
Speak Less, Hear Enough:
On Dynamic Announcement Intervals

in Wireless On-demand Networks
Lars Baumgärtner∗, Pablo Graubner∗, Jonas Höchst∗, Anja Klein†, Bernd Freisleben∗†

∗Department of Mathematics & Computer Science, Philipps-Universität Marburg, D-35032 Marburg, Germany
E-mail: {lbaumgaertner, graubner, hoechst, freisleb}@informatik.uni-marburg.de

†Department of Electrical Engineering and Information Technology, TU Darmstadt, D-64283 Darmstadt, Germany
E-mail: a.klein@nt.tu-darmstadt.de; bernd.freisleben@maki.tu-darmstadt.de

Abstract—Several protocols used in wireless networks rely
on nodes announcing information to other nodes. This can be
illustrated by service announcements sent in ZeroConf, rout-
ing announcements used in OLSR, and peer announcements
in wireless peer-to-peer or delay-tolerant networking systems
such as Forban and Serval. The main problem is that these
protocols use fixed time intervals between subsequent broadcast
announcements. Fixed intervals can either lead to high network
load (if the announcement interval is too short) or delay the
distribution of information between peers (if the announcement
interval is too long). Repeatedly broadcasting announcements
after fixed intervals also has an impact on the energy consumption
of mobile devices operating in wireless networks. In this paper,
we present several approaches to realize dynamic announcement
intervals that facilitate fast reception from at least one other
node while trying to keep the overall communication overhead
as low as possible. Experimental results in terms of performance
properties and energy consumption are presented to illustrate
the benefits of dynamic announcement intervals in wireless on-
demand networks.

I. INTRODUCTION

Several network protocols rely on nodes broadcasting an-
nouncements to other nodes. Examples include service dis-
covery (Bonjour/ZeroConf, Samba), routing algorithms (RIP,
OLSR), and peer-to-peer or delay-tolerant networking (DTN)
systems (Forban1, Serval2). While the traffic generated by
periodically sending announcements might be negligible in
wired networks with high-speed links, bandwidth in wireless
networks, such as 802.11, Bluetooth or various mobile ad hoc
networks (MANETs), is precious and limited. For example,
spontaneous smartphone networks become more and more
important not only by providing pervasive wireless Internet
access during large human crowd gatherings, but also during
emergency situations or post-disaster recovery [2].

In an emergency communication scenario, the main goal is
to spread messages and files produced at a disaster site fast
among reachable nodes. Therefore, data is passed around in
an epidemic fashion to as many neighboring peers as possible.
Typically, some nodes are more static, such as devices of

1http://www.foo.be/forban/
2http://www.servalproject.org/

Group 1 Group 2 Group 3

Fig. 1: Drive-by store-and-forward data exchange.

s=77m

r=40m
v=50 km/h

Fig. 2: Drive-by window of opportunity example.

people trapped in their houses or small emergency camp
sites forming islands, while other nodes are on the move
(by bike, car, foot), which by passing through these islands
act as carrier-pigeons to distribute information further (see
Fig. 1). These islands have a higher density than typical sensor
networks. To make optimal use of the short time in case of
a drive-by, it is important to find a peer for data exchange
very fast. Since any peer can initiate data synchronization,
a special treatment of mobility is not necessary. Depending
on the used wireless technology, a mobile phone might have
an effective range of 14-80 meters to communicate with
others. Thus, if we assume a WiFi radius of 40 meters and
a static node being 10 meters away from a street, a car
driving on the street would be in the WiFi range for about
77 meters (see Fig. 2). The car passing by, assuming it
moves at about 50 km/h, would have just under 6 seconds for

node discovery and exchange of data. This is plenty of time
for transferring, for example, two 6 megapixel pictures and
setting up connections via a standard 54 Mbps link. Therefore,
for the fast moving node, one of the more static peers is
sufficient to start a data transfer. Since all information gets
replicated in this scenario, the fast moving node does not
need to know all possible neighbors. The static node can
distribute the data further among its neighbors. Discovering
all direct peers as fast as possible is neither necessary nor
beneficial for the static nodes. Under these assumptions, it is
reasonable to use dynamic announcement intervals instead of
the typically used static announcement intervals. Furthermore,
dynamic announcement intervals require not only less network
resources, but also potentially save more battery capacity than
static announcement intervals.

In this paper, we present several approaches to realize
dynamic announcement strategies that facilitate fast reception
from at least one other node while trying to keep the overall
communication overhead as low as possible. Experimental
results in terms of performance properties and energy con-
sumption are presented to illustrate the benefits of dynamic
announcement intervals in wireless on-demand networks. In
particular, the paper makes the following contributions:

• Various strategies for realizing dynamic announcement
intervals optimized for different network setups are pre-
sented.

• An experimental evaluation of all proposed strategies, in-
cluding static and random announcement strategies, with
respect to bandwidth usage, announcement distribution
and energy consumption is presented.

• Test environments suited for various topologies, such
as large stable networks, islands merging and networks
splitting, are investigated.

• The results are directly applicable to local peer-to-peer
content distribution systems in emergency scenarios, such
as Forban and Serval.

The paper is organized as follows. Section II discusses
related work. Section III presents the design of our an-
nouncement strategies. Implementation details are described
in Section IV. The setup of our experimental evaluation is
described in Section V, and experimental results are presented
in Section VI. Section VII concludes the paper and outlines
areas for future research.

II. RELATED WORK

There are several publications that investigated problems
associated with static announcement intervals in various pro-
tocols and application scenarios.

Natsheh et al. [11] proposed a solution based on fuzzy logic
to optimize hello messages in dynamic ad-hoc routing. Their
work focused on the mesh routing use case, and experiments
with a maximum of 35 simulated nodes were presented.
Furthermore, Khalaf et al. [7] investigated the broadcast storm
problem in mobile ad hoc networks. The authors presented
a probabilistic approach to improve the situation in a mesh
routing scenario.

Ahmed et al. [1] addressed the problem of beaconing
in vehicular ad hoc networks (VANETs). Combinations of
controlling a beacon’s transmission power, transmission rate,
and contention window at the MAC layer were proposed to
achieve efficient beacon communication in VANETs. Another
approach devoted to improve the problems related to static
beaconing intervals in ad hoc networks was presented by Tahar
et al. [14]. Hess et al. [6] investigated peer discovery in mobile
opportunistic networks by considering the mobility of nodes.

Peng [13] proposed an adaptive mobility-aware MAC pro-
tocol for wireless sensor networks. Apart from optimizing the
number of messages, the energy consumption was investigated.
Lim et al. [8] presented an approach called RandomCast to
improve the energy efficiency of 802.11 ad hoc networks.
In this approach, the sender can specify the desired level of
overhearing of neighboring traffic, trying to find a balance
between energy consumption and routing performance.

Using perfect difference sets for neighbor discovery, Link
et al. [9] presented an energy efficient approach for wireless
networks. The authors focused on sensor networks and DTNs
with sporadic communication, whereas we focus on networks
with higher communication frequencies in local clusters.

Peer-to-peer content distribution is another scenario where
announcements are relevant, and a trade-off must be made
between central tracker-based peer discovery and distributed
peer discovery. Dán et al. [5] presented a hybrid approach
that uses individual trackers and a gossip protocol to improve
peer discovery. By hopping between swarms and redistributing
known peers, efficiency is increased.

Liu et al. [10] developed a censor-ship resistant delay-
tolerant network for message exchange and evaluated it with
respect to performance and energy consumption. To avoid
energy draining broadcasting with fixed intervals, the authors
adopted an approach presented by Zheng et al. [18] based
on asynchronous wake-ups for ad hoc networks. Another
delay-tolerant networking system designed specifically for data
synchronization in emergency situations was presented by Paul
et al. [12]. While optimizations are proposed to speed up file
transfers and syncing, the actual peer discovery was realized
by simple broadcasts with fixed announcement intervals.

During an experimental evaluation of Serval as a delay-
tolerant emergency communication platform, Baumgärtner et
al. [3] found that regular broadcasts used for node discovery
or announcements of routing and data storage information
especially in networks with many direct peers require high
network bandwidth. The study showed that around 2 seconds
of announcement delay was the best trade-off between quick
peer discovery and conserving energy with the stock imple-
mentation made available by the Serval Project.

By exploiting social network characteristics for assisting ad
hoc peer discovery, Zhang et al. [17] attempted to find optimal
beacon probing rates with constant intervals for each group of
users. As stated by Wang et al. [16], peer discovery itself can
be as energy consuming as making phone calls.

Trifunovic et al. [15] presented a solution for opportunistic
networks of stock mobile devices using 802.11. Since ad hoc

mode and Bluetooth pairing does not really work in practice
on current mobile devices, open access points and intelligent
switching of clients between these access points were used.

While most of the mentioned work is highly specific to
the studied use cases, the general picture is that adaptive
or dynamic announcement intervals usually outperform static
ones, not only with respect to network performance, but also
regarding energy consumption. In our scenario, we consider
small dense clusters of nodes where a few nodes act as mobile
bridges between these islands, in contrast to most sparse sensor
networks. Furthermore, most approaches focus on lower layer
technologies, whereas our algorithms can be applied on the
application layer without operating system support.

III. DYNAMIC ANNOUNCEMENT INTERVALS

In this section, we present several dynamic announcement
strategies, the constraints associated with them, and quality
properties to evaluate their performance.

A. Announcement Strategies

We have developed several novel strategies for realizing
dynamic announcement intervals. Each strategy has access
to the current announcement delay, the global number of
announcements seen at the last observation interval and the
current number of unique peers. Our strategies are described
in the following:

1) Static: The Static announcement strategy is the basic
announcement approach used by most current broadcast pro-
tocols. There is a fixed interval defined for every node in which
an announcement is sent. This also means that the generated
global traffic is growing linearly with the node count. By
default, this interval is set to a 2 second delay in our tests,
which also is the recommended value for MANET NHDP [4].

2) Random: In the Random strategy, every node chooses a
random announcement delay. This delay is a random number
between a minimum and a maximum (as described in Sec-
tion III-B) for every observation interval. The distribution of
the random numbers, depending on the network size, heavily
influences the performance of this strategy, as well as the
duration of the observation interval.

3) RandomSweet: In this strategy, Random is extended.
The announcement interval is only set randomly if the current
global announcement rate is higher than one announcement per
second or less than the minimum number of announcements
per second (see Section III-B). Thus, if the network has
reached a stable state, this strategy does not change anything
and sticks to the last randomized delay for each node. This
stabilizes the network if by chance optimal delay combinations
are found, at least until nodes join or leave the network.

4) Step: After every observation interval, the Step strategy
checks the global announcement count. If the count is higher
than one announcement per second, the node’s announcement
delay is increased by one second. If the count is lower than 0.5
announcements per second, the node’s announcement delay is
decreased. This leads to gradually narrowing down to a must
suitable announcement delay over time.

5) StepRand: In this strategy, Step is extended by adding
randomness to each step. While the conditions remain the
same as in Step, a random value between 0 and 0.5 seconds
is added or subtracted to the announcement delay.

6) MaxFirst: MaxFirst is a rather defensive strategy: when-
ever a high global announcement rate is detected (more than
one announcement per second), the node’s announcement
interval is set to the observation interval, i.e., the maximum
possible announcement delay is tried first, hence the name.
Then, if less than 0.5 global announcements per second are
present, the strategy decreases the announcement delay by one
second per iteration, until the local minimum of 0.5 seconds is
reached. Thus, a very low announcement frequency is favored,
which should be beneficial in larger or fast growing networks.

7) MinFirst: MinFirst reverses MaxFirst, and thus is an
aggressive announcement strategy. Whenever less than 0.5
announcements per second are detected globally, the an-
nouncement delay is set to the local minimum of 0.5 seconds.
Otherwise, the announcement delay is increased by one second
per iteration, until the observation interval is reached. This
strategy supports scenarios where most of the time only very
few peers are in direct vicinity of each other.

8) Unsteady: In the Unsteady strategy, each announcement
delay is computed only on the basis of the number of unique
peers known by a node and not on the global announcement
rate like in the other algorithms. The goal is to reach a
global rate of one announcement per second. Looking at the
current peer count, an announcement interval is computed to
complement the announcement intervals of the other nodes.
Using this method, the strategy should be able to adapt to
new situations as fast as defined by the observation interval.

B. Constraints

To guarantee that a node can be discovered, we define an
observation delay, with the same value for all nodes. This
is the time between re-evaluation and before another change
in the announcement frequency can happen. Each node has
to announce itself at least once per observation interval. All
nodes must set the announcement delay after the observation
delay is over. This enables a better comparability between the
announcement strategies.

The observation delay is set to 20 seconds in all our
experiments, since the baseline for static announcements is
2 seconds. Therefore, it is reasonable to re-evaluate the situ-
ation after 10 standard announcements. The higher the delay,
the longer it takes for the network to adapt to new situations.
A very short delay in conjunction with the premise that each
node should at least send one announcement per interval leads
to higher loads, especially with higher node numbers. Thus, a
delay of 20 seconds ensures that within this interval all peers
in the direct neighborhood are discovered.

C. Quality Properties

To evaluate and compare different strategies for dynamic
announcement intervals, universally applicable quality proper-
ties must be defined. Our main goal is to globally have one

announcement per second at any given time, not less, but also
not much more to conserve resources. This goal is motivated
by the drive-by scenario described in Section I, in which 10%
of the window of opportunity would be used for peer discovery
under this assumption.

1) Global Announcement Rate: The Global Announcement
Rate is measured by counting the announcements per second.
This parameter is the main optimization goal for our algo-
rithms, since it is directly correlated with the bandwidth used
for peer discovery.

2) Global Announcement Gaps: The Global Announcement
Gaps are measured by the time periods between two an-
nouncements. The Global Announcement Gaps are important
to observe, since they reveal how long a new peer needs until
it receives an announcement from the rest of the network.
Although this value is roughly the inverse of the Global
Announcement Rate, its distribution can reveal other aspects,
as observed in our experiments.

3) Adaptation Rate: The Adaptation Rate represents the
time needed for an announcement strategy to adapt to a new
situation. It describes the situation that all nodes are started at
the same time, and defines the moment when no significant
change in the number of announcements is recognizable.

IV. IMPLEMENTATION

In this section, implementation issues of our announcement
strategies and the network using them are discussed.

A. Mesher

To investigate dynamic announcement intervals, we ex-
tended a simple broadcast service to provide easily exchange-
able announcement algorithms for peer discovery. Mesher3 is
a simple local chat written in Google’s Go language by one
of the authors, and therefore is easily extensible. It utilizes
broadcast packets for neighbor discovery and for exchanging
public chat messages. Mesher uses a static announcement
interval of 2 seconds in its default configuration, and thus
the network traffic is growing linearly with the node count.
Each announcement contains the elliptic curve public key of
the sending node, the services provided by the node, 512 bytes
random data to simulate database states and a cryptographic
signature, resulting in 642 bytes per broadcast packet. Other
protocols might use larger or smaller announcement packets,
depending on the type of state that is broadcasted.

B. Dynamic Interval Computation

To evaluate various interval computation methods including
dynamic changes, the corresponding algorithms needed to be
easily exchangeable. Therefore, we decided to implement the
algorithms using an embedded JavaScript engine, and defined
an interface to hand over useful information to access it in the
main Go binary:

• get_announce_count()
• get_and_reset_announce_count()

3Mesher, available online: https://github.com/gh0st42/mesher

• get_peer_count()
• get_announce_delay()

After analyzing the provided values, the algorithms
are able to set a new announcement interval using
set_announce_delay(Int).

C. Announcement Strategies in Mesher

For all announcement strategies, we used the same template
(see Listing 1) in JavaScript where one specific function is
responsible for computing any changes. Each strategy gets
the current announcement delay and the global number of
announcements seen in the last observation interval. This setup
proved to be perfect for rapid prototyping of new algorithms
without recompilation or modifications of the main binary.

Listing 1: Basic layout of the announcement strategies
var observation_interval = 20000;
var total_count = 0;
var min_delay = 500;

set_announce_delay(2000);
for(;;) {
sleep(observation_interval);
var cur_count = get_and_reset_announce_count();
var cur_delay = get_announce_delay();

// call scheduler and set new delay there
scheduler(cur_count, cur_delay);

}

V. EVALUATION SETUP

To evaluate our announcement strategies, several setups
were used, including emulations with many nodes as well as
physical machines connected over various network links.

A. Network Emulation

For network emulation, we selected the Common Open
Research Emulator4 (CORE), which is scriptable using Python
and in this way allows versatile creation of experimental
configurations. This system uses Linux and lightweight virtual-
ization to provide a networking testbed for unmodified, regular
Linux binaries. All announcement strategies are evaluated
under four different network scenarios described below:

1) Centralized Network: In the Centralized Network con-
figuration, all nodes are connected centrally and hence are
located in the same collision domain. This setup is similar to
a classic network hub or a local ad hoc wireless network in
the sense that each node can directly communicate with all of
its adjacent peers. As long as the network is not oversaturated,
every node gets the announcements of every other node.

2) Growing Network: In the Growing Network configura-
tion, nodes are added periodically to the network. Ideally, the
announcement strategies should adapt to the new situation fast
and down-regulate their announcement counts. Each second,
a new node joins the network, and adaptation is required to
maintain optimal resource usage.

4CORE: http://www.nrl.navy.mil/itd/ncs/products/core

3) Merging Network: In the Merging Network configura-
tion, two equally sized Central Networks merge at a fixed
point in time, doubling their size instantaneously. Using this
configuration, adaptation rates for abruptly changing network
configurations can be observed.

4) Splitting Network: In the Splitting Network configura-
tion, the network is split in two halves at a fixed point in time.
By creating two independent networks, the announcement
strategies need to react fast to satisfy the defined quality
properties and avoid prolonged periods of silence between
announcements.

B. Physical Testbed

To evaluate the proposed announcement strategies under
realistic conditions, a physical testbed was created. It consists
of several Raspberry Pi 3 Model B5 single-board comput-
ers, running under the vendor-provided Debian-Linux-based
Raspbian6 operating system. This platform is comparable to
mobile phones in terms of energy consumption and therefore
allows us to obtain realistic energy and power consumption
measurements when evaluating the announcement strategies.

We set up eight Raspberry Pis as network participants, as
well as an additional Raspberry Pi as a system under test
(SUT). The energy consumption of the SUT was measured
using an Odroid Smart Power measurement device, an external
power meter. The data points were logged at 5 Hz to another
device, in order to prevent disruption of the measurement.

VI. EXPERIMENTAL EVALUATION

In this section, the announcement strategies described in
Section III are evaluated using the network configurations of
Subsection V-A. Based on the quality properties of Subsection
III-C, the strategies are compared to each other.

To test our strategies, the centralized network configuration
was evaluated with different node counts. For each of the eight
announcement strategies, the tests were performed using 2, 5,
10, 25, 50, 100 and 200 nodes, resulting in 56 configurations.
These configurations were each executed using two nodes
starting mechanisms: a) the batch node start, in which all nodes
were started randomly in the observation interval window; b)
the delayed node start, where a node was added every second,
resulting in a linearly growing network.

In addition, two dynamic network configurations were used:
Split, where the central network was split in two halves,
and Merge, where two equally sized networks were joined.
Summing up the different configurations, 224 independent
experiments were performed.

A. Basic Capabilities

In Fig. 3, the announcement rate for all strategies in a static
network with 25 nodes is visualized. The strategies share the
same observation interval, and therefore the first 20 seconds
are the same, since they also start with the same announcement

5https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
6https://www.raspbian.org

0 50 100 150 200 250
time (s)

0

2

4

6

8

10

12

14

a
n
n
o
u
n
ce

s
/

se
co

n
d

MaxFirst-n025

MinFirst-n025

Random-n025

RandomSweet-n025

Static-n025

Step-n025

StepRand-n025

Unsteady-n025

Fig. 3: Announcements/second in a static network of 25 nodes.

interval of 2 seconds. The Static strategy preserves this an-
nouncement interval, and the globally generated traffic remains
the same for the whole experiment.

Unsteady and MaxFirst show very low announcement rates
in this network configuration. Unsteady uses the node count
(see Sec. III-A8) and computes its maximum announcement
delay, which in this case is greater than the observation delay
and sets this maximum. MaxFirst jumps to the maximum
possible announcement delay, since the observed announce-
ment count is high. Since the situation does not change, both
algorithms stick to their decision in future observations. This
similarity changes for lower node counts. Considering Fig-
ure 4a, MaxFirst sets the same very low announcement rates
in the beginning, which leads to low global announcement
rates and finally to big gaps between each two announcements.
Unsteady (Fig. 4h) compensates this problem and starts with
higher announcement rates in smaller networks.

MinFirst and Step also behave similarly, since the down
steps are implemented the same way. Both algorithms extend
their announcement delay by 1 second, starting at a delay of
2 seconds. StepAndRand also is in the same group and only
differs from Step by adding a random value with a maximum
of 0.5 seconds. All three algorithms achieve the goal of a less
saturated network and also approach the same minimum as
MaxFirst and Unsteady.

In this network configuration, RandomSweet as well as
Random show a similar behavior. The announcement rate
drops directly after the initial observation, but stays higher than
for the other strategies that achieve a low announce rate after
around 200 seconds. To get similar results as, for example,
MaxFirst, all nodes would need to pick a pretty high delay by
chance, and the more nodes in the network, the more unlikely
it is that all nodes do this in the same observation interval.

B. Bandwidth Savings

A major goal for using dynamic announce intervals is the
reduction of bandwidth in such protocols. Table I shows the

100

101

102
a
n
n
o
u
n
ce

s
/

se
co

n
d

(a) MaxFirst (b) MinFirst (c) Random (d) RandomSweet

0 50 100 150 200 250
time (s)

100

101

102

a
n
n
o
u
n
ce

s
/

se
co

n
d n002

n005

n010

n025

n050

n100

n200

(e) Static

0 50 100 150 200 250
time (s)

(f) Step

0 50 100 150 200 250
time (s)

(g) StepRand

0 50 100 150 200 250
time (s)

(h) Unsteady

Fig. 4: Comparison: announcements produced by the proposed strategies in different static network configurations.

TABLE I: Announcements of the strategies compared.

Name
Nodes

2 5 10 25 50

Static 291 732 1460 3658 7296
Random 34,4% 47,0% 37,0% 37,9% 37,3%

RandSweet 58,1% 41,7% 29,0% 35,6% 37,7%
Step 101,7% 45,4% 35,2% 33,2% 33,4%

StepRand 99,7% 42,5% 32,5% 30,1% 30,2%
MaxFirst 99,0% 21,2% 17,1% 17,0% 17,1%
MinFirst 84,9% 44,3% 34,7% 33,3% 33,5%
Unsteady 188,7% 56,8% 32,5% 17,7% 17,1%

announcement rates of the proposed strategies compared to
the static announcement strategy. For this table, the announce-
ments sent by one node in the batch node start is used.
This number also includes the observation delay in which all
strategies follow the static behavior.

All non-static strategies converge for growing node counts.
Step, StepRand and MinFirst use around a third of the number
of announcements compared to Static. MaxFirst and Unsteady
take advantage of their fast adaptation rate and are able to save
around 80% of the announcements. This means that only one
fifth of the bandwidth is used without sacrificing any comfort
or usability of the protocol.

Table I also shows that the proposed strategies benefit the
most from their dynamic behavior for networks with 2 to 10
nodes. After that, only minor improvements can be achieved.
The announcement rate of Static can be altered easily by hand
and could therefore also reach the goal of a lower global
announcement rate for big networks, but would then lose the
ability to perform good in small networks without manual
interaction on each node.

Unsteady uses more bandwidth than Static for a mini-

mal network. This allows fast discovery of new peers in
an existing network and addresses the real-world problems
described in Figure 2. Random and RandomSweet have a lower
total announcement count in small networks. This shows that
these strategies are inferior in terms of discovery times. The
remaining Step-based strategies show satisfactory results in
small and bigger networks in terms of bandwidth usage, but
take a longer time to reach an optimal resource usage.

C. Adaptation Rate

Unsteady and MaxFirst have a very high adaptation rate,
since they set their final announcement delay after the first
observation interval for all static network configurations, as
presented in Figure 4h. MaxFirst is able to achieve fast
adaptation rates for big networks, while MinFirst is able to
achieve this in small networks, as a result of their designs.
A disadvantage of MaxFirst is shown in Figure 4a: For small
networks, the announcement rate also drops to the minimum
in the first place, so discovery may be worsened.

The adaptation rate of the Step-based algorithms depend on
the number of nodes. As outlined in Figure 4f, in a network
of 5 nodes around 70 seconds and in a network of 10 nodes
around 150 seconds are needed to fully adapt.

In Figure 5, a splitting network configuration with 10 nodes
is presented. The Step-based strategies reach their target an-
nouncement rate immediately. In RandomSweet and Unsteady,
new announcement rates are visible after about 30 seconds.
Both strategies reach announcement rates as in the united,
central network. This understanding only slightly differs in
the merging network: The Step based algorithms need longer,
while Unsteady and MaxFirst adapt in the observation interval.

The observed adaptation rates are also valid for the merging
network configuration: MaxFirst and Unsteady adapt in a 30-
seconds window, while the Step strategies take a longer time.
For the network of 5 nodes, the Step strategies also achieve

0 50 100 150 200 250
time (s)

0

1

2

3

4

5

6

a
n
n
o
u
n
ce

s
/

se
co

n
d

split

MaxFirst-n010

MinFirst-n010

Random-n010

RandomSweet-n010

Static-n010

Step-n010

StepRand-n010

Unsteady-n010

Fig. 5: Splitting network configuration with 10 nodes.

0 50 100 150 200 250 300
time (s)

0

10

20

30

40

50

60

a
n
n
o
u
n
ce

s
/

se
co

n
d

MaxFirst-n100

MinFirst-n100

Random-n100

RandomSweet-n100

Static-n100

Step-n100

StepRand-n100

Unsteady-n100

Fig. 6: A growing network with 100 nodes.

an adaptation rate of around 40 seconds. Especially in small
networks, this rate is important, since the announcement gaps
are compensated quickly.

Figure 6 shows a delayed start of 100 nodes, with one
node starting per second. Compared to Static, the proposed
algorithms are able to keep the announcement rates low. Since
every node announces using the default interval for the first 20
seconds, the announcement rate grows even in the very agile
Unsteady and MaxFirst strategies. Immediately after all nodes
are spawned, the algorithms are able to adapt to the situation.

D. Announcement Gaps

Figure 7 shows a violin plot of the global announcement
gaps for a static network with 10 nodes. The mean gap
correlates with the global announcement rate, and so does the
variance. Having this in mind, the perceptions of Subsection
VI-A are backed by this plot. Although MaxFirst does not
have the highest announcement gap, it produces a relatively
high percentage of longer gaps, while all other strategies only
have a low number of outliers in this area. This is also the case

MaxFirst

MinFirst

Random

RandomSweet
Static Step

StepRand

Unste
ady

0

1

2

3

4

5

6

a
n
n
o
u
n
ce

 g
a
p
s

(s
)

Fig. 7: Announcement Gaps in a static network of 10 nodes.

for a network of 5 nodes. Yet larger network configurations
do not show the same characteristics. This behavior can be
ascribed to the observations made in the previous section.

What stands out is that compared to Static, all strategies
perform worse with respect to the maximum announcement
gap. This can be put in perspective by examining the upper
quartile: For all algorithms except for MaxFirst, the upper
quartiles of the announcement gaps are below 2 seconds.

E. Energy Consumption

Our initial assumption was that a reduced number of
announcements would reduce the consumed energy propor-
tionally. We evaluated this assumption in a wireless network
of 9 ARM-based nodes as described in Section V-B. In
these experiments, each node acted as sender and receiver
simultaneously. One node (system under test - SUT) was
connected to an external power meter (ODROID SmartPower),
which logged the power and energy consumption of the node
at a 5 Hz rate. Additionally, we ran every experiment with
two different network interface configurations, with a different
idle power consumption each: ad hoc mode (Pidle=1.37 W)
and managed mode (Pidle=1.45 W).

To measure the higher end of the power consumption, two
additional announcement strategies sending announcements at
a high rate are introduced: Static05 and Static01, with 2 and
10 announcements per second, respectively.

To compute the energy consumed by our software, the
average idle power is subtracted from the measured power
in the given 300 seconds measurement interval:

E :=

∫ 300

0

Pmeasured(t) dt− 300 ∗ Pidle (1)

In the physical testbed with 9 nodes, the default Static
strategy uses 1.99 mWh. Static05 and Static01 use 11.97 mWh
and 32.52 mWh for their announcements, respectively. Based
on these numbers, a correlation between the number of an-
nouncements (sent and received) and the consumed energy is
found and presented in Table II.

While the correlation between the number of announce-
ments and the energy consumption is reasonable for large
numbers of announcements, this correlation is not substantial
for lower numbers of announcements. The general trend seems
to be correct (correlation coefficient r = 0.985), since all
proposed strategies need less energy than Static. In contrast,
there are examples in which this correlation seems to be vice
versa, e.g., when comparing MaxFirst and RandomSweet.

TABLE II: Correlation of energy consumption and announce-
ments in a physical testbed of 9 nodes.

Name # Ann. E (mWh) rel. Ann. rel. E ratio
Static 1323 1.99 1.00 1.00 1.00

Static05 5404 11.97 4.08 6,00 1.47
Static01 29342 32.52 22.18 16.31 0.74

MaxFirst 256 1.17 0.19 0.59 3.04
MinFirst 473 1.26 0.36 0.63 3.04
Random 434 1.34 0.33 0.67 2.04

RandomSweet 342 0.73 0.26 0,37 1.42
Step 495 1.20 0.37 0.60 1.61

StepRand 460 1.12 0.35 0.56 1.61
Unsteady 514 1.38 0.39 0.69 1.78

To summarize, the energy measurements of our experiments
show that for high numbers of announcements the energy
consumption is increased. Side-effects of the programming
language, as well as the relatively low energy impact of the
announcements of Mesher disturb the energy measurements.
Nevertheless, a general trend is clearly evident.

VII. CONCLUSION

In this paper, we have shown that without relying on
application-specific properties, optimizations for network pro-
tocols relying on announcements can be achieved. We have
compared eight dynamic announcement strategies, including
a standard static announcement strategy and a random an-
nouncement strategy. While a random announcement strategy
might preserve more bandwidth than a static announcement
strategy, it has negative side-effects compared to the other
proposed announcement strategies. By dynamically changing
the announcement interval and depending on the number
of nodes involved, we were able to reduce the bandwidth
required for announcements by more than 80% compared to a
static announcement strategy. Nevertheless, our requirements
of fast discovery of at least one node are still met. The
evaluation of the proposed announcement strategies in terms
of energy consumption show that announcements do effect
battery lifetimes and are thus worth to be reduced.

There are several areas for future work. For example, so
far the algorithms only have access to information like the
number of announcements received in the last observation
interval or the number of currently known peers. By giving
the strategies more information, further optimizations might be
possible. Furthermore, a dynamic observation interval could be
implemented, to allow even faster adaptation to new situations.
In addition, the proposed announcement strategies should be
tested in real-world applications where more computations are
needed to generate the announcements, e.g., sending database
state by using hashing functions, or transmitting routing tables
in a mesh network. Finally, the proposed announcement strate-
gies should be implemented in existing software platforms
such as Serval where they could make a difference in real
world emergency scenarios.

ACKNOWLEDGMENTS

This work has been funded by the LOEWE initiative (Hes-
sen, Germany) within the NICER project and the Deutsche
Forschungsgemeinschaft (DFG, SFB 1053 - MAKI).

REFERENCES

[1] S. H. Ahmed, S. H. Bouk, and D. Kim. Adaptive beaconing schemes
in VANETs: Hybrid approach. In 2015 International Conference on
Information Networking (ICOIN), pages 340–345. IEEE, 2015.

[2] G. Aloi, M. Di Felice, V. Loscrı̀, P. Pace, and G. Ruggeri. Spontaneous
smartphone networks as a user-centric solution for the future internet.
IEEE Communications Magazine, 52(12):26–33, 2014.

[3] L. Baumgärtner, P. Gardner-Stephen, P. Graubner, J. Lakeman, J. Höchst,
P. Lampe, N. Schmidt, S. Schulz, A. Sterz, and B. Freisleben. An ex-
perimental evaluation of delay-tolerant networking with Serval. In 2016
IEEE Global Humanitarian Technology Conference (GHTC), Seattle,
USA, Oct. 2016.

[4] T. Clausen, C. Dearlove, and J. Dean. Rfc 6130: Mobile ad hoc network
(manet) neighborhood discovery protocol (nhdp), ietf, 2011.

[5] G. Dán, N. Carlsson, and I. Chatzidrossos. Efficient and highly available
peer discovery: A case for independent trackers and gossiping. In 2011
IEEE International Conference on Peer-to-Peer Computing (P2P), pages
290–299. IEEE, 2011.

[6] A. Hess, E. Hyytiä, and J. Ott. Efficient neighbor discovery in mobile
opportunistic networking using mobility awareness. In 2014 Sixth
International Conference on Communication Systems and Networks
(COMSNETS), pages 1–8. IEEE, 2014.

[7] M. B. Khalaf, A. Y. Al-Dubai, and W. Buchanan. A new adaptive
broadcasting approach for mobile ad hoc networks. In 6th Conference
on Wireless Advanced (WiAD), pages 1–6. IEEE, 2010.

[8] S. Lim, C. Yu, and C. R. Das. Randomcast: An energy-efficient
communication scheme for mobile ad hoc networks. IEEE Transactions
on Mobile Computing, 8(8):1039–1051, 2009.

[9] J. Á. B. Link, C. Wollgarten, S. Schupp, and K. Wehrle. Perfect
difference sets for neighbor discovery: energy efficient and fair. In 3rd
Extreme Conference on Communication: The Amazon Expedition, pages
5:1–5:6. ACM, 2011.

[10] Y. Liu, D. R. Bild, D. Adrian, G. Singh, R. P. Dick, D. S. Wallach,
and Z. M. Mao. Performance and energy consumption analysis of
a delay-tolerant network for censorship-resistant communication. In
Proceedings of the 16th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, pages 257–266. ACM, 2015.

[11] E. Natsheh, A. B. Jantan, S. Khatun, and S. Shamala. Adaptive
optimizing of hello messages in wireless ad-hoc networks. Int. Arab
J. Inf. Technol., 4(3):191–200, 2007.

[12] P. S. Paul, B. C. Ghosh, K. De, S. Saha, S. Nandi, S. Saha, I. Bhat-
tacharya, and S. Chakraborty. On design and implementation of a
scalable and reliable sync system for delay tolerant challenged networks.
In 2016 8th International Conference on Communication Systems and
Networks (COMSNETS), pages 1–8, Jan 2016.

[13] F. Peng. A novel adaptive mobility-aware mac protocol in wireless
sensor networks. Wireless Personal Communications, 81(2):489–501,
2015.

[14] R. Tahar, A. Dhraief, A. Belghith, H. Mathkour, and R. Braham.
Autonomous and adaptive beaconing strategy for multi-interfaced wire-
less mobile nodes. Wireless Communications and Mobile Computing,
16(12):1625–1641, 2016.

[15] S. Trifunovic, B. Distl, D. Schatzmann, and F. Legendre. Wifi-opp: ad-
hoc-less opportunistic networking. In 6th ACM Workshop on Challenged
Networks, pages 37–42. ACM, 2011.

[16] W. Wang, V. Srinivasan, and M. Motani. Adaptive contact probing
mechanisms for delay tolerant applications. In 13th Annual ACM
International Conference on Mobile Computing and Networking, pages
230–241. ACM, 2007.

[17] B. Zhang, Y. Li, D. Jin, P. Hui, and Z. Han. Social-aware peer
discovery for d2d communications underlaying cellular networks. IEEE
Transactions on Wireless Communications, 14(5):2426–2439, May 2015.

[18] R. Zheng, J. C. Hou, and L. Sha. Asynchronous wakeup for ad hoc
networks. In Proceedings of the 4th ACM International Symposium on
Mobile Ad Hoc Networking & Computing, pages 35–45. ACM, 2003.

