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Hybrid localization with temporal 
post-processing 
 
 
By Michael Meurer, Tobias Weber, Anja Klein 
 
Abstract – Precise localization of mobile devices is a promising and challenging task. Due to multipath 
propagation state of the art localization techniques provide only coarse position estimates. An approach to im-
prove position estimates consists in hybrid localization, i.e., in combining several coarse position estimates to 
obtain one better position estimate. The position estimates to be combined can stem from different spatial 
measurements taken at the same time instant or from the same spatial measurement performed at different 
time instants. 
 
Index Terms – localization, SPIDER, post-processing 
 
 
 

1. Introduction 

Localization is gaining importance in various fields of application as 

mobile communication networks, sensor networks or Ambient 

Intelligence (AI). The satellite navigation systems Global Position-

ing System (GPS) and Galileo provide accurate position estimates, 

but in several scenarios of interest they are not applicable, for in-

stance in indoor or dense urban environment due to lack of line-of-

sight satellite connections or since they cannot be integrated in small 

sensors due to cost, size and weight restrictions or due to long acqui-

sition time. Therefore, hybrid localization combining several less 

reliable sources of information on the position is a promising ap-

proach. 

In order to locate a device, measurements of characteristic quanti-

ties which depend on the position of the device must be available. 

The function that describes the relationship between the device 

position and the characteristic quantity is termed characteristic 

function. Ideally, the characteristic function should provide a sharp 

one-to-one relationship between the device position and the charac-

teristic quantity so that even in the presence of measurement errors 

reliable position estimates can be obtained.  

In reality this is often not the case. State-of-the-art characteristic 

quantities are e.g. the propagation time, signal strength, angle of 

arrival or fingerprint like signatures. In general, the corresponding 

characteristic functions do only weakly depend on the position. 

Thus, a combination of multiple characteristic quantities and related 

measurements from different sources is required to reliably estimate 

the unknown device position.  

The accuracy of the localization method depends on three influ-

encing factors. First, the accuracy of the localization method de-

pends on the accuracy with which the measurements of the charac-

teristic quantities can be obtained. Second, the accuracy of the local-

ization method depends on the characteristic function.  

On the one hand, a sharp dependency of the corresponding value 

of the characteristic function on the device position is desirable. On 

the other hand, the stronger the characteristic function depends on 

the position of the device, the more exact the characteristic function 

has to be known to determine the unknown position of the device. 

Third, the accuracy of the localization method depends on the way 

the measurement values of different characteristic quantities are 

combined. 

In this paper, several localization methods based on a combination 

of measurements of different characteristic quantities are presented. 

First, the concept of SPIDER (smart position identification rationale) 

is introduced which jointly determines location estimates of several 

devices using distance estimates, e.g. obtained by propagation time 

measurements, on the one hand between the devices and installed 

stations of known position and on the other hand also between 

different devices. Second, the concept of temporal post-processing is 

introduced. It is shown that both concepts lead to considerable accu-

racy improvements. 

2. SPIDER 

2.1 Idea and motivation 

As motivated above, a reliable estimation of the position of a 

device may be obtained by including as many characteristic 

quantities and their measurements as possible in the localization 

process. Typical characteristic quantities used for locating a 

device are its (measured) distances from pre-installed stations of 

known position. Therefore, for accurate localization many of 

such distances are helpful. The number of pre-installed stations 

in the surroundings of a device is typically limited; cf. for in-

stance the localization of a mobile terminal (MT) in a cellular 

mobile radio system where only a few base stations (BS) act as 

pre-installed stations. Consequently, for applications of this kind 

the localization accuracy is limited. In order to overcome the 

aforementioned problem one can resort to the fact that typically 

several devices of unknown positions are active in the same area. 

Assuming this, the mentioned distance based localization 

scheme may be extended and enhanced: not only estimates of the 

distances of the devices to be located to surrounding pre-

installed stations, but, as additional information, also estimates 

of all or some distances inbetween the devices can be utilized. 

This approach, which in the following is referred to as SPIDER 

(smart position identification rationale), implies the joint estima-

tion of the positions of all devices. In the following, devices are 

referred to as mobile terminals (MTs) and pre-installed stations 

are termed base stations (BSs). 

 

2.2 Considered Scenario 

We consider a geographic observation area 
 
X R

D
 in the D -

dimensional space, D {2,3} , comprising KB  BSs B(kB ) ,  

kB = 1…KB , and K  MTs M(k )
, k = 1…K . The key parame-

ters of such an area are its geographic extension, the number KB  

of known fixed positions of the BSs B(kB ) ,kB = 1…KB , and the 

number K  of MTs M(k )
, k = 1…K . The K  MTs are at posi-

tions
 
xM
(k )

X , k = 1…K , to be determined by localization. The 

K  MT positions xM
(k )

 are stacked in the position vector  

 

xM =
TT

xM
(1) …

T
xM
(K ) .  (1) 

 

In the ensemble of KB  BSs and K  MTs a number of  

K = KBK + K K 1( ) / 2  (2) 

mutual distances
(k )

, k = 1…K , exist, where each 

  

(k )
= xB

(kB ) xM
(k )

2
R0

+
,  (3) 

k = (kB 1)K + k {1…KKB},  
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denotes the distance between the BS B(kB )  and the MT M(k )
, 

and each  

  

(k )
= xM

(k )
xM
(k )

2
R0

+
,  (4) 

k =KBK+(k 1)K  
1

2
k(k + 1)+k {KKB+1…K }  

denotes the distance between two MTs M(k )
 andM(k )

,k > k . The 

distances 
(k )

 of (3) and (4) can be stacked in the distance vector 

 
=

T(1)… (K ) K
R0

+
.  (5) 

As a consequence of (3) to (5), for fixed BS positions xB
(kB ) , the 

distance vector  of (5) is a function xM( )  of the position 

vector xM  of (1).  

In practical system operation only estimates 
 

k( )
 of the dis-

tances 
(k )

 of (3) and (4) are available, which quite generally 

can be expressed with the measurement error n(k )  as 

 

k( )
=

(k )
+ n(k ) .  (6) 

Stacking n(k ) , k = 1…K , to the error vector n R
K

, we 

obtain the estimate  

 
= + n  (7) 

of the distance vector  of (5). The error vector n  is a random 

quantity and can therefore be statistically characterized by its 

probability density function pn (n)  which is assumed to be 

independent of  in the following. With pn (n)  and  of (5) 

and under consideration of (7) we can express the probability 

density function of the estimate 
 

 conditioned on xM  as  

   
p | x

M
= p

n
x

M( ).  (8) 

With the estimate 
 

 of  determined by measurements and the 

conditioned probability density function 
   
p | xM

 of
 

, see 

(8), the Maximum Likelihood (ML) estimate of 
  
x

M
 is given by  

     

x̂
M
= arg max

x
M

X
K

p | xM
.  (9) 

If no further information on the statistics of the error vector  n  of 

(7) is available, an obvious assumption would be that  n  is 

Gaussian [1]. Then, 
  
p

n
(n)  is completely characterized by the 

expectation  

  
µ = E n{ }  (10) 

and the covariance matrix  

  
R = E (n µ)(n µ)T

 (11) 

of  n  and takes the form  

   

p
n

n( ) =

exp 1

2

T

n µ( ) R
1

n µ( )( )
(2 )

K
B
/2

det(R)
.  (12) 

With 
  
p

n
n( )  of (12) the estimate of (9) can be expressed as  

     

x̂
M
= arg min

x
M

X
K

(x
M

) µ( )
T

R
1 (x

M
) µ( ) .  (13) 

 

 

Fig. 1: Scenario with three base stations B(kB ) , kB = 1…KB , ( )  

and K mobile terminals M(k ) , k=1…K , ( ). 
 

 

Since the function (xM)  is non-linear, the minimization re-

quired to determine the estimates x̂M , see (9) and (13) cannot be 

performed in closed form. However, a closed form approximate 

solution can be found using linear Taylor approximation origi-

nally proposed by Torrieri [2] and extended in [3].  

 

2.3 Performance Analysis 

To evaluate the localization accuracy of SPIDER, the observa-

tion domain  X  shown in Fig. 1 is considered. Moreover, the 

estimates ˆ k( )  were obtained according to (6), where the values 

n(k )  were randomly chosen based on (12) with zero mean and 

R = 70m( )2 I . (14) 

We assume that K MTs are active and that they are located at 

positions xM
(k )

, k=1…K , which are uniformly distributed 

within X . The localization accuracy for a MTM(k )
, k=1…K, is 

quantified by the localization error  

(k )
= x̂M

(k ) xM
(k )

2
,  (15) 

i.e., the distance between estimated position x̂M
k( )

 and real posi-

tion xM
(k )

 of the MT M(k )
. As both n  of (7) and xM

(k )
, k=1…K , 

of (1) are random quantities, also the localization error 
(k )

 of 

(15) is a random quantity. Therefore, the localization accuracy of 

SPIDER is evaluated in a statistical sense by means of the com-

plementary cumulative distribution function (CCDF) 

Pr{ (k )
> }  of the localization error 

(k )
 of a 

MTM(k )
, k=1…K . Fig. 2 shows such CCDFs for K  equal to 4, 

8, 16, 32 and 64 for both SPIDER and the conventional scheme. 

If the conventional scheme is applied, K has no influence on 

Pr{ (k )
> } , because localization of an MT M(k )

 is based on 

the distances between this MT M(k )
 and the BSsB(kB ) , 

kB = 1…KB , only and is, therefore, independent of other 

MTsM(k )
, k k . As a consequence, the probability that the 

localization error 
(k )

 is larger than 50m is higher than 70%. In 

the case of SPIDER, with increasing K  the localization accu-

racy is massively improved. Consequently, the probability that 

the localization error 
(k )

 exceeds 50m is significantly reduced 

compared to the conventional scheme ranging from a probability 

of 55% for K  equal to four down to less than 1% for K  equal 

to 64. These figures impressively demonstrate the superiority of 
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SPIDER and underline the high attractiveness of including as 

many measurements of characteristic quantities as possible to 

significantly enhance localization accuracy.  

 

 

 

Fig. 2: CCDF of the localization estimation error 
k( )

 for KB = 3  

and K = 4,8,16,32,64 . 

 

 

3. Temporal post-processing of position estimates 

Temporal post-processing aims at improving position estimates 

by observing the movement of an MT over a certain time period. 

Consequently, a single MT will be considered in the following. 

To render the post-processing techniques computationally feasi-

ble one has to resort to discrete coordinates. In the following 

capital symbols will be used for discrete coordinates. We assume 

that the observation area inside which the MT is located during 

the measurement period is known, e.g., due to the knowledge of 

the BS to which the MT is assigned. The observation area is 

divided into N N  square pixels of size l l . The time in-

stants at which the initial position estimates are taken are de-

noted by
 
p = 1…P , i.e., in total P  initial position estimates are 

taken. The position of the MT at time instant p  is denoted 

byX p . During the measurement period the MT moves along the 

path
 
P = X1…XP . 

The potential of temporal post-processing of position esti-

mates stems from the fact that MTs can not move in a totally 

random way. Basically one needs to know the mobility model 

which can be described by the a-priori probabilities Pr P{ }  of 

all combinatorial possible paths. However, from a complexity 

point of view temporal post-processing based on such a very 

general mobility model would not be feasible. Fortunately, at 

least for pedestrian users it is reasonable to assume that the 

movement of the MTs can be described by a Markoff model 

[4,5], i.e., that the future movement only depends on the current 

position. With the a-priori probabilities Pr X1{ }  of the positions 

at time instant 1  and the transition probabilities Pr X p X p 1{ }  

the path probabilities can be expressed as  

Pr P{ } = Pr X1{ } Pr X p X p 1{ }
p=2

P

. (16) 

In a practical implementation it would be necessary to estimate 

the transition probabilities Pr X p X p 1{ }  based on long term 

observation of the scenario and the MTs' movements, e.g., with 

the Baum-Welch algorithm [4,5]. In the present paper we assume 

that the transition probabilities Pr X p X p 1{ }  are known. For 

numerical investigations throughout this paper it is assumed that 

• the transition probabilities to all neighboring pixels take the 

same value q , 

• the transition probability to the same pixel, i.e., for staying 

at the current pixel, takes the value 

Pr X p X p 1 = X p{ } = 1 Pr X p X p 1{ }
X p X p 1

 (17) 

and, 

• all remaining transition probabilities take the value zero. 

 

Please note that this very simple mobility model is just used for 

first simulations and that our techniques can also be used in 

conjunction with more sophisticated Markoff models. 

First, some measurementsX p , 
 
p = 1…P , are obtained, e.g., by 

the localization method SPIDER described in the previous sec-

tion. The measurementsX p , 
 
p = 1…P , are modeled as inde-

pendent random variables for which the conditioned distribution 

Pr X p X p{ }  are assumed to be known.  

For the numerical investigations throughout this paper we as-

sume a sampled two dimensional Gaussian distribution. With the 

distance X p ,X p( )  between the pixels X p  and X p  and the 

standard deviation  this sampled two dimensional Gaussian 

distribution reads 

Pr X p X p{ } =
exp

1

2 2
2 X p ,X p( )

exp
1

2 2
2 X p

'
,X p( )

Xp
'
=1

N 2
. (18) 

With the Bayes' theorem the a-posteriori probabilities can be 

calculated as 

Pr X p X p{ } =
Pr X p X p{ } Pr X p{ }

Pr X p X p
'{ } Pr X p

'{ }
X p
'
=1

N 2
. (19) 

First initial position estimates could be obtained by taking the 

most probable positions 

 

X p = argmax
X p

Pr X p X p{ }{ }  (20) 

based on the individual measurements as the position estimates. 

The initial position estimates differ from the measurements 

mainly by the fact that the a-priori probabilities of the positions 

are taken into account. 

The goal of conventional path estimation is to determine the 

most probable path 

 

P = X1…XP = argmax
P

Pr P X1…XP{ }{ }  (21) 

on which the MT moved based on the measurements. The posi-

tions X p  on the most probable path  P  are position estimates. If 

the movement of the MT can be described by a Markoff model 

the most probable path  P  can be determined in a computational 

efficient way by using the Viterbi algorithm [6]. However, these 

are not the most probable positions which could be found based 

on the measurementsX p ,
 
p = 1…P .  
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Position estimation aims at determining the most probable posi-

tions 

 

X p = argmax
X p

Pr X p X1…XP{ }{ }  (22) 

based on the measurementsX p ,
 
p = 1…P . The most probable 

positions can be determined in a computational efficient way 

utilizing the BCJR algorithm [7] if the movement of the MT can 

be described by a Markoff model.  

The performances of 

• initial position estimation, 

• determining the most probable path with the Viterbi algo-

rithm and taking the positions on the most probable path as 

position estimates, and, 

• optimum position estimation with the BCJR algorithm 

 

are compared based on simulations. For all simulations a sce-

nario of N N = 10 10  pixels of size l l = 20m 20m  is 

considered. The path length is P = 10 . For the simulations ran-

dom paths were generated with the Markoff mobility model and 

measurements were generated using the sampled two dimen-

sional Gaussian distribution. The simulation results are presented 

as complementary cumulative distribution function (CCDF) of 

the position estimation error X p ,X p( ) . In order to fulfill the 

requirements of E911 [8] the CCDFs must not cross the forbid-

den region shown in the figure. 

 

 

Fig. 3: CCDF of the position estimation error X p ,X p( )  for N = 10 , 

l = 20m , P = 10 , = 78m  and q = 0.05 . 

 

 

Fig. 3 shows the simulation results for a scenario with a moder-

ate mobility described by q = 0.05 . This shows that temporal 

post-processing can offer significant performance gains over the 

initial position estimation. Furthermore, it can be clearly seen 

that the novel position estimation based on the BCJR algorithm 

offers significantly better performance than the conventional 

technique based on the Viterbi algorithm. 

4. Conclusion 

In the present paper hybrid localization techniques which com-

bine several estimates in space or time in order to obtain im-

proved position estimates were introduced.  

Conventional distance based localization schemes rely solely 

on estimates of the distances between devices to be located to 

surrounding pre-installed stations of known positions. Intui-

tively, localization accuracy could be improved by additionally 

resorting to estimates of the distances between the devices to be 

located. This spatial post-processing rationale which is followed 

in the localization scheme SPIDER presented in this paper 

significantly outperforms the conventional scheme. 

The temporal post-processing techniques considered in the pre-

sent paper are based on a Markoff model describing the move-

ment of the mobile terminal. The measurements one obtains are 

random variables for which distributions are influenced by the 

true positions of the mobile terminals, which correspond to the 

states of the Markoff model. Thus, the theory of hidden Markoff 

models is applicable. The novel temporal post-processing with 

the BCJR algorithm offers significant performance improve-

ments over the initial position estimation and also the state of the 

art temporal post-processing based on the Viterbi algorithm. 

In a final step both techniques can be combined in order to do 

some post-processing in both space and time in order to further 

improve position estimates. 
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