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Abstract—In this paper, we propose a hierarchical beam-
forming approach for the downlink of a multicellular multiuser
system with cloud radio access network (CRAN) which requires
reduced fronthaul transmissions while benefiting from the cen-
tralized functionality of the cloud. We design the hierarchical
beamforming as a concatenation of two beamformers. The first
one is called inner beamformer and it is designed at the base
station (BS) based on the instantaneous channel state information
(CSI) of its own users. For this beamformer, the BSs apply
regularized zero-forcing (RZF). The second one is called outer
beamformer and it is defined at the cloud based on the global
but only statistical CSI. All outer beamformers are designed
together at the cloud to allow coordination among the BSs. This
hierarchical approach provides a combination of distributed and
centralized precoding and so it manages the intra-cell as well as
the inter-cell interference. Because the cloud has only statistical
channel knowledge, we apply random matrix theory to obtain
deterministic approximations of the useful power, intra-cell and
inter-cell interference power at every user. These approximations
are closed-form expressions and allow the cloud to optimize
the outer beamformers for diverse objectives. In this work, we
propose a low complexity iterative outer beamformer design
based on block diagonalization which maximizes the system sum
rate. Simulations show that the deterministic approximations are
tight and that the proposed hierarchical beamforming achieves a
higher sum rate compared to the conventional distributed RZF.

I. INTRODUCTION

Future mobile cellular networks will experience a huge

growth in traffic while satisfying high requirements for latency

and reliability. The forecast suggests that the mobile data traf-

fic will grow at a compound annual growth rate of 46 percent

between 2016 and 2021, and so it will reach 48.3 exabytes

per month by 2021 [1]. Additionally, the Machine-to-Machine

and Internet-of-Things devices will introduce the necessity

for real-time processing of a huge amount of data and for

the development of massive connectivity strategies requiring

densified cells and large antenna arrays at the base stations

(BSs). Therefore, the new promising architecture cloud radio

access network (CRAN) has been proposed to provide cen-

tralization and coordination among the BSs. Through CRAN,

the baseband processing will benefit from softwarization and

flexible functional splits providing advanced coordination.

However, the coordination of densely deployed BSs,

equipped with multiple antennas and serving many devices, is

associated with a lot of signaling over the fronthaul links con-

necting the BSs with the cloud. Since the fronthaul is capacity

constrained and time-delay constrained [2], the big amount of

signaling might lead to unacceptable delays for the real-time

processing. These fronthaul constraints become very critical

for coordination techniques like the coordinated beamforming

where the availability of channel state information (CSI) is a

crucial factor defining the achievable network performance.

To address this challenge, different proposals can be found

in the literature suggesting compressive CSI acquisition, front-

haul compression strategies or sparse precoding, see [3] and

references therein. In [4] for instance, a new CSI acquisition

has been proposed to reduce the CSI overhead and to design

a stochastic beamforming. In [5] and [6], optimization algo-

rithms for different fronthaul compression and beamforming

strategies have been studied. In [7], we propose a coordinated

hierarchical beamforming where the cloud has knowledge only

of averaged channel link qualities and defines a transmission

subspace size for every BS. To achieve high system perfor-

mance while utilizing low complexity precoders, in this work,

we let the cloud define not only the subspace sizes, but also

the transmission subspaces for every BS.

In this paper, we propose a coordinated beamforming for

the downlink of multicellular multiuser multiple input multiple

output (MIMO) networks with CRAN which requires only

statistical CSI. To achieve this, we design the precoder as

concatenation of two beamformers. The first, so-called inner

beamformer is designed at the BS based on the instantaneous

CSI of its own users and can manage the intra-cell interference.

The second, so-called outer beamformer is designed centrally

together with all outer beamformers at the cloud. The outer

beamformer adapts to the channel statistics, controls the inter-

cell interference and defines the transmission subspace of the

BS. Since the cloud has only statistical channel knowledge,

which involves operations with large random matrices, we

apply theorems from random matrix theory (RMT).

RMT provides deterministic approximations in systems with

high dimensional random processes. Because the radio channel

is often modeled as a large random matrix, theorems from

RMT have already found application in diverse MIMO scenar-

ios. For example, in [8] the authors consider a single cell sce-

nario with a closed-form precoder and derive the deterministic

equivalent of the signal to interference and noise ratio (SINR)

at every user to solve various optimization problems like

optimal number of users for zero-forcing precoding and the

optimal regularization parameter for regularized zero-forcing

(RZF). In [9], the authors define the SINR approximations at



the users in a multicell network with RZF beamformers where

all BSs serve all users simultaneously by exchanging data and

signaling over backhaul links. Another related work is [10],

where the precoder is split into inner and outer beamformers

so that all inner beamformers perform RZF at the BSs while

the outer beamformers are designed at the cloud according

to an approximate optimization problem which maximizes

a concave utility. To obtain the approximated problem, the

authors assume that the inter-cell interference is zero and use

deterministic approximations of the data rate for a single cell.

In contrast, we consider a more general scenario where inter-

cell interference is allowed and controlled at the cloud.

Further to previous works, we derive deterministic approx-

imations of the useful power, intra-cell interference and inter-

cell interference power terms at every user in the system,

using only the second order statistics of the channels. The

approximations are closed-form expressions and functions of

the outer beamformers. Therefore, they enable outer beam-

forming optimization at the cloud for diverse objectives while

no knowledge of instantaneous channels or inner beamformer

realizations is needed. This results in a top-down one-shot

hierarchical beamforming which requires only reduced fron-

thaul transmissions. More precisely, in our approach, the

cloud first designs the outer beamformers centrally, sends

each one of them to the corresponding BS and every BS

simply concatenates the outer to its locally designed inner

beamformer. Having this hierarchical structure, we propose

an outer beamformer design based on iterative block diago-

nalization which requires only low computational complexity

while maximizing the system sum rate.

The paper is organized as follows. In Section II, we in-

troduce the system model and in Section III, the proposed

hierarchical structure. Section IV presents the deterministic

approximations of the power terms and Section V the iterative

outer beamformer design. In Section VI, we show simulation

results and in Section VII, we summarize the work.

Notations - We use lower case and upper case boldface

letters to denote vectors and matrices, respectively. The 𝑖th
entry of the vector x is denoted by [x]𝑖 and the (𝑖, 𝑗)th entry

of the matrix X by [X]𝑖,𝑗 . The operations (⋅)H and tr(⋅) are

Hermitian and trace of a matrix, respectively. An 𝑁 × 𝑁
diagonal matrix with entries of x is denoted by diag(x). I𝑁
stands for the identity matrix of size 𝑁 ×𝑁 . Euclidean norm

of vector x and spectral norm of matrix X are denoted as ∣∣x∣∣
and ∣∣X∣∣, respectively. For a set 𝒜, ∣𝒜∣ denotes its cardinality.

II. SYSTEM MODEL

We consider the downlink of a multicellular network with

CRAN which coordinates 𝐿 BSs. Every BS is equipped with

𝑀𝑙 antennas and serves a set 𝒦𝑙 of single-antenna users

simultaneously, separating them spatially by a beamformer.

Every cell has a set of users with size 𝐾𝑙 = ∣𝒦𝑙∣ such

that 𝐾𝑙 ≤ 𝑀𝑙. The overall number of users in the system

is 𝐾 =
∑𝐿
𝑙=1𝐾𝑙. The index 𝑙𝑘 ∈ {1, . . . , 𝐿} denotes the

serving BS of user 𝑘, with 𝑘 = 1, . . . ,𝐾. The data symbol

𝑠𝑘,𝑙𝑘 to be sent to user 𝑘 is available only at BS 𝑙𝑘 and

modeled as zero mean Gaussian process with variance one,

i.e. 𝑠𝑘,𝑙𝑘 ∼ 𝒞𝒩 (0, 1).
We consider the one-ring channel model [11] where the

channel between user 𝑘 and BS 𝑙, for 𝑙 = 1, . . . , 𝐿 is

h𝑘,𝑙 =
√
𝑎𝑘,𝑙Θ̄

1/2
𝑘,𝑙 z𝑘,𝑙 = Θ

1/2
𝑘,𝑙 z𝑘,𝑙, (1)

where 𝑎𝑘,𝑙 is the long-term path loss and Θ̄𝑘,𝑙 ∈ ℂ
𝑀𝑙×𝑀𝑙 is

the correlation matrix of the channel between user 𝑘 and BS 𝑙.
Θ𝑘,𝑙 defines the second order statistics of the channel which

vary over large time scale. The vector z𝑘,𝑙 ∈ ℂ
𝑀𝑙×1 represents

the fast fluctuations in h𝑘,𝑙 and varies few orders faster than

the channel statistics. It is modeled as a random process

with identically and independently distributed (i.i.d.) entries

from zero mean Gaussian distribution with unit variance, i.e.

z𝑘,𝑙 ∼ 𝒞𝒩 (0, I𝑀𝑙
). We assume that the users are separated

by at least few wavelengths, hence their channels are mutually

independent. The resulting received signal at user 𝑘 is

𝑦𝑘 = h
H
𝑘,𝑙𝑘

√
𝑝𝑘,𝑙𝑘v𝑘,𝑙𝑘𝑠𝑘,𝑙𝑘 +

∑

𝑖∈𝒦𝑙𝑘
,𝑖∕=𝑘

hH𝑘,𝑙𝑘
√
𝑝𝑖,𝑙𝑘v𝑖,𝑙𝑘𝑠𝑖,𝑙𝑘

+

𝐿∑

𝑙=1,
𝑙 ∕=𝑙𝑘

∑

𝑗∈𝒦𝑙

hH𝑘,𝑙
√
𝑝𝑗,𝑙v𝑗,𝑙𝑠𝑗,𝑙 + 𝑛𝑘 (2)

where 𝑝𝑘,𝑙 is the power allocated at BS 𝑙 for user 𝑘, v𝑘,𝑙 ∈
ℂ
𝑀𝑙×1 the beamforming vector at BS 𝑙 for user 𝑘 so that

V𝑙 = [v𝑖,𝑙]𝑖∈𝒦𝑙
∈ ℂ

𝑀𝑙×𝐾𝑙 is the beamformer at BS 𝑙. In

(2), the four summands represent the useful signal, intra-

cell interference, inter-cell interference and noise components,

respectively. The noise at user 𝑘 is modeled as zero mean white

Gaussian process with variance 𝜎2 = 1.

III. HIERARCHICAL BEAMFORMING

We propose a hierarchical beamforming, which is a con-

catenation of inner beamformer G𝑙 and outer beamformer F𝑙,

i.e. V𝑙 = F𝑙G𝑙 with F𝑙 ∈ ℂ
𝑀𝑙×𝑀𝑙 and G𝑙 = [g𝑖,𝑙]𝑖∈𝒦𝑙

∈
ℂ
𝑀𝑙×𝐾𝑙 . The outer beamformer F𝑙 is a centralized solution

designed at the cloud, based on channel statistics and allowing

coordination among the BSs. Its main objective is to define the

transmission subspace in which every BS should transmit such

that the overall system performance is improved compared

to non-coordinated techniques. The inner beamformer G𝑙, on

the other hand, is designed at the BS dependent only on the

users in the cell and based on the instantaneous CSI within

the predefined transmission subspace. Having this hierarchical

beamforming, the SINR at user 𝑘 obeys the form

𝛾𝑘 =
𝑆𝑘

𝐼𝑟𝑎𝑘 + 𝐼𝑒𝑟𝑘 + 𝜎2
(3)

𝑆𝑘 = 𝑝𝑘,𝑙𝑘 ∣hH𝑘,𝑙𝑘F𝑙𝑘g𝑘,𝑙𝑘 ∣2, (4)

𝐼𝑟𝑎𝑘 =
∑

𝑖∈𝒦𝑙𝑘
,𝑖 ∕=𝑘

𝑝𝑖,𝑙𝑘 ∣hH𝑘,𝑙𝑘F𝑙𝑘g𝑖,𝑙𝑘 ∣2, (5)

𝐼𝑒𝑟𝑘 =

𝐿∑

𝑙=1,𝑙 ∕=𝑙𝑘

∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙∣hH𝑘,𝑙F𝑙g𝑗,𝑙∣2, (6)



Fig. 1: Top-down one-shot hierarchical beamforming

where (4)-(6) are useful signal, intra-cell and inter-cell inter-

ference power terms, respectively. Furthermore, we can define

the data rate at user 𝑘 as 𝑅𝑘 = log2(1 + 𝛾𝑘) in bit/s/Hz and

the overall system sum rate as 𝑅𝑠𝑢𝑚 =
∑𝐾
𝑘=1𝑅𝑘 in bit/s/Hz.

In general, the beamformers are coupled, meaning that to

optimize the inner beamformer, we need information about the

outer beamformer and vice versa. Such a design involves a lot

of signaling over the fronthaul, which we aim to minimize.

Therefore, we propose a top-down one-shot approach where

the inner beamformer is of closed-form design. Having this

approach, the cloud needs to know only the structure of the

inner beamforming without any specific realization. We have

applied the RZF [12], [13] so that

G𝑙 = 𝜉𝑙Ḡ𝑙 = 𝜉𝑙
(
H̃H
𝑙 H̃𝑙 +𝑀𝑙𝛼𝑙I𝑀𝑙

)−1
H̃H
𝑙 (7)

where 𝜉2𝑙 = 𝑃𝑙/tr(P𝑙Ḡ
H
𝑙 Ḡ𝑙) is a normalization parameter to

fulfill the power constraint at BS 𝑙 which has power budget 𝑃𝑙.
P𝑙 = diag(p𝑙) ∈ ℝ

𝐾𝑙×𝐾𝑙

+ is the power allocation matrix at

BS 𝑙 with p𝑙 = [𝑝𝑖,𝑙]𝑖∈𝒦𝑙
∈ ℂ

𝐾𝑙×1. The matrix H̃𝑙 is defined

as H̃𝑙 = [h̃𝑖,𝑙]
H
𝑖∈𝒦𝑙

∈ ℂ
𝐾𝑙×𝑀𝑙 where h̃𝑘,𝑙 = FH

𝑙 h𝑘,𝑙 is the

effective channel between user 𝑘 and BS 𝑙, i.e. the channel

vector within the transmission subspace of the 𝑙th BS. The

regularization parameter 𝛼𝑙 controls the interference in the

cell and it has been chosen so that it maximizes the SINR for

single cell scenario with only local channel knowledge [14],

[15]: 𝛼𝑙 = (𝐾𝑙𝜎
2)/(𝑃𝑙𝑀𝑙).

Having closed-form solutions for the inner beamformers,

the cloud is able to optimize the outer beamformers F𝑙 for

∀𝑙 without the knowledge of the realizations of G𝑙. The

optimized F𝑙 is then transmitted to BS 𝑙 and concatenated

with G𝑙, see Fig. 1. The challenge of optimizing the outer

beamformers lies in the fact that the cloud has only statistical

channel information, i.e., it does not know any realization

of h𝑘,𝑙, but knows only the statistical CSI Θ𝑘,𝑙 for ∀𝑘, 𝑙.
Therefore, to allow system analysis and design at the cloud

based only on the available statistical knowledge, we apply

RMT and derive deterministic equivalents of (4)-(6) which

are closed-form expressions approximating the power terms.

IV. DETERMINISTIC EQUIVALENTS

The deterministic equivalents provide asymptotic expres-

sions of functionals with large dimensional random matrices

where the number of rows and columns increase to infinity

while keeping their ratio constant [16]. The interpretation of

these rows and columns for our model is number of users

and number of antennas at BSs. Interestingly, the asymptotic

expressions provide tight approximations of finite size systems

and even for systems of very small dimensions.

Throughout this work, we denote the deterministic equiva-

lent of a functional 𝑥 as �̊� where 𝑥− �̊�
𝑎.𝑠.−−→ 0. The notation

”
𝑎.𝑠.−−→” refers to almost sure convergence as 𝑀𝑙,𝐾𝑙 → ∞

with ratio 𝛽𝑙 = 𝑀𝑙/𝐾𝑙 such that 0 < lim inf𝑀𝑙,𝐾𝑙
𝛽𝑙 ≤

lim sup𝑀𝑙,𝐾𝑙
𝛽𝑙 < ∞ for 𝑙 = 1, . . . , 𝐿.

We approximate the power terms 𝑆𝑘, 𝐼𝑟𝑎𝑘 and 𝐼𝑒𝑟𝑘 at user

𝑘 for 𝑘 = 1, . . . ,𝐾 by their deterministic equivalents 𝑆𝑘, 𝐼𝑟𝑎𝑘
and 𝐼𝑒𝑟𝑘 , respectively. Using these deterministic equivalents,

we also define the approximations �̊�𝑘 of the SINR at every

user, 𝑅𝑘 of the data rate at every user and 𝑅𝑠𝑢𝑚 of the overall

system sum rate.

To obtain 𝑆𝑘, 𝐼𝑟𝑎𝑘 and 𝐼𝑒𝑟𝑘 , we first define e𝑙 and T𝑙 for

𝑙 = {1, . . . , 𝐿} and 𝑘 = {1, . . . ,𝐾} which are from the unique

solution of

e𝑙 =

[
1

𝑀𝑙
tr(FH

𝑙 Θ𝑖,𝑙F𝑙T𝑙)

]

𝑖∈𝒦𝑙

∈ ℂ
𝐾𝑙×1, (8)

T𝑙 =

(
1

𝑀𝑙

∑

𝑗∈𝒦𝑙

FH
𝑙 Θ𝑗,𝑙F𝑙

(1 + [e𝑙]𝑗)
+ 𝛼𝑙I𝑀𝑙

)−1

. (9)

The expressions e𝑙 and T𝑙 can be defined using a fixed

point algorithm which iteratively solves equations (8) and (9).

Having e𝑙 and T𝑙, we just substitute them in the following set

of equations:

Ψ̊𝑙 =
1

𝑀𝑙

∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙[e
′
𝑙]𝑗

(1 + [e𝑙]𝑗)2
, (10a)

e′𝑙 = D𝑙v𝑙, (10b)

D𝑙 = (I𝐾𝑙
− J𝑙)−1, (10c)

v𝑙 =

[
1

𝑀𝑙
tr(FH

𝑙 Θ𝑡,𝑙F𝑙T
2
𝑙 )

]

𝑡∈𝒦𝑙

∈ ℂ
𝐾𝑙×1, (10d)

[J𝑙]𝑖,𝑗 =
tr(FH

𝑙 Θ𝑖,𝑙F𝑙T𝑙F
H
𝑙 Θ𝑗,𝑙F𝑙T𝑙)

𝑀2
𝑙 (1 + [e𝑙]𝑗)2

for 𝑖, 𝑗 ∈ 𝒦𝑙, (10e)

Υ̊𝑘,𝑙 =

⎧

⎨

⎩

∑

𝑗∈𝒦𝑙,𝑗 ∕=𝑘

𝑝𝑗,𝑙[c
′

𝑘,𝑙]𝑗
(1+[e𝑙]𝑗)2

for 𝑙 = 𝑙𝑘

∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙[c
′

𝑘,𝑙]𝑗
(1+[e𝑙]𝑗)2

otherwise
(10f)

c′𝑘,𝑙 = D𝑙w𝑘,𝑙, (10g)

w𝑘,𝑙 =

[
1

𝑀𝑙
tr(FH

𝑙 Θ𝑡,𝑙F𝑙T𝑙F
H
𝑙 Θ𝑘,𝑙F𝑙T𝑙)

]

𝑡∈𝒦𝑙

∈ ℂ
𝐾𝑙×1

(10h)



and so we obtain all required components to derive the

deterministic equivalents of the power terms as

𝑆𝑘 =
𝑝𝑘,𝑙𝑘

𝑃𝑙𝑘
[e𝑙𝑘

]2𝑘
Ψ̊𝑙𝑘

(1+[e𝑙𝑘
]𝑘)2

, (11)

𝐼𝑟𝑎𝑘 =
𝑃𝑙𝑘

Υ̊𝑘,𝑙𝑘

𝑀𝑙𝑘
Ψ̊𝑙𝑘

(1+[e𝑙𝑘
]𝑘)2

, (12)

𝐼𝑒𝑟𝑘 =
𝐿∑

𝑙=1,𝑙 ∕=𝑙𝑘

𝑃𝑙

𝑀𝑙Ψ̊𝑙

Υ̊𝑘,𝑙. (13)

Proof: see Appendix A.

From the definition of deterministic equivalents [16] and

from the continuous mapping theorem [17], we can define the

deterministic equivalent of the SINR 𝛾𝑘 as �̊�𝑘 = 𝑆𝑘/(𝐼𝑟𝑎𝑘 +
𝐼𝑒𝑟𝑘 +𝜎2), the deterministic equivalent of data rate 𝑅𝑘 as 𝑅𝑘 =

log2(1 + �̊�𝑘) such that 𝑅𝑘 −𝑅𝑘
𝑎.𝑠.−−→ 0 and the deterministic

equivalent of the overall system sum rate 𝑅𝑠𝑢𝑚 as 𝑅𝑠𝑢𝑚 =
∑𝐾
𝑘=1𝑅𝑘 where 𝑅𝑠𝑢𝑚 −𝑅𝑠𝑢𝑚

𝑎.𝑠.−−→ 0.

Therefore, we can approximate diverse parameters by de-

terministic expressions without knowing any actual channel

realization. The only required information to determine the

approximations is the statistical CSI Θ𝑘,𝑙. Additionally, all

deterministic equivalents are derived as functions of the outer

beamformers F𝑙 for ∀𝑙 which allows the cloud to perform

centralized optimization with respect to the matrices F𝑙.

V. OUTER BEAMFORMER DESIGN

The outer beamformers F𝑙 for 𝑙 = 1, . . . , 𝐿 are designed

centrally at the cloud and based only on the statistical CSI. Our

objective is to maximize the system sum rate while satisfying

a total power constraint at each BS:

argmax
F1,...,F𝐿

𝑅𝑠𝑢𝑚

s.t. :tr(P𝑙G
H
𝑙 G𝑙) ≤ 𝑃𝑙 for 𝑙 = 1, . . . , 𝐿.

(14)

This maximization problem involves a non-convex opti-

mization and its solution is non-tractable. Therefore, we pro-

pose an iterative approach which is based on block diagonal-

ization [18].

A. Iterative Block Diagonalization

We propose an iterative algorithm where in every iteration,

the transmission subspace of BS 𝑏 for 𝑏 ∈ {1, . . . , 𝐿} is

selected such that the system sum rate 𝑅𝑠𝑢𝑚 is maximized

given all selected subspaces in the previous iteration. The algo-

rithm converges when the cloud cannot find new transmission

subspaces which further improve the sum rate.

To select the transmission subspace for BS 𝑏, we de-

fine B𝑠𝑏 =
[
FH
𝑏 Θ𝑖,𝑏F𝑏

]

𝑖∈𝒦𝑏
of size 𝑀𝑏 × 𝐾𝑏𝑀𝑏 and

B𝑖𝑏 =
[
FH
𝑏 Θ𝑗,𝑏F𝑏

]

𝑗∈{𝒦𝑙:𝑙=1,...,𝐿 and 𝑙 ∕=𝑏}
of size 𝑀𝑏 ×

𝑀𝑏

∑𝐿
𝑙=1,𝑙 ∕=𝑏𝐾𝑙. As next step, we perform singular value

decomposition (SVD) on the matrix B𝑖𝑏 and denote its left

singular vectors by E𝑏. We choose an orthogonal basis E0
𝑏

which is a selection of the vectors E𝑏 corresponding to the

weakest 𝑁 𝑖𝑏 singular values. Then, we project the “serving”

transmission space of BS 𝑏 onto this orthogonal basis and

denote the projection by M𝑏, i.e. M𝑏 = (E0
𝑏)

HB𝑠𝑏 . Using

SVD, we define the 𝑁𝑠𝑏 dominant modes and collect them

in the matrix M1
𝑏 . The resulting outer beamformer for BS

𝑏 is F𝑏 = E0
𝑏M

1
𝑏 and has dimensions 𝑀𝑏 × 𝑁𝑠𝑏 . This

outer beamformer defines the transmission subspace which is

orthogonal or nearly orthogonal to the subspace of all users to

which BS 𝑏 produces interference. At the same time, only the

strongest dimensions, occupied by the transmission subspace

of served users, are taken into account.

The choice of 𝑁 𝑖𝑏 and 𝑁𝑠𝑏 plays an important role in the

resulting data rate. Therefore, we do not set them constant,

but let the cloud find the values of 𝑁 𝑖𝑏 and 𝑁𝑠𝑏 which result

in highest sum rate 𝑅𝑠𝑢𝑚 for every iteration.

VI. SIMULATIONS RESULTS

In this section, we present simulation results showing the

accuracy of the derived deterministic approximations and

the average system performance. We execute simulations for

𝐿 = 3 BSs under different conditions by changing diverse

parameters such as number 𝑀𝑙 of antennas, number 𝐾𝑙 of

users, their ratio 𝛽𝑙 = 𝑀𝑙/𝐾𝑙, scattering environment for

strong and weak channel correlation and signal to noise

ratio (SNR), i.e. 𝜌 = 𝑃𝑙/𝜎
2 for ∀𝑙. To obtain an average

performance, we consider 𝑁𝑓 frames, where in every frame the

second order channel statistics are constant, and 𝑁𝑟 channel

realizations in each frame.

A. General Setup

The correlation Θ̄𝑘,𝑙 is modeled using the discrete uniform

distribution [19] and assumes that there are 𝑁𝑘,𝑙 scatterers

evenly spaced within angular spread Δ𝑘,𝑙 around the 𝑘th user

with angle of arrival 𝜙𝑘,𝑙 with respect to the 𝑙th BS. We assume

that the BSs are equipped with a uniform linear array with

distance 𝑑 = 0.5𝜆 between two neighbouring antenna elements

where 𝜆 is the carrier wavelength. The (𝑚,𝑛)th element of

Θ̄𝑘,𝑙 is given by

[Θ̄𝑘,𝑙]𝑚,𝑛 =
1

𝑁𝑘,𝑙

𝑁𝑘,𝑙∑

𝑖=1

𝑒−𝑗2𝜋
𝑑
𝜆
(𝑚−𝑛)cos(𝜃𝑘,𝑙,𝑖) (15)

where 𝜃𝑘,𝑙,𝑖 = 𝜃min
𝑘,𝑙 + Δ𝜃𝑘,𝑙(𝑖 − 1) with 𝜃min

𝑘,𝑙 = 𝜙𝑘,𝑙 − Δ𝑘,𝑙

2
and Δ𝜃𝑘,𝑙 = Δ𝑘,𝑙/(𝑁𝑘,𝑙 − 1) for 𝑖 = 1, . . . , 𝑁𝑘,𝑙.

In the simulations below, we have distinguished between

strong Δ𝑠 and weak Δ𝑤 channel correlation scenarios. To

simulate them, we let the angular spread Δ𝑘,𝑙 of scatterers

around a user be a random variable with uniform distribution

where for the weak correlation we have Δ𝑤 ∼ 𝒰(1∘, 60∘) and

for the strong correlation Δ𝑠 ∼ 𝒰(1∘, 5∘) with 𝑁𝑘,𝑙 = Δ𝑘,𝑙.
For all simulations, we assume that the power is equally

distributed between the users, i.e. P𝑙 = (𝑃𝑙/𝐾𝑙)I𝐾𝑙
and that

all users are uniformly distributed in hexagonal cells, with

radius 𝑅𝑐𝑒𝑙𝑙 = 50 m. To model the long term path loss,

we consider the distance 𝐷𝑘,𝑙 between user 𝑘 and BS 𝑙, the

reference distance 𝐷0 = 10 m and the path loss exponent

𝛼𝑙𝑜𝑠𝑠 = 3 such that 𝑎𝑘,𝑙 = (𝐷𝑘,𝑙/𝐷0)
−𝛼𝑙𝑜𝑠𝑠 .

For the proposed iterative block diagonalization, at the be-

ginning of the optimization, the initial outer beamformers are
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Fig. 2: Relative sum rate difference

set to be identity matrices, i.e. F𝑙 = I𝑀𝑙
for 𝑙 = 1, . . . , 𝐿 and

the cloud selects 𝑁 𝑖𝑙 and 𝑁𝑠𝑙 to maximize the overall system

sum rate such that 𝐾𝑙 ≤ 𝑁 𝑖𝑙 ≤ 𝑀𝑙 and 𝐾𝑙 ≤ 𝑁𝑠𝑙 ≤ 𝑁 𝑖𝑙 .

B. Accuracy

In this subsection, we examine how tight the deterministic

approximations are. We compare the average sum rate 𝑅𝑠𝑢𝑚
obtained by the deterministic equivalents with the ergodic

sum rate �̂�𝑠𝑢𝑚 obtained by the conventional Monte Carlo

approach. We consider both with (F𝑐𝑜𝑜𝑟𝑑.𝑙 ) and without (F𝑙 =
I𝑀𝑙

) outer beamforming designs while G𝑙 utilizes RZF.

In Fig. 2, we present the relative sum rate difference

between 𝑅𝑠𝑢𝑚 and �̂�𝑠𝑢𝑚 by changing 𝑀𝑙 and 𝐾𝑙 such that

their ratio 𝛽𝑙 is constant. We investigate the performance for

𝜌 = 10 dB, 𝜌 = 40 dB and for both strong and weak

correlation. For 𝛽𝑙 = 2 we have 𝑁𝑓 = 500 and 𝑁𝑟 = 5000
and for 𝛽𝑙 = 10, 𝑁𝑓 = 250 and 𝑁𝑟 = 2500. The results show

that the difference between the two approximation methods is

small even for system scenarios of small numbers of antennas

and users as well as that applying outer beamformer, which

suppresses the inter-cell interference, improves the estimation.

We observed that the deterministic approximations reach time

savings of orders of magnitude. From the figures, we conclude

that the difference of the two approximation methods becomes

smaller when:

∙ the SNR is weaker

∙ the channel correlation is weaker

∙ the numbers of antennas and users are larger

The first two observations, can be explained by the rank-one

perturbation lemma (Lemma 2.1 in [20]) evaluated at 𝛼𝑙, as

applied in our derivations, from which we know that for higher

𝛼𝑙 = 1/(𝜌𝛽𝑙) and for lower spectral norm of the correlation

matrix, we obtain a tighter approximation. The last observation

is explained also by the RMT from which we know that the

closer we are to the large limit of dimensions approaching

infinity, the tighter the empirical and the limiting expressions

are. Therefore, for large 𝑀𝑙 and 𝐾𝑙, the two approximation

methods converge to the same asymptotic result.
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Fig. 3: System performance for weakly correlated channels
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Fig. 4: System performance for strongly correlated channels

C. Average System Performance

In this subsection, we present the average system perfor-

mance of the proposed hierarchical beamforming with iterative

block diagonalization designing the outer beamformers.

In Fig. 3 and 4, we have the sum rate of the proposed

hierarchical beamforming (HBF) compared to the conventional

distributed RZF where every BS applies RZF to the channel

matrix of its own users. The simulation setup is for 𝑀𝑙 = 6,

𝑀𝑙 = 8 and 𝑀𝑙 = 12, 𝐾𝑙 = 4, with weakly or strongly

correlated channels, and with 𝑁𝑓 and 𝑁𝑟 both equal to 1000.

From the simulation results, we conclude that managing the

inter-cell interference through outer beamforming is beneficial

even for very small scenarios of only three cells where we

have only small inter-cell interference. The slight drop in

RZF for some scenarios is due to the choice of 𝛼𝑙 which

can be optimized by taking into account that the system is

multicellular and so to improve the system performance. From

the simulations, we summarized the following observations:

∙ Comparing HBF and RZF, we observe that in the high

SNR regime, having inter-cell interference management

through outer beamformer becomes essential.

∙ The more antennas we have, the higher the diversity is

and so the gain of the outer beamforming becomes higher.

In general, the more inter-cell interference is present in the

system, the more crucial becomes its control and, hence, it is

more beneficial to apply an outer beamformer.



VII. CONCLUSIONS

In this paper, we proposed a coordinated hierarchical beam-

forming for the downlink of a multicellular multiuser system

with CRAN which requires only reduced transmissions over

the fronthaul. Applying RMT, we derive deterministic approxi-

mations of the received useful, intra-cell and inter-cell interfer-

ence power terms at every user using only the available statis-

tics at the cloud. These approximations provide us with reliable

performance estimation even for small system dimensions as

well as with impressive time savings compared to traditional

Monte Carlo approach. Additionally, the approximations are

closed-form expressions and, thus, enable the cloud to perform

optimization for diverse objectives with respect to the outer

beamformers. In this work, we proposed a low complexity

iterative approach for the outer beamformer design which

maximizes the system sum rate. Simulations demonstrate that

our proposed hierarchical beamformer achieves higher sum

rate compared to the non-coordinated RZF scheme.

ACKNOWLEDGMENT

This work has been performed in the context of DFG funded

CRC 1053 MAKI.

APPENDIX A

Here, we provide the proof of the deterministic equiv-

alents (11)-(13). To derive them, we make the following

two assumptions. The first one is that the random process

z̄𝑘,𝑙 = z𝑘,𝑙/
√
𝑀𝑙 is zero mean i.i.d. with variance 1/𝑀𝑙

and its eighth order moment is of order 1/𝑀4
𝑙 . The sec-

ond assumption is that the matrix Θ̃𝑘,𝑙 = FH
𝑙 Θ𝑘,𝑙F𝑙 is

deterministic with uniformly bounded spectral norm, i.e.,

lim sup𝑀𝑙→∞ sup1≤𝑘≤𝐾 ∣∣Θ̃𝑘,𝑙∣∣ < ∞ for ∀𝑙.
We define C̃𝑙 = Γ̃𝑙 + 𝛼𝑙I𝑀𝑙

with Γ̃𝑙 = 1
𝑀𝑙
H̃H
𝑙 H̃𝑙 and

C̃[𝑝],𝑙 = Γ̃[𝑝],𝑙 + 𝛼𝑙I𝑀𝑙
with Γ̃[𝑝],𝑙 =

1
𝑀𝑙
H̃H

[𝑝],𝑙H̃[𝑝],𝑙 where

H̃[𝑝],𝑙 is the matrix H̃𝑙 without the 𝑝th row as well as the

following lemmas and theorems:

L1: Matrix inversion lemma, Eq. (2.2) in [21]

L2: Derivative of matrix inverse, Eq. (59) in [22]

L3: Trace lemma, Lemma 14.2 in [16]

L4: Rank-one perturbation lemma, Lemma 2.1 in [20]

T1: Theorem 1 in [8]

T2: Dominated convergence theorem (Theorem 16.4 in [23])

Following the approach in [8], we derive separately the

deterministic equivalent of every power term. We begin with

the normalization parameter 𝜉2𝑙 = 𝑃𝑙/tr(P𝑙Ḡ
H
𝑙 Ḡ𝑙) = 𝑃𝑙/Ψ𝑙.

With L1 and L3, we obtain

Ψ𝑙 =
∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙
𝑀2
𝑙

h̃H𝑗,𝑙C̃
−2
𝑙 h̃𝑗,𝑙

𝑎.𝑠.−−→
∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙tr(Θ̃𝑗,𝑙C̃
−2
[𝑗],𝑙)

(𝑀𝑙 + tr(Θ̃𝑗,𝑙C̃
−1
[𝑗],𝑙))

2
.

According to T1 and 𝑚Y,A(𝑧) ≜ tr
(
A
(
Y − 𝑧I𝑁

)−1)
/𝑁

the Stieltjes transform of random matrices at point 𝑧 withY =
X+B where A, B deterministic and X random and of size

𝑁×𝑁 , we have 𝑚Γ̃𝑙,Θ̃𝑗,𝑙
(−𝛼𝑙) = tr(Θ̃𝑗,𝑙(Γ̃𝑙+𝛼𝑙I𝑀𝑙

)−1)/𝑀𝑙

and �̊�Γ̃𝑙,Θ̃𝑗,𝑙
(−𝛼𝑙) = tr(Θ̃𝑗,𝑙T𝑙)/𝑀𝑙 = [e𝑙]𝑗 for 𝑗 ∈ 𝒦𝑙

with T𝑙 and [e𝑙]𝑗 as in (9) and (8), respectively. Additionally,

𝑚′
Γ̃𝑙,Θ̃𝑗,𝑙

(−𝛼𝑙) = tr
(
Θ̃𝑗,𝑙(Γ̃𝑙 + 𝛼𝑙I𝑙)

−2
)
/𝑀𝑙 and from T2,

we have �̊�′
Γ̃𝑙,Θ̃j,l

(−𝛼𝑙) = tr(Θ̃𝑗,𝑙T
′
𝑙)/𝑀𝑙 = [e′𝑙]𝑗 where the

derivative is with respect to 𝑧 = −𝛼𝑙. Using L2 on T′
𝑙,

we obtain the derivative of e𝑙 in a convenient matrix form

e′𝑙 = (I𝑀𝑙
− J𝑙)−1v𝑙 with J𝑙 and v𝑙 as in (10e) and (10d).

Therefore, after applying L4 and the theorems form above,

we obtain Ψ𝑙− Ψ̊𝑙
𝑎.𝑠.−−→ 0 for Ψ̊𝑙 =

∑

𝑗∈𝒦𝑙
[𝑝𝑗,𝑙[e

′
𝑙]𝑗 ]/[𝑀𝑙(1+

[e𝑙]𝑗)
2] as in (10a) and the deterministic equivalent of the

normalization parameter is equal to 𝑃𝑙/Ψ̊𝑙. □

Having 𝑆𝑘 = 𝜉2𝑙𝑘𝑝𝑘,𝑙𝑘𝑆𝑘, we apply L1 on 𝑆𝑘 and obtain

𝑆𝑘 =

∣
∣
∣
∣

z̄H𝑘,𝑙𝑘Θ̃
H/2
𝑘,𝑙𝑘
C̃−1

[𝑘],𝑙𝑘
Θ̃

1/2
𝑘,𝑙𝑘
z̄𝑘,𝑙𝑘

1 + z̄H𝑘,𝑙𝑘Θ̃
H/2
𝑘,𝑙𝑘
C̃−1

[𝑘],𝑙𝑘
Θ̃

1/2
𝑘,𝑙𝑘
z̄𝑘,𝑙𝑘

∣
∣
∣
∣

2

.

Note that we decompose Θ̃𝑘,𝑙𝑘 = Θ̃
1/2
𝑘,𝑙𝑘
Θ̃

H/2
𝑘,𝑙𝑘

where Θ̃
1/2
𝑘,𝑙 =

FH
𝑙 Θ

1/2
𝑘,𝑙 and Θ̃

H/2
𝑘,𝑙 = Θ

𝐻/2
𝑘,𝑙 F𝑙 and that the correlation matrix

enjoys the symmetric property Θ
1/2
𝑘,𝑙 = Θ

H/2
𝑘,𝑙 . For the term in

the absolute value, we perform manipulations with L3, L4 and

T1 analogical to the approach above and we obtain

˚̄𝑆𝑘 =
�̊�2

Γ̃𝑙𝑘
,Θ̃𝑘,𝑙𝑘

(−𝛼𝑙𝑘)
(
1 + �̊�Γ̃𝑙𝑘

,Θ̃𝑘,𝑙𝑘

(−𝛼𝑙𝑘)
)2 =

[e𝑙𝑘 ]
2
𝑘

(1 + [e𝑙𝑘 ]𝑘)
2

which is the deterministic equivalent of the useful power

without allocated power and normalization parameter. □

Having 𝐼𝑟𝑎𝑘 = 𝜉2𝑙𝑘
¯𝐼𝑟𝑎𝑘 , we apply L1 on ¯𝐼𝑟𝑎𝑘 and obtain

z̄H𝑘,𝑙𝑘Θ̃
H/2
𝑘,𝑙𝑘
C̃−1

[𝑘],𝑙𝑘
H̃H

[𝑘],𝑙𝑘
P[𝑘],𝑙𝑘H̃[𝑘],𝑙𝑘C̃

−1
[𝑘],𝑙𝑘

Θ̃
1/2
𝑘,𝑙𝑘
z̄𝑘,𝑙𝑘

𝑀𝑙𝑘

(
1 + z̄H𝑘,𝑙𝑘Θ̃

H/2
𝑘,𝑙𝑘
C̃−1

[𝑘],𝑙𝑘
Θ̃

1/2
𝑘,𝑙𝑘
z̄𝑘,𝑙𝑘

)2

(A1)

with P[𝑝],𝑙 being P𝑙 without the 𝑝th row and column. We

apply L3 and L4 to the numerator of (A1) and obtain

Υ𝑘,𝑙𝑘 = tr
(
Θ̃𝑘,𝑙𝑘C̃

−1
[𝑘],𝑙𝑘

H̃H
[𝑘],𝑙𝑘

P[𝑘],𝑙𝑘H̃[𝑘],𝑙𝑘C̃
−1
[𝑘],𝑙𝑘

)
/𝑀𝑙𝑘

𝑎.𝑠.−−→ tr
(
P[𝑘],𝑙𝑘H̃[𝑘],𝑙𝑘C̃

−1
𝑙𝑘
Θ̃𝑘,𝑙𝑘C̃

−1
𝑙𝑘
H̃H

[𝑘],𝑙𝑘

)
/𝑀𝑙𝑘

=
∑

𝑗∈𝒦𝑙𝑘

𝑗 ∕=𝑘

𝑝𝑗,𝑙𝑘 z̄
H
𝑗,𝑙𝑘
Θ̃

H/2
𝑗,𝑙𝑘
C̃−1
𝑙𝑘
Θ̃𝑘,𝑙𝑘C̃

−1
𝑙𝑘
Θ̃

1/2
𝑗,𝑙𝑘
z̄𝑗,𝑙𝑘

︸ ︷︷ ︸

𝜐1

.

Because z̄j,lk is independent of C̃[j],lk , after manipulations

with L1, L3 and L4 on 𝜐1, we achieve the convergence

𝜐1 −
tr
(
Θ̃𝑗,𝑙𝑘C̃

−1
𝑙𝑘
Θ̃𝑘,𝑙𝑘C̃

−1
𝑙𝑘

)
/𝑀𝑙𝑘

(
1 + tr

(
Θ̃𝑗,𝑙𝑘C̃

−1
𝑙𝑘

)
/𝑀𝑙𝑘

)2

𝑎.𝑠.−−→ 0. (A2)

The denominator is of already known form. Therefore, let

us consider the numerator in the last expression (A2) which

equals 𝑚′
Γ̃𝑙𝑘

−𝑧Θ̃𝑘,𝑙𝑘
,Θ̃𝑗,𝑙𝑘

(−𝛼𝑙𝑘)
∣
∣
𝑧=0

. From

�̊�Γ̃𝑙𝑘
−𝑧Θ̃𝑘,𝑙𝑘

,Θ̃𝑗,𝑙𝑘

(−𝛼𝑙𝑘) = tr(Θ̃𝑗,𝑙𝑘Q𝑘,𝑙𝑘)/𝑀𝑙𝑘

with

Q𝑘,𝑙𝑘 =

(
1

𝑀𝑙𝑘

∑

𝑗∈𝒦𝑙𝑘

Θ̃𝑗,𝑙𝑘
1 + [c𝑘,𝑙𝑘 ]𝑗

− 𝑧Θ̃𝑘,𝑙𝑘 + 𝛼𝑙𝑘I𝑀𝑙𝑘

)−1

,

[c𝑘,𝑙𝑘 ]𝑖 = tr(Θ̃𝑖,𝑙𝑘Q𝑘,𝑙𝑘)/𝑀𝑙𝑘



and after T2, we obtain the deterministic equivalent of the

numerator in (A2)

�̊�′
Γ̃𝑙𝑘

−𝑧Θ̃𝑘,𝑙𝑘
,Θ̃𝑗,𝑙𝑘

(−𝛼𝑙𝑘) = tr(Θ̃𝑗,𝑙𝑘Q
′
𝑘,𝑙𝑘

)/𝑀𝑙𝑘

for 𝑗 ∈ (𝒦𝑙𝑘 , 𝑗 ∕= 𝑘) and with L2, the derivative expression

Q′
𝑘,𝑙𝑘

becomes

Q′
𝑘,𝑙𝑘

= Q𝑘,𝑙𝑘

(
1

𝑀𝑙𝑘

∑

𝑗∈𝒦𝑙𝑘

Θ̃𝑗,𝑙𝑘 [c
′
𝑘,𝑙𝑘

]𝑗

(1 + [c𝑘,𝑙𝑘 ]𝑗)
2
+ Θ̃𝑘,𝑙𝑘

)

Q𝑘,𝑙𝑘

Evaluating at 𝑧 = 0, we obtain the terms Q𝑘,𝑙𝑘 = T𝑙𝑘 ,

[c𝑘,𝑙𝑘 ]𝑗 = [e𝑙𝑘 ]𝑗 and

Q′
𝑘,𝑙𝑘

=

(

T𝑙𝑘

∑

𝑗∈𝒦𝑙𝑘

Θ̃𝑗,𝑙𝑘 [c
′
𝑘,𝑙𝑘

]𝑗

𝑀𝑙𝑘(1 + [e𝑙𝑘 ]𝑗)
2
T𝑙𝑘 +T𝑙𝑘Θ̃𝑘,𝑙𝑘T𝑙𝑘

)

.

Hence, �̊�1 is described in a convenient matrix form by c′𝑘,𝑙
and w𝑘,𝑙 as defined in (10g) and (10h) for 𝑙 = 𝑙𝑘.

Consequently, we obtain the deterministic equivalent of

Υ𝑘,𝑙𝑘 which is required for the deterministic equivalent of 𝐼𝑟𝑎𝑘

Υ̊𝑘,𝑙𝑘 =
∑

𝑗∈𝒦𝑙𝑘
,𝑗 ∕=𝑘

𝑝𝑗,𝑙𝑘 [c
′
𝑘,𝑙𝑘

]𝑗

(1 + [e𝑙𝑘 ]𝑗)
2
. □

The derivations of the deterministic equivalents for 𝐼𝑒𝑟𝑘 are

similar to those for 𝐼𝑟𝑎𝑘 . One should take into account the

statistical independence between the random process z̄𝑘,𝑙 for

𝑘 ∈ 𝒦𝑙𝑘 with the inner beamformer G𝑙 for ∀𝑙 ∕= 𝑙𝑘.

For 𝐼𝑒𝑟𝑘 =
∑

∀𝑙 ∕=𝑙𝑘
𝜉2𝑙

¯𝐼𝑒𝑟𝑘,𝑙/𝑀𝑙 with ¯𝐼𝑒𝑟𝑘,𝑙 the scaled inter-cell

interference from BS 𝑙 at user 𝑘, we apply L3 on ¯𝐼𝑒𝑟𝑘,𝑙

z̄H𝑘,𝑙Θ̃
H/2
𝑘,𝑙 C̃

−1
𝑙 H̃

H
𝑙 P𝑙H̃𝑙C̃

−1
𝑙 Θ̃

1/2
𝑘,𝑙 z̄𝑘,𝑙−

tr(Θ̃𝑘,𝑙C̃
−1
𝑙 H̃

H
𝑙 P𝑙H̃𝑙C̃

−1
𝑙 )/𝑀𝑙

︸ ︷︷ ︸

Λ𝑘,𝑙

𝑎.𝑠.−−→ 0.

Λ𝑘,𝑙 =
∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙 z̄
H
𝑗,𝑙Θ̃

H/2
𝑗,𝑙 C̃

−1
𝑙 Θ̃𝑘,𝑙C̃

−1
𝑙 Θ̃

1/2
𝑗,𝑙 z̄𝑗,𝑙

︸ ︷︷ ︸

𝜐2

and with L1, L3 and L4 consequently, we achieve

𝜐2 −
tr
(
Θ̃𝑗,𝑙C̃

−1
𝑙 Θ̃𝑘,𝑙C̃

−1
𝑙

)
/𝑀𝑙

(
1 + tr

(
Θ̃𝑗,𝑙C̃

−1
𝑙

)
/𝑀𝑙

)2

𝑎.𝑠.−−→ 0.

Applying T1 and T2, similar to the analysis above, we

obtain the deterministic equivalent of 𝜐2

�̊�2 =
�̊�′

Γ̃𝑙−𝑧Θ̃𝑘,𝑙,Θ̃𝑗,𝑙
(−𝛼𝑙)

∣
∣
𝑧=0

(1 + �̊�Γ̃𝑙,Θ̃𝑗,𝑙
(−𝛼𝑙))

2

Hence, we describe Λ̊𝑘,𝑙 as Υ̊𝑘,𝑙 in (10f) for ∀𝑙 ∕= 𝑙𝑘

Λ̊𝑘,𝑙 = Υ̊𝑘,𝑙 =
∑

𝑗∈𝒦𝑙

𝑝𝑗,𝑙[c
′
𝑘,𝑙]𝑗

(1 + [e𝑙]𝑗)2
for ∀𝑙 ∕= 𝑙𝑘. □

Note that for a single cell scenario without outer beam-

former, i.e. 𝐿 = 1 and F1 = I𝑀1
, there is no inter-cell

interference, the BS simply performs RZF for its own users

and the deterministic equivalents boil down to these in [8].
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