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Abstract –Game theory offers a set of effective tools to be applied in autonomous and distributed
self-organizing networks. A typical use case is load balancing which aims at increasing the overall network
capacity in case of unequal traffic distribution. The 3GPP Long Term Evolution (LTE) standard provides the
means that enables the handover of users from highly loaded cells to the lower loaded neighbors. The
method is based on exchanging load information between neighboring cells. However, the computation of
the amount of load that a cell should either offload or accept is running autonomously in each cell and ismost
likely not generally specified, but rather vendor specific. In this case, a network-wide algorithm for load
balancing may not be possible to use if eNodeBs from distinct vendors are deployed. In this game-theoretic
analysis for load balancing, we consider each cell as a rational player that decides, in the worst-case, on the
amount of load that maximizes its payoff in an uncooperative way. The simulation results for LTE network
show that the resulting Nash equilibrium is able to achieve most of the gain expected from a strictly
cooperative load balancing scheme. Though each cell acts independently, the Nash equilibrium almost
provides the sameperformanceof a network-wide algorithm for load balancingwhichwould ease the players
to decide on strategies that aremore collaborative. The capacity gain of theNash equilibrium is verified for the
homogeneous network layout, different scenarios and parameter configurations. Moreover, to take real
network effects, such as different cell sizes and number of neighbor cells into consideration, the Nash
equilibrium is also tested in the heterogeneous network layout.

Index Terms – Game theory, Load balancing, Self optimizing network, Distributed systems.

1 Introduction

Future mobile systems will comprise self optimizing algo-
rithms to reduce the operational expenditure while maintain-
ing a high quality service. Due to the dynamic adaptation to
the network behavior, the performance is expected to
improve leading to an increase in the usersÌ satisfaction
level. Among the self optimizing network use cases defined in
[1], load balancing copeswith unequal traffic load distribution
in the network. Though there is no uniqueway to approach the
load balancing problem, adjusting the mobility parameters
appears to be a practical solution as it can be carried out in a
distributed manner on peer-to-peer level from the cell
perspective.
In many circumstances, a cell may have a large number of

connectedUser Equipments (UEs) and is not able to serve all
of themdue to its limited number of PhysicalResourceBlocks
(PRBs). By modifying the cell-pair specific handover offsets,
users from a highly loaded cell can be handed over to the
lower loaded neighbors. As a result, the number of unserved
users in the overloaded cell decreases as the other under-
loaded neighbors are accommodating, if possible, the excess
traffic load.
The 3GPP LTE Release 9 provides the means to exchange

the load information among the cells via the X2 interface, but
does not specify the algorithm that computes the amount of
load that an overloaded cell should offload and an under-
loaded cell should accept as it is implementation specific of
the eNodeB and, therefore, vendor specific [1]. In [2], it is
shown that the load balancing algorithm achieves a more
efficient capacity usage in the network under the assumption
that an overloaded cell and its underloaded neighbors are
fully aware how the exchanged load values are determined
which might not be the case if eNodeBs are from various
vendors. To study the impact of the uncertainty in the values of
the load to offload or to accept on the gains achieved by load
balancing, a game-theoretic approach is followed where each
cell is considered a rational player that decides, in the worst-
case, autonomously on the load that maximizes its own utility
in a non-cooperative manner. The game theoretic approach
has been investigated in [3] for a homogeneous network

layout. In this paper, the proposed approach is further tested
in a heterogeneous network and the impact of different
parameter configurations on the performance is analyzed for
both network layouts.
The paper is organized as follows. The system model is

described in section 2 and the algorithm used by an over-
loaded cell to generate the list of candidate users to be handed
over to the underloaded neighbor cells is presented in section
3. The model of the load balancing game and the strategies of
the players leading to the Nash equilibrium are defined in
section 4. The overall performance of the network in LTE
downlink for the Nash equilibrium, in addition to the
performance of the network-wide algorithm, are evaluated
in section 5 for heterogeneous and homogeneous network
layouts and the work is concluded in section 6.

2 System model

In this section, we define the load metrics that are used in the
sequel. In the network, each user u has a constant data rate
denoted by Du and a data rate per PRB given by RðSINRuÞ
which depends on the Signal to Interference and Noise Ratio
(SINR) of user u: The SINRs of the UEs are computed
without taking fading into consideration. The number of
required resources by user u can be written as

Qu ¼
Du

RðSINRuÞ . (1)

We assume that all UEs have the same data rate requirement
and each cell in the network has the same total number of
PRBs per frame denoted by Ntot. We define the traffic load of
user u as

ku ¼
Du

RðSINRuÞ ¡ Ntot
. (2)

The load ku of user u is interpreted as the percentage of
occupied PRBs per frame needed to make him satisfied [4],
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i. e. , meeting his data rate requirementDu: Consequently, the
load of a cell c havingUc � 0 connected users is computed as

1c ¼
P

u j XðuÞ¼c
ku � 0 (3)

where XðuÞ ¼ c is the connection function that assigns user u
to a single cell c: Assuming that the admission control of the
cell arbitrarily selects the UEs to be served, irrespective of
their radio conditions, the number of unsatisfied users in a
network consisting ofM cells can be expressed by

Z ¼ PM
c¼1

max 0; Uc ¡ 1¢ 1
1c

� �� �
. (4)

For instance, a cell c with a load 1c ¼ 2 can only satisfy half of
its users, whereas it can satisfy all of them if 1c � 1.

3 The load balancing algorithm

Having stated the necessary metrics, the load balancing
algorithm described in [2] is reformulated to understand the
rules of the game defined in section 4. Let us denote the load
of the overloaded cell, havingUo connected users, by 1o > 1
and the load of each of its N underloaded neighbor cells,
having Ui users, by 1i � 1 where i ¼ 1; . . . ;N:
The overloaded cell gets from its connected UEs which are

close to the cell borders periodic or event-driven measure-
ment reports containing Reference Signal Received Power
(RSRP) levels not only for the serving cell, but also for the
neighboring cells having strong signals. The link imbalance
value, defined as the difference in the RSRP levels of the
overloaded cell and a neighbor underloaded cell i; is denoted
by

DRSRPu; i ¼ RSRPu; o ¢ RSRPu; i (5)

where RSRPu; o and RSRPu; i are the average reference signal
measurements reported by user u for the overloaded cell o
and the underloaded cell i; respectively. Assuming that the
RSRP measurements are reliable, the overloaded cell can
estimate the load that the user would produce if handed over
to an underloaded cell. The load of user u having a load ku in
the overloaded cell may increase/decrease if the signal to the
connected cell is weaker/stronger. As a rough approximation,
we assume, that in case of a positive link imbalance, a
handover of user u to cell i decreases the SINRu by DRSRPu; i

dB, which in turn increases the load of user u: The load that
user uwould produce if handed over to an underloaded cell is
denoted by ~ku: Thus, the best candidates to be handed over
from the overloaded cell to the neighbor underloaded cells are
the UEs that have small link imbalances as they would not
require a dramatic increase in the number of PRBs if handed
over. We denote by W the set of possible candidate UEs that
are connected to the overloaded cell and have link imbalance
values smaller than a certain threshold DRSRPthr.
Prior to generating the listHof planned handover candidate

UEs, the overloaded cell receives from each underloaded
neighbor cell i the amount of available resources yi, expressed
as a percentage of Ntot, that it is willing to accommodate. Let
us denote the number of handed over users from the
overloaded cell to the underloaded cell i by xi � 0. The
new load of the accommodating cell i; having Ui þ xi users
after load balancing, is written as

~1i ¼ 1i þ
Pxi
j¼1

~kj. (6)

In contrast to the underloaded cells, the overloaded cell
executes the handover of xo ¼

PN
i¼1 xi � 0 users to all the

neighboring cells. The overloaded cell can decide on the
amount of load c ¼ Pxo

j¼1 kj � 0 to offload resulting in a new
target load denoted by

~1o ¼ 1o ¢ c. (7)

The selection process of the candidate users for handover,
which is followed by the overloaded cell, is depicted in Fig. 1.
First, the overloaded cell gathers all the availableRSRPs from
its connected UEs, the spare capacity yi from each under-
loadedneighbor cell i; the setW of possible candidateUEs and
initializes the list H of planned handover candidates to be
empty. Secondly, the overloaded cell searches for the user u in
the setW that has the smallest link imbalance value and checks
whether the target underloaded cell i can accommodate its
estimated load ~ku. If possible, the user u and its target cell i are
added to the listH. To avoid the immediate back handover of
the candidate user u to the overloaded cell, the handover
offset between the overloaded cell and the underloaded cell i
[5], denoted by To; i, is set to the link imbalance of the
candidate user u: If the underloaded cell i is unable to
accommodate the load ~ku of the user u; it is not considered
anymore as a target cell for handover. Finally, the selection
process ends once the overloaded cell has reached its target
load ~1o or there is no user left in the set W.

4 The load balancing game

After stating the necessary metrics and the approach used by
the overloaded cell in selecting the candidate users, we model
the load balancing game by defining the players, the utility
function and the possible strategies. Moreover, we derive the
strategies for the underloaded and overloaded cells that lead
to the Nash equilibrium point and state the actions of the
players which are recommended by a networkwide-algorithm

Fig. 1: The selection process of the candidate UEs that is followed by an
overloaded cell.
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and can be achievedbymodifying the utility function using the
linear pricing technique.

4.1 Model of the game

The players of the game are on one side the overloaded cell
having excess load and on the other side all itsN underloaded
neighbor cells. Each underloaded cell i should decide on an
amount of resources yi � 0 to accommodate from the
overloaded cell. Having received all the accepted amount of
resources from all the underloaded neighbor cells, the over-
loaded cell should decide on the load amount c � 0 to
offload based on the selection process described in section 3.
A useful utility function for the game is the number of

satisfied users in the cell. One may argue that each player has
the incentive to maximize his number of satisfied users as he
would have more capacity usage and income resulting from
the data rate charging. The cell can satisfy all its users as long
as its new target load is less than 1, e.g., ~1i � 1 or ~1o � 1,
and can satisfy only a fraction of the users if its new target load
exceeds 1. In the latter case, a floor operator is applied to the
computed number of satisfied users as it might not be an
integer.
The utility function of the underloaded cell i can now be

expressed as

utilityi ¼
Ui þ xi if 0 � ~1i � 1

Ui þ xi
~1i

� �
; otherwise

8><>: (8)

Similarly, the utility function of the overloaded cell is written
as

utilityo ¼
Uo ¢ xo if 0 � ~1o � 1

Uo ¢ xo
~1o

� �
; otherwise

8><>: (9)

4.2 Nash equilibrium

By definition, the Nash equilibrium point is achieved if each
player is making the best decision, taking into consideration
the decision of other players [6], [7]. For underloaded cell i;
finding the optimal value of yi that maximizes its utility is not
trivial as it knows neither the number xi of users that would be
handed over by the overloaded cell nor their corresponding
loads. However, the underloaded cell can still decide on an
amount of available resources such that its utility is never
decreased and maximized as much as possible. At first, the
underloaded cell i will accept y� > 1 ¢ 1i that leads in the
worst case, i. e., only 1 user is handed over to the underloaded
cell i; to the original utility value. The upper bound of y� can be
computed by using

Ui þ 1
1i þ y�

� �
¼ Ui (10)

which yields

y� � Ui þ 1
Ui

¢ 1i ¼ y�max. (11)

If the cell decides to signal y�max, it might end up with the same
original value if the offered capacity has been fully consumed
by a heavy overloaded cell. For this reason, the underloaded
cell i signals y�max only if its load exceeds a certain threshold 1t
and it signals 1 ¢ 1i if 1i < 1t. The value of the threshold is

strongly related to the load of the underloaded cell i: If it is
highly occupied, it is most likely that no user is handed over to
the cell i if it signals yi ¼ 1 ¢ 1i as the load of the user would
probably not fit. In this case, the underloaded cell i is
indifferent and signals y�max as it has a chance to increase its
utility value.
In contrast to the underloaded cells, the overloaded cell can

easily select the optimal load value of c to offload to the
neighboring cell. To this end, the overloaded cell sorts the
users according to their link imbalances and keeps only those
who fit in the target cells after calculating their estimated
loads [see Fig .1]. The overloaded cell can now compute all the
utility values corresponding to the handover of the first xo
users from the obtained list H, i. e. , utility of executing the
handover of the best candidate user, the secondbest candidate
user and so on. The overloaded cell selects the number xo of
users thatmaximizes its payoff by comparing the utility values,
without excluding the payoff if it does not offload at all, and
sets c to the sum of their respective loads.
In our context, the utility function of the players is based on

the number of satisfied users which does not correspondingly
consider the number of unsatisfied users in the network. In
[3], the utility function is modified using the linear pricing
technique to achieve the “natural” actions of the players,
where the overloaded cell seeks to offload all its excess load
and the underloaded cell i to accept users as long as its new
target load ~1i does not exceed 1, i. e., it would signal
yi ¼ 1¢ 1i. Actually, these are the values (referred to
Reference case) that would be recommended by a network-
wide algorithm as they result in a better overall network
performance.

5 Simulations

In this section, we evaluate the performance of the overall
network for theNash equilibrium in an LTEdownlink system.
The parameter values are set according to the reference
settings for LTE simulations defined in [8].

5.1 Layout, parameters and user positions

For evaluation, we consider two different cellular layouts: a
homogenous network composed of M= 57 hexagonal cells
separated from each other by 500 m and a heterogeneous
network consisting of M= 36 cells with different area sizes.
Every cell is served by one of the three sectors of a single
eNodeB and a wrap around is assumed.
In all the simulations, we will use the following default

parameters defined in Table 1, unless stated otherwise.

Table 1: Simulation parameters

Parameter Value

eNodeB transmission power 40 W

Path loss function 128.1+37.6log10(R [km]) dB

Penetration loss 20 dB

Thermal noise power -114 dBm

Shadowing standard deviation 8 dB

De-correlation distance 50 m

Antenna beam width 708

Antenna backward attenuation 20 dB

Handover hysteresis 3 dB

Ntot 50 PRBs

DRSRPthr 5 dB

Du 512 kbps

1t 0.9
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In order to have overloaded cells and other underloaded cells,
we will generate heavy concentration of users in nine and six
cells (hotspot cells) in the homogeneous and heterogeneous
networks, respectively [see Fig. 2]. The number of UEs
dropped in the hotspot cells is varied, whereas the default
number of UEs dropped in each other cell is four, i. e., four
users per cell in background. By following this distribution of
the UEs, we guarantee that the load balancing game is played
multiple times in the whole network. For every scenario, we
average the number of unsatisfied users in the whole network
over 20 different user drops.

5.2 Evaluation

The number of unsatisfied users is shown as a function of the
number of UEs in the hotspot cells in Fig. 3 for the
homogeneous and heterogeneous networks respectively.
In both networks, the Nash equilibrium succeeds in

achieving a remarkable increase in the capacity when
compared to a system without load balancing. The number
of unsatisfied users decreases even if the cells behave in a
selfish manner by deciding on the load values that maximize
their own payoffs. However, the gain achieved from load

Fig. 2: (a) Homogeneous and (b) heterogeneous networks with nine and six generated hotspot cells respectively.

Fig. 3: Performance of the (a) homogeneous and (b) heterogeneous
networks as a function of number of users in the hotspot cells with number
of users per cell in background as parameter.

Fig. 4: Performance of the (a) homogeneous and (b) heterogeneous
networks as a function of number of users in the hotspot cells with the
data rate requirement Du of the users as parameter.
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balancing is lower when the number of users per cell in
background increases, which reflects that the underloaded
cells are not able to accommodate higher numbers of users
when they are highly loaded.Moreover, the Nash equilibrium
has a very slight degradation in performance when compared
to the Reference case. The modified utility, which considers
the number of unsatisfied users in the network, alters the
actions of the players in the load balancing game, leading to
some kind of collaboration and a minor improvement in
performance when compared to the Nash equilibrium.
The percentage of unsatisfied users is shown in Fig. 4 as a

function of the number of users in the hotspot cells for
different data rate requirements.
According to the figures, a higher percentage of unsatisfied

users is experienced in the network as the data rate require-
ment of each user increases. A higherDu means that the user
needs to occupy a higher number of PRBs to meet his data
rate requirement, which limits the capability of the eNodeB to
serve a large number of UEs. Moreover, the gain achieved by
load balancing shrinks when the value ofDu increases. This is
due to the fact that the overloaded cells are unable to execute
the handover of users with very high data rate requirement, as
they would produce a very high load that the neighbor
underloaded cells can not handle. Once again, the Nash
equilibrium provides results that are almost equal to the
Reference case for various Du values.
Fig. 5 shows the effect of the link imbalance threshold on

the percentage of unsatisfied users. As the link imbalance

threshold increases, the gain with respect to a system without
load balancing also increases. A higher DRSRPthr leads to a
larger setW, and consequently to a larger number of candidate
UEs. Thus, the overloaded cell can offload more UEs if the
size ofW gets larger,which in-turn decreases the percentage of
unsatisfied users in the network.

6 Conclusion

The paper has shown that game theory provides valuable
means for a distributed load balancing approach as proposed
in 3GPP Release 9 for LTE where cells communicate, but
probably act completely independent and autonomous as the
executing entities (eNodeBs) might come from different
vendors. The simulation results for the LTE network have
shown that this autonomous approach of the cells, following a
quite selfish utility function by maximizing the number of
satisfied users, almost achieves the performance of the
network-wide algorithm, which is reached by extending the
utility using the linear pricing technique. The capacity gain,
which is verified for various network layouts and scenarios,
certainly paves the way for the mobile operators to consider
the possibility of deploying different load balancing algo-
rithms from various vendors as the loss in the network
performance would be insignificant.
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Fig. 5: Performance of the (a) homogeneous and (b) heterogeneous
networks as a function of number of users in the hotspot cells with the
link imbalance threshold DRSRPthr as parameter.
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