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Abstract— This paper considers the two-hop relaying case
where two nodes S1 and S2 in a wireless network can com-
municate with each other via an intermediate relay station (RS)
which is equipped with multiple antennas and cannot transmit
and receive simultaneously on the same channel resources. In one-
way relaying, four orthogonal channel resources are required for
the transmissions from S1 to S2 and from S2 to S1. MIMO two-
way relaying has been introduced as an approach which requires
only half the channel resources compared to one-way relaying due
to the simultaneous transmission from S1 to S2 and vice versa.
For MIMO two-way relaying, a spatial filter matrix is required
at the RS which applies both, transmit and receive processing.
The design of linear spatial filter matrices, termed transceive
filter matrices, is given in this paper. In particular, linear
transceive filters are derived which fulfill the zero forcing (ZF)
and minimum mean square error (MMSE) criterion, respectively.
It is shown that the linear MMSE transceive filter outperforms
the linear ZF transceive filter in terms of overall bit error
rate (BER). However, for different channel qualities on the two
channels to the RS, the choice of the transceive filter influences
which direction of communication has a better BER performance.

I. INTRODUCTION

Recently, relaying gains much attention in the wireless

communications research community [1]. For the two-hop

relaying approach, two nodes S1 and S2 communicate with

each other via an intermediate relay station (RS) assuming that

a direct communication between the two nodes is not possible,

e.g., due to shadowing or limited transmit power. Since the

RS cannot transmit and receive simultaneously on the same

channel resource it receives a signal on a first hop, applies

signal processing and retransmits the signal on a second hop.

It is assumed that the signal at the RS is neither decoded nor

re-encoded. However, the RS can apply spatial filtering to its

receive and transmit signal assuming multiple antennas at the

RS. The design of linear spatial filters is discussed in this

paper.

Two-way relaying which has been first introduced in [2]

is a promising protocol in order to save channel resources in

relay networks. The principle of this approach is based on

the framework of network coding [3] in which data packets

from different sources in a multi-node computer network are

jointly encoded at intermediate network nodes, thus saving

network resources. For two-way relaying, the nodes S1 and S2
transmit simultaneously on a first channel resource to an RS

which receives a superposition of both signals. On the second

channel resource, the RS retransmits this superposition. Due

to the broadcast nature of the wireless channel, both nodes

receive that superposition and may detect the desired signal

from the other node by subtracting their own known signal.

Obviously, two-way relaying requires only two orthogonal

channel resources while one-way relaying would require four

orthogonal channel resources for the communication in both

directions, i.e., two resources for the transmission from S1 to

S2 and two resources for the transmission from S2 to S1. In

[4], it is shown that the spectral efficiency of two-way relaying

with subtraction is significantly increased compared to one-

way relaying.

In [5], it is proposed to extend two-way relaying to nodes

and RSs with multiple antennas leading to multiple input

multiple output (MIMO) two-way relaying. For MIMO two-

way relaying, both nodes S1 and S2 have the same number

of antennas and the number of antennas at the RS is at least

twice as much. The discussion in [5] shows that the effort for

signaling of channel state information (CSI) can be reduced if

CSI is only required at the RS and not at S1 and S2. This CSI

can be obtained by channel estimation at the RS in case of time

division duplex systems, for example. If CSI is available at the

RS, spatial transmit and receive processing [6] can applied at

the RS. The spatial filter matrix at the RS which is termed

transceive filter matrix makes receive processing and obtaining

CSI at nodes S1 and S2 unnecessary.

In [5], the performance of MIMO two-way relaying is

investigated by means of the sum rate which is the sum of

the mutual information values in both directions of the com-

munication. Compared to one-way relaying, the sum rate may

be increased by a factor of two by MIMO two-way relaying

with a linear transceive filter which fulfills the zero forcing

(ZF) constraint. Compared to the two-way relaying protocol

of [2], a higher sum rate is achieved by the ZF transceive filter

in MIMO two-way relaying due to beamforming effects [5].

In this paper, the derivation of the linear ZF transceive filter

which is not derived in [5] is given. Furthermore, the design

of a linear transceive filter which fulfills the minimum mean

square error (MMSE) criteria is given in this paper. For both

types of transceive filters, it is shown that the spatial filtering at

the RS may be divided into three steps. Firstly, the receive filter

matrix separates the signals from S1 and S2. Secondly, the RS

mapping matrix is introduced which ensures that each node is

provided with its desired signal after retransmission from the
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RS. Thirdly, the transmit filter matrix is applied at the RS,

which separates the signals designated to S1 and S2 before

retransmission. The two transceive filters are compared to each

other concerning their bit error rate (BER) performance.

The paper is organized as follows: In Section II, the system

model of MIMO two-way relaying is introduced. Section III

gives the linear ZF and MMSE transceive filters at the RS.

The BER performance of the filters is analyzed by means of

simulations in Section IV. Section V concludes this work.

II. SYSTEM MODEL

In the following, the communication between two nodes

S1 and S2 is considered which cannot exchange information

directly, e.g., due to shadowing conditions, but only via

an intermediate RS. The system model of MIMO two-way

relaying given in [5] is summarized here as far as necessary

for the following considerations. S1 and S2 are equipped with

M (1) and M (2) antennas, respectively. For MIMO two-way

relaying, it is assumed that S1 and S2 are equipped with

M (1) = M (2) = M (1)

antennas and that the RS is equipped with

MRS ≥ M (1) + M (2) = 2M (2)

antennas.

Data vector x(1) =
[

x
(1)
1 , . . . , x

(1)
M

]T

of data symbols x
(1)
n ,

n = 1, . . . , M, shall be transmitted from S1 to S2, and

data vector x(2) =
[

x
(2)
1 , . . . , x

(2)
M

]T

of data symbols x
(2)
n ,

n = 1, . . . , M, shall be transmitted from S2 to S1, where

[·]T denotes the transpose. The overall data vector x =
[

x(1)T

,x(2)T
]T

is defined with covariance matrix Rx =

E
{

xxH
}

where E {·} and [·]H denote the expectation and the

conjugate transpose, respectively. For simplicity, but without

loss of generality, the wireless channel is assumed to be flat

fading. Hence, the channel between Sk, k = 1, 2, and the RS

may be described by the channel matrix

H(k) =









h
(k)
1,1 . . . h

(k)
1,M

...
. . .

...

h
(k)
MRS,1 . . . h

(k)
MRS,M









, (3)

where h
(k)
m,n, m = 1, . . . , MRS and n = 1, . . . , M , are complex

fading coefficients. In Fig. 1, the described relay network is

depicted for the case of M = 1 and MRS = 2. In MIMO two-

way relaying, the data vectors x(1) and x(2) are exchanged

between S1 and S2 during two orthogonal time slots. During

the first time slot, S1 and S2 transmit simultaneously to the

RS. Since spatial filtering shall only be applied at the RS,

only scalar transmit filters Q(1) = q(1)IM and Q(2) = q(2)IM

are applied at S1 and S2, where IM is an identity matrix of

size M . These transmit filters are required in order to fulfill

the transmit energy constraints. Assuming that E(1) and E(2)

Fig. 1. Relay network for M (1)
= 1 antenna at S1, M (2)

= 1 antenna at
S2, and MRS = 2 antennas at the RS

are the maximum transmit energies of nodes S1 and S2, the

transmit energy constraints are given by

E
{

‖ q(k)x(k) ‖2
2

}

≤ E(k), k = 1, 2, (4)

where ‖ · ‖2
2 is the Euclidian norm of a vector. The overall

transmit filter is given by the block diagonal matrix

Q =

[

Q(1) IM

IM Q(2)

]

. (5)

Defining the overall channel matrix H =
[

H(1),H(2)
]

, the

receive vector yRS at the RS is given by

yRS = HQx + nRS, (6)

where nRS is an additive white Gaussian noise vector with

covariance matrix RnRS
= E

{

nRSn
H
RS

}

.

At the RS, the receive vector yRS is spatially filtered by a

linear transceive filter G leading to the RS transmit vector

xRS = GyRS = GHQx + GnRS. (7)

The RS transmit vector has to fulfill the transmit energy

constraint at the RS

E
{

‖ xRS ‖2
2

}

≤ ERS, (8)

where ERS is the maximum transmit energy at the RS. During

the second time slot, the RS transmit vector is simultaneously

transmitted to S1 and S2. Since spatial filtering shall only be

applied at the RS, a scalar receive filter P = pI2M at S1 and

S2 is assumed. Note that the channel matrix from the RS to

nodes S1 and S2 is the transpose HT of channel matrix H

assuming that the channel is constant during two consecutive

time slots. In the following, the estimate for data vector x2 at

S1 is termed x̂1 and the estimate for data vector x1 at S2 is

termed x̂2. With these assumptions, the overall estimated data

vector x̂ =
[

x̂T
1 , x̂T

2

]T
after the scalar receive filter is given

by

x̂ = p
(

HTGHQx + HTGnRS + nR

)

, (9)

where it is assumed that nR is an additive white Gaussian

noise vector with covariance matrix RnR
= E

{

nRn
H
R

}

.
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III. LINEAR TRANSCEIVE FILTERS

One major drawback of two-way relaying with subtraction

[2] is that both nodes S1 and S2 require CSI about their own

link to the RS as well as CSI about the link from the other

node to the RS in order to design an adequate receive filter.

Exchanging this CSI requires signaling effort. Compared to

this signaling effort, it is relatively easy to obtain CSI at the

RS, e.g., by estimating the channel at the RS in a time division

duplex (TDD) system. For the case of one-way relaying with

multiple antenna RSs, it is proposed in [7] that transmit and

receive processing can be restricted to the RSs, i.e., CSI is only

required at the RSs. A similar approach is applied in MIMO

two-way relaying. However, there is a difference between the

effort for obtaining CSI in [7] and the proposed MIMO two-

way relaying protocol. In [7], CSI of the channels from nodes

S1 and S2 to the RS can be obtained by pilot signaling. But

CSI of the channels from the RS to the nodes can only be

obtained by feedback from the nodes to the RS since up-

and downlink are separated on orthogonal channel resources.

In MIMO two-way relaying, CSI of the channels from the

nodes to the RS as well as from the RS to nodes S1 and S2
is obtained by only one pilot signal since up- and downlink

are processed simultaneously. Applying the obtained CSI, the

transceive filter for MIMO two-way relaying can be designed

which consists of three independent filters.

Firstly, the receive vector at the RS yRS is multiplied

with the linear receive filter matrix GR resulting in the RS

estimation vector

x̂RS =
[

x̂
(1)T

RS , x̂
(2)T

RS

]T

(10)

with the estimate x̂
(1)
RS for x(1) and the estimate x̂

(2)
RS for x(2),

respectively. The receive filter separates the signals from S1
and S2. Note that the covariance matrix of x̂RS which is

required for the following filter design is given by

Rx̂RS
= E

{

x̂RSx̂
H
RS

}

= GR

(

HQRxQ
HHH + RnRS

)

GH
R .

(11)

Secondly, the RS estimation vector x̂RS is multiplied with the

RS mapping matrix

GΠ =

[

∅M IM

IM ∅M

]

(12)

where ∅M is a null matrix with M rows and M columns. The

RS mapping matrix is introduced in order to ensure that, S1
is provided with an estimate of data vector x(2) and S2 is

provided with an estimate of data vector x(1).

Thirdly, the mapped RS estimation vector is multiplied with

transmit filter matrix GT leading to the RS transmit vector

xRS = GΠGTx̂RS (13)

from Eq. (7). The transmit filter separates the signals to S1 and

S2 before retransmission and substitutes receive processing

and in particular subtracting the own signal at S1 and S2.

Thus, the effort at the two communicating nodes S1 and S2
is decreased and the CSI signaling effort in the network can be

reduced while maintaining the increased spectral efficiency of

the two-way relay channel. The overall transceive filter matrix

is given by

G = GTGΠGR. (14)

In the following, two different linear MIMO transceive filters

G at the RS are derived which are based on the ZF and MMSE

criterion, respectively. The filters are based on the results for

linear transmit and receive filters in [8].

A. Zero Forcing Transceive Filter

1) Zero Forcing Receive Filter: For the ZF criterion, the

receive filter GR,ZF at the RS has to be designed such that the

mean squared error of the estimate vector x̂RS for data vector

x is minimized. With the ZF constraint and the transmit power

constraint of (4), the ZF optimization may be formulated as

{GR,ZF, q
(1)
ZF , q

(2)
ZF } = arg min

{GR,q(1),q(2)}
E

{

‖ x̂RS − x ‖2
2

}

(15a)

subject to: x̂RS = x for nRS = ∅MRS×1 (15b)

E
{

‖ q(k)x(k) ‖2
2

}

≤ E(k) k = 1, 2.

(15c)

As shown in [8], the ZF optimization problem in (15a) is not

convex. However, the Karush-Kuhn-Tucker (KKT) conditions

[9] can be used to determine the global minimum of (15a)

under the constraints (15b) and (15c) which leads to the ZF

receive filter

GR,ZF =
(

QHHHR−1
nRS

HQ
)−1

QHHHR−1
nRS

(16)

with the scalar transmit filter coefficients

q
(k)
ZF =

√

E(k)

tr {Rx(k)}
k = 1, 2 (17)

where Rx(k) is the covariance matrix of x(k) and tr {·} denotes

the sum of the main diagonal elements of a matrix.

2) Zero Forcing Transmit Filter: The ZF transmit filter

GT,ZF at the RS has to be designed such that the mean squared

error of the estimate vector x̂ for transmit vector GΠx̂RS is

minimized. With the ZF constraint and the RS transmit power

constraint of (8), the ZF optimization may be formulated as

{GT,ZF, pZF} = argmin
{GT,p}

E
{

‖ x̂ − GΠx̂RS ‖2
2

}

(18a)

subject to: x̂ = x̂RS for nR = ∅MRS×1 (18b)

E
{

‖ xRS ‖2
2

}

≤ ERS. (18c)

As shown in [8], this optimization problem is not convex.

However, the KKT conditions can be used to determine the

ZF transmit filter

GT,ZF =
1

pZF

H∗
(

HTH∗
)−1

(19)

with the scalar receive filter

pZF =

√

√

√

√

tr
{

(HTH∗)
−1

GΠRx̂RS
GH

Π

}

ERS

. (20)

Timo Unger and Anja Klein, ’Linear Transceive Filters for Relay Stations with Multiple Antennas in the Two-Way Relay Channel’, in Proc. of 16th IST
Mobile and Wireless Communications Summit, Budapest, Hungary, July 2007.



Since the derived receive and transmit filters GR,ZF and GT,ZF

require the same channel coefficients in TDD systems there

also exists a high potential for saving processing effort at the

RS. For example, the calculation of the inverse of HTH∗ in

Eq. (19) may be reused for the calculation of the inverse of

HHH in Eq. (16) if RnRS
and Q, respectively, are diagonal

matrices with equal entries on their main diagonal.

B. Mimimum Mean Square Error Transceive Filter

1) Mimimum Mean Square Error Receive Filter: For the

MMSE criterion, the receive filter Gr.MMSE at the RS has to

be designed such that the mean squared error of the estimate

vector x̂RS for data vector x is minimized. Additionally, the

transmit power constraint of (4) at S1 and S2 has to be met.

The constrained MMSE optimization may be formulated as

{GR,MMSE, , q
(1)
MMSE, q

(2)
MMSE} = arg min

{GR,q(1),q(2)}
E

{

‖ x̂RS − x ‖2
2

}

(21a)

subject to: E
{

‖ q(k)x(k) ‖2
2

}

≤ E(k) k = 1, 2.

(21b)

As shown in [8], the MMSE optimization problem in (21a)

is not convex. However, the KKT conditions can be used to

determine the global minimum of (21a) under the constraint

(21b) leading to

GR,MMSE = RxQ
HHH

(

HQRxQ
HHH + RnRS

)−1
(22)

with the scalar transmit filter coefficients

q
(k)
MMSE =

√

E(k)

tr {Rx(k)}
k = 1, 2. (23)

2) Mimimum Mean Square Error Transmit Filter: The

MMSE transmit filter GT,MMSE at the RS has to be designed

such that the mean squared error of the estimate vector x̂ for

transmit vector GΠx̂RS is minimized. With the RS transmit

power constraint of (8), the MMSE optimization may be

formulated as

{GT,MMSE, pMMSE} = arg min
{GT,p}

E
{

‖ x̂− GΠx̂RS ‖2
2

}

(24a)

subject to: E
{

‖ xRS ‖2
2

}

≤ ERS. (24b)

As shown in [8], this optimization problem is not convex.

However, the KKT conditions can be used to determine the

MMSE transmit filter

GT,MMSE =
1

pMMSE

(

H∗HT +
tr {RnR

}

ERS

I

)−1

H∗ (25)

with the scalar receive filter

pMMSE =

√

√

√

√

√

√

tr

{

(

H∗HT +
tr{RnR}

ERS
I

)−2

H∗Rx̂RS
HT

}

ERS

.

(26)

Similarly to the ZF transceive filter, there exists a high

potential for saving processing effort at the RS since receive

and transmit filters require the same channel coefficients.
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(2)

 in dB

B
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R

 

 

MMSE transceive filter

ZF transceive filter

Fig. 2. Comparison of overall BER performance at S2 for the linear ZF and
MMSE transceive filter for different fixed values of SNR(1)

IV. SIMULATION RESULTS

In this section, the BER performance of the linear ZF and

MMSE transceive filters is evaluated by means of simulations.

It is assumed that S1 and S2 are equipped with M = 1
antenna each and the RS is equipped with MRS = 2 antennas

according to the requirement in Eq. (2). The data symbols of

S1 and S2 are QPSK modulated. The channel coefficients are

spatially white and their amplitude is Rayleigh distributed. For

the following investigations, the average signal-to-noise ratio

SNR(1) of the first channel from S1 to the RS is fixed at

a certain value and the BER is depicted depending on the

average SNR(2) of the second channel from S2 to the RS.

In [5], the sum rate of the transmission from S1 to S2 and the

transmission from S2 to S1 is considered as a performance

measure since the performance gains of MIMO two-way

relaying come from the simultaneous transmission in both

directions. Since this paper considers the BER performance

of transceive filters in MIMO two-way relaying, the overall

BER is defined which is the average over both BER values at

S1 and S2, respectively. In Fig. 2, the overall BER is given

for the linear ZF and MMSE transceive filter, respectively. For

all curves, the performance significantly depends on SNR(1)

which determines a minimum achievable BER. All curves

show a saturation region where an increase of SNR(2) does no

longer improve the overall BER performance. From transmit

and receive oriented spatial filters it is known that the linear

MMSE transceive filter outperforms the linear ZF transceive

filter by a constant SNR gain [8]. The same result is found

for the transceive filters in MIMO two-way relaying where the

SNR gain of the MMSE transceive filter is about 2dB outside

the saturation region.

In the following, the BER performances at S1 and S2 are

considered independently. In Fig. 3, the BER performance

at S1 and S2, respectively, is depicted for the linear ZF

transceive filter. Considering the BER for equal SNR(1), there

exists always one intersection point between the BER at S1
and S2 which is located at SNR(1) = SNR(2). As long as

SNR(2) > SNR(1), the BER at S1 is lower than the BER at
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Fig. 3. Comparison of BER performance at S1 and S2 for the linear ZF
transceive filter for different fixed values of SNR(1)
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Fig. 4. Comparison of BER performance at S1 and S2 for the linear MMSE
transceive filter for different fixed values of SNR(1)

S2. For SNR(2) < SNR(1), the BER at S2 is lower than the

BER at S1. The ZF receive filter as well as the ZF transmit

filter lead to unbiased estimates at S1 and S2. For the ZF

receive filter, the noise at the RS is filtered which leads to

different SNR values for the two receive vectors from S1 and

S2 after the filter. In particular, the receive vector which comes

over the better channel has a higher SNR. For the ZF transmit

filter, the noise at S1 and S2 is not filtered and both receive

vectors at S1 and S2 have the same SNR after the filter, i.e.,

the data vector which is transmitted over the better channel

does not benefit from the better channel. Hence, the linear ZF

transceive filter is more sensitive to the channel quality on the

first hop and the data stream which is coming over the better

channel on the first hop has a better BER performance.

Fig. 4 gives the BER performance at S1 and S2, respectively,

for the linear MMSE transceive filter. There also exist inter-

section points between the BER at S1 and S2 for SNR(1) =
SNR(2). However, the behavior is exactly vice versa. As long

as SNR(2) < SNR(1), the BER at S1 is lower than the BER

at S2. For SNR(2) > SNR(1), the BER at S2 is lower than

the BER at S1. In contrast to the ZF receive filter, the MMSE

receive filter balances the different channel qualities since it

considers both SNRs, i.e., both data streams have the same

SNR after the receive filter. The MMSE transmit filter only

considers the sum of the noise at S1 and S2 which can be

seen from Eq.(25). Therefore, it does not distinguish between

the good and bad channel which means that the data stream

which is transmitted over the good channel will benefit after

retransmission. Hence, the linear MMSE transceive filter is

more sensitive to the channel quality on the second hop and

the data stream which is transmitted over the better channel

on the second hop has a better BER performance.

Obviously, the choice of the linear transceive filter influences

which direction of communication has a better BER perfor-

mance for given channel qualities SNR(1) and SNR(2).

V. CONCLUSION

MIMO two-way relaying is a relaying approach which

requires only half the channel resources compared to one-

way relaying due to the simultaneous transmission from S1
to S2 and from S2 to S1 via an intermediate RS. For

MIMO two-way relaying, a spatial transceive filter matrix is

introduced at the RS which applies both, transmit and receive

processing. In this paper, the design of linear transceive filter

matrices which fulfill the zero forcing (ZF) and minimum

mean square error (MMSE) criteria is given. The matrices for

receive processing are derived independently from the matrices

for transmit processing. It is shown that the linear MMSE

transceive filter outperforms the linear ZF transceive filter in

terms of overall BER performance. Additionally, the choice

of the linear transceive filter influences which direction of

communication has a better BER performance for different

channel qualities.
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