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A

In this paper, space-time block codes (STBCs), which gain

from spatial transmit diversity, are applied in a distributed fash-

ion at several cooperating relay stations (RSs) with multiple

transmit antennas. It is well known that non-distributed STBCs

exhibit a degraded bit error rate (BER) performance in spatially

correlated MIMO channels. Applying distributed STBCs in co-

operative relay networks reduces the probability of correlated

channel coefficients as the RSs are spatially separated. In this

paper, the Chernoff bound of the BER in Rayleigh fading chan-

nels is extended to the case of correlated channel coefficients at

the same relay station and different receive powers from dif-

ferent cooperating RSs. It is shown that the BER performance

has a higher sensitivity to spatial correlation in MIMO chan-

nels than to different receive powers at the receiver from sev-

eral cooperating RSs for distributed space-time coding. The

theoretical results are confirmed by means of simulations.

I. I

Recently, multihop and relay networks have gained a lot of at-

tention as they provide promising solutions to the high data

rate coverage requirements that appear for beyond 3G mobile

radio systems [1][2]. Relay networks reduce the range problem

appearing for high data rate requirements combined with high

carrier frequencies, e.g., around 5GHz. In relay networks, the

basic idea is to introduce a relay station (RS) which forwards

data from a source node (SN) to a receive node (RN) which is

out of reach of the SN. There are two prominent concepts for

the transmit signal of the RS [3]. Firstly, amplify-and-forward

(AF) is a low effort concept where the receive signal is stored,

amplified and retransmitted by the RS. Secondly, decode-and-

forward (DF) is a concept which requires a higher effort as the

receive signal is decoded, re-encoded and retransmitted by the

RS.

Cooperative relaying is a promising extension to relay net-

works where several RSs transmit jointly to the same RN yield-

ing diversity gain [3]. Due to the spatial separation of different

RSs, cooperative relaying can be interpreted as distributed mul-

tiple antenna transmission. Orthogonal space-time block codes

(OSTBC), which have been first proposed by Alamouti [4] for

the case of two transmit antennas, exploit spatial diversity by

using multiple transmit antennas [5]. Mietzner and Hoeher [6]

showed the applicability of the two antenna Alamouti code as a

distributed OSTBC [7][8] in a cooperative relay network, i.e.,

the investigations in [6] are restricted to an OSTBC which is

applied in a distributed fashion at two different RSs with one

antenna each (single input single output (SISO) RSs).

In this paper, the performance and effort of two cooperating

SISO RSs analysed in [6] is compared to the performance and

effort of two cooperating RSs with two transmit antennas each

(multiple input multiple output (MIMO) RSs) that apply a four

antenna quasi-orthogonal space-time block code (Q-OSTBC)

with constellation rotation [9] in a distributed fashion. Ad-

ditionally, other arrangements of the overall four transmit an-

tennas are considered by changing the number of cooperating

RSs, e.g., four RSs with one transmit antenna each and the non-

cooperative case of one RS with four transmit antennas, repec-

tively.

For MIMO channels it is very likely that correlated channel

fading coefficients appear if the transmit antennas of the same

transmitter/receiver are within a range of a few wavelengths.

This leads to a degradation of the bit error rate (BER) perfor-

mance of non-distributed space-time block codes (STBCs) as

diversity is lost. For spatially separated cooperating RSs it is

less likely that the different channel coefficients are correlated.

Nevertheless, for RSs with more than one antenna, correlation

between adjacent antennas at the same RS still appears. Ad-

ditionally, there appear different channel gains from the dif-

ferent RSs to the RN. Without transmit power control, a BER

performance degradation due to the distributed fashion of the

STBC is expected. In this paper, the BER performance degra-

dation due to correlated channel coefficents as well as different

channel gains is derived theoretically by extending the Cher-

noff bound, which is an upper bound of the BER in Rayleigh

fading channels, by the correlation factor of adjacent antennas

at the same RS and by channel gain factors modeling different

receive powers from several cooperating RSs. The theoretical

results are confirmed by means of simulations.

The paper is organized as follows: The basic principle of Q-

OSTBC with constellation rotation is described in Section II.

The system model of a cooperative relay network applying

STBCs is derived in Section III. The different antenna arrange-

ments in a relay network are introduced in Section IV. Sec-

tion V gives a theoretical performance analysis of distributed

STBCs which is confirmed by the simulation results in Section

VI. Section VII finally concludes this work.

II. Q- S-T B C

In this section, the principle of Q-OSTBCs with constella-

tion rotation, which are later used as distributed codes in

a cooperative relay network, is derived starting with OS-

TBCs [10]. Assuming T orthogonal time intervals and

M transmit antennas, an orthogonal design for N complex
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symbols x(1), x(2), . . . , x(N) is defined by a code matrix

C(x(1), x(2), . . . , x(N)) of dimension T × M, with T M ≥ N,

such that

(i) the entries of C are complex linear combinations

of x(1), x(2), . . . , x(N) and their conjugate complexes

x(1)∗, x(2)∗, . . . , x(N)∗

(ii) C
H

C =
(

∑N
n=1 |x(n)|2

)

IM

where [.]H designates the conjugate transpose and IM is a M×M

identity matrix. The symbol transmission rate of these codes is

defined as N/T , i.e., N symbols are transmitted during T time

intervals.

OSTBCs achieve full diversity order for spatially uncorrelated

MIMO channels and can be decoded with a simple maximum

likelihood (ML) approach at the receiver [10]. As each sym-

bol x(n), n = 1, . . . ,N, can be decoded separately, the decod-

ing complexity increases linearly with the code size N and not

exponentially as in case of joint decoding. However, assum-

ing complex transmit symbols there exists no OSTBC for more

than two transmit antennas which achieves a symbol transmis-

sion rate of one. In general, there exists always a code of rate

1/2, and in particular, there are codes of maximum rate 3/4 for

the cases of three and four transmit antennas [10].

A symbol transmission rate of one can be achieved by relax-

ing the orthogonality constraint [9]. Assuming four transmit

antennas, the following Q-OSTBC with code matrix

C =





























x(1) x(2) x(3) x(4)

x(2)∗ −x(1)∗ x(4)∗ −x(3)∗

x(3) −x(4) −x(1) x(2)

x(4)∗ x(3)∗ −x(2)∗ −x(1)∗





























(1)

is designed [9]. The loss of perfect orthogonality can be

checked by

C
H

C =





























a 0 b 0

0 a 0 −b

−b 0 a 0

0 b 0 a





























(2)

where

a =

4
∑

n=1

|x(n)|2 (3)

b = x(1)∗x(3) − x(1)x(3)∗ − x(2)∗x(4) + x(2)x(4)∗ . (4)

Because of the inter-symbol-interference indicated by variable

b in (2), the BER performance of this Q-OSTBC is degraded.

However, from equations (1) and (2) one notes that the code

matrix can be decoupled into two sub-matrices with

C = C1 (x(1), 0, x(3), 0)+ C2 (0, x(2), 0, x(4)) (5)

where C
H
1

C2 + C
H
2

C1 = 0 for all x(n). For both symbol pairs

{x(1), x(3)} and {x(2), x(4)}, the ML decoding at the receiver

can be processed independently. From literature, two different

approaches for improving the BER performance of Q-OSTBCs

are known, which are compared in the following. In [9], it is

proposed to take x(1) and x(3) from different symbol constella-

tionsA1 andA2 = e jφA1, respectively, by rotating the constel-

lation of x(3) by an angle φ. Similarly, x(2) is taken from A1

and x(4) is taken fromA2 for the second symbol pair. By com-

puter search, the optimum rotation angle φopt,1 can be found un-

der the constraint of maximizing the minimum Euclidean dis-

tance between all different representations of the symbol pairs

{x(1), x(3)} and {x(2), x(4)}, respectively. For symbols taken

from a QPSK constellation, φopt,1 ≈ 0.525 maximizes the min-

imum Euclidean distance.

Constellation rotation for Q-OSTBCs is also considered in

[11]. However, another optimization approach is proposed

which reestablishes orthogonality for Q-OSTBCs. There, it

is shown for QPSK and all other QAM modulation schemes

taken from a square lattice that φopt,2 = π/4 is the optimum ro-

tation angle. To find out which optimization approach should

be used in practice, the BER performance for both approaches

is compared by means of simulations. Figure 1 depicts the

BER depending on the rotation angle φ for different signal-

to-noise ratios Es/N0 where Es denotes the average transmit

energy per transmit symbol and N0 the constant noise power

density spectrum. The symmetry of the curves comes from the
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Figure 1: BER performance for constant Es/N0 with different

rotation angles φ between two QPSK constellations

fact that the maximum relative rotation angle between two dif-

ferent QPSK constellations is π/4. Especially at high Es/N0,

there appears a significant improvement of the BER for rota-

tion angles 0.5 ≤ φ ≤ 1.1. Nevertheless, inbetween this in-

terval the differences in BER can be almost neglected. Hence,

it is shown that both optimization approaches achieve approxi-

mately the same BER performance as the rotation angle can be

taken out of a broad interval including both optimized angles

φopt,1 and φopt,2.

III. C R SM

In this section, the system model for cooperative relaying ap-

plying distributed STBCs is introduced. For relaying, two or-

thogonal channel resources are required. By using the first

channel resource, the SN transmits to K RSs. Throughout
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the whole paper, it is assumed that a direct communication

between the SN and the RN is not possible, i.e., the RN re-

ceives no symbols from the SN. By using the second channel

resource, the RSs retransmit a processed version of the previ-

ously received signals to the RN. It is assumed that there are

M
(k)

RS
transmit antennas at RS(k), k = 1, . . . ,K, and MRN receive

antennas at the RN.

Distributed STBCs are applied to groups of N symbols in T

symbol intervals using the total number of transmit antennas

MRS =
∑K

k=1 M
(k)

RS
at K RSs. At each RS(k), the received vector

from the SN is processed according to the considered relaying

concept (AF or DF) resulting in the symbol vector r
(k)

RS
of ele-

ments r
(k)

RS
(n), n = 0, 1, . . . ,N. The RSs store this symbol vector

and retransmit a processed version with respect to the applied

STBC. During T time intervals a distributed STBC across all

K RSs, each with M
(k)

RS
transmit antennas, is applied, i.e., it is

assumed that the RSs are synchronized and from each antenna

a complex linear combination of the symbols r
(k)

RS
(n) and their

conjugate complexes r
(k)∗

RS
(n) is transmitted according to the ap-

plied distributed STBC. The elements of the coded transmit

matrix R
(k)

RS
of dimension T × M

(k)

RS
at RS(k) are complex linear

combinations of symbols r
(k)

RS
(n) and r

(k)∗

RS
(n). All coded trans-

mit matrices R
(k)

RS
can be combined in the coded transmit matrix

over all RSs

RRS =
[

R
(1)

RS
, . . . ,R

(K)

RS

]

. (6)

Note that for K = 1 with MRS transmit antennas at one RS, the

combined code matrix is equal to the code matrix of the non-

distributed STBC in (1), assuming r
(1)

RS
(n) = x(n).

The RS(k)-to-RN channel is described by matrix H
(k) of dimen-

sion M
(k)

RS
× MRN . Let E {.}, tr {.} and [.]T denote the expecta-

tion, the sum of the main diagonal elements of a matrix and the

transpose, respectively. Then, the average normalized chan-

nel gain of H
(k) is defined by E

{

tr
{

H
(k)

H
(k)H
}}

= α(k)MRN M
(k)

RS
,

where α(k) models different channel gains from each RS(k) to

the RN under the constraint

K
∑

k=1

α(k)M
(k)

RS
= MRS . (7)

With Eq. (7), the overall channel matrix

H =
[

H
(1)T

, . . . ,H(K)T
]T

(8)

has a normalized average channel gain of E
{

tr
{

HH
H
}}

=

MRN MRS , i.e., the overall average channel gain stays constant

while different RS-to-RN channels contribute different frac-

tions of this channel gain which is modeled by α(k). It is as-

sumed that the overall transmit energy per transmit symbol Es

at the RSs is shared equally among the MRS transmit antennas

of all RSs. The overall receive matrix RRN at the RN of dimen-

sion T × MRN is a superposition of all single receive matrices

from K RSs after T time intervals and results in

RRN =

√

Es

MRS

RRS H + NRN (9)

where the elements of the noise matrix NRN are zero mean com-

plex Gaussian random variables with constant power density

spectrum N0.

IV. A A

In the following, all considerations are restricted to the case of

MRS = 4 transmit antennas distributed among different num-

bers of RSs. The Q-OSTBC with constellation rotation of (1)

is applied in a distributed fashion at the cooperating RSs. Sym-

bols r
(k)

RS
(3) and r

(k)

RS
(4) are taken from a QPSK constellation

rotated by π/4 compared to the QPSK constellation of r
(k)

RS
(1)

and r
(k)

RS
(2). Depending on K and M

(k)

RS
, there are five possible

arrangements of four transmit antennas:

(i) all 4 antennas are at one RS, i.e., K = 1 and M
(1)

RS
= 4

(ii) 4 RSs each with one antenna, i.e., K = 4 and M
(k)

RS
= 1 for

k = 1, . . . , 4

(iii) 2 RSs each with 2 antennas, i.e., K = 2 and M
(1)

RS
= M

(2)

RS
=

2

(iv) 2 RSs, one RS with 3 antennas and one RS with 1 antenna,

i.e., K = 2 and M
(1)

RS
= 3, M

(2)

RS
= 1

(v) 3 RSs, one RS with 2 antennas and two RSs with 1 an-

tenna, i.e., K = 3 and M
(1)

RS
= 2, M

(2)

RS
= M

(3)

RS
= 1.

Although the overall average transmit energy Es per transmit

symbol is equal in all five cases, a fair comparison between

them can be difficult. In infrastructure relay networks, for ex-

ample, the equipment costs are higher for establishing case (iii)

than case (i). It is also less likely that one RN has good link

conditions to four different RSs in case (ii) than to one RS in

case (i).

V. P A

Without transmit power control in case of antenna arrange-

ments (ii) to (v) different symbols of the distributed STBC

are received with different average powers for different aver-

age channel gains modeled by α(k). This leads to a degradation

of the BER performance, which is analysed in the following

for case (iii). Additionally, the degradation of the BER perfor-

mance due to correlated channel coefficients is considered.

STBCs shall exploit transmit diversity. Hence, in order to in-

vestigate the diversity order of the coding scheme, it is suffi-

cient to assume MRN = 1 receive antenna. In this case, the

channel matrix H
(k) reduces to a vector of channel coefficients

h(k)(m), m = 1, . . . ,M
(k)

RS
. The complex Gaussian channel coef-

ficients from different RSs are assumed to be spatially uncorre-

lated. Channel coefficients h(k)(m) assigned to the same RS(k)

are correlated and the channel matrix H
(k) is modeled by

vec
{

H
(k)
}

= S
(k)1/2

vec
{

H
(k)
w

}

(10)

where vec {.} stacks {.} into a column vector columnwise, H
(k)
w

is spatially white and S
(k) is the M

(k)

RS
× M

(k)

RS
covariance matrix
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defined as

S
(k) =

1

M
(k)

RS









































1 ρ1 . . . ρM
(k)
RS
−1

ρ1 1 . . . ρM
(k)
RS
−2

...
...

. . .
...

ρM
(k)

RS
−1 ρM

(k)

RS
−2 . . . 1









































(11)

with correlation coefficient 0 ≤ ρ ≤ 1 and ρ = 0 defining un-

correlated channel coefficients [12].

Assuming ML detection at the RN and applying the Chernoff

bound for channel coefficients with Rayleigh distributed ampli-

tudes, the average BER may be upper bounded by

BER ≤ N̄e













det











IMRS
+

Esd
2
min

4MRS N0

W























−1

(12)

[12], where det {.} denotes the determinant, W =

E
{

vec {H} vec {H}H
}

is the covariance matrix of the over-

all channel and N̄e and dmin are the number of nearest

neighbours and minimum Euclidean distance in the constella-

tion diagram, respectively.

Applying the correlated channel model in (10), the upper BER

bound of (12) in the high SNR regime for case (iii) may be

described by

BER ≤ N̄e













Esd
2
min

16N0













−4
(

α(1)α(2)(1 − ρ)
)−2
. (13)

In case (iii), applying Eq. (7) leads to α(1) + α(2) = 2, i.e., for

α(1) = 1, RS(1) and RS(2) are received with the same average

power and for α(1) = 0 the whole channel gain comes from

RS(2) as RS(1) fails completely. Eq. (13) shows that for totally

uncorrelated channel coefficients (ρ = 0) and equal channel

gains from both RSs (α(1) = 1), the BER performance of the

non-distributed STBC with a diversity order of 4 is achieved

[12]. With increasing correlation coefficient ρ between adja-

cent antennas and different channel gains α(k), the BER perfor-

mance is degraded which is indicated by the BER degradation

factor

βdeg =
(

α(1)α(2)(1 − ρ)
)−2
≥ 1. (14)

Figure 2 shows the increase of BER degradation factor βdeg for

decreasing α(1) with ρ = 0 and for increasing ρ with α(1) = 1,

respectively. It can be seen that the slope of βdeg for decreasing

α(1) is lower than for increasing ρ. Hence, the BER perfor-

mance is less sensitive to different channel gains than to corre-

lated channel coefficients. This observation is also confirmed

by the following simulation results.

VI. S R

In this section, the characteristics of cooperative MIMO relay

networks are presented by means of simulations for the extreme

antenna arrangement cases (i), (ii), and (iii). Cases (iv) and (v)

are omitted since they provide no essentially new character-

istics. For simplicity, perfect SN-to-RS links are assumed as

the paper focuses on the cooperation between the RSs on the
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Figure 2: BER degradation factor βdeg for decreasing α(1) and

ρ = 0 as well as for increasing ρ and α(1) = 1

RS-to-RN links. At the RN, ML decoding is applied assuming

perfect channel knowledge. The receive signals from different

cooperating RSs are perfectly synchronized in time.

Figure 3 shows the BER performance for two cooperating RSs

with different channel gains when successively decreasing α(1).

For this figure, it is assumed that the channel coefficients as-
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Figure 3: BER performance of cooperative relaying with two

MIMO RSs (case (iii)) and two SISO RSs, respectively, for

different channel gains α(1) from RS(1) to the RN

signed to the two transmit antennas at the same RS for case

(iii) are spatially uncorrelated (ρ = 0). The solid lines indi-

cate the BER for two MIMO RSs with two antennas each (case

(iii)) and the dashed lines indicate the according BER for two

SISO RSs with one antenna each. For the SISO RSs distributed

Alamouti coding as introduced in [6] is applied. With equal

channel gain (α(1) = 1), the MIMO RSs achieve a diversity or-

der of 4 whereas the SISO RSs only achieve a diversity order

of 2. For both cases, the performance degradation for decreas-

ing α(1) can be noted. However, even if the second RS fails

completely, in the MIMO RSs case the performance is still as

good as for the SISO RSs case with equal channel gain, i.e.,

MIMO relays are more robust to different channel gains than

SISO RSs at the cost of additional antennas and additional pro-
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cessing effort as the ML decoding has to be processed jointly

for two transmit symbols in case of Q-OSTBC.

In Fig. 4, equal channel gain is assumed for the different an-

tenna arrangement cases (i) to (iii) with different correlation

coefficients ρ for the MIMO channels H
(k). In case (ii), the
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Figure 4: BER performance of different antenna arrangements

(i), (ii) and (iii) in case of different correlation coefficients ρ

best BER performance is achieved since all channel coefficients

from the 4 RSs to the RN are uncorrelated due to the distributed

arrangement of the single transmit antennas. For increasing

correlation coefficient ρ, the BER performance of cases (i) and

(iii) shows an obvious degradation. However, in the cooper-

ative relaying case (iii) there are only two pairs of correlated

transmit antennas while these two pairs are mutually uncorre-

lated. Hence, the performance of case (iii) is still better than for

non-distributed STBCs at one RS with four spatially correlated

transmit antennas, e.g., for ρ = 0.6 and high Es/N0 the perfor-

mance of case (iii) is about 3dB better than the performance of

case (i).

In Fig. 5, the correlation coefficent is set to ρ = 0.6 and the

single RS case (i) and the cooperative relaying case (iii) for dif-

ferent channel gains α(1) on the RS(1)-to-RN link are compared

to each other. On the one hand, the performance degrades with

decreasing receive power from RS(1) in case (iii). But on the

other hand, it is worth noting that even in the case of 10dB re-

ceive power loss (α(1) = 0.1) from RS(1) the performance of

cooperative relaying is still about 1dB better than for the single

RS with 4 transmit antennas in the high Es/N0 regime. In case

of different channel gains, distributed STBCs show less BER

performance degradation than non-distributed STBCs in case

of correlated channel coefficients.

VII. C

In this paper, the application of a distributed four antenna Q-

OSTBC with constellation rotation for cooperative relay net-

works is considered. It is shown that two cooperating MIMO

RSs achieve a better BER performance than two cooperating

SISO RSs at the cost of additional transmit antennas and higher

decoding effort at the receiver. Applying distributed STBCs
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Figure 5: BER performance of antenna arrangement (iii) for

different channel gains α(1) from RS(1) and of antenna arrange-

ment (i) assuming correlated channel coefficients

in cooperative relay networks reduces the probability of corre-

lated channel coefficients as the RSs are spatially separated. It

is shown that even in case of different receive powers from sev-

eral cooperating RSs at the receiver, the performance of cooper-

ative relaying is better than the performance of non-distributed

STBCs in spatially correlated MIMO channels.
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