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Abstract—Game theory provides an adequate methodology for
analyzing topics in communication systems that include trade-offs
such as the subject of load balancing. As a means of balancing
the load in the network, users are handed over from highly
loaded cells to lower loaded neighbors increasing the capacity
usage and the Quality of Service (QoS). The algorithm that
calculates the amount of the load that each cell should decide
either to accept or to offload might differ if the base stations
are from distinct vendors, which in-turn may have an impact
on the performance of the network. In this paper, we study
the load balancing problem using a game-theoretic approach
where, in the worst case, each cell decides independently on the
amount of load that maximizes its payoff in an uncoordinated way
and investigate whether the resulting Nash equilibrium would
exhaust the gains achieved. Moreover, we alter the behavior of
the players using the linear pricing technique to have a more
desirable equilibrium. The simulation results for the Long Term
Evolution (LTE) network have shown that the Nash equilibrium
point can still provide a remarkable increase in the capacity
when compared to a system without load balancing and has a
slight degradation in performance with respect to the equilibrium
achieved by linear pricing.

Index Terms—Game theory, Load balancing, Self Optimizing
Networks, 3GPP LTE Release 9.

I. INTRODUCTION

Game theory provides a set of effective tools to understand
the behavior of a system comprising players having conflicting
objectives. Recently, it has been applied to study the problem
of power control in coded division multiple access based
systems [1], [2], [3], the random access to a shared channel
[4], [5] and the link adaptation in cellular radio networks [6].
Indeed, it can be used to analyze other interesting topics in
wireless communications such as load balancing which is one
of the important self optimizing network use cases defined in
[7].

In many circumstances, the cellular network may have un-
equal traffic distribution resulting in having some overloaded
cells and other underloaded cells. The users connected to
an overloaded cell experience a degradation in the QoS as
the cell is unable to satisfy all its users due to its limited
number of Physical Resource Blocks (PRBs). To increase the
users’ satisfaction level in the network, the User Equipments
(UEs) of the overloaded cells that are located at the cell
boundaries are handed over to the lower loaded neighbors.

Using load balancing, the number of unserved users in the
overloaded cells decreases as the other underloaded neighbors
are accommodating, if possible, the excess traffic load.

In [8], an algorithm is proposed that balances the traffic load
in the network by adjusting the cell-pair specific handover off-
sets. The load balancing algorithm is applied to LTE network,
but other systems may be similarly treated. The 3GPP LTE
Release 9 provides the means to exchange the load information
among the cells, but the algorithm that computes the amount of
load that an overloaded cell should offload and an underloaded
cell should accept is not specified as it is implementation
specific of the eNodeB and, therefore, vendor-specific [7].
Thus, the game-theoretic approach seems to be an appealing
method to understand the impact on the network operation if
each cell decides, in the worst-case, autonomously on the load
that maximizes its own benefit in a non-cooperative manner.

In this paper, we model the problem of selecting the load
that an overloaded cell should offload and an underloaded cell
should accept as a game where each player seeks to maximize
his payoff. The resulting outcome of the game may not be
necessarily the best for the overall network performance. In
this case, the pricing technique is used to alter the behavior of
the player to act more socially and achieve a better desirable
equilibrium state. We also present some simulation results that
show the overall performance of the cellular network in LTE
downlink for the Nash equilibrium point, in addition to the
equilibrium reached by linear pricing.

The paper is organized as follows. The load metrics are
defined in section II, followed by a description of the load
balancing algorithm in section III. The model of the game is
presented in section IV, the strategies of the players leading to
the Nash equilibrium are derived in section V and the linear
pricing technique is described in section VI. The simulation
results for LTE network are discussed in section VII and the
work is concluded in section VIII.

II. METRIC DEFINITIONS

In this section, we define the metrics that are needed in the
rest of the sequel. The load measurements that are processed
by the load balancing algorithm are similar to those defined
in [9]. In our system, each user u has a constant data rate
requirement denoted by Du and a data rate per PRB given



by R(SINRu) which depends on the Signal to Interference
Noise Ratio (SINR) of the user u. We could use Shannon’s
capacity equation for the throughput function R(.), but we will
follow a more realistic approach and use the abstract model
presented in [10] which provides results that are close to link
level simulations.

The number of required resources by the user u can now
be written as

Qu =
Du

R(SINRu)
(1)

We assume that each cell in the network has the same number
of resource units that are available to be allocated. We denote
the total number of PRBs per frame for all cells by Ntot and
define the traffic load of the user u as

κu =
Du

R(SINRu) ·Ntot
(2)

According to this definition, the load κu of the user u is
interpreted as the percentage of occupied PRBs per frame
needed to make him satisfied, i.e., meeting his data rate
requirement.

The load of the cell c is denoted by

ρc =
∑

u| X(u)=c

κu ≥ 0 (3)

where X(u) = c is the connection function that assigns the
user u to a single cell c. The load of the cell is a “virtual”
metric as it can exceed 1, nevertheless, it reflects the level of
overload and the QoS. The users connected to the cell c would
be all satisfied if the load ρc does not exceed 1. Otherwise,
there is some fraction of the users that are not satisfied, e.g.,
ρc = 2 means half of the users are unsatisfied.

The number of unsatisfied users in a network consisting of
M cells is expressed as

Z =
M
∑

c=1

max



0,
∑

u| X(u)=c

1 ·

(

1−
1
ρc

)



 (4)

The max operator is needed as the number of unsatisfied users
cannot be negative for the underloaded cell having a load less
than 1. In reality, a user would not be admitted to the network
if his data rate requirement could not be satisfied and in this
work, we assume that the admission control arbitrarily selects
the UEs to be served irrespective of their radio conditions.

III. THE LOAD BALANCING ALGORITHM

Having defined the metrics, the load balancing algorithm is
briefly described to understand the rules of the game defined
in section IV. The selection process of the users to be handed
over to the neighbor cells is performed according to the
algorithm discussed in [8]. The algorithm described works for
any cellular layout, but for illustration purposes, we assume
that the overloaded cell has 6 neighbor cells. Let us denote
the load of the overloaded cell by ρo and the load of each of
the N ≤ 6 neighbor underloaded cells by ρi where i ∈ S,
S ⊆ {1, . . . , 6} and |S| = N .

TABLE I
EXAMPLE OF A TABLE OF LINK IMBALANCES `u,i SET BY AN

OVERLOADED CELL TO GENERATE THE HANDOVER CANDIDATE LIST

Underloaded Cells with ρi < 1
NCL → Cell1 Cell3 Cell4 Cell6
↓UEs (y1 = 0.3) (y3 = 0.9) (y4 = 0.7) (y6 = 0.4)
1(κ1 = 0.05) 1 dB N/A N/A 6 dB
2(κ2 = 0.1) N/A 3 dB -1 dB 5 dB
3(κ3 = 0.03) 6 dB 2 dB 5 dB 7 dB
4(κ4 = 0.01) 8 dB 9 dB 2 dB 9 dB
5(κ5 = 0.1) N/A N/A 7 dB N/A
· · · · · · · · · · · · · · ·

The overloaded cell having a load ρo > 1 sets up a table
as shown in Table I where the columns correspond to the
N = 4 neighbor underloaded cells and the rows to its own
connected UEs. In this example, the neighbor cells 2 and
5 are overloaded and excluded from the Neighbor Cell List
(NCL), i.e, S = {1, 3, 4, 6}. The value yi is the amount of
load (expressed as a percentage of Ntot) that the underloaded
cell i can accommodate. Each entry (u, i) of the table, i.e.,
u|X(u) = overloaded cell, is the link imbalance value defined
by the difference in the Reference Signal Received Power
(RSRP) levels as

`u,i
∣

∣

dB = RSRPu,o
∣

∣

dB − RSRPu,i
∣

∣

dB (5)

where RSRPu,o and RSRPu,i are the average reference signal
measurements reported by the user u for the overloaded and
underloaded cell i, respectively. In many cases, the UE is not
able to report the RSRP of some neighbor cells, since the
signal of the cell is either too weak (below noise) or drowned
in the signal of the overloaded cell. In this case, the link
imbalance is not available (N/A).

The overloaded cell can estimate, to some extent, the load
that the user would produce if handed over to an underloaded
cell. If the user u having a local load κu in the overloaded cell
is handed over to a neighbor underloaded cell i, its load may
decrease/increase if the signal strength to the connected cell is
stronger/weaker. As a rough approximation, we assume that a
positive link imbalance of `u,i dB decreases the average SINR
of the user u by `u,i dB which in turn reduces the throughput
per PRB. The load that the user u would produce if handed
over to an underloaded cell is denoted by κ̃u.

The overloaded cell generates the list of handover candi-
dates as follows: It searches for the user having the smallest
link imbalance value in the table and checks whether the
corresponding target cell can accommodate its estimated load
after the handover. If possible, the user is added to the
handover list and the overloaded cell searches for the next
candidate having the second best link imbalance value and so
on. If an underloaded cell is unable to accommodate the load
of the user, it is not considered anymore as a target cell for
handover.

Having obtained the list of candidates, the overloaded cell
executes successively the handover of every user and proposes
a new value for the cell-pair specific handover offset to avoid
the immediate back handover of the users [8].



IV. GAME MODELING

After stating the necessary metrics and the approach used
by the overloaded cells in selecting the candidate users for
handover, we model the load balancing game by defining the
players, the utility function and the possible strategies.

The players of the game are on one side the overloaded
cell having excess load and on the other side all its N
underloaded neighbor cells. The game proceeds in time where
each underloaded cell i signals first to the overloaded one the
amount of traffic load yi that it is willing to accommodate.
Having received all the accepted load values from the neighbor
underloaded cells, the overloaded cell should decide on the
load amount X to offload based on the algorithm described in
section III.

The underloaded cell i can decide either not to accept any
load, i.e., it signals yi = 0, or to accommodate a certain
amount of traffic load yi > 0. Similarly, the overloaded cell
can decide not to offload or to handover users having a certain
load X > 0.

A useful utility function for the game is the number of
satisfied users in the cell. One can argue that each player has
the incentive to maximize his number of satisfied users as he
would have more capacity usage and income resulting from
the data rate charging. Let us denote the number of handed
over users from the overloaded cell to the underloaded cell i
by xi ≥ 0. The total amount of load that the xi users would
produce in the underloaded cell i is

∑xi
j=1 κ̃j where κ̃j is an

approximation for the load of the j th handed over user.
The load of the accommodating cell i after load balancing is

denoted by ρ̃i = ρi+
∑xi

j=1 κ̃j . As long as ρ̃i ≤ 1, all the users
of the underloaded cell i are satisfied as it has enough PRBs
and the utility of the cell is simply the number of connected
users. If ρ̃i > 1, not all its connected users are satisfied as the
cell is incapable to meet the data rate requirement of every
user. In this case, a floor operator is applied to the calculated
number of satisfied users as it might not be an integer.

The utility function of the underloaded cell i having a load
ρi and Ui ≥ 0 connected users can now be expressed as

utilityi =



















Ui + xi if 0 ≤ ρ̃i ≤ 1

⌊

Ui + xi

ρi +
∑xi

j=1 κ̃j

⌋

, otherwise
(6)

Based on the value yi, one rule of the game that the
overloaded cell will handover xi users having a total load
∑xi

j=1 κ̃j ≤ yi to cell i, i.e., the overloaded cell is not allowed
to handoff a load that exceeds the signaled capacity. A higher
value of yi will most likely lead to a higher xi, since the
underloaded cell i can accommodate in this case more users.
Unfortunately, the number of handed over users xi and the
estimated user loads κ̃j are unknown to the underloaded cell
i as the information of the link imbalances and the load
of the users reside only in the overloaded cell, making the
maximization of the utility function challenging.

Two instances of the utility function for the underloaded
cell are depicted in Fig. 1. As long as the accepted load yi is
less than 1−ρi, the utility function increases by xi. When the
accepted load yi exceeds 1 − ρi, only a fraction of the users
is satisfied as ρ̃i would be greater than 1. For example, the
underloaded cell i having originally 6 users and ρi = 0.45 can
increase its utility to 9 satisfied users by signaling yi = 1−ρi
and accommodating xi = 3 users. If it signals a higher load
than 1 − ρi, e.g., yi = 0.74, the underloaded cell i would
accommodate in this case xi = 4 users and its utility would
decrease from 9 to 8 satisfied users.

In this example, it happens that the utility function of the
cell is maximum for a yi value which is less or equal to 1−ρi,
however, it may also occur that the utility function peaks for a
yi which is greater than 1− ρi, i.e., ρ̃i > 1. This is illustrated
by the utility function of the other cell having Ui = 5 users
and ρi = 0.52, where the number of satisfied users is maximal
for ρ̃i = 1.11.
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Fig. 1. Examples of utility functions of underloaded cells.

In contrast to the underloaded cell, the overloaded cell
offloads by executing the handover of a set of candidate
users. We denote the total number of handed over users from
the overloaded cell to all the neighbor underloaded cells by
xo =

∑

i∈S xi ≥ 0 and the load of the overloaded cell after
load balancing by ρ̃o = ρo−

∑xo
j=1 κj . The utility function of

the overloaded cell having Uo > 0 users and ρo > 1 can be
expressed as

utilityo =



















Uo − xo if 0 ≤ ρ̃o ≤ 1

⌊

Uo − xo

ρo −
∑xo

j=1 κj

⌋

, otherwise
(7)

The overloaded cell has to decide on the load X =
∑xo

j=1 κj

to offload. Due to the availability of all the users’ load
information, the overloaded cell can easily select X that
maximizes its utility function.

For clarity, two instances of the utility function of the
overloaded cell are shown in Fig. 2. The cell having Uo = 18



users and ρo = 1.17 will seek to increase its utility from 15
to 16 satisfied users by offloading X = 0.21, i.e., decreasing
its load from ρo = 1.17 to 0.96. Interestingly, it is not always
beneficial for the overloaded cell to offload. As an example,
the overloaded cell having Uo = 9 users would be better
paid off if it does not handover any user. The utility of the
overloaded cell would decrease from b9/1.12c = 8 satisfied
users to b8/1.05c = 7 if it executes the handover of 1 user
having a load κu = 0.07.
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Fig. 2. Examples of utility functions of overloaded cells.

V. NASH EQUILIBRIUM

In this section, we will derive the strategies for the under-
loaded and overloaded cells that lead to the Nash equilibrium
point. In the vocabulary of game theory, the game can be
modeled in an extensive form [11] where the overloaded
cell is aware of all the available capacities signaled by the
underloaded cells. By definition, the Nash equilibrium point
is achieved if each player is making the best decision, taking
into consideration the decision of other players.

For the underloaded cell i, finding the optimal value of yi
that maximizes its utility is not trivial as it knows neither the
number of users that would be handed over by the overloaded
cell nor their corresponding loads. However, the underloaded
cell can still decide on an available load value such that its
utility is never decreased and maximized as much as possible.

At first, the underloaded cell i will accept the load y∗ >
1− ρi that leads in the worst case, i.e., only 1 user is handed
over to the underloaded cell i, to the original utility value. The
upper bound of y∗ can be calculated as

⌊

Ui + 1
ρi + y∗

⌋

= Ui

y∗ ≤
Ui + 1
Ui

− ρi = y∗max (8)

If the cell decides to signal y∗max, it might end up with the
same original utility value if the offered capacity has been
fully consumed by a heavy overloaded cell. For this reason,

the underloaded cell i signals y∗max only if its load exceeds a
certain threshold value ρt and signals 1− ρi if ρi < ρt.

The value of the threshold strongly depends on the load of
the underloaded cell i. If it is highly occupied, it is most likely
that no user is handed over to the cell if it signals yi = 1− ρi
as the load of the user would probably not fit. In this case, the
underloaded cell i is indifferent and signals y∗max as it has a
chance to increase its utility. Hence, the load signaled by the
underloaded cell i is summarized by

yi =



















1− ρi If ρi < ρt

Ui + 1
Ui

− ρi, otherwise

(9)

On the other hand, the overloaded cell should decide on
the optimal load value, denoted by Xopt, to offload to the
neighbor underloaded cells. Having received the available
capacities from each neighbor, the overloaded cell sorts the
users according to their link imbalances and keeps only those
who fit in the target cell after calculating their estimated loads.
As a result, the overloaded cell generates a list containing the
users that are candidates for handover as explained in section
III. For clarity, Fig. 3 shows an example of a set of handover
candidate users with their corresponding target cells generated
by the overloaded cell. The first two users shown on the left
side can be handed over to the first neighbor cell, the third
user to neighbor cell 6 and so on.

Fig. 3. Maximization of the overloaded cell utility.

The overloaded cell can compute now all the utility values
corresponding to the handover of the first xo users, e.g.,
utility(1, 1, 6) is the payoff of the overloaded cell after ex-
ecuting the handover of the first 3 users. The overloaded cell
selects the number of users xo = xo,max that maximizes its
payoff by comparing the utility values, without excluding the
payoff if does not offload at all, and sets Xopt to the sum of
their respective local loads, i.e., Xopt =

∑xo,max
j=1 κj . As a result,

the overloaded cell will handover only the first xo,max users
having a total load Xopt.

VI. LINEAR PRICING

In the Nash equilibrium, the player has no incentive to
deviate from selecting the best strategy that maximizes its
utility, which might not be necessarily advantageous for the
overall network performance. Linear pricing is a powerful
technique that can be used to adapt the action of each player,
in favor of a better community-based achievement.

In our context, the utility function of the players is based on
the number of satisfied users which does not correspondingly



consider the number of unsatisfied users in the network. From
a system’s perspective, the capacity should be fully exploited,
which in-turn, implies that the number of unsatisfied users
should be minimized as much as possible. To emphasize that
cells with unsatisfied users must be more “punished” than
unloaded ones, we modify the utility function by introducing
an additional pricing term. Thus, the variant utility function
maximized by the players is defined as

utilityc = utility − βmax{Ntot · (ρ̃− 1), 0} (10)

where β is a tuning positive scalar and ρ̃ is the load of the
cell after load balancing, i.e., ρ̃ = ρ̃i for the underloaded cell i
and ρ̃ = ρ̃o for the overloaded cell. If β is set to a high value,
then each player is extremely penalized by a reduction factor
proportional to his surplus load. In principle, β should be
adjusted to achieve the “natural” actions, where the overloaded
cell seeks to offload all its excess load and the underloaded
cell i to accept users as long as its new load ρ̃i does not exceed
1, i.e., it signals yi = 1− ρi. These load values, achieved by
linear pricing, are the ones that would be recommended by a
fully cooperative approach defining a sort of an upper bound
of overall network performance.

VII. SIMULATIONS

In this section, we will evaluate the performance of the
overall network for the Nash equilibrium in LTE downlink
system. The parameters values are set according to the refer-
ence settings for LTE simulations defined in [12].

A. Layout and parameters

The cellular network is composed of M = 57 hexagonal
cells separated from each other by 500 m and a wrap around
is assumed. Every cell is served by one of the 3 sectors of a
single eNodeB.

The maximum eNodeB transmission power is 40 W or
equivalently 29 dBm per PRB, i.e., 10 MHz system with
Ntot = 50 PRBs. The path loss offset and exponent are set
to 128.1 dB and 3.76 dB respectively. The penetration loss is
assumed to be 20 dB and the thermal noise power is −114
dBm. The standard deviation of shadowing is set to 8 dB and
the decorrelation distance to 50 m. The transmit antenna has
a beam width of 70◦ and a backward attenuation of 20 dB.
The effect of the height of the base station and the antenna
downtilt are not considered in the simulation, i.e., are set to 0.
The handover hysteresis is 3 dB for all the cells and only the
users having a link imbalance smaller than 5 dB are considered
as candidates for handover. We also assume that every user has
a constant bit rate of Du = 512 kbps.

B. User positions

To demonstrate the effect of load balancing, we will gener-
ate heavy concentration of users in cells {4, 5, 6, 34, 35, 36,
43, 44, 45} as shown in Fig. 4. The number of UEs dropped
in the 9 hotspots is varied from 20 to 40 users. In the rest of
the network, 192 UEs are randomly dropped. By following
this distribution of UEs, we are creating many overloaded

and underloaded cells and the load balancing game is played
multiple times in the whole network. For every scenario, we
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Fig. 4. Cell layout with 9 generated hotspots.

average the number of unsatisfied users in the network over
20 different user drops.

C. Evaluation

The percentage of unsatisfied users in the network is shown
in Fig. 5 as a function of the number of users in the hotspots
for no load balancing, Nash equilibrium and pricing cases. The
load threshold ρt is set to 0.9 and β to 4 which is high enough
to achieve the “natural” actions.
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Fig. 5. Network performance for no load balancing, Nash equilibrium and
pricing cases.

According to the graph, a higher level of unsatisfaction is
experienced in the network as the number of users increases



in the hotspots. This is due to the fact that the underloaded
cells are not able to accommodate high numbers of users when
the overloaded cells are heavily occupied. The percentage of
unsatisfied users in the network roughly increases by 25% for
all the three cases when the number of the users in the hotspots
doubles from 20 to 40.

Interestingly, there is a remarkable gain even if the cells
behave selfishly in the load balancing game (bold dashed line).
For 20 users dropped in the hotspots, the Nash equilibrium
point achieves to accommodate most of the unsatisfied users
in the network whereas 3.9% of the users are not satisfied if no
load balancing is performed. Furthermore, the gain is visible
for all the scenarios and the capacity usage can increase up to
6.7%.

If the players maximize the modified utility (solid line),
the percentage of unsatisfied users slightly declines when
compared to the Nash equilibrium curve without pricing. This
certainly reflects that the “natural” behavior of the cells in load
balancing relies, to some extent, on an inherent selfish actions.

VIII. CONCLUSION

We have presented a game-theoretic analysis for load bal-
ancing where we have defined the rules of the game, the
players and their strategies. Also, we have modeled the utility
function maximized by each player and defined the actions
leading to the Nash equilibrium point.

The simulation results have shown that load balancing can
remarkably increase the capacity usage in the network even
when the cells act in a non-cooperative way. If the amount of
load to accept or to offload is decided independently by each
cell, we would expect that the attained Nash equilibrium point
achieves most of the gain intended from load balancing. This
indeed paves the way for the possibility of considering the
deployment of different load balancing algorithms by various
manufacturers as the loss in performance would be negligible.
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