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The Global Positioning System (GPS) has become one of the state-of-the-art location systems that offers reliable mobile terminal
(MT) location estimates. However, there exist situations where GPS is not available, for example, when the MT is used indoors
or when the MT is located close to high buildings. In these scenarios, a promising approach is to combine the GPS-measured
values with measured values from the Global System for Mobile Communication (GSM), which is known as hybrid localization
method. In this paper, three nonlinear filters, namely, an extended Kalman filter, a Rao-Blackwellized unscented Kalman filter,
and a modified version of the recently proposed cubature Kalman filter, are proposed that combine pseudoranges from GPS with
timing advance and received signal strengths from GSM. The three filters are compared with each other in terms of performance
and computational complexity. Posterior Cramér-Rao lower bounds are evaluated in order to assess the theoretical performance.
Furthermore, it is investigated how additional GPS reference time information available from GSM influences the performance
of the hybrid localization method. Simulation and experimental results show that the proposed hybrid method outperforms the
GSM method.

1. Introduction

In the past few years, there is an increased interest in wireless
location systems offering reliable mobile terminal (MT)
location estimates. On the one hand, this is due to upcoming
and already available commercial services (aka Location
Based Services) such as intelligent transport systems, fraud
detection, yellow page services, location sensitive billing,
and other promising services that rely on accurate MT
location estimates [1]. On the other hand, the United
States Federal Communications Commission (FCC) issued
an order, in which all wireless service providers are required
to report the location of an E-911 caller within a specified
accuracy [2]. This FCC mandate together with the emerging
Location-Based Services has pushed further the research and
standardization activities in the field of MT localization.

Until now, several localization methods have been pro-
posed to solve the problem of locating an MT in a wireless
network [3, 4]. The global navigation satellite systems
(GNSSs), such as the Global Positioning System (GPS) and

the prospective European counterpart Galileo, are promising
candidates to fulfill the FCC requirements [5]. In the GNSS,
the MT location is estimated from the propagation time; the
satellite (SAT) signals need to propagate to the MT, which is
known as time of arrival (ToA) method. If the MT receives
satellite signals from at least four different satellites, a three-
dimensional (3D) MT location estimate can be found, where
the fourth satellite signal is needed to resolve the unknown
bias between the MT and satellite clock [5]. In a similar
manner, one can obtain a 2D MT location estimate if the
MT receives signals from at least three different satellites.
However, there exist situations where the GNSS signals are
blocked, for example, when the MT is located indoors or in
urban canyons. In these scenarios, the number of satellites in
view is often not sufficient to obtain a 3D or even 2D MT
location estimate.

An alternative to the GNSS is the exploitation of com-
munication signals of the cellular radio network, in order
to obtain MT location estimates. In the Global System for
Mobile Communication (GSM), for example, measurements
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such as the received signal strength (RSS), timing advance
(TA), angle of arrival (AoA), or enhanced observed time
difference (E-OTD) exist that give information on the MT
location. An appealing advantage of these measurements
is that they are almost everywhere available. However, the
corresponding localization methods that are based on these
measurements cannot offer the same accuracy as their GNSS-
based counterpart. The combination of measured values
from the GNSS and the cellular radio network is, thus, a
promising approach in order to obtain MT location estimates
even if less than four or three satellites are in view [6–
13]. The resulting hybrid localization methods are expected
to improve the accuracy and availability of MT location
estimates.

In [6, 7], a hybrid localization method combining
pseudorange- (PR-) measured values from GPS and E-
OTD-measured values from GSM is investigated. In [8],
a hybrid method is presented that is based on the fusion
of PR-measured values from GPS and round trip delay-
measured values from a cellular radio network that is,
perfectly synchronized to GPS time. However, [6–8] only
provide general descriptions of their hybrid methods and
no algorithms or theoretical performance bounds are given.
In [9], a hybrid method based on the combination of
PR measured values from GPS and time difference of
arrival (TDoA) measured values from a cellular radio
network using a least squares approach is introduced. In
[11], a hybrid data fusion approach is presented that
combines pseudoranges from the GNSS with TDoA mea-
surements from future 3GPP-LTE communication systems
using an extended Kalman filter (EKF). In [12, 13], we
have developed an extended Kalman filter- (EKF-) based
and Rao-Blackwellized unscented Kalman filter- (RBUKF-
) based MT tracking algorithm that fuses TA- and RSS-
measured values from GSM- and PR-measured values from
GPS.

This paper deals with the combination of RSS-, TA-,
and PR-measured values from GSM and GPS, as they can
be easily obtained from off-the-shelf mobile handsets and
conventional GPS receivers. The underlying hybrid mobile
terminal tracking problem is then solved using the EKF,
RBUKF, and the recently proposed cubature Kalman filter
(CKF) [14]. Here, a novel extension of the CKF is introduced,
accounting for the linear process model structure, which
is called the modified cubature Kalman filter (MCKF).
Furthermore, it is investigated in this paper how GPS
reference time information from the GSM network, which
is available from the Radio Resource Location Services
Protocol (RRLP) [15], can help to improve the performance
of the hybrid localization methods. The different filtering
approaches are then compared to each other, the expected
computational complexity is evaluated, and their achievable
performance is compared in a realistic simulation study
with the posterior Cramér-Rao lower bound (PCRLB). The
PCRLB gives the theoretical best achievable performance of
nonlinear filters [16] and serves here as an important tool
for the design of a hybrid MT tracking system. Finally, the
three different algorithms are tested on “real world” GSM
measurements together with synthetic GPS-measured values,

and their enhanced performance compared to the GSM-
based localization method is demonstrated.

The remainder of this paper is organized as follows. In
Section 2, the hybrid localization problem is formulated as
a nonlinear filtering problem where the optimal solution
is given, at least conceptually, by the Bayesian filter. In
Section 3, the MT process model and the measurement
models for the PR, TA, RSS, and GPS reference time
uncertainty are presented that are required to use the
different filters. In Section 4, three different nonlinear filters,
namely, the EKF, RBUKF, and MCKF are introduced for
the hybrid localization problem as well as the PCRLB. The
main differences between the different filters are highlighted
and the computational complexity is analyzed. In Sections
5 and 6, simulation and experimental results are presented,
where the proposed algorithms are compared to each other,
and where the advantage of the proposed hybrid method is
demonstrated. Finally, Section 7 concludes the work.

2. Problem Statement

In this paper, the MT tracking problem is formulated as a
nonlinear filtering problem, where a sequence of measure-
ments available from GSM and GPS is used to estimate the
actual state of the MT. Consider the following discrete-time
state-space model with additive noise:

Process Model : x(k) = f(x(k − 1)) + v(k − 1),

Measurement Model : y(k) = h(x(k)) + w(k),
(1)

where k denotes the discrete-time index, x(k) ∈ Rnx denotes
the state vector, y(k) ∈ Rny denotes the measurement vector,
and f(·) and h(·) are some known vector-valued, possibly
nonlinear, mapping functions. Here, it is worth noting
that the function f(·) models the deterministic relationship
between x(k) and x(k−1). Similarly, the function h(·) mod-
els the deterministic relationship between the state vector
x(k) and the corresponding measurements y(k) available
from GPS and GSM. The process and measurement noise
v(k − 1) and w(k) are assumed to be mutually independent
zero-mean white Gaussian noise sequences with covariances
Q(k − 1) and R(k), respectively.

The aim in nonlinear filtering is to recursively compute
estimates of the state x(k) using the sequence of all available
measurements Y(k) = {y(l), l = 1, . . . , k} up to and
including time k. From a Bayesian point of view, the
aim is to recursively compute the posterior probability
density function (pdf) p(x(k) | Y(k)), since it provides
a complete statistical description of the state x(k) at that
time. The optimal Bayesian solution is given by the following
recursions:

Time Update:

p(x(k) | Y(k − 1)) =
∫
Rnx

p(x(k) | x(k − 1))

× p(x(k − 1) | Y(k − 1))dx(k − 1).
(2)
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Measurement Update:

p(x(k) | Y(k)) = p
(

y(k) | x(k)
)
p(x(k) | Y(k − 1))

p
(

y(k) | Y(k − 1)
) , (3)

where p(y(k) | Y(k − 1)) is a normalizing constant given by

p
(

y(k) | Y(k − 1)
)

=
∫
Rnx

p
(

y(k) | x(k)
)
p(x(k) | Y(k−1)) dx(k),

(4)

and where the pdfs p(x(k) | x(k − 1)) and p(y(k) |
x(k)) can be determined from (1). The above recursions are
initiated by p(x(0) | Y(0)) = p(x(0)) [17]. It is well known
that the nonlinear recursive filtering problem only allows
analytical solutions in a few special cases, for example, for
linear Gaussian models, where the Kalman filter provides the
optimal solution [18]. However, for the general model (1), an
analytical solution to the above recursions is intractable and,
thus, one has to resort to suboptimal algorithms.

For the hybrid localization method three suboptimal
nonlinear filters are investigated, namely, the extended
Kalman filter, the Rao-Blackwellized unscented Kalman filter,
and the modified cubature Kalman filter. But before these
filters will be explained in more detail, it will be first shown
how the process model and measurement models are chosen
for the hybrid localization method.

3. Process and Measurement Model

3.1. Introduction. In the following, it is assumed that the
MT location xMT = [xMT, yMT]� to be estimated and the

known base station (BS) locations x(n)
BS = [x(n)

BS , y(n)
BS ]

�
,

n = 1, . . . ,NBS, lie in the xy-plane, where [·]� denotes the
transpose of a vector or matrix. The known satellite locations

are given by x(l)
SAT = [x(l)

SAT, y(l)
SAT, z(l)

SAT]
�

, l = 1, . . . ,NSAT.
For the case of 3-D MT and BS locations, the process and
measurement models can be obtained in a similar way.
The measurements that are used for the hybrid localization
method are the PR-measured values from GPS and TA, RSS,
and GPS reference time uncertainty measured values from
GSM. Here, it is worth noting that the hybridization takes
place by combining different types of measurements from
GPS and GSM rather than location estimates from GPS
and GSM. That is, one first collects at every time step k
all the measurements from GPS and GSM and then these
measurements are processed jointly in the filter in order to
estimate the MT location. With this strategy, it is possible to
obtain MT location estimates even if less than three satellites
are visible to the MT.

3.2. Process Model. For the hybrid localization method, the
states of the process model include the 2-D MT location
and velocity, the MT clock bias, and clock drift, that is, x =
[ xMT, ẋMT, yMT, ẏMT, c0 · δt, c0 · δṫ ]�, where c0 is the speed
of light. The movement of the MT is approximated with a
nearly constant velocity (CV) model and the receiver clock
bias is modeled by a second-order Gauss-Markov process

[19, 20]. The resulting linear process model for the hybrid
localization method is, thus, given by

x(k) = Φ · x(k − 1) + Γ · v(k − 1) (5)

with

Φ = I3 ⊗
[

1 TS

0 1

]
, Γ = diag

(
I2 ⊗

[
T2

S

2
,TS

]�
, I2 · c0

)
,

(6)

where Iq is the identity matrix of size q, ⊗ denotes the
Kronecker product, and TS is the sampling time. The process
noise v = [vx, vy , vδt, vδṫ]

� is assumed to be a zero-
mean white Gaussian noise sequence with block diagonal
covariance matrix Q = diag (QCV, Qδt). The covariance
matrix QCV is given by QCV = diag(σ2

x , σ2
y), where σ2

x and
σ2
y denote the noise variances in the x- and y-direction. The

elements of the symmetric 2 × 2 matrix Qδt are given by

Q11 = h0
TS

2
+ 2h−1T

2
S +

2
3
π2h−2T

3
S ,

Q12 = Q21 = 2h−1TS + π2h−2T
2
S ,

Q22 = h0

2TS
+ 2h−1 +

8
3
π2h−2TS,

(7)

where the parameters h0,h−1, and h−2 correspond to values
of a typical quartz standard [19].

3.3. Measurement Model

3.3.1. Pseudorange. In GPS, the MT is measuring the time
the satellite signal requires to travel from the satellite to the
MT, which is known as ToA principle [5]. The corresponding
ToA-measured values are affected by delays due to the
transmission of the satellite signal through the ionosphere
and the troposphere and due to other errors, for example,
receiver noise or multipath propagation [5]. In addition to
that, the MT’s clock is generally not time-synchronized to the
clocks of the GPS satellites, resulting in an unknown receiver
clock bias δt(k) that has to be estimated. The corresponding
measured biased ranges or measured pseudoranges can be
obtained from multiplying the biased ToA-measured values
by c0.

In the following, it is assumed that each measured pseud-
orange is corrected for the known errors that are available
using parameter values in the navigation message from the
satellite [5]. Let yPR(k) denote the vector of NSAT-corrected
PR-measured values. Then, the PR measurement model can
be written as

yPR(k) = hPR(xMT(k), δt(k)) + wPR(k) (8)

with

hPR(xMT(k), δt(k))

=
[
d(1)

SAT(xMT(k)), . . . ,d(NSAT)
SAT (xMT(k))

]�

+ c0 · δt(k),

(9)
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where d(l)
SAT(xMT(k)) denotes the Euclidean distance between

the MT and the lth satellite. The random variable wPR(k)
describes unmodeled effects, modeling errors, and measure-
ment errors; each PR-measured value is affected by, for exam-
ple, delays as the signal propagates through the atmosphere,
receiver noise, as well as errors due to changing propagation
conditions, that is, line-of-sight (LOS) or non-line-of-sight
(NLOS) situations. It is assumed that wPR(k) is Gaussian

distributed with mean vector μPR = [μ(1)
PR, . . . ,μ(NSAT)

PR ]
�

accounting for NLOS propagation and covariance matrix

RPR = diag((σ (1)
PR )2, . . . , (σ (NSAT)

PR )2), where μ(l)
PR and σ (l)

PR denote
the mean and standard deviation from the PR-measured
value of the lth satellite.

3.3.2. Timing Advance. In GSM, the Timing Advance (TA)
is a parameter that is used to synchronize the transmitted
bursts of the MTs to the frame of the receiving BS [1]. In
principle, the TA is a quantized value of the round trip time,
that is, the time the radio signal requires to propagate from
the BS to the MT and back. Let yTA(k) denote the vector of
NBS TA-measured values multiplied by c0/2. Then, the TA-
measurement model is given by

yTA(k) = hTA(xMT(k)) + wTA(k) (10)

with

hTA(xMT(k)) =
[
d(1)

BS (xMT(k)), . . . ,d(NBS)
BS (xMT(k))

]�
, (11)

where d(n)
BS (xMT(k)) denotes the Euclidean distance between

the MT and the nth BS. The random variable wTA(k)
accounts for the errors each TA-measured value is affected
by, such as quantization, changing propagation conditions—
LOS or NLOS situation—and measurement noise. These
errors are assumed to be Gaussian distributed with mean vec-
tor μTA = [μ(1)

TA, . . . ,μ(NBS)
TA ]� accounting for NLOS propaga-

tion and covariance matrix RTA = diag((σ (1)
TA )2, . . . , (σ (NBS)

TA )2),

where μ(n)
TA and σ (n)

TA denote the mean and standard deviation
from the TA-measured value of the nth BS.

3.3.3. Received Signal Strength. In GSM, the RSS value is an
averaged value of the strength of a radio signal received by
the MT. The attenuation of the signal strength through a
mobile radio channel is caused by three factors, namely, fast
fading, slow fading, and path loss. Since, in GSM, the RSS-
measured values are averaged over several time-consecutive
measurements, the error due to fast fading can be neglected.
The model for the path loss in dB is given by

L(n)(xMT(k)) = A(n) + 10 · B(n) · log10

(
d(n)

BS (xMT(k))
1 km

)
.

(12)

Reference[3], where A(n) denotes the reference path loss at a
BS to MT distance of 1 km and B(n) is the path loss exponent
of the nth BS. Both parameters A(n) and B(n) strongly depend
on the propagation conditions and BS antenna settings and
can be determined either empirically or from well-known

path loss models as, for example, Hata [21] or COST 231
Walfisch-Ikegami [22].

In real systems, the BSs may be equipped with directional
antennas in order to increase the cell’s capacity. However,
the employment of directional antennas at the BSs should
be directly taken into account in the model for the RSS
measured value, because otherwise the performance of
the tracking algorithms will considerably degrade. In the
following, it is assumed that antenna gain models are a

priori available. Let A(n)
m and ϕ(n)

3 dB denote the minimum
gain and 3 dB beamwidth of the BS antenna. Let further

ϕ(n)
BS (xMT(k)) denote the azimuth angle between the MT

and the nth BS antenna, counted counterclockwise from the
boresight direction of the BS antenna. Then, a model for the
normalized antenna gain in dB scale is given by

g
(
ϕ(n)

BS (xMT(k))
)
= −min

⎧⎪⎨
⎪⎩12

⎛
⎝ϕ(n)

BS (xMT(k))

ϕ(n)
3 dB

⎞
⎠

2

,A(n)
m

⎫⎪⎬
⎪⎭.
(13)

Reference [10], where min{a, b} denotes the smallest value
in the set {a, b}. Let yRSS(k) denote the vector of NBS RSS-
measured values. Then, the RSS measurement model in dB
scale is given by

yRSS(k) = hRSS(xMT(k)) + wRSS(k) (14)

with

hRSS(xMT(k)) =
[
h(1)

RSS(xMT(k)), . . . ,h(NBS)
RSS (xMT(k))

]�
,

h(n)
RSS(xMT(k)) = P(n)

T −
{
L(n)(xMT(k))− g

(
ϕ(n)

BS (xMT(k))
)}

,

(15)

where P(n)
T denotes the nth BS’s equivalent isotropic radi-

ated power. The random variable wRSS(k) accounts for
errors, such as errors due to slow fading, quantization,
and NLOS propagation. It is assumed that wRSS(k) is zero-
mean Gaussian distributed with covariance matrix RRSS =
diag((σ (1)

RSS)2, . . . , (σ (NBS)
RSS )2), where σ (n)

RSS denotes the standard
deviation from the RSS-measured value of the nth BS.

3.3.4. GPS Reference Time Uncertainty. In GSM, there exists
the possibility to obtain GPS reference time information that
can be used to estimate the unknown clock bias δt(k) in the
pseudorange equations (cf. (9)) according to the available
RRLP [15]. However, in [15] it is stated that this reference
time can be provided only with a specified accuracy which
is expressed by the so-called GPS reference time uncertainty.
In the following, a model connecting the GPS reference time
uncertainty to the unknown MT clock bias will be derived.

Since the satellite clocks can be assumed to be mutually
synchronized [5], the MT clock bias can be written as
δt(k) = tGPS(k)− tMTC(k), where the difference describes the
offset between the GPS reference time scale tGPS(k), which
is unknown to the MT, and the known MT clock time-scale
tMTC(k). Here, it is worth noting that the bias is not constant
over time, since the MT clock experiences errors due to clock
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drifts. Let yRTU(k) denote the GPS reference time uncertainty
measurement. Then, the GPS reference time uncertainty
measurement model is given by

yRTU(k) = tGPS(k) + wRTU(k), (16)

which can be directly converted into an MT clock bias
measurement model:

yBIAS(k) = yRTU(k)− tMTC(k) = δt(k) + wRTU(k), (17)

where the noise wRTU(k) models the GPS reference time
uncertainty which is assumed to be zero-mean Gaussian
distributed with standard deviation σRTU. Since we now have
related the GPS reference time uncertainty measurement to
the clock bias, the uncertainty of the MT clock is implicitly
modelled with the process model (cf. (5)) where the MT
clock bias evolves according to a second-order Gauss-Markov
process.

3.3.5. Combined. In the following, the PR, TA, RSS,
and MT clock bias-measured values are concatenated
into a single measurement vector, yielding y(k) =
[ y�PR(k), y�TA(k), y�RSS(k), yBIAS(k) ]�. Here, GPS reference
time uncertainty-measured values are treated as MT clock
bias-measured values according to (17). The corresponding
combined nonlinear measurement model for the hybrid
localization problem can be written as

y(k) = h(x(k)) + w(k), (18)

where

h(x(k)) = [h�PR(xMT(k), δt(k)), h�TA(xMT(k)),

h�RSS (xMT(k)), δt(k)]�,
(19)

w(k) = [w�
PR(k), w�

TA(k), w�
RSS(k),wRTU(k)

]�
. (20)

The random variable w(k) is Gaussian distributed with mean
vector μ = [ μ�PR(k),μ�TA(k), 0 ]�, where 0 denotes the zero
vector of size 1 × NBS + 1, and block diagonal covariance
matrix R = diag(RPR, RTA, RRSS, σRTU).

4. Nonlinear Filters for Hybrid Localization

4.1. Introduction. After having described the linear process
model and the nonlinear relationship between the MT
location and the PR-, TA-, and RSS-measured values, the
problem at hand is how one can efficiently sequentially
estimate the MT state from these measured values. The
optimal Bayesian solution given by ((2), (3), and (4))
provides a unified approach for nonlinear filtering problems.
However, due to the fact that the measurement model is
nonlinear (cf. (18)) the multidimensional integral involved
in (4) is intractable and, thus, one has to resort to suboptimal
algorithms [14, 16, 23–25]. In this paper, three different sub-
optimal algorithms, namely, the extended Kalman filter, the
Rao-Blackwellized unscented Kalman filter, and the modified

cubature Kalman filter, are proposed in order to solve the
underlying hybrid localization problem. These filters belong
to the class of approaches where all densities in ((2), (3), and
(4)) are assumed to be Gaussian. An appealing advantage of
this approximation is that the functional recursion in ((2),
(3), and (4)) reduces to an algebraic recursion, where only
means and covariances have to be calculated.

4.2. Extended Kalman Filter. In the EKF, the nonlinear
functions f (x(k − 1)) and h(x(k)) are approximated with
their first-order Taylor series expansion, so that an analytical
solution of (2) and (4) is possible. This approach, however,
leads to several shortcomings. On the one hand, the EKF may
have suboptimal performance or even will diverge, if we have
a high degree of nonlinearities in the measurement function.
On the other hand, the linearization of the measurement
model implies the evaluation of Jacobian matrices, which
in some cases may become difficult; for example, consider
the case when antenna gain models (cf. (13)) are available
only from measurements and, consequently, no closed form
expressions for these models exist. In these cases, it is much
easier to approximate the models using interpolation than
trying to evaluate the corresponding Jacobian matrices. The
well-known EKF equations, adopted to the proposed hybrid
localization method, are summarized in Algorithm 1 [12].

4.3. Rao-Blackwellized Unscented Kalman Filter. While the
EKF is based on a simple linear approximation of the
nonlinear measurement equation, the unscented Kalman
filter (UKF) approximates the multidimensional integrals
in (2) and (4) using the (scaled) unscented transforma-
tion [26, 27]. In the (scaled) unscented transformation,
the multidimensional integrals are approximated using a
deterministic sampling procedure. The sampling scheme
consists of deterministically choosing a symmetric set of
sigma points and weights. These sigma points are then prop-
agated through the true nonlinearity and the corresponding
mean and covariances are approximated using a weighted
sample mean and covariance. Compared to the EKF, the
advantage of the UKF is that no Jacobian matrices have
to be evaluated, since the sigma points are transformed
through the true nonlinearity. Furthermore, it can be shown
that the nonlinear transformed samples capture the mean
and covariance accurately to at least the second-order of
the Taylor series expansion whereas the EKF only achieves
first-order accuracy [27]. Since the noise in the process
model and measurement model is assumed to be additive
and Gaussian distributed, the dimension of the vector,
from which the sigma points are sampled, can be reduced.
This technique is also known as Rao-Blackwellization and
has the advantage that the quasi-Monte Carlo variance
and computational complexity can be reduced [28]. The
computational complexity can be further reduced by taking
into account that the posterior pdf p(x(k − 1) | Y(k − 1)) is
assumed Gaussian and the process model is linear Gaussian.
In this case, the multidimensional integral, given in (2), can
be evaluated in closed form, resulting in the well-known
Kalman filter update equations. The corresponding RBUKF,
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Initialization
x̂(0 | 0) = E{x(0)}
P(0 | 0) = E{(x(0)− x̂(0 | 0))(x(0)− x̂(0 | 0))�}
Time Update
Estimate the predicted state vector and error covariance matrix
x̂(k | k − 1) = Φx̂(k − 1 | k − 1),
P(k | k − 1) = ΦP(k − 1 | k − 1) Φ� + ΓQΓ�.
Measurement Update
Estimate the innovation covariance and cross-covariance matrix
Pyy(k | k − 1) = H(k)P(k | k − 1)HT(k) + R
Pxy(k | k − 1) = P(k | k − 1)HT(k).

Estimate the Kalman gain, updated state vector and error covariance matrix
K(k) = Pxy(k | k − 1)P−1

yy (k | k − 1),
x̂(k | k) = x̂(k | k − 1) + K(k)[y(k)− h(x̂(k | k − 1))− μ],
P(k | k) = P(k | k − 1)−K(k) Pyy(k | k − 1)K�(k),

where H(k) denotes the Jacobian matrix of h(x(k)) evaluated at x̂(k | k − 1).

Algorithm 1: Extended Kalman Filter.

adapted to the hybrid localization method, is summarized in
Algorithm 2 [13].

4.4. Modified Cubature Kalman Filter. In the recently pro-
posed CKF [14], the multidimensional integrals in (2) and
(4) are approximated in a different way. Since the conditional
pdfs p(x(k) | Y(k − 1)) and p(y(k) | Y(k − 1)) in (2)
and (4) are assumed Gaussian, solving approximately the
multidimensional integrals is equivalent to the evaluation
of the corresponding means and covariances of p(x(k) |
Y(k − 1)) and p(y(k) | Y(k − 1)). It can be shown that
the evaluation of the mean and covariance leads again
to multidimensional integrals, but whose integrands are
now all of the form nonlinear f unction × Gaussian density
[14]. These integrals are then solved using highly efficient
numerical integration methods known as cubature rules. As
a result, one obtains a set of cubature points and weights,
from which the corresponding mean and covariance can
be computed without evaluating Jacobian matrices. Due
to the fact that (2) can be evaluated in closed form,
the computational complexity of the CKF can be further
reduced. The modified version of the CKF that is used for the
hybrid localization problem is summarized in Algorithm 3.
Although the CKF and UKF seem to be very similar, the
authors in [14] claim that the cubature approach is more
accurate and more principled in mathematical terms than
the sigma-point approach used in the UKF. Here, it is worth
noting that the RBUKF reduces to the MCKF, when the
unknown parameters in the scaled unscented transformation
are chosen as α = 1,β = 0, and κ = 0 in Algorithm 2.

4.5. Posterior Cramér-Rao Lower Bound. After having intro-
duced the different filters for the hybrid localization problem,
their performance should be compared to a theoretical
bound. In the following, the posterior Cramér-Rao lower
bound for the hybrid localization problem is presented that
gives the best achievable performance for nonlinear filtering
[16, 29]. Let x̂(k | k) be an unbiased estimate of the state

vector x(k). Then, the covariance matrix of the estimation
error satisfies the inequality

E
{

(x̂(k | k)− x(k))(x̂(k | k)− x(k))�
}
≥ J−1(k), (21)

where E{·} is the expectation with respect to x(k), J(k)
denotes the filtering information matrix, and its inverse is
the PCRLB matrix. The matrix inequality A ≥ B should be
interpreted as the matrix A − B being positive semidefinite.
The aim is now to calculate J(k). In [29], an elegant method
is presented, where J(k) can be determined recursively.
This recursion, adapted to the hybrid localization problem
involving additive Gaussian noise (cf. (5) and (18)) can be
written as

J(k) = (ΓQΓ� + ΦJ−1(k − 1)Φ�)−1
+ E
{

H̃�(k)R−1H̃(k)
}

,

(22)

where the expectation is with respect to x(k) and H̃(k)
denotes the Jacobian matrix of the nonlinear measurement
function h(·) (cf. (19)) evaluated at the true value of the state
x(k). Since the initial distribution p(x(0)) is assumed to be
Gaussian, the recursions are initialized with the information
matrix J(0) = P−1(0 | 0) [16].

4.6. Computational Complexity. In this section, the com-
putational complexity of the EKF, RBUKF, and MCKF for
the hybrid localization method is investigated in terms of
floating-point operations (FLOPs). A FLOP is here defined as
one addition, subtraction, multiplication, or division of two
floating-point numbers. In Table 1, the computational com-
plexity of some common matrix operations is summarized.
Here, it is worth noting that the matrix square root, which
is needed to evaluate the set of cubature and sigma points, is
computed using Cholesky decomposition, whose complexity
grows cubically.

In the EKF as well as in the RBUKF and MCKF, there
are certain steps that cannot be measured in FLOPs. In the
EKF, for example, one has to evaluate at every time step k
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Table 1: Computational complexity of some common matrix
operations [30].

Operation Size Mult. Add. Other

A + A A ∈ Rn×m — nm —

A · B A ∈ Rn×m, B ∈ Rm×l lmn (m− 1)ln —

C−1 C ∈ Rn×n n3 — —√
C C ∈ Rn×n — — n3/3 + 2n2

the Jacobian matrix H(k) and the nonlinear function h(·)
(cf. Algorithm 1). In the RBUKF and MCKF, one has to
propagate at every time step 2nx + 1 sigma points and 2nx
cubature points through the nonlinear function h(·) (cf.
Algorithms 2 and 3). In the following, the cost of evaluating a
certain nonlinear function and Jacobian matrix is neglected.
Furthermore, the computation of the weights in the RBUKF,
and MCKF as well as the initialization of all three filters can
be neglected, since these steps are done only once.

In Table 2, the computational complexity of the different
quantities that have to be evaluated in the EKF, RBUKF,
and MCKF is presented. Summing up the computational
complexity of the different quantities results in the total
FLOP complexity of the EKF, RBUKF, and MCKF for one
time step which is given by

CEKF

(
nx,ny

)
= 8n3

x + n3
y + 6n2

xny + 6n2
ynx − 13n2

x

− 2nxny + 9nx + 2ny ,

CRBUKF

(
nx,ny

)
= 37

3
n3
x + n3

y + 6n2
xny + 8n2

ynx − 9n2
x

+ 7nxny + 4n2
y + 10nx + 5ny ,

CMCKF

(
nx,ny

)
= 37

3
n3
x + n3

y + 6n2
xny + 8n2

ynx − 11n2
x

+ 4nxny + 3n2
y + 9nx + 2ny ,

(23)

where nx and ny denote the dimension of the state and
measurement vector, respectively.

5. Simulation Results

5.1. Scenario I. In the first simulation scenario (Scenario I),
it is assumed that a car is equipped with an MT that is capable
of providing PR-measured values from GPS and TA, RSS, and
GPS reference time uncertainty-measured values from GSM.
The car moves with a constant speed of 45 km/h in a dense
urban scenario of size 3 km × 3 km as it is shown in Figure 1.
The GSM network is composed of NBS = 7 BSs, where each
BS is equipped with a directional antenna. The BS locations
as well as the BS antenna parameters are a priori known.
The satellite locations are taken from the real GPS satellite
constellation taking into account realistic satellite elevation
masks and are assumed to be known. The parameters used in
the simulations are summarized in Table 3 and are assumed
to be equal for all BSs and all satellites for the sake of

simplicity. The following combinations of measured values
are investigated:

(i) GSM method: one TA-measured value from the
serving BS and a total of seven RSS-measured values
from serving and neighbouring BS antennas,

(ii) Hybrid 1 method: measured values of GSM method
and, in addition, one PR-measured value from one
satellite,

(iii) Hybrid 2 method: measured values of GSM method
and, in addition, two PR-measured values from two
different satellites.

Here, it is worth noting that the case when more than
two PR-measured values are available has been investigated
in [12]. For simplicity, the serving BS is assumed to be
the BS located at [750 m,1000 m]�. Here, it is worth noting
that the serving BS has been placed very close to the MT
trajectory in order to better illustrate how the nonlinearity,
inherent in the TA- and RSS-measured values, influences
the performance of the different filters. The PR-, TA-, and
RSS-measured values are updated every Ts = 0.48 s, which
corresponds to the reporting period of measured values in
GSM networks. The performance of the proposed algorithms
for the hybrid localization method is evaluated in terms
of the root mean square error (RMSE) determined from
NMC = 500 Monte Carlo trials [16]. For each Monte Carlo
trial, the MT trajectory is generated using (5) with process
noise parameters as given in Table 3 and initial state vector
x(0) = [−200 m, 8.84 m/s,−200 m, 8.84 m/s, 0 m, 0 m]�. For
the simulations, the initial error covariance matrix of the
three filters is set to P(0 | 0) = diag((200 m)2, (10 m/s)2,
(200 m)2, (10 m/s)2, (300 km)2/3, (10 m)2/3), and the initial
state vector x̂(0 | 0) is obtained from random initialization
[20]. The covariance matrix Q for the three filters, which is a
design parameter, is chosen to be Q = diag(100·Qcv, 10·Qδt),
in order to account for possible MT maneuvers and receiver
clock uncertainties. The measurement covariance matrix R
for the simulations and the filters is assumed to be the same.

5.2. Scenario II. The second simulation scenario (Scenario
II) investigates the tracking performance of the three dif-
ferent filters for a more general and realistic scenario. It is
assumed that a car is equipped with an MT that is capable of
providing PR-measured values from GPS and TA, RSS from
GSM. Here, it is worth noting that the results for taking into
account the GPS reference time uncertainty measurements
are very similar to those of Scenario I and, thus, are not
further elaborated. The car moves clockwise on a trapezoidal
route, divided into 4 sections, in an urban scenario of size
5 km × 5 km as it is shown in Figure 2. In each section,
the car moves with a different velocity in order to reflect
a more realistic car movement as depicted in Figure 3. The
GSM network is composed of NBS = 12 BSs, where each
BS is equipped with three directional antennas. The BS and
satellite locations as well as the BS antenna parameters are
assumed a priori known. The combination of measurements
investigated and the parameters used in the simulations is the
same as in Scenario I. The serving BS is assumed to be the
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Initialization
x̂(0 | 0) = E{x(0)}
P(0 | 0) = E{(x(0)− x̂(0 | 0))(x(0)− x̂(0 | 0))�}
Time Update
Estimate the predicted state vector and error covariance matrix

x̂(k | k − 1) = Φ x̂(k − 1 | k − 1)
P(k | k − 1) = Φ P(k − 1 | k − 1) Φ� + Γ Q Γ�

Measurement Update
Evaluate the sigma points (i = 1, . . . ,nx)

X0(k | k − 1) = x̂(k | k − 1),
Xi(k | k − 1) = x̂(k | k − 1) + (

√
(nx + λ)P(k | k − 1))i,

Xnx+i(k | k − 1) = x̂(k | k − 1)− (
√

(nx + λ)P(k | k − 1))i.
Evaluate the weights (i = 1, . . . , 2nx)

W (m)
0 = λ

nx + λ
, W (c)

0 = λ

nx + λ
+ (1− α2 + β),

W (m)
i =W (c)

i = 1
2(nx + λ)

.

Evaluate the propagated sigma points (i = 0, . . . , 2nx)
Yi(k | k − 1) = h(Xi(k | k − 1)).

Estimate the predicted measurement
ŷ(k | k − 1) =∑2nx

i=0 W
(m)
i Yi(k | k − 1).

Estimate the innovation covariance and cross-covariance matrix (i = 0, . . . , 2nx)
X̃i(k | k − 1) =Xi(k | k − 1)− x̂(k | k − 1),
Ỹi(k | k − 1) = Yi(k | k − 1)− ŷ(k | k − 1),

Pyy(k | k − 1) =∑2nx
i=0 W (c)

i Ỹi(k | k − 1) Ỹ�
i (k | k − 1) + R,

Pxy(k | k − 1) =∑2nx
i=0 W (c)

i X̃i(k | k − 1) Ỹ�
i (k | k − 1).

Estimate the Kalman gain, updated state vector and error covariance matrix
K(k) = Pxy(k | k − 1) P−1

yy (k | k − 1),
x̂(k | k) = x̂(k | k − 1) + K(k)[y(k)− ŷ(k | k − 1)− μ],
P(k | k) = P(k | k − 1)−K(k)Pyy(k | k − 1)K�(k),
where nx is the dimension of state vector, λ = α2(nx + κ)− nx is a scaling
parameter, α determines the spread of the sigma points, κ is a secondary scaling
parameter and β is a weight parameter. (A)i denotes the ith column of the
matrix A

Algorithm 2: Rao-Blackwellized Unscented Kalman Filter.

Table 2: Computational complexity of the EKF, RBUKF, and MCKF. The dimension of the state vector is given by nx and the dimension of
the measurement vector is given by ny . X(k | k − 1) denotes the matrix composed of sigma/cubature point vectors.

Quantity
Complexity

EKF RBUKF MCKF

x̂(k | k − 1) 2n2
x − nx 2n2

x − nx 2n2
x − nx

P(k | k − 1) 8n3
x − 15n2

x + 10nx 8n3
x − 15n2

x + 10nx 8n3
x − 15n2

x + 10nx
X(k | k − 1) — 13n3

x/3 + 2n2
x 13n3

x/3 + 2n2
x

ŷ(k | k − 1) — 2nxny + 2ny 2nxny

Pyy(k | k − 1) 2n2
ynx + 2n2

xny − nxny 4n2
ynx + 2nxny + 4n2

y + ny 4n2
ynx + 3n2

y

Pxy(k | k − 1) 2n2
xny − nxny 4n2

xny + 3nxny + 2n2
x + nx 4n2

xny + 2nxny

K(k) n3
y + 2n2

ynx − nxny n3
y + 2n2

ynx − nxny n3
y + 2n2

ynx − nxny

x̂(k | k) 2nxny + 2ny 2nxny + 2ny 2nxny + 2ny

P(k | k) 2n2
ynx + 2n2

xny − nxny 2n2
ynx + 2n2

xny − nxny 2n2
ynx + 2n2

xny − nxny

BS antenna providing the largest RSS-measured value. The
performance of the proposed algorithms is evaluated from
NMC = 500 Monte Carlo trials. For each Monte Carlo trial,
the MT trajectory is generated based on Figure 3 and initial
state vector x(0) = [500 m, 8 m/s, 1500 m, 0 m/s, 0 m, 0 m]�.
For the simulations, the initial state vector x̂(0 | 0)

is obtained from random initialization and the initial
error covariance matrix of the three filters is set to
P(0 | 0) = diag((200 m)2, (10 m/s)2, (200 m)2, (10 m/s)2,
(300 km)2/3, (10 m)2/3). The covariance matrix Q and the
measurement covariance matrix R for the three filters are
chosen as in Scenario I.
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Initialization
x̂(0 | 0) = E{x(0)}
P(0 | 0) = E{(x(0)− x̂(0 | 0))(x(0)− x̂(0 | 0))�}
Time Update
Estimate the predicted state vector and error covariance matrix
x̂(k | k − 1) = Φ x̂(k − 1 | k − 1),
P(k | k − 1) = Φ P(k − 1 | k − 1)Φ� + Γ Q Γ�.
Measurement Update
Evaluate the cubature points (i = 1, . . . , 2nx)

P(k | k − 1) = S(k | k − 1)S�(k | k − 1),
Ξ = √nx · [ Inx ,−Inx ],

Xi(k | k − 1) = x̂(k | k − 1) + S(k | k − 1) ξ i.
Evaluate the weights (i = 1, . . . , 2nx)
W (m)

i =W (c)
i = 1/(2nx).

Evaluate the propagated cubature points (i = 1, . . . , 2nx)
Yi(k | k − 1) = h(Xi(k | k − 1)).

Estimate the predicted measurement
ŷ(k | k − 1)

∑2nx
i=1 W

(m)
i Yi(k | k − 1)

Estimate the innovation covariance and cross-covariance matrix
Pyy(k | k − 1) =∑2nx

i=1 W
(c)
i Yi(k | k − 1)Y�

i (k | k − 1)− ŷ(k | k − 1)ŷ�(k | k − 1) + R,
Pxy(k | k − 1) =∑2nx

i=1 W
(c)
i Xi(k | k − 1) Y�

i (k | k − 1)− x̂(k | k − 1)ŷ�(k | k − 1)
Estimate the Kalman gain, updated state vector and error covariance matrix
K(k) = Pxy(k | k − 1) P−1

yy (k | k − 1),
x̂(k | k) = x̂(k | k − 1) + K(k)[y(k)− ŷ(k | k − 1)− μ],
P(k | k) = P(k | k − 1)−K(k) Pyy(k | k − 1) K�(k).
where ξ i denotes the ith column vector of the matrix Ξ.

Algorithm 3: Modified Cubature Kalman Filter.
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Figure 1: Simulation Scenario I with NBS = 7 BSs (•). The arrows
(→ ) indicate the BS antenna boresight direction.

5.3. Simulation Results for Scenario I without GPS Reference
Time Uncertainty Measurements. In this section, the simula-
tion results for the case when there are no GPS reference time
uncertainty measurements available from the GSM network
are presented. In Figure 4, the simulation results for the MT
location RMSE in dependence of the time index k for the
GSM method are shown. From Figure 4, it can be seen that

Table 3: Simulation parameters.

Parameter Value Parameter Value

A in dB 132.8 σx in m/s2 10−2

B in dB 3.8 σy in m/s2 10−2

Pt in dBm 50 c0 in m/s 3 · 108

Am in dB 20 Ts in s 0.48

ϕ3dB in ◦ 60 h0 9.4 · 10−20

σRSS in dB 8 h−1 1.8 · 10−19

σTA in m 300 h−2 3.8 · 10−21

μTA in m 0 α 10−3

σPR in m 15 β 2

μPR in m 0 κ 0

during the first 200 time steps, the performance of the three
filters is approximately the same. However, when the MT is
located close to the serving BS, there is a “high degree” of
nonlinearity in the TA- and RSS-measured values. In this
region, it can be clearly seen that the MCKF outperforms the
EKF and RBUKF in terms of RMSE.

In Figures 5 and 6, the MT location RMSE for the Hybrid
1 and Hybrid 2 method for the different filters is shown.
Compared to the GSM method, the MT location RMSE can
only be marginally improved by the Hybrid 1 method, which
additionally takes into account one PR-measured value from
GPS. This can be explained by the fact that it is not possible
to accurately estimate the unknown MT clock bias with the
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Figure 2: Simulation Scenario II with NBS = 12 BSs (•). Each BS is
equipped with three directional antennas. The arrows (→ ) indicate
the BS antenna boresight direction. The MT starts at xMT(0) =
[500, 1500]� and moves clockwise on the trapezoidal route.
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Figure 3: MT speed versus time index k for Scenario II.

available TA- and RSS-measured values, which is depicted
in Figure 7. Furthermore, when looking at the PCRLBs of
the GSM and Hybrid 1 method for the MT location, one
can conclude that from a theoretical point of view no RMSE
improvements are possible, since the PCRLBs practically
coincide with each other.

For the Hybrid 2 method (cf. Figure 6) the improvements
are significant. Due to the fact that two PR-measured values
are available, the filters can much more accurately estimate
the MT clock bias (cf. Figure 7) which has a direct impact on
the achievable MT location RMSE. However, from Figure 6
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Figure 4: Scenario I: MT location RMSE of the GSM method for
the different filters and the corresponding PCRLB.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Time index k

EKF
RBUKF PCRLB

R
M

SE
of

M
T

lo
ca

ti
on

(m
)

MCKF

Figure 5: Scenario I: MT location RMSE of the Hybrid 1 method
for the different filters and the corresponding PCRLB.

it can be also seen that the performance of the three filters
is approximately the same. This can be explained by the
fact that the two PR-measured values have a larger influence
on the MT location estimate of the filters, because these
measured values are more accurate than the TA- and RSS-
measured values. Since the distances between the MT and
the satellites are very large, and the nonlinearity of the
PR-measured values is thus “mild”, more weight is put on
the PR-measured values when the MT location estimates
are evaluated in the filters. As a result, the influence of
the nonlinearities of the TA- and RSS-measured values is
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Figure 6: Scenario I: MT location RMSE of the Hybrid 2 method
for the different filters and the corresponding PCRLB.

weakened and, thus, for the Hybrid 2 method, the three filters
have approximately the same performance. In Table 4, the
performance of the EKF is compared to the performance of
the RBUKF and MCKF in terms of the RMSE averaged over
the whole time period. From Table 4 it can be concluded that
for this specific scenario, the MCKF slightly outperforms the
RBUKF and EKF in terms of average RMSE.

5.4. Simulation Results for Scenario I with GPS Reference
Time Uncertainty Measurements. In this section, simulation
results for the case when there are GPS reference time
uncertainty measurements available from the GSM network
are presented. Here, the important question is investigated,
what accuracy of the GPS reference time measurements is
needed, in order to improve the performance of the MT
location RMSE.

In Figure 8, the average MT location RMSE in depen-
dence of the GPS reference time uncertainty standard
deviation σRTU for the different filters are shown. From
Figure 8, it can be seen that for the Hybrid 2 method no
significant improvements are possible and the performance
of the different filters is approximately the same. That is,
when two PR-measured values are additionally available,
then, the additional evaluation of the GPS reference time
information from the GSM network does not help to
improve the MT location RMSE of the Hybrid 2 method.
However, the improvements for the Hybrid 1 method can
be significant, when GPS reference time information is
taken into account. For the investigated scenario, the major
performance improvements for the Hybrid 1 method can be
obtained for values of σRTU that lie in the range between 10−7

and 10−6 seconds. For GPS reference time uncertainty values
outside this region, no significant improvements in terms
of average MT location RMSE can be achieved. However,
for the case when σRTU < 10−7, then, the performance of
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Figure 7: Scenario I: MT clock bias RMSE of the Hybrid 1 and
Hybrid 2 method for the different filters and the corresponding
PCRLB.
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Figure 8: Scenario I: Average MT location RMSE of the Hybrid 1
and Hybrid 2 method for the different filters and the corresponding
average PCRLB.

the Hybrid 1 method reaches quickly a lower bound which
is approximately equal to the performance of the Hybrid 2
method.

When the different filters are compared with each other,
one can clearly see that for large values of σRTU, the MCKF
outperforms the RBUKF and EKF. However, when the GPS
reference time uncertainty decreases, then, the performance
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Table 4: Average RMSE performance of EKF, RBUKF, and MCKF for Scenario I.

Algorithm Method Location in m Velocity in m/s Bias in m Drift in m/s

GSM 73.9 3.6 — —

EKF [12] Hybrid 1 73.0 3.4 34.2 1.9

Hybrid 2 44.3 2.7 4.6 1.2

GSM 73.8 3.6 — —

RBUKF [13] Hybrid 1 72.1 3.5 33.7 1.9

Hybrid 2 44.2 2.7 4.6 1.2

GSM 71.5 3.6 — —

MCKF Hybrid 1 70.8 3.4 33.5 1.9

Hybrid 2 44.0 2.7 4.6 1.2

of the three filters is approximately the same. In Figures 9
and 10, the average RMSEs of the MT clock bias and drift in
dependence of the GPS reference time uncertainty standard
deviation σRTU for the different filters are shown. For the
Hybrid 1 method, the average bias and drift RMSEs can be
gradually decreased for values of σRTU smaller than 10−6. For
the Hybrid 2 method, this is true for values of σRTU smaller
than 10−7. From the achieved results one can conclude that
the MT location RMSE can be decreased until the MT clock
bias RMSE falls below a certain threshold. Beyond this point,
the MT location RMSE reaches a lower bound, even though
the RMSEs of the MT clock bias and drift states can be
further decreased.

In Table 5, the computational complexity in terms of
FLOPs for the different filters and methods is presented.
From Table 5, it can be seen that for all investigated methods,
the EKF has the lowest computational complexity, followed
by the MCKF and RBUKF. The complexity reduction of the
EKF compared to the RBUKF is about 30%. Using an MCKF
rather than an RBUKF results in a complexity reduction of
only 4%.

5.5. Simulation Results for Scenario II. In this section, the
simulation results for Scenario II are presented. In Figures 11,
12, and 13, the MT location RMSE of the GSM, Hybrid 1, and
Hybrid 2 method for the three different filters is shown. From
these three figures it can be clearly seen that the performance
of the three filters is approximately the same. Again, the GSM
method provides the worst results in terms of MT location
RMSE. The Hybrid 1 method only marginally improves the
MT location RMSE at the cost of an increased complexity
(cf. Table 5) while the best performance can be achieved by
the Hybrid 2 method.

The equal performance of the three filters for the
different methods can be explained by the fact that the
distances between the BSs and the MT are large and, thus,
the impact of the nonlinearities, inherent in the TA and
RSS measured values, is small. Compared to the simulation
results of Scenario I, there are now several distinct peaks
in the MT location RMSE. These peaks that are more
pronounced for the GSM and Hybrid 1 method (cf. Figures
11 and 12) result from the geometric constellation of the
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Figure 9: Scenario I: Average MT clock bias RMSE of the Hybrid 1
and Hybrid 2 method for the different filters and the corresponding
average PCRLB.

Table 5: Computational complexity in FLOPs of EKF, RBUKF,
and MCKF for one time step. Numbers in parentheses denote
the FLOP complexity taking into account GPS reference time
information.

Algorithm Method Complexity in FLOPs

GSM 3108

EKF Hybrid 1 6813(7974)

Hybrid 2 7974(9267)

GSM 4534

RBUKF Hybrid 1 9708(11230)

Hybrid 2 11230(12916)

GSM 4314

MCKF Hybrid 1 9360(10842)

Hybrid 2 10842(12486)
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Figure 10: Scenario I: Average MT clock drift RMSE of the Hybrid 1
and Hybrid 2 method for the different filters and the corresponding
average PCRLB.
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Figure 11: Scenario II: MT location RMSE of the GSM method for
the different filters.

BSs and satellites relative to the MT. However, for the
Hybrid 2 method (cf. Figure 13) the magnitude of the peaks
becomes smaller, because additional information from two
PR-measured values is processed and more weight is put on
the geometric constellation of the satellites relative to the MT.
The average RMSE performance of the EKF, RBUKF, and
MCKF is summarized in Table 6.
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Figure 12: Scenario II: MT location RMSE of the Hybrid 1 method
for the different filters.
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Figure 13: Scenario II: MT location RMSE of the Hybrid 2 method
for the different filters.

6. Experimental Results

In this section, the performance of the proposed hybrid
localization method is verified for the different filters with
experimental data available from a field trial. The field trial
was conducted in an operating GSM network in the city
center of a German city, with a test area of approximately
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3 km × 3 km. During the field trial, a car equipped with
a standard cellular phone is collected every Ts = 480 ms
RXLEV- (quantized RSS) and TA-measured values from
GSM. Here, it is worth noting that in GSM the RXLEV-
measured values are available from the serving BS and
between one and six strongest RXLEVs from the neighboring
BS whereas the TA-measured value is only available from
the serving BS. In addition, it should be noted that GPS
reference time uncertainty measurements have not been
collected during the field trial, so that this issue will not
be further elaborated in this section. The GSM network is
composed of NBS = 13 fixed BSs with known locations.
The BSs are equipped with either directional antennas or
a single omnidirectional antenna. The antenna boresight
directions, equivalent isotropic radiated powers, and half-
power beamwidths are a priori known, and the unknown
antenna gain patterns are approximated with (13). The
remaining parameters of the TA and RSS measurement
models (cf. (10) and (14)) are estimated from the available
field trial data. Here, it is worth noting that in order to
not overfit the different filters for this single trajectory the
standard deviations of the TA- and RSS-measured values
were chosen to be σ (n)

RSS ≥ 3 dB and σ (n)
TA ≥ 1μs. For the

path loss model (cf. (12)) the parameters are in the range of
110 dB ≤ A(n) ≤ 150 dB and 2 dB ≤ B(n) ≤ 5 dB.

For the GPS network, PR-measured values collected
from a field trial are not available, so that synthetic PR
measurement data have been generated with the parameters
given in Table 3. The constellation of the GPS satellites
during the field trial is reconstructed by taking true satellite
locations from the real satellite constellation, where the
satellite locations are assumed a priori known. For simplicity,
it is assumed that PR-measured values are available every
Ts = 480 ms. The satellite’s visibility status during the field
trial cannot be reproduced subsequently, so that it is assumed
that either NSAT = 1 or NSAT = 2 satellites are visible to
the MT. However, this assumption is only made in order
to demonstrate the improvements that can be achieved by
the proposed hybrid localization algorithm. In reality, the
number of visible satellites changes with time, so that there
will be situations where GPS (i.e., NSAT ≥ 3) is available.

In Figure 14, the true MT trajectory together with the
trajectories estimated by the EKF, RBUKF, and MCKF for
the GSM method of the field trial is shown. Here, the true
MT location was obtained from detailed maps and from GPS,
where GPS was available. From Figure 14 it can be seen that
all three filters can moderately track the MT. In Figure 15, the
corresponding MT location error in dependence of the time
index k is presented. Here, the MT location error denotes
the Euclidean distance between the true and estimated MT
location. From Figure 15 it can be seen that the RBUKF
marginally outperforms the MCKF and EKF. This rather
surprising result can be explained as follows. The MCKF
has been derived in a setting where the measurement noise
has to be Gaussian distributed [14]. The available field trial
measurements, however, are not Gaussian distributed, so
that this assumption is explicitly violated. The RBUKF has
been derived in a more general setting where the involved
densities have to be symmetric, but not necessarily Gaussian.
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Figure 14: Field trial scenario with true MT trajectory, approximate
BS locations (•), and estimated trajectories of the GSM method for
the different filters.
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Figure 15: MT location error of the GSM method for the different
filters.

As a result, the performance of the RBUKF is slightly better
than the performance of the MCKF. The peak values in
the MT location error can be explained by the geometric
constellation of the BSs relative to the MT location and the
change of the MT velocity during the field trial which results
in a mismatch to the CV model that is assumed in the filter’s
process model.

In Figures 16 and 17, the estimated trajectories and
the MT location error of the Hybrid 1 method for the
different filters is presented. Again, all three filters can track
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Table 6: Average RMSE performance of EKF, RBUKF, and MCKF for Scenario II.

Algorithm Method Location in m Velocity in m/s Bias in m Drift in m/s

GSM 119.1 4.1 — —

EKF [12] Hybrid 1 118.4 3.9 57.1 2.0

Hybrid 2 69.9 2.8 4.5 1.1

GSM 118.8 4.1 — —

RBUKF [13] Hybrid 1 118.2 3.9 56.8 2.0

Hybrid 2 70.0 2.8 4.5 1.1

GSM 118.5 4.1 — —

MCKF Hybrid 1 118.1 3.9 56.7 2.0

Hybrid 2 70.0 2.8 4.5 1.1
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Figure 16: Field trial scenario with true MT trajectory, approximate
BS locations (•), and estimated trajectories of the Hybrid 1 method
for the different filters.

the MT and the performance of the MT location error is
approximately the same. However, compared to the GSM
method, the MT location error of the Hybrid 1 method
can be slightly improved. In Figures 18 and 19, the filter’s
estimated trajectories and MT location error of the Hybrid
2 method are shown. It can be clearly seen that, compared
to the GSM and Hybrid 1 method, the performance can be
significantly improved using the Hybrid 2 method. For the
Hybrid 2 method, the MCKF yields the best performance,
followed by the RBUKF and EKF.

In Table 7, the average MT location error of the GSM,
Hybrid 1, and Hybrid 2 method for the EKF, RBUKF, and
MCKF is summarized. It can be seen that for all three
filters the GSM method provides the worst performance. The
MT location accuracy can be marginally improved with the
Hybrid 1 method and significantly improved with the Hybrid
2 method.
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Figure 17: MT location error of the Hybrid 1 method for the
different filters.

Table 7: Average MT location error in meters of EKF, RBUKF, and
MCKF for field trial scenario.

Algorithm
Method

GSM Hybrid 1 Hybrid 2

EKF [12] 59.2 55.5 43.8

RBUKF 55.1 52.3 42.8

MCKF 56.5 53.8 41.7

7. Conclusion

In this paper, the performance and computational complex-
ity of three different MT tracking algorithms, namely, the
EKF, RBUKF, and MCKF are investigated that combine TA-
and RSS-measured values from GSM and one or two PR
measurements from GPS. It has been shown by simulations
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Figure 18: Field trial scenario with true MT trajectory, approximate
BS locations (•), and estimated trajectories of the Hybrid 2 method
for the different filters.
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Figure 19: MT location error of the Hybrid 2 method for the
different filters.

and experiments that, compared to existing GSM-based MT
tracking solutions, the location accuracy can be significantly
improved by using hybrid GPS/GSM-based MT tracking
algorithms, where all three filters have approximately the
same performance, and the EKF offers the best trade-off
between performance and computational complexity. When
GPS reference time is additionally available from the GSM
network, then, the hybrid localization method using one
PR measurement can be significantly improved. It has been
shown by simulations that in this case, it is sufficient to have

GPS reference time information available, whose uncertainty
lies in the range between 10−6 to 10−7 seconds, in order to
improve the hybrid localization method.

Although this paper is focused on a specific scenario
with measured values from GPS and GSM, the general
equations and methodology presented in this paper can be
easily adapted to other network configurations and measured
values from other systems, for example, universal mobile
telecommunications system (UMTS) or wireless local area
networks. By additionally considering these measured values
in the hybrid localization solution, it is expected that the
performance will be further improved.
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