = 1

compared to W → ∞. As the window size increases, this correlation decreases and the

achieved average sum rates also decrease. In fact, for W = 4 frames, it can be seen in

Fig. 3.8 that the achieved average sum rates already approximate the values obtained

with a window size W → ∞.

Secondly, the considered channel model and scenario involve highly uncorrelated scat-

tering [WIN05c], so that the covariance matrices of (2.7) are full-rank and have a non-

concentrated energy distribution among their eigenmodes. Consequently, the rank-one

assumption made on (2.8) leads only to a coarse representation of the channel of each
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MSs and the transmission along the dominant spatial propagation mode of the chan-

nels leads only to poor performance in terms of average sum rate. Indeed, according

to [VM01], the optimal transmission scheme when the spatial covariance matrix is full-

rank corresponds to transmit along all their eigenmodes, which would on the other

hand require a rank-one approximation for the SDMA algorithm [FN96, DH04].

Similarly to the results in Fig. 3.7, the reduction of the average sum rate of the RA

strategies in Fig. 3.8 is larger for higher average SNR values than for lower average

SNR values for the same reasons as discussed in Section 3.5.3. The higher the average

SNR in Fig. 3.8, the more advantage the RA strategies can take from its better CSIT,

as discussed in Section 3.5.3. Moreover, the sum rate increases more than linearly with

the average SNR.

The results presented in Fig. 3.8(a), Fig. 3.8(c), and Fig. 3.8(e) considering the ZF

algorithm of Table 3.8 are very similar to the results presented in Fig. 3.8(b), Fig. 3.8(d),

and Fig. 3.8(f), which consider the GEP algorithm of Table 3.8, so that ZF and GEP do

not offer any particular advantage over each other regarding the utilization of S-CSIT.

This result has also been observed in Fig. 3.7, in which B-CSIT is considered. Moreover,

none of the RA strategies is considerably more robust against the imperfections present

in the S-CSIT and the same performance trend among RA strategies seen in Fig. 3.7

holds here. For W = 1, the RA strategies are capable of obtaining about 80% to

90% of the average sum rate values shown in Fig. 3.7 considering B-CSIT, and for

W = 4 they achieve only 45% to 70% of the average sum rates shown in Fig. 3.7. In

order to ensure about 60% of the achievable average sum rate considering B-CSIT, a

window size of at most two frames has to be considered with S-CSIT, which according

to the parameters in Table 3.11 approximately corresponds to 40% of the coherence

time Tc considering the inherent delay. This window size also permits the proposed

RA strategies to perform better than the SU case in all the considered configurations.

In Fig. 3.8, it can be noted that the reductions in the achieved average sum rates due

to the use of S-CSIT are less pronounced in the SU case than in the cases considering

the studied RA strategies. Due to the imperfect CSIT, spatial compatibility cannot

be measured very efficiently by the SDMA algorithms. Similarly, the performance of

precoding and power allocation algorithm is also compromised to some extent. Es-

pecially for the large SDMA groups built by the RA strategies when considering high

SNR values, elevated levels of spatial interference arise and lead to the more pronounced

reductions of the average sum rates observed in Fig. 3.8 when comparing the RA strate-

gies and the SU case. In the SU case, a single MS is served at a time and, consequently,

there is no spatial interference, which explains the less pronounced reductions of the

average sum rates in this case.

From the discussions presented in this section, it can be concluded that the potential

of SDMA of strongly increasing the sum rate of the system might be considerably

compromised if stringent constraints on the signaling amount for CSI are imposed to

the system, e.g., when considering FDD systems. However, the S-CSIT model involves
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only 1
W

of the signaling amount required by the B-CSIT model and, consequently, could

compensate for the reduction of the sum rate of the system. Nevertheless, better results

in terms of average sum rate using S-CSIT than those presented in this section could be

expected in scenarios involving, e.g., a strong Line Of Sight (LOS), low angular spread,

and a small number of propagation paths, which would better support the rank-one

assumption made in (2.8).

3.5.5 Performance with Erroneous Block Channel State

Information at the Transmitter

In this section, the performance of the RA strategies of Table 3.10 considering erro-

neous B-CSIT, cf. (2.9), is evaluated. In Section 3.5.3, B-CSIT is assumed to be

instantaneously known for the first TS of each frame and to be error-free. However,

in practice neither instantaneous nor error-free CSI is available. In fact, processing

and feedback delays, as well as imperfect channel estimation corrupt the CSIT and

ultimately affect the performance of the RA strategies. The adopted error model may

represent both CSIT imperfections due to channel estimation errors and delays, as

discussed in Section 2.2.4.

Fig. 3.9 shows the average sum rate achieved by the RA strategies considering erroneous

B-CSIT as a function of γcsi, cf. (2.10), which characterizes the amount of error present

in the CSIT. Average SNR values of γ = 0 dB, γ = 10 dB, and γ = 20 dB are

considered and the average sum rate results for the RA strategies employing the ZF

and GEP algorithms of Table 3.8 are shown on the left and right sides of Fig. 3.9,

respectively.

Analogously to the relative performance observed in Section 3.5.4 with S-CSIT, none

of the RA strategies presents itself particularly more efficient than the others when

considering erroneous B-CSIT. As the amount of error in the CSIT increases, i.e., as

γcsi of (2.10) decreases, the performance of the RA strategies in terms of the average

sum rate degrades rapidly. In order to obtain at least 60% of the average sum rate

achieved by the RA strategies with error-free B-CSIT, channel estimation errors and

processing/feedback delays should lead to γcsi values not lower than 10 dB, so that the

RA strategies of Table 3.10 are considerably sensitive to imperfections in the CSIT.

This value of γcsi also permits the proposed RA strategies to perform better than the

SU case in all the considered configurations.

Similarly to the results shown in Fig. 3.8, it can be seen in Fig. 3.9 that the reductions

in the achieved average sum rates due to erroneous B-CSIT are less pronounced in

the SU case than in the cases considering the studied RA strategies. The reasons for

the higher sensitivity of the studied RA strategies to imperfect CSI here are the same

as discussed in Section 3.5.4, i.e., less accurate measurement of spatial compatibility

and less accurate determination of precoding vectors and power allocation, which lead

to increased spatial interference. Differently from the results shown in Section 3.5.4,
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(a) ZF, Average SNR γ = 0 dB.
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(b) GEP, Average SNR γ = 0 dB.
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(c) ZF, Average SNR γ = 10 dB.
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(d) GEP, Average SNR γ = 10 dB.
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(f) GEP, Average SNR γ = 20 dB.

Figure 3.9. Impact of erroneous CSIT on the average sum rate achieved the RA strategies.

where the proposed RA strategies always outperformed the SU case, the results in

Fig. 3.9 show that the contrary may occur if the amount of errors in the CSIT reaches

very high levels. In this case, the performance of the RA strategies converges to that of

the RGA-ZF and RGA-GEP, which perform worse than the SU case due to the higher

levels of spatial interference perceived by the MSs in the SDMA groups.

Results similar to that shown in Fig. 3.9 can be found in [YG05], where imperfections

in the CSIT are due to the feedback delay τ̃ only. If errors in the CSIT are only due to

feedback delays, γcsi of (2.10) is related to the feedback delay τ̃ as
√

γcsi

1+γcsi

= J0

(
2πvmsτ̃

λ

)

[HH03, YG05, YG06, KK07b, KK07a], where J0(·) is the zero-order Bessel function of

the first kind and corresponds to the spaced-time correlation of the channel [Skl97].

Table 3.13 shows the values of J0

(
2πvmsτ̃

λ

)
for the different values of γcsi. An average MS
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speed vms = 10 km/h and an wavelength λ = c
f0

= 6 cm are considered, cf. Table 3.11.

Table 3.13. Spaced-time correlation values for the different values of γcsi.

γcsi in dB -20 -15 -10 -5 0 5 10 15 20

τ̃ in ms 7.6 7.2 6.4 5.3 3.9 2.5 1.5 0.9 0.5

2πvmsτ̃

λ
0.35 0.33 0.30 0.24 0.18 0.12 0.07 0.04 0.02

J0

(
2πvmsτ̃

λ

)

0.100 0.175 0.302 0.490 0.707 0.872 0.953 0.985 0.995

In Table 3.13, note that for γcsi ≤ −5 dB, the erroneous B-CSIT, i.e., the delayed B-

CSIT, is already highly uncorrelated with the actual B-CSIT. In particular, considering

the values shown Table 3.13, the results shown in Fig. 3.9(c) and Fig. 3.9(d) can be

easily compared to the results in [YG05].

Similarly to the results presented in Fig. 3.7 and Fig. 3.8, also in Fig. 3.9 the RA

strategies employing the ZF algorithm achieve almost the same performance in terms

of average sum rate as the corresponding RA strategies employing the GEP algorithm.

Larger reductions in the average sum rate for higher average SNR values than for lower

average SNR values are also observed and are due to the same reasons as discussed in

Section 3.5.3. Considering the results presented in Fig. 3.7, Fig. 3.8, and in Fig. 3.9,

it can be concluded that the ZF and GEP algorithms do not offer any particular

advantage over each other regarding the different CSIT models. Consequently, RA

strategies employing a simple precoding and power allocation algorithm, such as the

ZF algorithm of Table 3.8, can perform as good as RA strategies employing an iterative

joint precoding and power allocation algorithm, such as the GEP algorithm of Table 3.9

and reach almost the same average sum rate achieved by the CAP-ESA-ZF strategy,

as shown in Fig. 3.7.

3.5.6 Impact of the Sequential Removal Algorithm on the

Performance

In this section, the impact of the SRA on the performance of the RA strategies is

discussed. In Section 3.5.3, Section 3.5.4, and Section 3.5.5, it has been observed that

the RA strategies employing rather simple SDMA algorithms, such as the RGA, reach

over 70% of the average sum rate achieved by the CAP-ESA-ZF strategy, which was

a considerably good performance. In Section 3.5.3, Section 3.5.4, and Section 3.5.5, it

has also been observed that the GEP algorithm of Table 3.9 provided no advantages

compared to the more simple ZF algorithm. However, the similar performances ob-

served in Section 3.5.3, Section 3.5.4, and Section 3.5.5 are intrinsically related to the

SRA, as it is discussed in the sequel.

The SRA is responsible for a considerable fraction of the average sum rate achieved

by the RA strategies that use the SP-BFA, CC-BFA, CC-CGA, WN-BFA, WN-FFA,
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or RGA, which are SDMA algorithms unaware of the actual precoding and power

allocation. For these RA strategies, Fig. 3.10 shows the percentual reduction of the

average sum rate values presented in Fig. 3.7 that result if the SRA is disabled and a

target SDMA group size K⋆
G = 4 MSs is considered.
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Figure 3.10. Percentual reduction of the average sum rate of the RA strategies when the SRA
is disabled. Target SDMA group size K⋆

G = 4.

For low average SNR values, it can be seen in Fig. 3.10(a) that disabling the SRA

results in reductions of about 10% to 30% of the average sum rates for most of the

RA strategies. In particular, for the RGA-ZF-WFA strategy this reduction is above

50% for low average SNR values and, consequently, the RGA-ZF-WFA strategy would

achieve only 35% of the average sum rate obtained by CAP-ESA-ZF strategy in this

case. Thus, the good performance of the RGA-ZF-WFA in Fig. 3.7 is in great part due

to the SRA. Due to their design, the SDMA algorithms considered in Fig. 3.10 cannot

estimate the group capacity and, consequently, the SDMA groups that they build have

suboptimal size and are suboptimal in terms of group capacity. The SRA improves the

average sum rate achieved by these RA strategies by removing MSs from the SDMA

groups and keeping the group with the best capacity, as discussed in Section 3.3.3.

In the following, the impact of the SRA on the RA strategies employing the GEP

algorithm is discussed. Comparing Fig. 3.10(b) and Fig. 3.10(a), it can be noted that

the reductions of the average sum rate of the RA strategies considering the GEP-SDA

without the SRA are about the half of that observed when using the ZF-WFA without

the SRA too. Except for the RGA-GEP-SDA without the SRA, the RA strategies

in Fig. 3.10(b) are able to achieve about 85% or more of the average sum rate that

they achieve using the SRA. Without the SRA, the better performance of the GEP-

SDA in Fig. 3.10(b) compared to the ZF-WFA in Fig. 3.10(a) results from the fact

that GEP and SDA iteratively establish a trade-off between spatial separation and

interference among MSs in the SDMA group. Thus, the prejudicial effect of having

too large SDMA groups is effectively compensated by a more efficient adjustment of

precoding vectors and power allocation. In fact, it can be said that the GEP-SDA

is a kind of MMSE precoding approach [BS05] and, as such, shall outperform ZF

precoding for low SNR values and have almost the same performance as ZF for high

SNR values [PNG03, MBQ04]. Anyway, differently from the standard MMSE linear
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precoding [JUN05], the GEP-SDA is relatively more complex since it relies on an

iterative procedure that requires to solve K⋆
G generalized eigenvalue problems.

In the following, the impact of an adequate selection of the target SDMA group size

is discussed for the case in which the SRA is disabled. The performance of the SDMA

algorithms considered in Fig. 3.10 is strongly dependent on the selection of the target

SDMA group size. This dependency can be recognized by observing the decrease of the

average sum rate losses in Fig. 3.10 when the average SNR increases. For higher average

SNR values, larger group are supported and the removals performed by SRA have a

lower impact on the overall performance of the RA strategies. Thus, in Fig. 3.10(a), the

reason for reductions of the average sum rate are the same as discussed in Section 3.3.3,

i.e., the unnecessary null space projections with respect to MSs that get no power

allocated. In Fig. 3.10(b), the impact of an inadequate group size is compensated by

the iterative joint precoding and power allocation.

If the optimum target SDMA group size is known a priori and is employed by the

SDMA algorithms, the impact of the SRA on the average sum rate achieved by the

RA strategies becomes less relevant. Considering an average SNR γ = 10 dB, Fig. 3.11

shows the distribution of the group size obtained after applying the SRA for each of

the RA strategies in Fig. 3.10.
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Figure 3.11. SDMA group size distribution for RA strategies unaware of the actual precoding
and power allocation algorithm. Average SNR γ = 10 dB.

In Fig. 3.11, it can be noted that often an SDMA group size K⋆
G ≤ 4 results for most

of the RA strategies. In order to verify the impact of an adequate selection of K⋆
G, the

reductions of the average sum rate achieved by each RA strategy considering K⋆
G = 4,

cf. Table 3.12, and considering the most frequent group size K⋆
G, cf. Fig. 3.11, are

compared. In both cases, the SRA is disabled and an average SNR γ = 10 dB is

considered. Fig. 3.12 shows the reduction of the average sum rate achieved by the RA

strategies for K⋆
G = 4, cf. Table 3.12, and with K⋆

G set to the most frequent value

according to the results shown in Fig. 3.11.

In Fig. 3.12, it can be seen that in the cases in which K⋆
G = 4 is also the most frequent

group size, cf. Fig. 3.11, the reductions of the average sum rate remain naturally un-

changed, while in the other cases the reductions of the average sum rate of the RA
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Figure 3.12. Fraction of the average sum rate achieved by the RA strategies without the SRA
for K⋆

G = 4, cf. Table 3.12, and for adjusted K⋆
G , cf. Fig. 3.11. Average SNR γ = 10 dB.

strategies with K⋆
G = 4 are often the double of that when K⋆

G is selected as the most

frequent group size, cf. Fig. 3.11. Except for the RGA-ZF-WFA strategy in Fig. 3.12(a)

and the RGA-GEP-SDA strategy in Fig. 3.12(b), the RA strategies in Fig. 3.12 lose

10% or less of the average sum rates that they achieve with the SRA enabled if the tar-

get SDMA group size is adequately selected. However, as discussed in Section 3.3.3, the

ideal value of K⋆
G cannot be determined a priori and an SRA is required. Anyway, ade-

quate values for K⋆
G could be learnt by the system, as suggested e.g. in [FDH05, FDH07]

and by the author in [MK07a, MK07c], and considerable computational effort could be

saved by considering a fixed target SDMA group size or a small set of target SDMA

group size values to be tested by the SRA [FDH05, MK06, FDH07, MK07a, MK07c].

Nevertheless, considering the results presented in Fig. 3.10(b) and Fig. 3.12(b), the ap-

plication of an MMSE-like algorithm for precoding is recommended whenever a fixed

target SDMA group size K⋆
G is used, since the precoding algorithm partially compen-

sates the usage of suboptimal values of K⋆
G, as it was discussed in this section for the

GEP-SDA of Table 3.9.

3.5.7 Impact of the Parameter β on the Performance

In this section, the impact of the parameter β on the performance of the RA strategies

that use the CC-BFA and CC-CGA is investigated. As discussed in Section 3.2.1,

the parameter β of (3.13) controls the relevance given to the spatial correlation and

channel gains of the MSs in an SDMA group.

Fig. 3.13 shows the average sum rate achieved by the CC-BFA-ZF and CC-CGA-ZF

strategies for varying β and different values of the average SNR γ. Fig. 3.14 shows the

equivalent results for the CC-BFA-GEP and CC-CGA-GEP strategies. The results on

the left and right sides of Fig. 3.13 and Fig. 3.14 consider the SRA enabled and disabled,

respectively. For the cases in which the SRA is disabled the target SDMA group size

K⋆
G has been set to 4 in Fig. 3.13(b) and Fig. 3.14(b), and to 3 in Fig. 3.13(d) and
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Figure 3.13. Impact of the parameter β on the average sum rate of the CC-CGA-ZF and
CC-BFA-ZF strategies. Left: SRA is enabled. Right: SRA is disabled.

Fig. 3.14(d), for the RA strategies employing the CC-BFA and CC-CGA, respectively,

in a similar way as it has been done for the results shown in Fig. 3.11.

In both Fig. 3.13 and Fig. 3.14, it can be seen that the average sum rates achieved

by the RA strategies are relatively independent of the parameter β. In Fig. 3.13 and

Fig. 3.14, it can be seen that good results in terms of average sum rate can be obtained

by the RA strategies by employing the scaling factors 1
‖C‖

f

and 1
‖a‖

f

adopted in this work

and a value of β around 0.5. Anyway, compared to the extreme cases in which β = 0

or β = 1, it can be seen that some gain can still be obtained by varying β, especially

if the SRA is not used, as in Fig. 3.13(b), Fig. 3.13(d), Fig. 3.14(b), and Fig. 3.14(d).

Thus, by adjusting β and finding an adequate trade-off between spatial correlation and

channel gain, the CC-CGA and the CC-BFA proposed herein can outperform SDMA

algorithms that take into account only the spatial correlation among the MSs, as those

in [STKL01, Cal04], or only the channel gains, as that in [TJ05], in terms of the

achieved average sum rate.

Analogously to the analyses in Section 3.3.3 regarding the SRA, there is also a de-

pendency between the target SDMA group size K⋆
G and the parameter β, which is

discussed in the sequel. Comparing the average sum rates obtained by the RA strate-

gies with and without the SRA in Fig. 3.13 and Fig. 3.14, it can be noted that when
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Figure 3.14. Impact of the parameter β on the average sum rate of the CC-CGA-GEP and
CC-BFA-GEP strategies. Left: SRA is enabled. Right: SRA is disabled.

the SRA is enabled, the parameter β loses relevance. This occurs because the SDMA

group size is adjusted by the SRA afterwards. For high average SNR values, larger

SDMA groups result after the application of the SRA and the relevance of the spatial

correlation among MSs in such large groups is higher than that of the channel gains.

Consequently, the average sum rate of the RA strategies for values of β around 0.5

are slightly better than for values of β near 1.0, as it can be seen in Fig. 3.13(a),

Fig. 3.13(c), Fig. 3.14(a), and Fig. 3.14(c). For low SNR values, smaller SDMA groups

containing only one or two MSs result after the application of the SRA and relevance

of the spatial correlation among MSs in such small groups is lower than that of the

channel gains. Consequently, almost the same performance in terms of average sum

rate is obtained independent of the value of β.

For the results in Fig. 3.13(b), Fig. 3.13(d), Fig. 3.14(b), and Fig. 3.14(d), the SRA

is disabled and the target SDMA group size K⋆
G is fixed. Consequently, relatively

large SDMA groups are always built and spatial correlation among MSs becomes more

relevant than the channel gains. In particular, in Fig. 3.13(b) and Fig. 3.14(b), it can

be clearly noted that values of β ≤ 0.5 lead to better performance in terms of average

sum rate than higher values of β. In Fig. 3.13(d) and Fig. 3.14(d), the same trend is

less pronounced because the considered target SDMA group size is smaller. Moreover,

the CGA builds a whole SDMA group at once using convex optimization while the BFA
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considered in Fig. 3.13(b) and Fig. 3.14(b) builds the group iteratively, as discussed in

Section 3.2.2. Consequently, the groups built by each SDMA algorithm may differ, as

well as the best values of β for RA strategies using CC-CGA and CC-BFA.

3.5.8 Complexity Analysis

In this section, the complexity of some of the RA strategies of Table 3.10 is discussed.

The results presented in Section 3.5.3, Section 3.5.4, and Section 3.5.5 have shown that

the RA strategies of Table 3.10 have quite similar performances in terms of average

sum rate. However, these RA strategies have quite different computational costs and,

consequently, it is possible to select RA strategies with low complexity that are able

to attain a high fraction of the maximum average sum rate of the system.

The number of complex multiplications required by an RA strategy or algorithm is

used here to measure its complexity. Further on, the term complex will be omitted

when referring to complex multiplications. Because square roots and divisions have the

same complexity than a multiplication if they are efficiently implemented using New-

ton’s method [BV04], they are counted as such. Additions, subtractions, and logical

operations are not taken into account. The algorithms are assumed to be implemented

as efficiently as possible. Repeated operations within an algorithm do not increase its

complexity, since the results of the operations can be stored and reused within the

algorithm whenever necessary. For a given problem, it is often of interest to know the

complexity order O(·) of an algorithm used to solve the problem as a function of the

problem dimensions. The complexity order O(·) of an algorithm considers the big O

[GL96], can be approximated by the dominant term in the expression describing the

complexity of the algorithm [Leu04], and is often more useful than having a compli-

cated complexity expression. The complexities of some mathematical operations and

functions are listed in Table A.1 in Appendix A and are used in the determination of

the complexity of the RA strategies presented in this section.

In order to estimate the complexity of the RA strategies, the complexity in number

of multiplications required by certain operations and algorithms involved in the RA

strategies has been expressed in Table 3.14. The complexity of these operations and

algorithms is a function of the number K of MSs, the number M of transmit antennas,

and the size KG of an SDMA group G.

The complexity analyses considered in this section take into account only a subset of the

RA strategies of Table 3.10. Indeed, only the complexity of the RA strategies employing

the ZF algorithm of Table 3.8 is considered in this section for the following reasons.

The GEP algorithm of Table 3.9 is an iterative procedure and, to converge, it takes

a certain number of iterations (usually < 10), denoted here by Isda. Considering the

expressions in Table 3.14 and the fact that KG is upper limited by M , the complexity

order O
(

Isda7M4

6

)

of the GEP of Section 3.3.1 is much higher than the complexity

order O
(

3M3

2

)

of the ZF precoding of the same section. Analogously, the complexity
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Table 3.14. Complexity of certain operations and algorithms involved in the RA strategies.

Operation/Algorithm Number of multiplications O(·) Remark

Operations related to the grouping metrics

Ti of (3.3) 5M2+5M+2
2

O
“

5M2

2

”

i > 1

a of (3.11a) KM+K O(KM) -

C of (3.11b) K2M+4K2−KM−2K
2

O
“

K2M
2

”

Known a

(1−β)C
‖C‖

f

and βa

‖a‖
f

in (3.13) 2K2+K+3 O(2K2) Known C and a

Grouping metrics

fCAP(G) of (3.2) 2K2
G(M+1)+KG O

`

2K2
GM

´

Known wi and pi

fWN(G) of (3.10) K2
G+KG+3 O

`

K2
G

´

Known C and a

fWN(G′), cf. Section 3.2.3 K
G′+8 O

`

K
G′

´

Known µG , ‖CG‖f, C and
a

fCC(G) of (3.13) K2+2K O(K2) Known
(1−β)
‖C‖

f

C and β
‖a‖

f

a

∂fCC(G)
∂u

K2 O(K2) Known C and a

Precoding and power algorithm

ZF, cf. Section 3.3.1
K3

G
+3K2

G
(M+1)+5KGM+4KG

2
O

„

K3
G

+3K2
G

M

2

«

-

GEP, cf. Section 3.3.1
7KGM3+12KGM2+9KGM+6KG

6
+ O(KGM2) O

„

7KGM3

6

«

Per iteration

WFA of Table 3.5 2KGM+6KG O(2KGM) -

SDA of Table 3.6 2KGM2+2KGM+9KG+10 O(2KGM2) Per iteration

SRA of Table 3.7 KM+6M+10+

K⋆
G
P

KG=2

K3
G

+7K2
G

(M+1)+9KGM+18KG

2
O

„

K⋆
G

3+7K⋆
G

2M

2

«

-

order O(Isda2M
3) of the SDA is also larger than then complexity order O(2M2) of the

WFA. Even for a single iteration of the GEP algorithm of Table 3.9, it would be more

complex than the ZF algorithm of the same table. Additionally, the GEP algorithm

of Table 3.9 still needs to determine the optimal DL powers, cf. (3.51). Finally, the

results previously presented have shown that the performance of the RA strategies is

as good with the ZF algorithm as with the GEP algorithm.

The complexity of the SRA shown in Table 3.14 is not take into account in the com-

plexity of the RA strategies discussed in this section due to the following reasons.

Firstly, the complexity of the SRA might be eventually saved, or at least reduced, by

employing adequate target SDMA group sizes, as discussed in Section 3.3.3. Secondly,

except for the CAP-ESA-ZF and the CAP-BFA-ZF strategies, all the other RA strate-

gies employ the SRA so that its complexity represents mainly a common offset in the

complexity of these strategies. It can be noted that the SRA is relatively similar to

the CAP-BFA-ZF strategy, but sequentially removes MSs from the group instead of

sequentially admitting MSs to the group as the CAP-BFA-ZF strategy does. However,

because the K⋆
G is usually smaller than K, the number of group capacity calculations

done by the SRA is considerably smaller than that performed by the CAP-BFA-ZF

strategy. Consequently, omitting the complexity of the SRA will not lead to a consid-

erable underestimation of the complexity of the other RA strategies compared to the

CAP-BFA-ZF strategy.
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The following assumption is made regarding the complexity of the CC-CGA of Ta-

ble 3.4. According to [BV04], the complexity order of a quadratic optimization problem

like the problem (3.17) of the CC-CGA is roughly proportional to the cost of evaluating

its cost function fCC(G) and the first derivative of fCC(G), yielding 2K2 +2K multipli-

cations, cf. Table 3.14. Furthermore, the complexity of the CC-CGA depends on the

number Icga of iterations required by the CGA to converge. Here, one evaluation of

the cost function and of its first derivative are assumed per iteration of the CC-CGA.

Because all RA strategies considered in this section employ the ZF algorithm and be-

cause the complexity of the SRA is not considered, the complexity of the RA strategies

will mainly differ due to the different SDMA algorithms that they employ. Moreover,

the RA strategies using the SP-BFA, CC-BFA, CC-CGA, WN-BFA, WN-FFA, or RGA

need to compute the precoding vectors and the allocated powers only for the final group

while the RA strategies using the CAP-ESA or CAP-BFA need to compute precoding

vectors and the allocated powers several times since they employ the group capacity

fCAP(G) as grouping metric.

Considering the previous remarks, the complexity of the RA strategies studied in this

section is presented in Table 3.14. The RA strategies are listed in Table 3.14 in de-

creasing order of complexity.

Table 3.15. Complexity of the RA strategies.

RA strategy Number of multiplications O(·)

CAP-ESA-ZF
K⋆

G
P

KG=2

K!
KG !(K−KG)!

 

KG(K2
G

+7KG(M+1)+9M+18)

2

!

+(KM+6M+10) Non-Polynomial

CAP-BFA-ZF
K⋆

G
P

KG=2
(K−KG+1)

 

KG(K2
G

+7KG(M+1)+9M+18

2

!

+(KM+6M+10) O

„

KK⋆
G

2(K⋆
G+7M)

2

«

CC-CGA-ZF Icga(2K2+2K)+
K2(M+8)+K(M+2)+6

2
+

 

KM+
K⋆

G
(K⋆

G
2+3K⋆

G
(M+1)+9M+16)

2

!

O
“

K2(M+4Icga)
2

”

SP-BFA-ZF
K⋆

G
P

KG=2
(K−KG+1)

„

5M2+5M+2
2

«

+

 

KM+
K⋆

G
(K⋆

G
2+3K⋆

G
(M+1)+9M+16)

2

!

O
“

5KM2

2

”

CC-BFA-ZF
K⋆

G
K

K2(M+8)+K(M+2)+6
2

+

 

KM+
K⋆

G
(K⋆

G
2+3K⋆

G
(M+1)+9M+16)

2

!

O
“

KK⋆
G

(M+8)

2

”

WN-BFA-ZF
K⋆

G
P

KG=2
(K−KG+1)(KG+8)+

 

K+
K⋆

G
K

K2(M+4)+KM

2
+KM+

K⋆
G

(K⋆
G

2+3K⋆
G

(M+1)+9M+16)

2

!

O
“

KK⋆
G(M+4)

2

”

WN-FFA-ZF
K⋆

G
P

KG=2
(KG+8)+

 

K+
K⋆

G
K

K2(M+4)+KM

2
+KM+

K⋆
G

(K⋆
G

2+3K⋆
G

(M+1)+9M+16)

2

!

O
“

KK⋆
G

(M+4)

2

”

RGA-ZF
K⋆

G
(K⋆

G
2+3K⋆

G
(M+1)+9M+16)

2
O

„

K⋆
G

3+3K⋆
G

2M

2

«

In the following, the complexity order of the RA strategies is discussed considering

K⋆
G = M . Because of the number G of SDMA groups given by (2.14) that are considered

by the ESA, the complexity of the CAP-ESA-ZF strategy increases combinatorially in

K. Moreover, the group capacity and, consequently, precoding vectors and allocated

powers, have to be computed for each of these G SDMA groups. Both these facts cause

the complexity of the CAP-ESA-ZF strategy to be non-polynomial and extremely high.

The CAP-BFA-ZF strategy has also a relatively high complexity, since for each candi-

date group, precoding vectors and power allocation have to be computed. Considering



96 3. Resource Allocation in MIMO-OFDMA Systems: Single Resource

K⋆
G = M , its complexity order is O

(
7KM3

2

)

, which causes its complexity to become

particularly high when considering large AAs.

Differently from CAP-BFA-ZF strategy, the complexity order O
(

K2(M+4Icga)
2

)

of the

CC-CGA-ZF strategy increases only linearly with M , but increases quadratically with

K. Thus, for large numbers of MSs, the complexity of this strategy increases rapidly.

Nevertheless, as it will be seen later in this section, for large AA and low to moderate

numbers of MSs, the CC-CGA-ZF strategy can be less complex than the CAP-BFA-ZF

and SP-BFA-ZF strategies.

The SP-BFA-ZF strategy has a complexity order O
(

5KM2

2

)

which increases only lin-

early with K, but quadratically with M . Similarly to the CAP-BFA-ZF strategy, the

complexity of the SP-BFA-ZF strategy becomes particularly high when considering

large AAs.

The CC-BFA-ZF strategy makes use of the same input data as the CC-CGA-ZF strat-

egy, i.e., the scaled versions of C and a used in (3.13) and (3.24). However, the

CC-BFA-ZF strategy employs the BFA which requires only a fraction
K⋆

G

K
of the scaled

versions of C and a and the used grouping metric given by (3.24) does not involve

any further multiplication whenever the scaled versions of C and a are known. Conse-

quently, the CC-BFA-ZF strategy is less complex than the CC-CGA-ZF strategy. The

CC-BFA-ZF strategy has a complexity order O
(

KM2

2

)

that increases quadratically with

M , so that it is also less complex than the CAP-BFA-ZF strategy.

The WN-BFA-ZF and WN-FFA-ZF strategies also require only a fraction
K⋆

G

K
of C

and a. However, they consider smaller and non-scaled spatial correlation matrices

and attenuation vectors, cf. Section 3.2.1, and, consequently, have lower complexity

than the CC-BFA-ZF strategy. Both WN-BFA-ZF and WN-FFA-ZF strategies have

complexity order O
(

KM2

2

)

. However, because the BFA is more complex than the FFA,

the WN-BFA-ZF strategy is also more complex than the WN-FFA-ZF strategy.

The RGA-ZF is of course the least complex among the RA strategies. It involves only

the precoding and power allocation algorithm applied to the final group and, therefore,

is independent of the number K of MSs and has a complexity order O
(

3M3

2

)

.

In the following, the complexity of the CAP-BFA-ZF, SP-BFA-ZF, CC-CGA-ZF, and

CC-BFA-ZF strategies are compared. They have been selected since they have very

similar performances which surpass 90% of the average sum rate obtained by the CAP-

ESA-ZF strategy and are also superior to that of the remaining RA strategies in Ta-

ble 3.15. Therefore, the CAP-BFA-ZF, SP-BFA-ZF, CC-CGA-ZF, and CC-BFA-ZF

strategies offer a good trade-off between capacity and complexity. For simplicity, the

target SDMA group size K⋆
G = M has been assumed.

The complexity of the CC-CGA-ZF strategy depends on the number Icga of iterations

required by the CC-CGA to converge. By counting Icga for a large number of runs of the
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CC-CGA-ZF strategy considering the parameter values in Table 3.12, the distribution

of Icga has been obtained and is presented in Fig. 3.15.
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Figure 3.15. Distribution of the number Icga of iterations required by the CC-CGA.

In Fig. 3.15, it can be seen that the CC-CGA requires in average a number Īcga ≈ 8 = K
2

of iterations to converge when considering the parameter values in Table 3.12. Based

on this result and in order to simplify the complexity analyses, it is assumed that a

number Īcga , K
2

is required by the CC-CGA to converge.

For the complexity comparisons, the number M of transmit antennas has been fixed

and the number K of MSs has been varied. Moreover, it is assumed that there are at

least K = 1.5M and at most K = 32 MSs in the cell. Considering these assumptions,

Fig. 3.16 shows the complexity of the RA strategies for different values of M and

varying number K of MSs.

In Fig. 3.16, it can be noted that for small values of M the complexity of the CAP-

BFA-ZF and SP-BFA-ZF strategies is usually smaller than that of the CC-CGA-ZF.

However, the complexity of the CAP-BFA-ZF and SP-BFA-ZF strategies increases

faster for larger values of M and larger number K of MSs and surpass the complexity of

the CC-CGA-ZF strategy. In particular, the CC-BFA-ZF strategy presents the lowest

complexity in all the cases. Considering the average sum rates shown in Fig. 3.7,

Fig. 3.8, and Fig. 3.9, and the complexity results shown in Fig. 3.16, it can be noted

that the CC-BFA-ZF strategy offers the best performance-complexity trade-off among

the RA strategies considered in this section.

In particular, the complexity of the CC-CGA-ZF and CC-BFA-ZF strategies can still

be reduced. For the CC-CGA-ZF strategy, the tolerances for the optimal solution of

the quadratic optimization algorithm can be adjusted as to find a solution in a shorter
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(b) M = 4.
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(c) M = 6.
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Figure 3.16. Complexity of the CAP-BFA-ZF, CC-CGA-ZF, SP-BFA-ZF, and CC-BFA-ZF
strategies for different number M of transmit antennas as a function of the number K of MSs.
1.5M ≤ K ≤ 32.

number Icga of iterations. A maximum number of iterations can also be imposed, so

that a suboptimal group can be found in a shorter time. For both CC-CGA-ZF and

CC-BFA-ZF strategies, the scaling factors 1
‖C‖

f

and 1
‖a‖

f

can be arbitrarily defined, thus

avoiding the computation that they involve.

Considering the results presented in this section and in Section 3.5.3, Section 3.5.4, and

Section 3.5.5, it can noted that the proposed CC-CGA-ZF and CC-BFA-ZF strategies

offer a good trade-off between the achieved average sum rate and computational com-

plexity.

3.5.9 Fairness Analysis Considering Different MS Priority

Criteria

In this section, the fairness of the RA strategies is investigated considering different

criteria for the definition of MS priorities affecting the selection of the initial MS k′.

QoS aspects are taken into account in this section in order to complement the analysis

of the RA strategies considered in this work, which are mainly intended to maximize

the sum rate of the system. In this section, it is not an objective to design QoS-

oriented RA strategies, but to investigate whether considerable enhancements in terms
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of throughput fairness can be achieved in the system at the expense of rather small

reductions of the average sum rate of the system.

In the following, the consideration of QoS aspects by the RA strategies is shortly

motivated. In this chapter, adaptive RA on a frame basis has been considered most of

the time. Because B-CSIT has been assumed to be available only for the first TS of each

frame, cf. Section 2.2.4, the MSs to which the first TS of a frame is allocated are also the

MSs to which all the subsequent TSs of the frame are allocated, which is in accordance

with the objective of maximizing the sum rate of the system. Thus, considering B-

CSIT and the fact that a single resource is considered in this chapter, the frequency

and time components do not play a decisive role in the RA to maximize the sum rate

of the system during one allocation period, i.e., one frame. Furthermore, according

to the assumptions in Chapter 2, all the MSs will attain the same throughput on a

long-term perspective. This is satisfactory if only best-effort services are considered.

However, data services having QoS requirements, e.g., in terms of average throughput

or maximum delay, are also expected in future mobile radio systems.

The selection of the initial MS k′ can be performed according to a different criterion

than the one introduced in Table 3.12 in order to follow some QoS-oriented objec-

tive, as mentioned in Section 3.5.1. Thus, the consideration of QoS aspects may be

incorporated in the RA strategies by adjusting some of their parameters. However,

an enhancement of the QoS perceived by the MSs is expected to be obtained at the

expense of a reduction of the average sum rate of the system.

In particular, the utilization of a priority criterion for the assignment of MSs or SDMA

groups is foreseen in the framework discussed in Section 1.2 and Section 2.3. Indeed,

MS priorities are part of the GA algorithm in Fig. 1.3 and have been employed in this

chapter. However, they have not been referred to as such because only the maximiza-

tion of the sum rate has been pursued.

The concept of MS priorities has often been used in time-scheduling algorithms to

manage the QoS of the MSs in a system [Zha95, FL02] and it can be directly applied

in order to select the initial MS k′. In this case, the fairness among the MSs in terms,

e.g., of the throughput, can be enhanced. Moreover, it is straightforward to modify the

SDMA algorithms of Section 3.2 and the SRA of Section 3.3.3 to ensure that a given

MS k′ always belongs to the SDMA group assigned on a given resource.

In the following, MS priorities are explicitly defined according to different criteria.

Let uk denote the priority of MS k. Considering the selection of the initial MS k′

in Table 3.12, it can be noted that the MS priority uk being adopted up to now

corresponded to

uk = log2

(

1 +
pk‖ĥiwk‖2

σ2

)

, (3.53)

which is equivalent to have

uk = ‖ĥk‖2
2. (3.54)
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Consequently, the initial MS k′, which is now defined as the MS with the highest

priority, corresponds to

k′ = arg max
k

{uk} , (3.55)

which meets the definition in Table 3.12 when uk is given by (3.54).

Note that according to (3.54), the same MS k′ is selected for all the TSs of a frame.

In spite of considering the same B-CSIT for the whole frame, performing RA on a

TS basis becomes important in this case because different criteria can be adopted to

define MS priorities and, consequently, a potentially different MS k′ might be selected

for each TS in a frame. Further on, the criterion associated with uk in (3.54) will be

termed the Capacity Maximization (CM) criterion and two additional criteria for MS

priorities are defined in the sequel, namely the Weighted Round Robin (WRR) and

the Weighted Proportional Fair (WPF) criteria. Moreover, one allocation period will

correspond to one TS further on. However, the same CSIT is considered for all the

TSs of a frame.

For the WRR criterion, the initial MS k′ is selected according to a Round Robin (RR)

policy with static priorities. Let p̃ denote the current allocation period, which should

not be confused with the power p. Let G⋆ denote the SDMA group to which the

considered resource has been assigned in the current allocation period. Let u
(0)
k and

u
(p̃)
k denote the static priority of MS k and the priority of MS k at the allocation period

p̃, respectively. For the WRR criterion, the priority u
(p̃)
k is written as

u
(p̃+1)
k =







u
(0)
k , for k ∈ G⋆,

u
(p̃)
k + u

(0)
k , for k 6∈ G⋆.

(3.56)

The static priorities in (3.56) are constants determining the fraction of resources that

each MS obtains on the long term. If SDMA is not considered, (3.56) ensures that on

the long term each MS is allocated a number of resources directly proportional to its

static priority and that MSs are served in a WRR way.

For the WPF criterion, let R
(0)
k and R̄

(p̃)
k denote the contracted and the perceived

average throughputs of MS k, respectively. Thus, the throughput ratio
R

(0)
k

R̄
(p̃)
k

measures

how well the MS has met its QoS requirements [SWJO07]. For the WPF criterion, the

priority of MS k is written as

u
(p̃+1)
k =

R
(0)
k

R̄
(p̃)
k

log2

(

1 +
pk‖ĥkwk‖2

σ2

)

, (3.57)

which is equivalent to set

u
(p̃+1)
k =

R
(0)
k

R̄
(p̃)
k

‖ĥk‖2
2, (3.58)

so that the initial MS k′ is selected as the one providing the best trade-off between its

QoS, represented by the throughput ratio, and its currently achievable rate, similarly
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as in [SWJO07]. For the same reasons presented for the CM criterion, the rate of the

MS can be replaced here by its channel gain, which leads to the selection of the same

initial MS k′ when using (3.58) instead of (3.57).

In this section, only the initial MS k′ is selected according to (3.55), with uk given by

(3.54), (3.56) and (3.58) for the CM, WRR, and WPF criteria, respectively. Therefore,

MS priority and grouping metric are kept relatively separated from each other. This

is a reasonable choice since the SDMA group is not known a priori and the SDMA

algorithm should not be penalized by the choice of uk. However, because a group of

MSs is allocated on the resource instead of a single MS, the priority of all the MSs

in G⋆ needs to be updated after each allocation period. In particularly for the WRR

criterion, the average fraction of resources that an MS k gets is not
u
(0)
k

PK
j=1 u

(0)
j

, as in the

case without SDMA, but this average fraction of resources now depends on the spatial

compatibility among the MSs, which finally determines the composition of the SDMA

groups.

In the following, the relative performance of the SP-BFA-ZF, CC-BFA-ZF, CC-CGA-

ZF strategies is investigated considering the different criteria for MS priorities. These

three strategies have been selected because they presented the best trade-off between

performance in terms of the average sum rate and computational complexity. In order

to have different QoS requirements in the system, the MSs have been divided into two

categories: the low-priority and the high-priority category. One half of the MSs belongs

to each category. For the WRR criterion, u
(0)
i = 1 and u

(0)
j = 2u

(0)
i = 2 have been set for

all MSs i and j belonging to the low- and high-priority categories, respectively. For the

WPF criterion, R
(0)
i = u

(0)
i R(0) = R(0) and R

(0)
j = u

(0)
j R(0) = 2R(0) have been adopted

for all MSs i and j belonging to the low- and high-priority categories, respectively.

R(0) is an arbitrary contracted throughput, whose absolute value is not relevant for a

relative performance analysis.

Fig. 3.17 shows the average sum rate achieved by the SP-BFA-ZF, CC-BFA-ZF, and

CC-CGA-ZF strategies considering the CM, WPF, and WRR criteria and an average

SNR γ of 10 dB.

Because only the selection of the initial MS k′ is subject to the priority criterion,

and not the composition of the whole SDMA group, it can be seen in Fig. 3.17 that

reductions of only 4% and 12% of the average sum rate result when comparing the

WPF and WRR criteria to the CM criterion, respectively. The small reduction of the

average sum rate is an expected result since it has been assumed that the MS priorities

should not interfere with the group composition determined by the SDMA algorithm.

The small reduction of the average sum rate changes the throughput distribution among

the MSs in the system. In order to determine how fair the throughput distribution in

the system is, Jain’s Index of Fairness (JIF) has been applied to the average throughput
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Figure 3.17. Average sum rate achieved by the SP-BFA-ZF, CC-BFA-ZF, and CC-CGA-ZF
strategies considering different criteria for MS priorities. Average SNR γ = 10 dB.

R̄
(p̃)
k perceived by the MSs [Jai91, Cal04]. JIF will be denoted by J (R̄

(p̃)
k ) and is defined

as

J (R̄
(p̃)
k ) =

(
K∑

k=1

R̄
(p̃)
k /u

(0)
k

)2

K
K∑

k=1

(

R̄
(p̃)
k /u

(0)
k

)2
, (3.59)

where the throughput perceived by the MSs has been scaled in order to reflect their

static priorities. For JIF, values close to zero mean an unfair throughput distribution

among the MSs and values close to one a fair throughput distribution. A JIF value of,

e.g., 0.7 · 100 can also be interpreted as having 70% of the MSs fairly served with the

remaining 30% of the MSs getting absolutely no throughput [Jai91].

For the SP-BFA-ZF, CC-BFA-ZF, and CC-CGA-ZF strategies, Fig. 3.18 shows JIF

observed in the system after a varying number of frames and considering an average

SNR γ of 10 dB.

In Fig. 3.18, it can be seen that the RA strategies present similar throughput fairness

for the same MS priority criterion. Moreover, it can be noted that the WPF and WRR

criteria lead to a more fair throughput distribution compared to the CM criterion. By

comparing Fig. 3.18 and Fig. 3.17, it can be observed that the more fair throughput

distribution among the MSs in Fig. 3.18 when considering the WPF and WRR comes at

the expense of only small reductions of the average sum rate of the system in Fig. 3.17.

Since low- and high-priority categories of MSs are considered, it is important to verify

whether the high-priority MSs are getting higher throughput than the low-priority

MSs. Fig. 3.19 shows the percentual difference between the throughput of high- and
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low-priority MSs considering the CM, WPF, and WRR criteria and an average SNR

γ of 10 dB. In other words, Fig. 3.19 shows how much higher the throughput of the

high-priority MSs is on average than the throughput of the low-priority MSs.

0

5

10

15

20

25

30

 

 

T
h
ro

u
gh

p
u
t

ga
in

in
%

CC-CGA-ZFSP-BFA-ZF CC-BFA-ZF

WPF criterion
WRR criterion

Figure 3.19. Percentual throughput difference for high-priority MSs compared to low-priority
MSs. Average SNR γ = 10 dB.

In Fig. 3.19, it can be seen that the throughput of high-priority MSs is only about

20% to 30% higher than that of MSs with low priority. Because the SP-BFA-ZF, CC-

BFA-ZF, and CC-CGA-ZF strategies defined in this chapter are oriented towards the
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maximization of the sum rate of the system, providing QoS in terms of a contracted

average throughput to the MSs is not possible. Consequently, only a slightly improved

throughput for the high-priority MSs can be expected, as shown in Fig. 3.19. Moreover,

the criteria for the MS priorities adopted here only determine the selection of one MS in

the SDMA group, i.e., the initial MS k′, and because it is assumed that the BS always

has data to send to the MSs, cf. Section 2.2.1, it is possible that MSs that have already

reached their average throughput requirements get resources anyway. Consequently,

the low-priority MSs are expected to perceive average throughputs higher than the

required values.

Comparing Fig. 3.17 and Fig. 3.19, it can be seen that the WPF criterion provides the

best throughput gains to the high-priority MSs compared to the low-priority MSs if

compared to the WRR criterion. Moreover, these throughput gains are obtained with

the WPF criterion at the expense of only a small reduction of the average sum rate,

which is also smaller than that observed when considering the WRR criterion. This

result is expected because the WPF criterion takes into account an estimate of the

perceived average throughput of the MSs when selecting the initial MS k′.

The further study and design of QoS-oriented RA strategies would ask for different

precoding and power allocation algorithms and would impose additional constraints on

the SDMA algorithms. This topic is out of the scope of this thesis and is left open for

future investigation. Some results involving QoS aspects have been investigated by the

author in [MK07b, MK07c, MK08]. Some additional results involving MS priorities,

group priorities, and throughput fairness are provided in the next chapter.

3.5.10 Summary

In this section, different suboptimal RA strategies aiming at the maximization of the

sum rate of the system have been studied in a scenario in which a single resource is

considered.

It has been seen that the use of B-CSIT and adaptive RA on a frame basis leads

only to a small degradation of the average sum rate of the system but to a manyfold

reduction of the signaling demands compared to the use of P-CSIT and adaptive RA

on a subcarrier and TS basis.

The suboptimal RA strategies have been shown to achieve over 90% of the average

sum rate obtained by an ES for the SDMA group maximizing the sum rate of the

system. The complexity of such an ES increases combinatorially with the problem

dimensions and therefore the studied suboptimal RA strategies offer a rather efficient

and low-complexity solution to the considered RA problem.

While employing B-CSIT leads to smaller signaling demands, further reductions of

the signaling overhead can be obtained by employing S-CSIT. However, considering
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S-CSIT and the parameters introduced in Section 3.5.1, the studied RA strategies

have been shown to achieve only about 45% and 70% of the average sum rate that

they achieve with B-CSIT for high and low average SNRs values, respectively. In

particular, estimating and reporting S-CSIT at each half channel coherence time allows

the strategies to obtain at least 60% of their average sum rate with B-CSIT.

The impact of erroneous CSIT has also been investigated. The RA strategies have been

shown to be substantially dependent on the quality of the CSIT described by γcsi, cf.

(2.10). It has been shown that in order to attain at least 60% of the average sum rate

achieved with error-free CSIT, the errors due to processing and feedback delays, and

due to imperfect channel estimation should lead to γcsi values not lower than 10 dB.

The amount and quality of the CSIT is therefore fundamental to realize the potential

gains of adaptive RA in frequency, time, and space.

In particular, the RA strategies employing the CAP-BFA and SP-BFA and the pro-

posed CC-CGA and CC-BFA have presented almost the same performance and achieved

the best results in terms of average sum rate, which surpassed 90% of the average sum

rate achieved by the CAP-ESA-ZF. None of the referred RA strategies has been shown

to be particularly more robust against imperfect CSIT. Oppositely, they have been

shown to be almost equally sensitive to the amount and quality of the CSIT.

The dependencies of the RA strategies on the target SDMA group size have been

discussed considering the SRA. It has been shown that the SRA can provide gains

about 10% to 30% in terms of the average sum rate to the RA strategies, but that

its complexity can be saved or at least reduced by considering adequate target SDMA

group sizes.

The impact of the paratemer β of the CC-BFA and CC-CGA on the average sum rate

of the RA strategies has also been investigated. For the RA strategies employing these

SDMA algorithms, it has been shown that the performances in terms of the average

sum rate are almost independent of the value of β.

Expressions for the complexity of the RA strategies considering the ZF algorithm of

Table 3.8 have been derived and it has been shown that the proposed RA strategies

considering the CC-CGA and especially the CC-BFA have in many cases a consider-

ably lower computational complexity than those employing CAP-BFA and SP-BFA as

SDMA algorithm. Nevertheless, the SDMA algorithms WN-BFA e WN-FFA proposed

here offer a suboptimal solution to the SDMA grouping problem with even lower com-

plexity than the CC-CGA and CC-BFA, but with slightly worse performance in terms

of average sum rate.

Additionally, the SP-BFA-ZF, CC-BFA-ZF, and CC-CGA-ZF strategies have been an-

alyzed considering different MS priority criteria. It has also been shown that an en-

hancement of the throughput fairness among the MSs can be obtained by suitably

choosing the initial MS k′ and that the considered RA strategies can be modified
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to take QoS aspects into account and can provide high-priority MSs with a higher

throughput compared to low-priority MSs.

The RA strategies studied in this chapter could be extended to fully cope with receive

antenna cooperation of multi-antenna MSs. Indeed, only minor changes are required to

extend the SDMA algorithms and the SRA to the case with multi-antenna MSs. How-

ever, major changes are required for the precoding and power allocation algorithms,

which become more complex. A comprehensive set of precoding and power allocation

algorithms for multi-antenna MSs can be found in [Sta06]. Multi-antenna MSs have

been considered by the author in [MK06], where BD [SSH04] is employed. An exten-

sive performance and complexity analysis of RA strategies considering precoding and

power allocation algorithms especially designed for multi-antenna MSs is left for future

investigation.
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Chapter 4

Resource Allocation in MIMO-OFDMA

Systems: Multiple Resources

4.1 Introduction

In this chapter, RA strategies are investigated considering the existence of multiple

resources in the system. The multiple-resource case is indicated by the dot-dashed line

in Fig. 1.3. Differently from Chapter 3, the resource assignment problem discussed in

Section 1.2 and Section 2.3 has also to be taken into account in this chapter. Con-

sequently, the complete problem in (2.16) is considered. Nevertheless, the division of

the RA problem of (2.16) into subproblems is still considered, so that specific algo-

rithms are applied to each of the subproblems, with the combination of these algorithms

defining a suboptimal RA strategy.

Suboptimal SDMA algorithms are still needed here and for the investigations conducted

in this chapter, a subset composed by the CAP-BFA, SP-BFA, CC-BFA and CC-CGA

introduced in Section 3.2 is considered. These SDMA algorithms have been selected

because the RA strategies employing them have been shown in Chapter 3 to well

approximate the performance of the CAP-ESA-ZF strategy. Moreover, because the

GEP algorithm of Table 3.8 has been shown to be considerably more complex and

to perform only as good as the ZF algorithm of Table 3.8, only this latter will be

considered in this chapter.

Because the resource assignment problem is considered in this chapter, different RA

strategies can be designed depending on how the SDMA grouping and the resource

assignment problems are solved. As discussed in Section 2.3 and Section 3.1, whenever

the power Pb allocated to the resource b, with b = 1, . . . , B, are known a priori, the

SDMA grouping problem can be solved on a resource-by-resource basis. In this case,

the assignment of resources to SDMA groups is performed sequentially and the SDMA

grouping and the resource assignment problems are solved separately from each other.

In this chapter, the system resources correspond to the frequency blocks associated

with each TS of a frame and the allocation period p̃ corresponds to one TS, as it has

been the case in Section 3.5.9.

There are different alternatives to separately solve the SDMA grouping problem and

resource assignment problem. Considering RA strategies whose SDMA algorithms are

unaware of the actual precoding and power allocation, one alternative corresponds

to first solving the resource assignment problem and allocating each resource to an

initial MS, e.g., using an assignment algorithm and the MS priorities discussed in



108 4. Resource Allocation in MIMO-OFDMA Systems: Multiple Resources

Section 3.5.9, and afterwards build the SDMA groups on each resource considering the

initial MSs to which resources have been assigned. Another alternative corresponds to

solving first the SDMA grouping problem and building a set of SDMA groups on each

resource and, afterwards, assigning each resource to one of the SDMA groups in the

corresponding set using an assignment algorithm. These two alternatives correspond

to two new algorithms for performing Separated Grouping and Assignment (SGA)

which will be considered in this chapter. Considering RA strategies whose SDMA

algorithms are aware of the actual precoding and power allocation, the SDMA grouping

and resource assignment problems can be solved either separately, e.g., according to

one of the above alternatives, or jointly. An algorithm performing Joint Grouping and

Assignment (JGA) is also considered in this chapter.

Regarding the precoding and power allocation, it can be noted that ZF precoding

described in Section 3.3.1 works on a resource basis and remains unchanged when

multiple resources are considered. On the other hand, the WFA needs to be adapted

in order to take multiple resources into account whenever an adaptive distribution of

the power among all the resources is considered. Both the cases in which the power is

divided among resources a priori or adaptively are considered in this chapter.

This chapter is organized as follows. In Section 4.2, the Grouping & Assignment (GA)

algorithms are described, which involve the MS or group priority, the SDMA algorithm,

and the assignment algorithm, as illustrated in Fig. 1.3.

In Section 4.2.1, the MS priorities of Section 3.5.9 are revisited and their concepts are

extended to group priorities considering the CM, WRR, and WPF criteria. Because

MS priorities have already been discussed in Section 3.5.9, they receive less attention

in this section.

In Section 4.2.2, the SDMA and assignment algorithms are discussed. However, because

the SDMA algorithms considered in this chapter, i.e., the CAP-BFA, SP-BFA, CC-BFA

and CC-CGA, have already been detailed in Section 3.2, they will receive less focus

in this section. The assignment algorithms are new and play a major role in this

section and, consequently, will receive more attention. The proposed algorithms for

performing SDMA grouping and resource assignment separately or jointly are described

in Section 4.2.2.1 and Section 4.2.2.2, respectively.

In Section 4.2.2.1, three new algorithms for performing SDMA grouping and resource

assignment are defined. In Section 4.2.2.2, the CAP-BFA of Table 4.1 is extended

to perform joint SDMA grouping and resource assignment over the multiple resources

altogether.

In Section 4.2, all the GA algorithms resulting from the combination of an SDMA

algorithm, an MS or group priority, and an assignment algorithm considered in this

chapter are possible, which results in a large number of GA algorithms. Due to this, the

GA algorithms considered in this chapter will be defined only in Section 4.4, together
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with the definition of the RA strategies. Therefore, the convention adopted in this

chapter differs from the one that has been adopted in Chapter 3.

In Section 4.3, the precoding and power allocation algorithms for the scenario with

multiple resources are introduced. In Section 4.3.1, some remarks regarding the pre-

coding algorithm considered in this chapter are made. In Section 4.3.2, the WFA of

Section 3.3.2 is extended to take into account multiple resources. In Section 4.3.3, the

considered precoding and power allocation algorithms are defined.

In Section 4.4, the GA algorithms described in Section 4.2 are combined with the

precoding and power allocation algorithms of Section 4.3 in order to define the RA

strategies investigated in this chapter.

In Section 4.5, the performance of the RA strategies defined in Section 4.4 is investi-

gated and a short summary of the results of this chapter is provided.

4.2 Grouping & Assignment Algorithm

4.2.1 Group Priority

In this section, the concept of MS priorities is extended to group priorities. The group

priority defined here quantifies the efficiency of allocating a resource to a given SDMA

group. An SDMA group may have a different priority for each of the resources of the

system and, consequently, group priorities can be used to determine which resources

should be allocated to which group. On resource b, let the gth SDMA group be denoted

by Gg,b and let vg,b denote its group priority. One simple form of defining the group

priority corresponds to sum up the priorities ui,b of the MSs in Gg,b on resource b, i.e.,

to define

vg,b =
∑

i∈Gg,b

ui,b. (4.1)

[MK07b, MK08]. Using (4.1) and considering the CM, the WRR, and the WPF criteria

defined in Section 3.5.9, the group priorities can be defined as

vg,b = fCAP(Gg,b) (4.2a)

for the CM criterion,

vg,b =
∑

i∈Gg,b

u
(p̃)
i (4.2b)
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for the WRR criterion, and

vg,b =
∑

i∈Gg,b

R
(0)
i

R̄
(p̃)
i

log2









1 +
pi,b ‖ĝiwk‖2

2

σ2 +
∑

j∈Gg,b

j 6=i

pj,b ‖ĝi,bwj,b‖2
2









(4.2c)

for the WPF criterion.

In the following, the group priorities defined in (4.2) are shortly discussed. For the CM

criterion, the higher the group capacity of an SDMA group Gg,b on a resource b is, the

higher the group priority on this resource is and, consequently, the higher the chances

of assigning the resource b to the SDMA group Gg,b.

For the WRR criterion, the MS priorities u
(p̃)
i of the all MS in an SDMA group Gg,b

are summed up. Thus, according to (3.56), SDMA groups containing MSs which got

no access to the channel for a long period will have high group priority. Consequently,

there will be high chances of assigning resources to these SDMA groups.

For the WPF criterion, the rate of the MSs in an SDMA group are scaled by the

throughput ratio
R

(0)
k

R̄
(p̃)
k

, which measures how well the MS has met its QoS requirements

[SWJO07]. Thus, SDMA groups containing MSs achieving a high rate or MSs whose

QoS requirements have not been fulfilled will have high group priority. Consequently,

there will be high chances of assigning resources to these SDMA groups.

Differently from (3.54) and (3.58), in which the rate of a single MS could be replaced by

the channel gain, replacing the group capacity in (4.2a) and (4.2c) by the norm of the

group channel matrix may be not an adequate solution, since it would not efficiently

represent neither the effective channel matrix of the SDMA group, which depends

on the precoding vectors, nor the individual products between the priority and rate

of each MS in the SDMA group. However, whenever the SDMA grouping and the

resource assignment problem are solved separately, the composition of the candidate

SDMA group is known and, consequently, the group priority can be calculated for

each of candidate group using (4.2). Nevertheless, this leads to additional complexity

compared to the case in which group priorities are not considered, since precoding

and power allocation have to be taken into account in the computation of the group

priorities. It must be noted that this applies for the CM and WPF criteria, but this

does not apply to the WRR criterion in which the group priority does not depend

neither on precoding nor on power allocation, cf. (4.2b).
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4.2.2 SDMA and Assignment Algorithms

4.2.2.1 Separated Grouping and Assignment

In this section, the different algorithms for performing Separated Grouping and Assignment

(SGA) are described. In order to perform SGA, an a-priori distribution of the power

among the system resources has to be assumed. In this chapter, an EPA among the

B resources of the system is considered by the SGA algorithms, so that Pb = P
S
, b =

1, . . . , B. In this section, the following SGA algorithms are defined:

1. The SGA Algorithm 1 (SGA-A1), which is used by the RA strategies that work

on a resource-by-resource basis, so that the resources in the system are considered

sequentially.

2. The SGA Algorithm 2 (SGA-A2), which first solves the resource assignment problem

by assigning each resource to an initial MS and which solves the SDMA grouping

problem afterwards by applying the SDMA algorithms to build groups on each

resource.

3. The SGA Algorithm 3 (SGA-A3), which first solves the SDMA grouping problem

by building a set of candidate SDMA groups for each resource and which solves the

resource assignment problem afterwards by assigning the resources to a subset of

the candidate SDMA groups.

The three SGA algorithms mainly differ in the form and order in which the SDMA

grouping and the resource assignment problems are solved.

In the following, the SGA-A1 is described. The SGA-A1 is a simple SGA algorithm

which can be used by RA strategies that do not really take into account the existence

of multiple resources into the system, but deal with each of the B resources of the

system individually. An illustration of the SGA-A1 is shown in Fig. 4.1.

Considering the SGA-A1, the first resource is assigned to an initial MS according to

the MS priority criteria defined in Section 3.5.9. This is the resource assignment step

indicated by ¬ in Fig. 4.1. Considering this initial MS, the SDMA algorithm of SGA-

A1 builds an SDMA group on the considered resource and other MSs are put together

with the initial MS into the SDMA group. This is the SDMA grouping step indicated

by ­ in Fig. 4.1. After that, the precoding, power allocation, and the SRA are applied

for the SDMA group while considering the available power Pb = P
S

on the resource.

This is the precoding and power allocation step indicated by ® in Fig. 4.1. Due to

the SRA, MSs admitted to the SDMA group might be removed, thus resulting in a

smaller group, as illustrated in Fig. 4.1. After precoding and power allocation, the RA

strategy is finished with this particular resource and the process is repeated for the

next resource, as indicated by step ¯ in Fig. 4.1.
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Figure 4.1. Illustration of the SGA Algorithm 1 (SGA-A1).

For each of the RA strategies discussed in Chapter 3, in which a single resource has

been considered, the use of the SGA-A1 can be interpreted as a sequential application

of the RA strategy itself for each resource b, b = 1, . . . , B.

In the following, the SGA-A2 is described. Differently from the SGA-A1, in which

resources are assigned one-by-one to initial MSs, the SGA-A2 assigns all the resources

to a set of initial MSs at once. An illustration of the SGA-A2 algorithm is shown in

Fig. 4.2.

Considering the SGA-A2, first an initial MS is assigned to each resource. This is

the resource assignment step indicated by ¬ in Fig. 4.2. Then, on each resource

b, b = 1, . . . , B, an SDMA group is built by the SDMA algorithm of the SGA-A2 and

other MSs are grouped with the initial MSs to which the resources have been assigned.

This is the SDMA grouping step indicated by ­ in Fig. 4.2. Considering EPA among

resources, the precoding and power allocation algorithm is applied to each resource.

This is the precoding and power allocation step indicated by ® in Fig. 4.2. Due to

the SRA, MSs admitted to the SDMA groups might be removed, thus resulting in a

smaller groups, as illustrated in Fig. 4.2.

In order to decide which resources should be assigned to which initial MSs, a standard

assignment problem [NW99] considering the MS priorities defined in Section 3.5.9 is for-
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Figure 4.2. Illustration of the SGA Algorithm 2 (SGA-A2).

mulated and solved using Munkres’ algorithm [BL71, MK07b, MK08]. In the following,

the assignment problem considered by the SGA-A2 is formulated. Let U ∈ R
B×K
+ de-

note an MS priority matrix containing the MS priorities ub,k of each MS k, k = 1, . . . , K,

on each resource b, b = 1, . . . , B. Let U ∈ B
B×K denote a resource-to-MS assignment

matrix whose binary entries [U]b,k = ub,k ∈ {0, 1} indicate whether a resource b is

assigned to an MS k. The matrices U and U can be written as

U =









u1,1 u1,2 . . . u1,K

u2,1 u2,2 . . . u2,K

...
...

. . .
...

uB,1 uB,2 . . . uB,K









(4.3a)
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and

U =









u1,1 u1,2 . . . u1,K

u2,1 u2,2 . . . u2,K

...
...

. . .
...

uB,1 uB,2 . . . uB,K









, (4.3b)

respectively. Let ⊙ denote the Hadamard product between two vectors or two matrices

[GL96]. Then, using (4.3) the assignment of the resources to the initial MSs can be

formulated as

U⋆ = arg max
U

{
1T

B (U ⊙ U)1K

}
(4.4a)

subject to: U1K = 1B (4.4b)

UT1B = 1K , (4.4c)

which is a standard assignment problem that can be efficiently solved with Munkres’

algorithm [BL71]. After solving (4.4), the resource assignment problem is solved and

the resources assigned to the initial MSs are determined by the non-zero entries of

U⋆. The RA strategies employing the SGA-A2 work similarly to those employing the

SGA-A1 and starting with the initial MSs to which the resources have been assigned,

the SDMA algorithm builds an SDMA group on each resource. After the resource

assignment and the SDMA grouping problems are solved, the precoding and power

allocation algorithm of the RA strategy can be applied to the SDMA groups associated

with each resource.

In the following, the SGA-A3 is described. Differently from SGA-A1 and SGA-A2, the

SGA-A3 solves first the SDMA grouping problem and builds a set of candidate SDMA

groups on each resource. After that, the assignment algorithm assigns each resource to

one of the candidate SDMA groups. An illustration of the SGA-A3 algorithm is shown

in Fig. 4.3.

Considering the SGA-A3, first a set of K candidate SDMA groups are created on each

resource b, b = 1, . . . , B. On a given resource b, the kth SDMA group is created by

selecting the kth MS as initial MS and applying the SDMA algorithm to build the

SDMA group considering this initial MS. Consequently, G = K · B candidate groups

are created. These steps are indicated by ¬ and ­ in Fig. 4.3, respectively. For each

candidate SDMA group g, g = 1, . . . , G, the precoding and power allocation algorithm

is applied considering EPA among resources. This is the precoding and power allocation

step indicated by ® in Fig. 4.3. Then, similarly to the SGA-A2 the assignment of

resources to SDMA groups is formulated as a standard assignment problem based on

the group priorities [NW99], which is solved using Munkres’ algorithm [BL71, MK07b,

MK08], so that the B resources are assigned to B of the G candidate SDMA groups.

This is the resource assignment step indicated by ¯ in Fig. 4.2.
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Figure 4.3. Illustration of the SGA Algorithm 3 (SGA-A3).

In the following, the assignment problem considered by the SGA-A3 is formulated.

Differently from the SGA-A2, resources are assigned to whole SDMA groups by the

SGA-A3 and the group priorities defined in Section 4.2.1 are considered in the problem

formulation instead of the MS priorities considered by the SGA-A2. Let V ∈ R
B×G
+

denote a group priority matrix containing the group priorities vb,g of each SDMA group

g, g = 1, . . . , G, on each resource b, b = 1, . . . , B. Let V ∈ B
B×G denote a resource-to-

group assignment matrix whose binary entries [V]b,g = vb,g ∈ {0, 1} indicate whether

a resource b is assigned to an SDMA g. The matrices V and V can be written as

V =









v1,1 v1,2 . . . v1,G

v2,1 v2,2 . . . v2,G

...
...

. . .
...

vB,1 vB,2 . . . vB,G









(4.5a)
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and

V =









v1,1 v1,2 . . . v1,G

v2,1 v2,2 . . . v2,G

...
...

. . .
...

vB,1 vB,2 . . . vB,G









, (4.5b)

respectively, and the assignment of resources to SDMA groups can be formulated as

V⋆ = arg max
V

{
1T

B (V ⊙ V)1G

}
(4.6a)

subject to: V1G = 1B (4.6b)

VT1B = 1G, (4.6c)

which is also a standard assignment problem and can be efficiently solved with Munkres’

algorithm [BL71]. After solving (4.6), the resource assignment problem is solved and

the resources assigned to SDMA groups are determined by the non-zero entries of V⋆.

After that, the RA is completed.

In the following, some additional remarks are made regarding the SGA algorithms

described in this section. Observing the constraints (4.4b) and (4.4c), it can be noted

that, differently from the SGA-A1, the SGA-A2 does not allow more than one of the

B resources to be allocated to the same initial MS. Considering EPA among resources,

this is the basic difference between SGA-A1 and SGA-A2. For example, consider two

MSs, two resources, the CM criterion, and consider also that the channel gains of MS

k = 1 are higher than the channels gains of MS k = 2 on both resources. Then, if the

SGA-A1 is employed by the RA strategy, MS k = 1 will be chosen as initial MS for

both resources. However, if the SGA-A2 is employed by the RA strategy, MS k = 1

will be chosen as initial MS for the resource on which its channel gain is maximum and

the other resource will be assigned to MS k = 2. Consequently, the SGA-A2 leads to

a more fair distribution of the resources among the initial MSs. In order to allow the

SGA-A2 to assign multiple resources to a given initial MS k, it is enough to replicate

the kth column of U as many times as needed, correspondingly extend the matrix U,

and solve (4.4) considering such extended versions of U and U while keeping track

of the correspondence between the added columns and the considered MS k. In this

way, an MS k might get as many resources as the number of columns of U and U that

are associated with it and the SGA-A2 can perfectly emulate the SGA-A1. Anyway,

because the composition of the SDMA groups is decided afterwards, multiple resources

might be allocated to SDMA groups of same composition.

Similarly to the SGA-A2, extended matrices V and V can be used with the SGA-A3 to

allow more resources to be allocated to a given SDMA group. Anyway, because SDMA

groups having the same composition might be built on different resources, multiple

resources might be allocated to the same SDMA group.
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On the one hand, extending the matrices U and U, or V and V, might allow to allocate

multiple resources to the same MS or SDMA group, respectively. On the other hand,

they increase the dimensions of problems (4.4) and (4.6) and increase their complexity.

Moreover, if fairness aspects are taken into account, extending the matrices U and U,

or V and V, might reduce the throughput fairness among the MSs due to the possible

concentration of resources by a few MSs or SDMA groups.

The assignment algorithm of the SGA-A3 is structurally analogous to that of the SGA-

A2, but assigns whole SDMA groups to resources instead of only initial MSs. In order to

avoid that an unsuitable resource be assigned to an SDMA group, the group priorities

of the K SDMA groups created on each resource b are computed only for this specific

resource and are set to zero on the other B − 1 resources. This choice has been made

by the author in [MK07b, MK08] and is reasonable since spatial compatibility among

MSs is resource-dependent. Consequently, for each resource b, the solution of (4.6)

reduces to assigning each resource to the highest priority group among the K SDMA

groups created on the corresponding resource.

4.2.2.2 Joint Grouping and Assignment

In this section, the Joint Grouping and Assignment (JGA) is discussed, which can

be performed if the SDMA algorithm is aware of the precoding and power allocation.

From the SDMA algorithms listed in Section 4.1, only the CAP-BFA is aware of the

precoding and power allocation and, consequently, it is the unique SDMA algorithm

considered in this section.

In the following, the CAP-BFA of Table 3.2 is extended to consider multiple resources

and perform JGA. In order to extend the CAP-BFA to perform JGA, the following

aspects have to be taken into account:

• The initial MS k′ corresponds now to the one with the highest channel gain ‖ĥk,b‖2
2

over all the resources b, b = 1, . . . , B, and the initial resource b′ is the resource on

which the channel gain ‖ĥk′,b‖2
2 of the initial MS k′ is maximum. Then, an SDMA

group Gb′ containing the initial MS k′ is build on the initial resource b′.

• The next MS to be assigned a resource can now be a new MS admitted to an SDMA

group to which a resource has already been allocated or an MS building a new SDMA

group on a resource which has not been allocated yet.

• The CAP-BFA stops adding new MSs to the SDMA group Gb to which the resource

b is allocated whenever the target group size K⋆
Gb

on that resource has been reached.

• The CAP-BFA ends whenever the admission of a new MS to an SDMA group on

any of the resources does not increase the sum rate anymore.

Modifying the CAP-BFA of Table 3.2 to take into account the above aspects is straight-

forward. Let Gb denote the SDMA group currently allocated on resource b, let KGb
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denote the size of the SDMA group Gb, and let G denote the set of the SDMA groups

to which the resources are allocated. Considering these definitions, the CAP-BFA

extended for JGA is presented in Table 4.1.

Table 4.1. CAP-BFA extended for JGA.

1. Select the initial MS k′ and resource b′ as {k′, b′} = arg max
{k,b}

{

‖ĥk,b‖2
2

}

and build Gb′ = {k′}.

2. Set G = {G1,G2, . . . ,GB}, where Gb are initially empty ∀b 6= b′.

3. While KGb
< K⋆

Gb
for any resource b

a. For each resource b, set G′
b = Gb ∪

{

arg max
k 6∈Gb

{fCAP(Gb ∪ {k})}
}

.

b. Set b⋆ = arg max
b

{

∑

Gi

fCAP(Gi)

}

, with Gi ∈ {(G \ Gb) ∪ G′
b}.

c. Set G ′ = {(G \ Gb⋆) ∪ G′
b⋆}.

d. If
∑

Gi∈G ′

fCAP(Gi) >
∑

Gi∈G

fCAP(Gi), set G = G ′, otherwise stop.

4. Define the set of the best SDMA groups as G ⋆ = G .

The algorithm in Table 4.1 remains unchanged if a grouping metric other than fCAP(G)

is used. However, for any grouping metric not involving the actual precoding and power

allocation, the algorithm shown in Table 4.1 leads to the same result than applying the

BFA from Table 3.2 on a resource-by-resource basis.

4.3 Precoding and Power Allocation Algorithms

4.3.1 Precoding Algorithm

As mentioned in Section 4.1, only the ZF of Section 3.3.1 is considered in this chapter.

Because ZF precoding diagonalizes the channel matrix of the SDMA groups assigned

on each resource, cf. (3.31), the precoding and the power allocation are decoupled from

each other, as discussed in Section 3.3, and precoding vectors can be determined on a

resource basis. Thus, if the composition of the SDMA groups allocated on the different

resources of the system does not change, the efficiency of the precoding algorithm

is not affected by any changes in the distribution of the power among the resources

allocated to the MSs. Therefore, no additional considerations are required in this

chapter regarding the ZF precoding of Section 3.3.1.

4.3.2 Power Allocation Algorithm

In this section, the WFA of Table 3.5 is extended to cope with multiple resources.

The extension of the WFA and of the SDA is straightforward. However, due to higher
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complexity of the SDA compared to the WFA and of the GEP algorithm of Table 3.9

compared to the ZF algorithm of Table 3.8, the SDA is not considered in this section.

Let the indices i and b be used to indicate the MS i in the SDMA group Gb to which

the resource b has been allocated. Let KGb
be the size of the SDMA group Gb. Then,

the total number KA of MSs to which resources have been allocated can be written as

KA =
B∑

b=1

KGb
. Let j, j = 1, . . . , KA, indicate the jth MS to which resources have been

allocated, and let M(b, i) be a function mapping the indexes b and i of an MS to its

corresponding index j, and M−1(j) denote the function mapping the index j back to

the indexes b and i. Considering these definitions, the WFA for power allocation over

multiple resources is presented in Table 4.2.

Table 4.2. WFA for power allocation over multiple resources.

1. Get the index j of each MSs by using M(i, b), for b = 1, . . . , B, and i = 1, . . . , KGb
.

2. Sort the KA MSs so that ‖ĝ1w1‖2
2 ≥ ‖ĝ2w2‖2

2 ≥ . . . ≥ ‖ĝjwj‖2
2 . . . ≥ ‖ĝKA

wKA
‖2
2.

3. For K̃ = KA to 1,

If

(

σ2

‖ĝ
K̃

w
K̃‖2

2

)

K̃ −
(

P +
K̃∑

j′=1

σ2

‖ĝj′wj′‖2

2

)

< 0, go to step 4.

4. Compute the water level µ⋆ = 1
K̃⋆

(

P +
K̃⋆
∑

j′=1

σ2

‖ĝj′wj′‖2

2

)

.

5. For j = 1 to KA

If j ≤ K̃, set pj = µ⋆ − ‖ĝjwj‖
2
2

σ2 , else set p
m(j) = 0.

6. Sort the MSs back to their original order.

7. Get the indexes b and i of each MS by using M−1(j), for j = 1, . . . , KA.

The only difference between the WFA in Table 4.2 and the WFA in Table 3.5 is that the

former performs water-filling in both frequency and space dimensions while the latter

performs it only in the space dimension since a single frequency resource is considered.

4.3.3 Precoding and Power Allocation Algorithm Definition

In this section, the precoding and power allocation algorithms considered in this chapter

are defined. Two precoding and power allocation algorithms are considered in this

chapter.

If EPA among resources is considered, no changes are required to WFA of Section 3.3.2

or for the SRA of Section 3.3.3 to be applied in this chapter. EPA among resources is

considered by the RA strategies performing SGA and which employ the ZF algorithm

of Table 3.8.

If an EPA among resources is not considered, the precoding and power allocation

algorithm combines the ZF precoding, cf. Section 3.3.1, and the WFA of Table 4.2,
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which performs power allocation to the MSs over the resources altogether. These are

the precoding algorithm and the power allocation algorithm considered by the RA

strategies performing JGA.

Note that the precoding and power allocation algorithms adopted by an RA strategy

is clearly identified by the assignment algorithm employed by the same RA strategy

and, consequently, no additional denominations for the precoding and power allocation

algorithms are required. The association between assignment algorithms and the pre-

coding and power allocation algorithms will become more clear when defining the RA

strategies in the next section.

Moreover, because the SRA of Table 3.7 is used without changes by the RA strategies

performing SGA and because the CAP-BFA of Table 4.1 considered by the RA strategy

performing JGA does not ask for an SRA, no additional section concerning an extension

of the SRA of Table 3.7 to multiple resources is introduced in this chapter.

4.4 Resource Allocation Strategy Definition

In this section, the RA strategies considered in this chapter are defined. They consist

of combining a GA algorithm of Section 4.2 with a precoding and power allocation

algorithm of Section 4.3.3. The same simulation parameters provided in Table 3.11

and in Table 3.12 are considered in this chapter. The RA strategies considered in this

chapter corresponds to the different combinations allowed by the elements presented

in Table 4.3.

Table 4.3. RA strategies: multiple resources.

Grouping & Assignment algorithm

Precoding and power allocation algorithmSDMA
algorithm

Priority
criterion

Assignment
algorithm

CAP-BFA CM,
WRR,

or
WPF

SGA-A1,
SGA-A2,

or
SGA-A3

ZF, cf. Section 3.3.1, WFA, cf. Table 3.5,
SRA, cf. Table 3.7, and EPA among resources

SP-BFA

CC-BFA

CC-CGA

CAP-BFA CM JGA ZF, cf. Section 3.3.1, and WFA, cf. Table 4.2

In Table 4.3, note that there is a clear distinction between the precoding and power al-

location algorithms employed by RA strategies performing SGA and JGA, as discussed

in Section 4.3.3. In this chapter, the RA strategies could be named after the SDMA

algorithm, MS or group priority criterion, and assignment algorithm that they employ.

For example, the RA strategy combining the SP-BFA as SDMA algorithm, the CM

criterion for MS priorities, and the SGA-A1 as assignment algorithm would be named

SP-BFA-CM-SGA-A1. However, such long denominations for the RA strategies will

be avoided in this chapter and the distinction among the different RA strategies will

be made explicitly in the text.
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4.5 Performance of the Resource Allocation Strategies

In this section, the performance of the RA strategies of Section 4.4 is investigated.

Only the B-CSIT model of Section 2.2.4 is considered in this section. Moreover, the

RA is assumed to be performed at each TS in order to cope with the different criteria

for MS or group priority.

Because the assignment algorithms are a new element considered in this chapter, it

is interesting to initially compare the performance of RA strategies employing the

same SDMA algorithm but different assignment algorithms. In order to do this, only

the RA strategies employing the CAP-BFA as SDMA algorithm will be considered,

because they provided the highest average sum rate figures in Chapter 3 and because

the CAP-BFA is the only SDMA algorithm considered in the JGA, cf. Section 4.2.2.2.

Fig. 4.4(a) shows the average sum rate achieved by RA strategies considering the CAP-

BFA as SDMA algorithm, the CM criterion, and the different assignment algorithms,

cf. Section 4.2.2, for a varying average SNR γ. Fig. 4.4(b) shows Jain’s Index of

Fairness (JIF) obtained with the same RA strategies after a varying number of frames

and considering an average SNR γ = 10 dB.

In Fig. 4.4(a), it can be seen that the RA strategies with the different assignment

algorithms achieve almost the same average sum rate. The slightly higher average sum

rates of the SGA-A1, SGA-A3, and JGA compared to that of the SGA-A2 are due to

the less fair assignment of resources to MSs. Considering SGA-A2, the same initial MS

is not assigned on multiple resources. For the number K = 16 of MSs and the number

B = 8 of resources considered in this work, eight distinct initial MSs will be assigned

resources. Consequently, during each allocation period, half of the MSs are assigned

resources and, consequently, one can say that MSs with low channel gain also have

relatively higher chances of being allocated resources considering the SGA-A2 than

considering SGA-A1, SGA-A3, and JGA.

Considering the JGA, it can be seen in Fig. 4.4(a) that the application of the precoding

and power allocation algorithm over the resources altogether does not improve the

average sum rate compared to the SGA-A1 and SGA-A3. Because the CAP-BFA is

aware of the actual precoding and power allocation, the power redistribution performed

by the WFA of Table 4.2 has only a marginal impact on the performance of the RA

strategy. According to [Cal04], the performance of the RA strategies considering the

WFA of Table 3.5 and EPA among resources or considering the WFA of Table 4.2 is

expected to be the same for high average SNR values and/or low number of MSs per

SDMA group. Thus, the JGA offers no benefit compared to the SGA-A1 and SGA-

A3, but it leads to undesired additional complexity, as it can be deduced from results

presented in Section 3.5.8 and the formulation of the CAP-BFA in Table 4.1.

In Fig. 4.4(b), it can be seen that the throughput fairness among the MSs obtained

with the SGA-A2 is higher than that obtained with SGA-A1, SGA-A3, or JGA. As
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Figure 4.4. Average sum rate and throughput fairness achieved by the RA strategies consid-
ering CAP-BFA, CM criterion, and the different assignment algorithms of Section 4.2.2.

discussed for Fig. 4.4(a), the resources are always allocated to different initial MSs with

the SGA-A2, which leads to a more fair distribution of resources compared to SGA-A1,

SGA-A3, or JGA.

In Fig. 4.4(b), it can also be seen that the SGA-A3 achieves a slightly higher throughput

fairness than the SGA-A1 and JGA. This result is explained in the sequel. With the
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SGA-A1, the MS with the highest channel gain will be always selected as initial MS due

to the considered CM criterion. Similarly, the SDMA groups built on a given resource

by JGA will always start with the MS having the highest channel gain on this resource.

Thus, the MSs with high channel gain concentrate the resources when the the SGA-A1

or JGA are considered by the RA strategy. Differently from SGA-A1 and JGA, K

candidate SDMA groups considering different initial MSs are created on each resource

with the SGA-A3, cf. Section 4.2.2.1. The group priority of each candidate group is

computed using (4.1) and the resources are assigned to the best SDMA groups. Because

there is no warranty that the best SDMA group on each resource contains the MS with

the highest channel gain, the SGA-A3 might allocate resources to SDMA groups that

differ from those built by the SGA-A1 and JGA. Consequently, the resources are not

so concentrated by the MS with high channel gains. Moreover, because the group

priority takes into account the whole SDMA group, the resource assignment performed

by the SGA-A3 is efficient and no losses in terms of average sum rate are observed in

Fig. 4.4(a) compared to SGA-A1 and JGA.

In the following, some comments regarding the complexity of the RA strategies con-

sidered in the analysis of Fig. 4.4 are made. In Fig. 4.4(a), the RA strategies presented

almost the same performance in terms of average sum rate independent of the adopted

assignment algorithm. However, the RA strategies considerably differ in terms of com-

plexity. It is easy to conclude that the least complex RA strategy is the one employing

SGA-A1, which just scales roughly by B the complexity presented in Table 3.15 for

CAP-BFA-ZF. The next least complex strategy is the one employing SGA-A2, which

incorporates the assignment of the initial MS according to Munkres’ algorithm. Then,

the RA strategy employing SGA-A3 comes as next and its complexity is roughly K ·B
times larger than that presented in Table 3.15 for CAP-BFA-ZF. As last comes the

RA strategy considering JGA, whose complexity is hard to estimate. However, since

a number of groups larger than K · B might be tested when considering JGA, this

strategy is considered as the most complex. The same comments hold for all the RA

strategies that can be obtained by combining the elements presented in Table 4.3. Due

to its relatively bad performance-complexity trade-off, JGA will not be considered in

the sequel.

In the following, the average sum rate achieved by the RA strategies considering the

different criteria for the MS or group priority and the assignment algorithms is in-

vestigated. The same analysis done for Fig. 4.4(a) considering CAP-BFA has been

performed for the RA strategies considering the other SDMA algorithms. In Fig. 4.5,

the performance in terms of average sum rate of RA strategies that use SP-BFA and

CC-BFA is compared to that of the RA strategies that use the CAP-BFA considering

the different SGA algorithms of Section 4.2.2.1 and the different criteria for the MS or

group priority. Results related to the SP-BFA and CC-BFA are shown on the left and

right sides of Fig. 4.5, respectively.

In Fig. 4.5, no results are presented for the CC-CGA because it has almost the same

performance in terms of average sum rate and fairness as the CC-BFA. The CC-BFA

has been preferred here because it is less complex than CC-CGA, cf. Section 3.5.8.
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(a) SP-BFA, SGA-A1.
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(b) CC-BFA, SGA-A1.
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(c) SP-BFA, SGA-A2.
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(d) CC-BFA, SGA-A2.
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(e) SP-BFA, SGA-A3.
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(f) CC-BFA, SGA-A3.

Figure 4.5. Average sum rate achieved using SP-BFA (left) and CC-BFA (right) compared to
that of CAP-BFA (left/right). The different SGA algorithms and criterion for MS or group
priority are considered.

In Fig. 4.5, it can be seen that the SP-BFA and CC-BFA have obtained almost the same

performance than the CAP-BFA independent of the priority criterion being considered.

It can also be seen that the average sum rates achieved with the SP-BFA in Fig. 4.5(a),

Fig. 4.5(c), and Fig. 4.5(e) are slightly higher than that achieved with CC-BFA in

Fig. 4.5(b), Fig. 4.5(d), and Fig. 4.5(f), respectively. This relative performance is

similar to that obtained in Chapter 3 and has already been discussed in Section 3.5.

Indeed, the RA strategies using the SP-BFA and CC-BFA achieve over 95% of the

average sum rate achieved with the corresponding RA strategies using CAP-BFA, as it

can be seen in Fig. 4.5. However, as it has been discussed in Section 3.5, the SP-BFA

and especially the CC-BFA are considerably less complex than the CAP-BFA.
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Also similarly to the results discussed in Section 3.5.9, the adoption of the WPF and

WRR criteria leads only to small reductions in the average sum rate achieved con-

sidering the CM criterion. Considering an average SNR γ of 10 dB, the average sum

rates achieved with SGA-A1, SGA-A2, and SGA-A3 considering the WPF criterion are

4%, 2%, and 7% lower than considering the same assignment algorithms and the CM

criterion, respectively. Considering the WRR criterion, the average sum rates achieved

with SGA-A1, SGA-A2, and SGA-A3 are 12%, 7%, and 15% lower than considering

the same assignment algorithms and the CM criterion, respectively.

According to the results shown in Fig. 4.4 and Fig. 4.5, it can be noted that the RA

strategies employing either SGA-A1, SGA-A2, or SGA-A3 have quite similar perfor-

mances in terms of the achieved average sum rate. It can also be noted that SGA-A3

presents the highest reductions in the average sum rate when considering the WPF

and WRR criteria. These somehow higher reductions in the average sum rate are a

consequence of the use of group priorities by the assignment algorithm. Because the

priority of all MSs in the SDMA groups are considered in the resource assignment, an

assignment of resources oriented to the QoS provision is more effectively performed by

the SGA-A3, as it is discussed in the sequel.

In order to illustrate the effectiveness of SGA-A3 to improve the throughput fairness

among the MSs compared to the other assignment algorithms, Fig. 4.6 shows JIF

achieved by the RA strategies considering the SP-BFA and CC-BFA, the CM and the

WPF criteria, and the different assignment algorithms for an average SNR γ of 10 dB.

Before discussing the results in Fig. 4.6, some remarks are made. No results are pre-

sented for the CC-CGA for the same reasons discussed regarding Fig. 4.5. Additionally,

the throughput fairness results obtained with RA strategies considering the WRR cri-

terion are located in between those obtained with the CM and the WPF criteria, thus

being omitted in Fig. 4.6.

Considering the WPF criterion, it can be seen in Fig. 4.6 that the SGA-A3 consid-

erably improves the degree of throughput fairness compared to the other assignment

algorithms. In Fig. 4.6(a), it can be observed that after a short time (less than 100 ms),

the RA strategy considering the SP-BFA and the SGA-A3 achieves a fairness index

of 0.85. As discussed in Section 3.5.9, a JIF value of 0.85 · 100 can be interpreted

as having 85% of the MSs being fairly served and 15% of the MSs getting absolutely

no throughput. Moreover, considering the WPF criterion the RA strategies can still

attain about 85% of the sum rate achievable considering the CM criterion. For the

CC-BFA in Fig. 4.6(b), the values assumed by JIF considering the WPF criterion are

even higher. The reason for a lower degree of fairness for the SP-BFA compared to the

CC-BFA is that the SP-BFA is more greedy than the CC-BFA and favors MSs with

high channel gain, while the CC-BFA looks for a trade-off between spatial correlation

and channel gains.

The higher degree of fairness achieved with the SGA-A3 is a consequence of the use

of group priorities instead of MS priorities, which makes this assignment algorithm
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Figure 4.6. JIF for the RA strategies employing the SP-BFA and the CC-BFA, the CM and
WPF criteria, and the different assignment algorithms. Average SNR γ = 10 dB

capable of following the priority criteria more effectively than the other assignment al-

gorithms. However, this higher degree of fairness is reached at the expense of additional

complexity and reduced sum rate, as already discussed in this section.

Because the SGA-A3 is the assignment algorithm providing the best degree of fairness,

it is of interest to see how the system throughput is divided among low- and high-
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priority MSs when considering this assignment algorithm. Analogously to Fig. 3.19

presented in Chapter 3, Fig. 4.7 shows the percentual difference between the throughput

of high- and low-priority MSs for RA strategies combining SP-BFA, CC-BFA, or CC-

CGA with SGA-A3 and considering the WPF and WRR criteria. An average SNR γ

of 10 dB is considered.
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Figure 4.7. Percentual throughput difference for high-priority MSs compared to low-priority
MSs considering SP-BFA, CC-BFA, or CC-CGA with SGA-A3 and the WPF or WRR criteria.
Average SNR γ = 10 dB.

Compared to the results in Fig. 3.19, which can be associated to the SGA-A1, a signif-

icant improvement in the throughput of high-priority MSs is observed for both WPF

and WRR criteria in Fig. 4.7 and high-priority MSs perceive throughputs at least 40%

higher than low-priority MSs. Again, the reason for the improved throughput gains for

high-priority MSs is the better management of priorities performed by the SGA-A3.

Comparing the results for the WRR criterion in Fig. 3.19 and Fig. 4.7, it can also be

noted that the throughput gains obtained with the WRR criterion and the SGA-A3 are

considerably higher than in Fig. 3.19. Because the priorities given by (3.56) of all the

MSs in an SDMA group are considered by the SGA-A3 and not only that of the initial

MS k′, the groups containing high-priority MSs get a considerably higher fraction of the

resources than the low-priority MSs. Consequently, the fraction of resources assigned

to the MSs is distributed more proportionally to their static priorities in (3.56) and

the adoption of the WRR criterion effectively gives high-priority MSs a meaningful

throughput advantage over the low-priority ones, as it is desired for this criterion.

However, because the priorities are not taken into account by the SDMA algorithms,

MSs might still get higher amount of resources than that expected from its static

priority. It must also be noted that considering the WRR criterion the throughput

fairness among MSs might be reduced since groups containing oversatisfied high-priority

MSs will continue being allocated resources more often than groups containing low-
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priority MSs.

An improved QoS control and, consequently, improved throughput fairness among

MSs may be achieved by employing precoding and power allocation algorithms ori-

ented towards this objective, such as those in [SB04, MK07c, MK07c]. However, the

investigation of this topic is out of the scope of this thesis.

In the following, some results presented in this chapter are shortly summarized.

In this chapter, different suboptimal RA strategies have been studied considering mul-

tiple radio resources. The studied RA strategies aim at maximizing the sum rate of

the system and are composed of a GA algorithm and a precoding and power allocation

algorithm.

Only a subset of the SDMA algorithms considered in Chapter 3, as well as only lin-

ear ZF precoding, have been considered in this chapter, which has focused more on

the assignment algorithms, on the criteria for MS or group priorities, and on their

implications on the fairness among the MSs.

Both SGA and JGA have been investigated and it has been shown that, considering an

EPA among resources and the SGA-A1, a sequential assignment of resources to SDMA

groups provides the same performance in terms of average sum rate as a joint SDMA

grouping and resource assignment, while being however considerably less complex than

the JGA.

Different assignment algorithms performing SGA have been investigated. All of them

achieved quite similar performances in terms of the average sum rate. However, these

assignment algorithms differ in the way in which MS or group priorities are used to

perform the resource assignment and in terms of complexity.

In particular, it has been shown that assigning a different initial MS to each resource

with the SGA-A2 can already enhance the fairness of the RA strategies without com-

promising substantially the average sum rate. Additionally, this fairness enhancement

has no negative impact in terms of complexity since Munkres’ algorithm involves only

simple additions, subtractions, and logical operations, but no multiplications, and has

consequently low complexity.

For the SGA-A3, where priorities are computed considering the whole SDMA groups to

which the resources are assigned, it has been shown that considerable fairness improve-

ments can be achieved compared to the other assignment algorithms. A higher degree

of fairness has been observed for the WPF criterion and arises from the fact that group

priorities are employed instead of MS priorities in order to decide which group to assign

to each resource. Nevertheless, it must be noted that MS or group priorities and the

grouping metrics are kept relatively decoupled so that the spatial compatibility in an

SDMA group is not compromised by the QoS control mechanisms. In particular, it has
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been observed that for the assignment algorithm SGA-A3, the WRR criterion provides

a considerable improvement on the throughput of high-priority MSs. However, this

improvement comes at the expense of reduced average sum rate.

The complexity of the considered RA strategies, and in particular of the assignment

algorithms, has not been explored in details. Nevertheless, one can simply deduce that

the complexity the RA strategies as a function of the selected assignment algorithm

increases in the sequence SGA-A1, SGA-A2, SGA-A3, and JGA, while the dependency

of the complexity on the SDMA algorithms can be derived from the results presented

in Chapter 3.

From the analyses conducted in this chapter, the consideration of group priorities di-

rectly in the SDMA algorithms can allow to design RA strategies merging the benefits

of the SGA-A1 and of the SGA-A3, i.e., the simplicity of the SGA-A1 and the ef-

fectiveness of the SGA-A3 in the priority management. Such an RA strategy is not

considered in this work and might be topic of future investigations.
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Chapter 5

Conclusions

This thesis deals with suboptimal RA strategies in the DL of MIMO-OFDMA systems

aiming at the maximization of the sum rate. In order to solve the problem of max-

imizing the sum rate with affordable complexity, a new formulation for the problem

is proposed in Chapter 1 which divides it into four subproblems, namely the SDMA

grouping problem, the precoding problem, the power allocation problem, and the re-

source assignment problem. This model is proposed as a framework for suboptimal

RA strategies into which several RA strategies available in the literature suitably fit

into. The mathematical formulation of the problem is presented in Chapter 2, in which

some insight on the nature and interdependency of the four mentioned subproblems is

provided. Then, for each subproblem, several existing or newly proposed algorithms

oriented towards the maximization of the sum rate of the system are applied. Through

the combination of these algorithms, new suboptimal rather efficient RA strategies are

obtained.

Considering a scenario with a single resource, or in which resources are considered

one-by-one, various suboptimal RA strategies are proposed in Chapter 3 and their

performance in terms of achieved average sum rate is investigated. In particular, four

new SDMA algorithms, namely the CC-CGA, CC-BFA, WN-BFA, and WN-FFA are

proposed to solve the SDMA grouping problem. The proposed SDMA algorithms are

shown to perform as good as the CAP-BFA and SP-BFA and are shown to achieve over

90% of the average sum rate obtained by the CAP-ESA-ZF strategy, which performs

an ES for the SDMA group maximizing the sum rate of the system. Expressions for

the complexity of the RA strategies considering ZF have been derived and it has been

shown that the proposed RA strategies considering the CC-CGA and especially the

CC-BFA have in many cases a considerably lower computational complexity than those

employing CAP-BFA and SP-BFA as SDMA algorithm. RA strategies employing the

WN-BFA and WN-FFA proposed in Chapter 3 offer a suboptimal solution to the RA

problem with even lower complexity than those employing the CC-CGA and CC-BFA

as SDMA algorithm, but with slightly worse performance in terms of average sum rate.

The performance of the RA strategies has also been investigated considering imperfect

CSI, to which the referred SDMA algorithms are as sensitive as the other algorithms

considered for comparison. Thus, the proposed SDMA algorithms are shown to provide

a good performance-complexity trade-off compared to the existing SDMA algorithms

selected for benchmarking.

In Chapter 3, a new iterative SDA is proposed for the power allocation problem. This

algorithm is subsequently combined with GEP into a new iterative joint precoding and

power allocation algorithm, for which a proof of convergence is also provided. The

proposed iterative joint precoding and power allocation algorithm is flexible and can
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pursue either the maximization of the sum rate or the provision of QoS to the MSs by

means of a simple parameter setting. Anyway, only the maximization of the sum rate

has been considered in this thesis and, in this case, separated precoding and power

allocation is shown to perform as well as the joint precoding and power allocation, but

with lower complexity.

Also as part of the precoding and power allocation algorithm, a new SRA is proposed,

which removes MSs from SDMA groups as to enhance the sum rate. When considered

by RA strategies whose SDMA algorithms are unaware of the actual precoding and

power allocation, the proposed SRA is able to improve by 10% to 30% the average sum

rate achieved by the RA strategies.

For the resource assignment problem, algorithms performing either SGA or JGA are

proposed and compared in Chapter 4. For the maximization of the sum rate of the sys-

tem, it is shown that a sequential assignment of resources to SDMA groups performs

as good as JGA while being considerably more simple. Moreover, different criteria

to prioritize MSs or SDMA groups are considered by the assignment algorithms pro-

posed in Chapter 4, and it is shown that by adopting a suitable priority criterion, the

throughput fairness among the MSs can be considerably improved at the expense of

only small reductions in the average sum rate of the system.

The SGA-A2, which assigns resources to different initial MSs, has been shown to en-

hance the fairness of the RA strategies without compromising substantially the average

sum rate of the system or incurring increased complexity. The SGA-A3, which em-

ploys group priorities and assigns resources directly to whole SDMA groups, has also

been shown to achieve good average sum rate figures and considerably higher through-

put fairness than the other assignment algorithms. This result arises from selecting

a subset of SDMA groups from a set of candidate SDMA groups and from the fact

of employing group priorities, both aspects which are not considered by the other al-

gorithms. However, considering the maximization of the sum rate of the system, the

other SGA algorithms represent solutions with lower complexity and almost the same

performance.
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Appendix

A.1 Complexity of some mathematical operations

and functions

In this section, the complexity of some general mathematical operations is presented,

which is required for determining the complexity of the RA strategies of Section 3.5.8.

Table A.1 shows the complexity of several mathematical operations involving scalars,

vectors, and matrices. The complexity of the operations is expressed in terms of the

number of required complex multiplications, and the complexity order O(·) follows

the big O notation [GL96]. Part of the complexity values shown in Table A.1 have

been obtained from [Hun07]. Therein, a similar table is provided, which includes the

summations as well. In Table A.1, the Eigenvalue Decomposition (EVD) is assumed

to be computed by the QR algorithm [GL96], and the generalized EVD is assumed to

be computed by performing a matrix inversion and a standard EVD.

Table A.1. Complexity of mathematical operations.

Operation/function Expression # of multiplications O(·)

Product xy 1 O(1)

Division x/y 1 O(1)

Square root
√

x 1 O(1)

Vector scaling xy, y : a × 1 a O(a)

Inner product xHy, x,y : a × 1 a O(a)

Self outer product xxH, x : a × 1 (a2 + a)/2 O
(
a2/2

)

Outer product xyH, x : a × 1,y : b × 1 ab O(ab)

Matrix scaling xY, Y : a × b ab O(ab)

Matrix-vector product Xy, X : a × b,y : b × 1 ab O(ab)

Matrix-matrix product XY, X : a × b,Y : b × c abc O(abc)

Gram matrix generation XXH, X : a × b (a2b + ab)/2 O
(
a2b/2

)

Frobenius norm ‖X‖
f
, X : a × b ab + 1 O(ab)

Matrix-diagonal matrix
product

XD {y} , X : a × b,y : b × 1 ab O(ab)

Matrix inversion X−1, X : a × a (a3 + 3a2)/2 O
(
a3/2

)

Matrix pseudo-inversiona X† = XH(XXH)
−1

, X : a × b (a3 + 3a2b + 3a2 + ab)/2 O
(
a3/2

)

EVDb Xy = λy,X : a × a,y : a × 1 2a3/3 + O
(
a2

)
O

(
2a3/3

)

Generalized EVDb Xy = λZy, X,Z : a × a,y : a × 1 (7a3 + 9a2)/6 + O
(
a2

)
O

(
7a3/6

)

aX is assumed to be full row-rank.
bX and Z are assumed to be symmetric and full rank.
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List of Acronyms

3GPP 3rd Generation Partnership Project

AA Antenna Array

AoA Angle of Arrival

AoD Angle of Departure

AWGN Additive White Gaussian Noise

B-CSIT Block Channel State Information at the Transmitter

BC Broadcast Channel

BD Block Diagonalization

BFA Best Fit Algorithm

BS Base Station

CAP Capacity

CC Convex Combination

CGA Convex Grouping Algorithm

CM Capacity Maximization

COA Compatibility Optimization Algorithm

CP Cyclic Prefix

CSI Channel State Information

CSIT Channel State Information at the Transmitter

DL Downlink

DPC Dirty Paper Coding

EP Eigen-Precoding

EPA Equal Power Allocation

ES Exhaustive Search

ESA Exhaustive Search Algorithm

EVD Eigenvalue Decomposition

FDD Frequency Division Duplexing

FDMA Frequency Division Multiple Access

FFA First Fit Algorithm

FFT Fast Fourier Transform

GA Grouping & Assignment

GEP Generalized Eigen-Precoding

GI Guard Interval

HPF Highest Power First

ICI Inter-Carrier Interference

ISI Inter-Symbol Interference

JGA Joint Grouping and Assignment

JIF Jain’s Index of Fairness

KKT Karush-Kuhn-Tucker

LGF Lowest Gain First

LOS Line Of Sight
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MAC Multiple Access Channel

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MMSE Minimum Mean Square Error

MS Mobile Station

MU Multi-User

NLOS Non Line Of Sight

NP-C Non-deterministic Polynomial time Complete

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

P-CSIR Perfect Channel State Information at the Receiver

P-CSIT Perfect Channel State Information at the Transmitter

PC Power Control

PRB Physical Resource Block

QoS Quality of Service

RA Resource Allocation

RGA Random Grouping Algorithm

RR Round Robin

RV Random Variable

S-CSIT Second-order Channel State Information at the Transmitter

SDA Soft Dropping Algorithm

SDMA Space Division Multiple Access

SDP Semidefinite Programming

SDPC Soft Dropping Power Control

SGA Separated Grouping and Assignment

SGA-A1 SGA Algorithm 1

SGA-A2 SGA Algorithm 2

SGA-A3 SGA Algorithm 3

SIC Successive Interference Cancellation

SINR Signal-to-Interference plus Noise Ratio

SISO Single Input Single Output

SNR Signal-to-Noise Ratio

SP Successive Projection

SRA Sequential Removal Algorithm

SU Single-User

SVD Singular Value Decomposition

TDD Time Division Duplexing

TDMA Time Division Multiple Access

TS Time-Slot

UL Uplink

ULA Uniform Linear Array

WFA Water Filling Algorithm
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WIM WINNER Phase I Channel Model

WINNER Wireless World Initiative New Radio

WN Weighted Norm

WPF Weighted Proportional Fair

WRR Weighted Round Robin

ZF Zero-Forcing

ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian
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List of Symbols

1M M × 1 vector of ones

a Attenuation vector containing the channel attenuation of all MSs

aG Attenuation vector containing the channel attenuation for the MSs
in the SDMA group G

arg max
x

{f(x)} Maximum argument x of the function f(x)

arg min
x

{f(x)} Minimum argument x of the function f(x)

B Number of resources, i.e., frequency blocks

b Resource index

Bc Coherence bandwidth

β Parameter controlling the relevance given to spatial correlation and
channel gain in the CGA

Bsys System bandwidth

C Correlation matrix containing the spatial correlation among each pair
of MSs

CG Correlation matrix containing the spatial correlation among each pair
of MSs in the SDMA group G

C̃ Diagonally loaded positive semidefinite version of the spatial corre-
lation matrix C

∆f Subcarrier bandwidth

∆R Distance between adjacent elements of the AA of an MS

∆T Distance between adjacent elements of the AA of the BS

Ek,b Additive ZMCSCG channel estimation error term for the kth MS on
frequency block b

em mth canonical base vector

ǫ Diagonal loading factor of C̃

ǫp Power precision for the convergence of the SDA

ε Upper bound on ǫ

η Noise vector for the DL power allocation of the SDA

E {·} Statistical expectation

f(·)(G) A grouping metric for an SDMA group G
fCAP(G) Group capacity of the SDMA group G
fCC(G) Convex combination of the total spatial correlation and channel gains

W̃k,b Receive beamformer matrix of MS k on frequency block b

w̌k,b,n Receive beamformer of MS k on frequency block b and spatial layer
n

w̃k,b,n Approximate receive beamformer of MS k on frequency block b and
spatial layer n

⌊·⌋ Nearest integer smaller than or equal to the argument

fSP(G) Sum of channel gains with null space SPs for the SDMA group G
f̃ Frame index
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fWN(G) Weighted norm of the total spatial correlation

Ĝ Channel matrix of the SDMA group G
G Number of SDMA groups

g SDMA group index

γ Average SNR measured at the output of the AA of the BS

γcsi Measure of the quality of the CSI available at the BS

γi DL SINR of MS i in an SDMA group

γ′
i UL SINR of MS i in an SDMA group

γk,b DL SINR of MS k on frequency block b

γ̄
(t̃)
i , Γ̄

(t̃)
i Target SINR in linear and dB scales, respectively, for MS i at itera-

tion t̃ of the SDA

γ̌, Γ̌ Minimum target SINR in linear and dB scales, respectively, for the
SDA

γ̂, Γ̂ Maximum target SINR in linear and dB scales, respectively, for the
SDA

G An SDMA group

G⋆ The best SDMA group

⊙ Hadamard product between vectors/matrices

Ĥb Estimated MIMO channel matrix of all MSs on frequency block b

Ĥk,b Estimated MIMO channel matrix of MS k on frequency block b

Hk,s MIMO channel matrix of MS k on subcarrier s

Ĥk,s Estimated MIMO channel matrix of MS k on subcarrier s

hn,m Channel coefficient between the mth antenna of the BS and the nth

antenna of an MS on a subcarrier s

Hs MIMO channel matrix of all MSs on subcarrier s

Ĥs Estimated MIMO channel matrix of all MSs on subcarrier s

I(p), I(q) Standard interference functions

IM M × M identity matrix

Icga Number of iterations required by the CGA to converge

Īcga Estimated average number of iterations required by the CGA to con-
verge

(·)−1 Inversion of a matrix

Isda Number of iterations required by the SDA to converge

J (R̄
(p̃)
k ) Jain’s Index of Fairness

K Number of MSs

k MS index

KA Total number of MSs to which resources have been allocated

KG Number of MSs in G
K⋆

G Target SDMA group size

k′ Initial MS selected to build SDMA groups

L Number of clusters in the WIM



List of Symbols 141

l Clusters index in the WIM

ℓ1 Additional term in the recursive form µG′ of µG

ℓ2 Additional term in the recursive form ‖CG′‖
f

of ‖CG‖f

ℓ3 Additional term in the recursive form fCC(G ′) of fCC(G)

Λk,b Eigenvalue matrix of Rk,b

λ−(A) Smallest eigenvalue of matrix A

λi(A) ith eigenvalue of matrix A

M Number of elements of the AA of the BS

max {. . .} Maximum among the arguments

M(b, i),M−1(j) Index mapping functions for the WFA over multiple resources

min {. . .} Minimum among the arguments

|·| Absolute value of a complex number

µ Optimal water-level of the WFA

µG Geometric mean of the square root of the channel gains of the MSs
in the SDMA group G

N Total number of receive antennas

N0 AWGN power spectral density

Nk Number of elements of the AA of MS k

‖·‖1 1-norm of a vector

‖·‖2 2-norm of a vector

‖·‖
f

Frobenius norm of a vector/matrix

ν Erroneous CSI model parameter

N Null space

O(·) Complexity order of an algorithm

p DL power vector containing the powers allocated to the MSs in an
SDMA group

P Available transmit power of the BS

φ̄l Average AoD of the lth cluster in the WIM

ϕ̄l Average AoA of the lth cluster in the WIM

φl,j AoD of jth scatterer/multipath component of the lth cluster in the
WIM

ϕl,j AoD of jth scatterer/multipath component of the lth cluster in the
WIM

pi DL power allocated to MS i in an SDMA group

pk,b Power allocated to MS k on frequency block b

p⋆
k,b Optimal power allocated to MS k on frequency block b

p
(t̃)
i , P

(t̃)
i Allocated power in W and dBW scales, respectively, for MS i at

iteration t̃ of the SDA

p̌, P̌ Minimum allocable power in W and dBW scales, respectively, for the
SDA

p̂, P̂ Maximum allocable power in W and dBW scales, respectively, for
the SDA
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(·)† Pseudo-inversion of a matrix

p̃ Resource allocation period

q UL power vector containing the powers allocated to the MSs in an
SDMA group

qi UL power allocated to MS i in an SDMA group

Qsub Number of adjacent subcarriers per frequency block

Qsym Number of OFDMA symbols per TS

Re {·} Real part of a complex number

ρj,k Maximum normalized scalar product

̺k,j An arbitrary pairwise spatial correlation for combination with the
CGA

R
(0)
k Contracted average throughput of MS k with the WPF priority cri-

terion

Rk,b Spatial covariance matrix of MS k on frequency block b

R̄
(p̃)
k Perceived average throughput of MS k at the allocation period p̃ with

the WPF priority criterion

S Number of subcarriers

s Subcarrier index

sb First subcarrier of the bth frequency block

sb Middle subcarrier of the bth frequency block

σ2 Average AWGN power per subcarrier

Ti Null space projection matrix for the ith MS in an SDMA group

T Number of TSs per frame

τ̃ Feedback delay

J0

(
2πvmsτ̃

λ

)
Spaced-time correlation function

Tc Coherence time

Td Duplexing time

Tfrm Frame duration

(·)T Transpose of a vector/matrix

(·)H Transpose conjugate of a vector/matrix

Ts OFDMA symbol duration

t̃ Iteration index of the SDA

Tts TS duration

U Resource-to-MS binary assignment matrix

ũ Continuous relaxed version of u

u Binary selection vector for SDMA grouping

U MS priority matrix

uk The kth component of u

uk,b Binary variable indicating whether MS k is allocated on frequency
block b

u⋆
k,b Optimal binary variable indicating whether MS k is allocated on

frequency block b
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uk Priority of MS k

u
(0)
k Static priority of MS k for the WRR and WPF priority criteria

u
(p̃)
k Priority of MS k at the allocation period p̃

ũk Continuous relaxed version of uk

Υ Gain matrix for the DL power allocation of the SDA

u⋆ Optimal binary selection vector associated with the best SDMA group
G⋆

ũ⋆ Continuous relaxed version of u⋆

V Resource-to-group binary assignment matrix

V Group priority matrix

vg,b Binary variable indicating whether SDMA group g is allocated on
frequency block b

vg,b Priority of the SDMA group Gg,b on resource b

v⋆
g,b Optimal binary variable indicating whether SDMA group g is allo-

cated on frequency block b

Vk,b Eigenvector matrix of Rk,b

vms Average speed of the MSs

vi(A) ith eigenvector of matrix A

W Precoding matrix for SDMA group G
W Window size for S-CSIT

wk,b Precoding vector of MS k on frequency block b

w⋆
k,b Optimal precoding vector of MS k on frequency block b

ξ Power backoff parameter of SDA

ζ SDA parameter relating allocated powers and target SINRs
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