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Abstract—We study video dissemination in a multi-hop wireless
network with a source and several users. The source intends to
stream a video to the users of the network. For the sake of
energy-efficiency, the video is disseminated through the whole
network by the help of some users that forward the video to
who other users. In such networks, designing a proper incentive
for the forwarding users who consume energy for forwarding the
video to others is of high importance. In this paper, we design an
incentive mechanism based on a game-theoretic model in which a
user is paid by its receiving users in case of forwarding the video
to them. The video is layered and a higher quality of experience
(QoE) at a receiving user is possible by receiving more layers
of the video. A utility function is proposed for every user that
captures the perceived QoE at the user and the cost she pays
for the video. Moreover, it captures the reward the user receives
from others in exchange for forwarding the video to them. The
utility function is designed in a way that the users who contribute
more in the network, in terms of forwarding the video to others,
are paid more. A non-cooperative game is formulated in which
every user selfishly maximizes its own utility and determines
the number of video layers she prefers to receive. The game
is iterative and converges to the Nash equilibrium point. The
simulation results demonstrate that the proposed game theoretic
model results in a higher QoE at the users as compared to that
of a non-incentive video dissemination model.
Keywords: Cross-layer model; quality of experience; cost sharing
game; video streaming; multi-hop wireless network.

I. INTRODUCTION

Interest in video contents has significantly increased among

the mobile users during the past years and a huge amount of

network traffic is dedicated to video streaming [1]. Multi-hop

communication is a promising communication technique that

can be exploited to fulfill the ever-growing users requirements.

In such a communication, a user, instead of receiving the

data from a centralized access point, can obtain the data from

another user in her proximity who has already received the

same data. Since in a multi-hop network, the data is forwarded

through the network by the help of some intermediate users,

designing proper incentives for the users to forward the data

to others is of high importance. Studies show that most of the

users are reluctant to contribute in networks without receiving

an incentive [2]. This selfish behavior of the users can degrade

the performance of the whole network, especially when a

user is located closer to the source than the others and her

contribution in forwarding the data to others and acting like a

gateway is important for the whole network. Thus, designing

proper incentives can significantly affect the user experience

in multi-hop wireless networks.

In this paper, we propose an incentive mechanism for video

streaming in multi-hop wireless networks that provides a better

video quality for the users who contribute more in the network.

A well-known technique for representing a video in different

qualities is by encoding the video into several layers. A layered

video is composed of multiple layers, a base layer and several

enhancement layers. Each layer has its own properties in terms

of data rate requirement and affects the quality of the video

perceived by the user differently. Receiving more enhancement

layers results in a higher video quality.

Typically for network optimization, a set of technical param-

eters, like throughput maximization [3] or energy minimization

[4], are considered as the Quality of Service (QoS) constraints

at the users while the application layer requirements are

usually ignored. Considering merely QoS constraints in video

streaming scenarios may not necessarily result in user satis-

faction. The overall user satisfaction is defined subjectively

and is called quality of experience (QoE). Mean opinion

score (MOS) [5] and video quality metric (VQM) [6] are two

of the subjective QoE metrics. The MOS metric is divided

into five levels according to the user perception: 5 and 1

represent the best and worst QoEs, respectively. The VQM

is in the range of 0 and 1 such that the VQM value closer

to 0 shows a higher QoE. Maximizing the subjective QoE are

proposed in [7] and [8] over WLAN and Ad Hoc networks,

respectively. In [7], a single-hop multicast transmission of a

video over IEEE 802.11 is studied and the authors maximize

the MOS by choosing a proper multicast group and modulation

scheme at the transmitter. The approach proposed in [8] is to

maximize MOS-based QoE by minimizing the packet loss in a

network with lossy links. The aforementioned works, however,

study different objective and subjective parameters in video

streaming scenarios, none of them discusses incentive design

for video streaming in user centric networks.

In this paper, we propose a novel decentralized cross layer

model for layered video dissemination in a multi-hop wire-

less network that takes parameters from physical layer and

application layer into account. Current work is built upon our

recent work [9] where we proposed a game theoretic algorithm

for energy-efficient multi-hop communication. In the current

work, we consider layered video streaming as the application

and design an incentive mechanism to maximize the QoE of

the users while preserving the energy efficiency of the network.



We propose a game theoretic model in which the users of the

network are considered as the players of the game and a user,

in case of forwarding the video to others, will be paid by

its receiving users. The payment from a receiving user to a

transmitting user is considered to be via virtual currency [10]

depending on the energy a transmitting user consumes. By

having more contribution in the network, a node can collect

higher reward (virtual currency) and therefore, can get higher

layers of video which results in higher QoE. A utility function

is defined for the users that takes the QoE of the user, the

cost she pays for such a QoE and the reward it receives for

her contribution in the network. By maximizing her utility

function, the user determines the number of video layers she

prefers to receive. Moreover, she determines which of the users

in the network she prefers to receive each of the video layers

from.

In order to benefit from broadcast nature of wireless chan-

nels, the users exploit multicast transmission. When a group of

users receive a certain layer from the same transmitting user, a

multicast transmission can serve all the receiving users at once.

In such a case, the cost that has to be paid to the transmitting

user is shared among the multicast receiving users using cost

sharing methods [11]. This not only reduces the cost paid by

the receiving users in a multicast group, but also decreases

the energy spent in the network. Moreover, the proposed game

converges to the Nash equilibrium (NE) point [9].

The rest of this paper is organized as follows: Section II de-

scribes the network model and the assumptions. In Section III,

the proposed game theoretic model is described. Simulation

results are provided in Section IV and Section V concludes

the paper.

II. NETWORK MODEL AND ASSUMPTIONS

In this section, we first explain the network model and

the properties of the video which has to be streamed in the

network. Then in subsection II-B, the interactions among the

nodes of the network are discussed.

A. Video and Transmission Properties

A wireless network is considered composed of N+1 nodes,

with a source S that intends to stream a video to a set P =
{1, . . . , N} of other nodes. The set W = P ∪ {S} represents

the set of all nodes in the network and every node j ∈ W has a

transmit power constraint Pmax
j . The video is encoded into L

layers and each layer l ∈ L = {1, . . . , L} has data rate dl bits

per second. The layers of the video must be received at a node

in consecutive order, that is, in order to decode layer l > 1,

all the layers 1 ≤ k ≤ l− 1 are required at the node. A layer

l increases the QoE of a user by ql and q = [q1, . . . , qL]T is

an L× 1 vector containing the qualities ql of the layers such

that ql > 0. Each video layer has a different impact on the

QoE of the user and therefore, the values of ql are different

depending on the layer. Node i receives the video layers either

directly from the source or via another node j ∈ P .

The video dissemination flow from the source node to all

other nodes of the network form a tree-graph rooted at the

source, called the broadcast tree. Thus, as the video is encoded

into L layers, the nodes form L separate broadcast trees such

that each video layer is disseminated by a certain broadcast

tree. The node determines how many of the broadcast trees it

should join to. Due to the power constraint at the nodes of the

network, node i cannot be served by any arbitrary node in the

network. The set of nodes that can serve node i considering

the power constraint is called the neighboring nodes of node

i which is denoted by Ni and defined as

Ni =

{

j

∣

∣

∣

∣

j ∈ W, PTx
j < Pmax

j

}

(1)

in which PTx
j is the transmit power of node j. A node j ∈ W

that transmits a video layer to the receiving node i ∈ P is

called the parent node (PN) of node i for layer l and is denoted

by ali. Conversely, node i is referred to as the child node (CN)

of PN j for layer l. The set of CNs of PN j for layer l is given

by Ml
j .

We define the vector of video layers received by node i

as an 1 × L binary vector b
(r)
i = [b

1,(r)
i , . . . , b

L,(r)
i ] in which

b
l,(r)
i ∈ {0, 1} and

b
l,(r)
i =

{

1, ∃j ∈ Ni, a
l
i = j, b

l−1,(r)
i ≥ b

l,(r)
i

0, otherwise.
. (2)

Condition b
l−1(r)
i ≤ b

l,(r)
i indicates that the layers of the video

must be received in consecutive order so that they can be

decoded. The QoE of node i is given by the aggregated quality

node i obtains from each layer, i.e.,

Qi = b
(r)
i q. (3)

We consider a threshold model for decoding the received

signal at a node, such that a minimum signal to noise ratio

(SNR), denoted by γth, is required at a CN in order to

decode the signal transmitted from its PN successfully. In the

transmission from PN j to CN i, the received SNR at the CN

is calculated by

γi,j =
pTx
j gi,j

σ2
(4)

in which pTx
j is the transmit power of PN j, gi,j is the

channel gain between them and σ2 is the noise power at

node i. Consequently, the transmit power at PN j in a unicast

transmission to CN i considering γth is obtained by

punii,j =
γthσ2

gi,j
. (5)

It is assumed that γth and gi,j for the nodes i and j are

the same for all the video layers. Thus, the minimum power

required at the PN j for transmission to CN i, i.e., punii,j ,

is independent of the video layer. The main difference in

transmission of different video layers from PN j to CN i
comes from different data rates required by each of the video

layers that result in different energy consumption at the PN.

The energy required at PN j for unicast transmission of layer



l to CN i, denoted by eunii,j , depends on the data rate dl of the

layer as

el,unii,j =
dl

nb
punii,j Ts (6)

in which nb is the number of bits per symbol transmitted from

the PN j with symbol duration Ts which are assumed to be

the same at all nodes and all the video layers. We stick with a

simple resource allocation scheme and assume that each video

layer is transmitted in a different orthogonal channel by each

transmitting node and thus, there is no collision in the network.

It is also considered that the capacity of the channels, utilized

by the transmitting nodes, are higher than the data rate required

for the layers.

In a multicast transmission, when a PN transmits to multiple

CNs, the transmit power of PN j for layer l is given by

plj = max
i∈Ml

j

{punii,j }, (7)

that is, the CNs in Ml
j that requires the highest unicast power

determines the transmit power of node j for layer l. Similar to

the transmit power, the energy required at transmitting node j
for transmission of layer l to its CNs in Ml

j is given by

elj = max
i∈Ml

j

{el,unii,j }. (8)

The vectors pj = [p1j , . . . , p
L
j ]

T and ej = [e1j , . . . , e
L
j ]

T are

L× 1 vectors with plj and e1j representing the transmit power

and the consumed energy of node j for transmission of layer l,
respectively. We define the vector of video layers transmitted

by node j as a 1 × L binary vector b
(t)
j = [b

1,(t)
j , . . . , b

L,(t)
j ]

in which -

b
l,(t)
j =

{

1, Ml
j 6= ∅

0, otherwise,
(9)

so that, the total transmit power of PN j is given by PTx
j =

b
(t)
j pj .

B. Interactions of the Nodes in the Network

Before introducing the mathematical expression of different

parameters related to the our proposed mechanism, using Fig.

1, we briefly explain the reason for defining parameters. In

this network, for any one-hop transmission from a PN to a

CN (or a group of CNs in a multicast transmission), a cost

is paid to the PN from the CN that receives the video layer.

To avoid confusion, the cost that the CN pays, from the PN’s

point of view, is referred to as the reward of the PN due to

forwarding the video layer, however, they are equal. The cost

that a CN pays to its PN (or the reward the PN receives) is

a term defined between a PN-CN pair, and as we will show,

depends mainly on the energy the PN consumes to serve the

CN, so that, the more energy the PN spends the higher the

reward it receives. Beside the cost, another parameter ,called

the incentive, is defined in this network for the case that a

layer received by a CN is forwarded by to other other nodes

of the network. In such a case, as the CN, node i in Fig. 1,

receives reward in exchange for forwarding the video layer to

other nodes, sends part of its reward, which is received from its

CNs in Ml
i, as incentive to its PN, i.e., node j in Fig. 1. This

incentive at node j is like a credit for node j’s contribution

and shows the importance of node j in the network, or in

other words, the importance of the link between the nodes j
and i for the rest of the network. Therefore, unlike the cost (or

reward) which depends on the properties of the link between

a PN and a CN, incentives reflect the importance of the role

that a node plays in the network.

In our mechanism, the concept of incentive will be exploited in

order to motivate the intermediate nodes to get the video layers

form their PNs and distribute in the network. For instance in

Fig. 1, when node i is requested by node m for a video layer, it

can get the video layer from its PN, node j in Fig. 1, transmit it

to node m, receive reward from node m in exchange, and send

part of it as incentive to node j because of its contribution.

Now, we model the cost, the reward and the incentive. We

assume that the cost paid by node i to receive the video layer

l from node j is denoted by clj,i but, in general, the cost

that node i pays for layer l to its PN, which is one of its

neighboring nodes, is denoted by cli such that cli = clj,i if

node j is the PN of CN i for layer l, i.e., ali = j.

By defining an L×1 vector ci = [c1i , . . . , c
L
i ]

T that contains

the cost paid by node i to the PNs of each layer, the total cost

paid by node i to its PNs in order to receive the video is given

by
Ci = b

(r)
i ci. (10)

Similarly, if node i forwards the video layers to other nodes, it

will be paid by its CNs. The reward of node i for forwarding

layer l to its CNs m ∈ Ml
i, is given by

rli =
∑

m∈Ml
i

cli,m. (11)

Hence, by defining an L × 1 vector ri = [r1i , . . . , r
L
i ]

T that

contains the reward received by node i from the CNs of each

layer, the total reward that node i obtains in this network is

given by
Ri = b

(t)
i ri. (12)

The incentive received by node i due to transmission of layer

l to its CNs is denoted by I
l,(c)
i and given by

I
l,(c)
i =

∑

m∈Ml
i

I li,m (13)

in which I li,m is the incentive sent to PN i by CN m for layer

l. The L × 1 vector I
(c)
i = [I

1(c)
i , . . . , I

l,(c)
i ]T contains the

incentive a node receives for forwarding each of the layers.

Considering the reward and the incentive received by a node,

we define the virtual income of a node as

Vi = b
(t)
i

(

ri + I
(c)
i

)

. (14)

In the next section, we propose a game theoretic framework

for video dissemination and explain how the cost and incentive

functions are calculated and how the incentive mechanism

works.
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Fig. 1: The interactions of a node with its PN and CNs.

III. PROPOSED VIDEO DISSEMINATION ALGORITHM

A. Game theoretic Model

We propose a non-cooperative game model for video dis-

semination in the network. The players of the game are all the

nodes of the network except the source, i.e., the elements of

the set P . The action of player i for layer l, denoted by ali,
is to choose a PN j ∈ Al

i from whom it receives the video

layer l. Al
i is the action set of player i for layer l, consisting

of the candidate parents of CN i that can transmit layer l
to it such that we have ali ∈ Al

i. The action set of all the

nodes of the network except node i for layer l is given by

al−i The action profile of the game for layer l is denoted by

al = (ali,a
l
−i) ∈ Al in which Al = Al

1 × A2 · · · × Al
N is

the joint action set of the game for layer l. From a tree-graph

point of view, a node i cannot choose node m which is one of

its descendants, as by doing so, a loop occurs in the broadcast

tree and the connection between the node i and the source is

lost [4]. We define set Rl
i as a set that contains the nodes on

the path from the source to the node i. Thus, a node j can

be candidate parent for node i if node i is not on the path of

node j to the source for layer l. The action set of node i for

layer l are the neighboring nodes of node i such that node i
is not on their path to the source and defined as

Al
i =

{

j

∣

∣

∣

∣

j ∈ N l
i , b

l,(r)
j = 1, i /∈ Rl

j

}

, (15)

in which b
l(r)
j = 1 states that node j possesses the layer l and

can serve CN i. The set of actions of node i is the joint actions

of node i for all the layers as

ai =

{

ali

∣

∣

∣

∣

ali ∈ Al
i, 1 ≤ l ≤ L

}

. (16)

The proposed game is iterative and at each iteration of the

game, one of the nodes of the network updates its action for

all the layers l ∈ L at once. A utility function assigns a value

to every node based on the action taken by the node such that

ul
i(a

l
i,a

l
−i) : Al → R+, ∀i ∈ P in which ul

i(a
l
i,a

l
−i) is the

utility of node i for layer l and R+ represents the positive

real numbers. The game G is formally defined by the tuple

G =< P, {Al

i}i∈P,l∈L, {Ui}i∈P >.

The proposed game G is child-driven, that is, a node as a

CN decides about ai at every iteration. In other words, for a

certain layer l, a node either refuses to receive the layer l, i.e.,

b
l,(r)
i = 0, and ali = ∅, or it chooses the PN it wishes to receive

the video layer from, i.e., b
l,(r)
i = 1, and ali = j, j ∈ Al

i. In

order to control the energy consumption in the network, the

cost that a CN pays to its PN is defined based on the energy

the PN spends to transmit the video layer. Thus, although a

higher video layer results in a higher QoE for a CN, it results

in a higher cost as it requires higher energy consumption at

the PN.

The QoE of the node along with the reward and incentive

it receives and the cost it pays are all captured by a utility

function whose maximization determined the node’s action.

B. Utility Function Definition

We first define the profit function of a node i ∈ W as

Πi := Πi(ai, {a
l
−i}l∈L) = Qi − λiCi + βiRi (17)

in which Qi is the QoE of node i, Ci is the cost node i pays

to its PNs in order to receive the video and Ri is the reward

received by node i from other nodes for forwarding the video

to them. λi in (17) is a pricing coefficient that depends on the

preference of the user in spending cost for receiving higher

video quality. In fact, a lower value for λi states that having

higher QoE is more important for the user than the cost it

should pay. Likewise, βi in (17) reflects node i’s willingness

for contribution in the network. More precisely, higher values

of βi show that node i prefers to forward the video to others

in order to get the reward from its CNs.

An important parameter that affects a node’s decision,

especially in user centric networks, is how the cost is assigned

to a user. Indeed, having a fair cost allocation among the

nodes of a multicast receiving group is of high importance.

To this end, we use the Shapley value cost sharing rule [9]

to determine the cost of each node in a multicast group of

receiving nodes. The cost of each CN in Ml
j is defined based

on the energy consumed by the PN j. Assuming that the

required energy for every unicast link from the PN j to the

multicast receiving nodes in Ml
j with M l

j CNs are sorted as

0 ≤ el,unij,1 ≤ · · · ≤ el,uni
j,M l

j

such that elj = el,uni
j,M l

j

, then the cost

that CN i pays to PN j, i.e., clj,i, is obtained by

clj,i = ci(j,a
l
−i) =

i
∑

h=1

el,unij,h − el,unij,h−1

M l
j + 1− h

. (18)

When the action set of node i for a certain layer is not empty,
that means it is possible for node i to get this layer, the cost

that node i pays in case of receiving this layer is the minimum

possible cost. Otherwise, when there is no transmitting node

to provide the layer for node i, the cost of the layer is set to

infinity for node i, i.e.,

cli =







min
j∈Al

i

clj,i if Al
i 6= ∅

∞ otherwise.
(19)



Consequently, the action of node i is to choose the PN of each

layer as

ali =







argmin
j∈Al

i

clj,i if b
l,(r)
i = 1

∅ if b
l,(r)
i = 0

(20)

in which b
l,(r)
i is the objective parameter determined by node

i that shows whether it receives layer l or not.

So far, we have defined the profit function of a node based

on its QoE, the cost it pays and the reward it receives. In

defining the utility function of the node, whose maximization

determines the node’s action, we take the incentives into

account. It is proposed that every node transfers a portion θ
of its virtual income to its PNs as an incentive for forwarding

the video to them. The value of θ is a design parameter and

assumed to be fixed for all the nodes in the network inde-

pendent of the user preference. More precisely, the incentive

received by node i due to transmission of layer l of video to

its CN m is given by

I li,m = θVm (21)

Thus, the total incentive received by node i from its CNs for

forwarding layer l is obtained by

I
l,(c)
i =

∑

m∈Ml
i

θVm. (22)

and I
(c)
i = [I

1,(c)
i , . . . , I

L,(c)
i ]T is defined as an L × 1 vector

containing the incentives node i receives for each of the layers

l ∈ L from the CNs in Ml
i. The total incentive received by

node i from its CNs is then given by

I
(c)
i = b

(t)
i I

(c)
i . (23)

Note that, a CN sends incentive just to the PNs of the layers

which have been forwarded to others by it. For the layers that

it does not forward, it just pays its cost. Similar to node i that

receives reward and incentive from its CNs, node j, as the

PN of node i, does so. The vector containing the incentives

sent by node i to the PN of each layer is denoted I
(p)
i =

[I
1,(p)
i , . . . , I

L,(p)
i ]T in which I

l,(p)
i = θVi if b

l,(r)
i = 1. The

total incentive sent by node i is then given by

I
(p)
i = b

(r)
i I

(p)
i = θL

(t)
i Vi (24)

Now we define the utility function of node i ∈ P as

Ui := Ui(ai,a−i) = Πi − I
(p)
i + I

(c)
i . (25)

Definition 1: Budget-balanced cost sharing rule: In game

theory, a cost sharing rule is budget balanced if the sum of

the cost allocated to the players of the game are equal to the

budget spent by the seller. Shapley value is a budget-balanced

cost allocation rule [11], i.e., in our case

eli =
∑

m∈Ml
i

cli,m. (26)

Observation 1: The utility function of node i ∈ P can be

written as

Ui =
∑

l∈L

b
l,(r)
i

(

ql − λic
l
i

)

+

b
l,(t)
i

(

(βi − θ)eli + (1− θ)I
l,(c)
i

)

. (27)

Proof: Using the definition of Πi and Ii in (17) and (24),

the utility function of (25) can be written as

Ui= b
(r)
i q+ βib

(t)
i ri − b

(r)
i λici − b

(t)
i I

(p)
i + b

(t)
i I

(c)
i

= b
(r)
i (q− λici) + b

(t)
i

(

βiri + I
(c)
i − I

(p)
i

)

. (28)

Using (24) and (14) into (28) and by expanding it we have

Ui =
∑

l∈L

b
l,(r)
i

(

ql − λic
l
i

)

+

+b
l,(r)
i

(

βir
l
i + I

l,(c)
i + θ

(

rli + I
l,(c)
i

))

. (29)

Finally, as the cost sharing rule used in the network is budget-

balanced, using (26) and (11) we have rli = eli and thus, (29)

can be written as

Ui =
∑

l∈L

b
l,(r)
i

(

ql − λic
l
i

)

+ b
l,(t)
i

(

(βi − θ)eli + (1− θ)I
l,(c)
i

)

C. Decision making by the players in two steps

Every node i ∈ P finds b
l,(r)
i and b

l,(t)
i of (27) in a way to

maximize its own utility function. Using Fig. 1, we explain

how the algorithm works based on the decisions of nodes i
and j.

Every node solves its utility maximization problem two

times with different constraints. At first, node i maximizes

its utility function by finding the best PNs j ∈ Al
i, ∀l ∈ L

based on the layers that are currently available at the its

neighboring nodes. After finding the best PNs, node i joins

the chosen PNs to receive the video from them. Then, node i
assumes that all the layers of the video are available at all of

its neighboring nodes, i.e, b
l,(r)
j = 1, ∀j ∈ Ni and solves the

utility maximization problem again with this new constraint.

If the utility of node i in the latter case is higher than the

former one, node i can increase its utility by receiving addi-

tional layers that are currently not available at its neighboring

nodes. Hence, node i incentivizes the nodes which currently

do not possess the layers it prefers to receive. More precisely,

node i proposes an incentive equal to θVi to the PN that it

prefers to receive a video layers from. In such a case, we

call node i a potential CN of PN j for layer l. Hence, PN j
is motivated by node i to get the layer l from its candidate

parents in Al
j and serve CN i if this action increase node j’s

utility.

When it comes to node j to play the game, it first finds I
l,(c)
i

based on (22) for all the layers it currently transmits and the

layers it does not currently transmit but there is a potential CN

for them. By doing so, PN j knows that in case of receiving

a certain video layer from one of its neighboring nodes, there

are potential CNs that may get this layer from it and it can



increase its virtual income in exchange. Then PN j, like node

i, solves its optimization problem in two steps to find which

of the video layers it should get and the same procedure is

performed at every node.

The optimization problem at a node can be formulated as

an integer programming problem as:

max
b

(r)
i

,b
(t)
i

∑

l∈L

b
l,(r)
i

(

ql − λic
l
i

)

+

b
l,(t)
i

(

(βi − θ)eli + (1− θ)I
l,(c)
i

)

(30a)

subject to:

b
l,(r)
i ≤ b

l−1,(r)
i , ∀l ∈ L (30b)

b
l,(t)
i ≤ b

l,(r)
i , ∀l ∈ L (30c)

∑

l∈L

pli ≤ Pmax
i (30d)

b
l,(r)
i , b

l,(t)
i ∈ {0, 1}. (30e)

Equation (30b) indicates that to get a specific video layer,

receiving the previous layers are necessary. Eq. (30c) ensures

that node i receives a layer in order to transmit it to others

and finally, Eq. (30d) indicates the transmit power constraint

at node i.
A Nash equilibrium point is a solution concept of games at

which none of the players can increase its utility by changing

its decision unilaterally [11]. It is shown in [9] that the

non-cooperative cost sharing game with Shapley value rule

is a potential game for which the existence of a pure NE

is guaranteed. In such games, the best response dynamics

technique [11] can be exploited in order to reach to an NE

point, such that, at every iteration of the game one of the

nodes of the networks updates its action based on the action

of other nodes taken on previous iteration.

IV. SIMULATION RESULTS

A. Simulation Setup

In this section, we present the performance of the proposed

algorithm. The nodes of the network are randomly distributed

in a 500m × 500m squared area. The number of nodes varies

between 10 and 30 and in each realization of the network, one

of the nodes is randomly chosen as the source. The simple

path-loss channel model is considered where the channel gain

between the nodes i and j is obtained by gi,j = 1/(xi,j)
α in

which xi,j is the distance between the nodes i and j and α is

the path loss exponent, set to 3. The maximum transmit power

at the nodes is assumed to be Pmax
j = 150 mW, ∀j ∈ W and

the noise power is equal to -90 dBm. The minimum required

SNR at the receiving nodes is considered as γth = 10 dB. The

number of bits per symbol is set to be nb = 2 with symbol

duration Ts normalized to 1. The pricing values λ and β are

set to 1, 2, respectively, and the the incentive parameter θ is

θ ∈ {0, 0.3, 0.5} where θ = 0 represents the non-incentive

case. The energy required for the links are normalized to

the maximum energy that can be spent for one symbol, i.e.,

TABLE I: Video properties used for the simulation

layer Data rate: VQM: agg. Data rate agg. VQM:

l dl (Mbps) q
l (Mbps) Q

1 0.6980 0.2585 0.6980 0.2585

2 0.3508 0.1616 1.0487 0.4200

3 0.3829 0.1513 1.4316 0.5713

4 0.1969 0.1556 1.6285 0.7269

5 0.0784 0.1632 1.7069 0.8901

6 2.4739 0.0789 4.1808 0.9690

7 3.8541 0.0185 8.0349 0.9875

8 5.9385 0.0125 13.9733 1.0000

TsP
max. The optimization problem of (30a) is solved using

CVX1 along with Gurobi2 in MATLAB environment.

Regarding to measuring the QoE, the VQM values are used

such that the VQM value of layer l, i.e., ql is normalized

between 0 and 1 and receiving all the the layers results in
∑

l∈L
ql = 1, that is, the maximum possible video quality.

The VQM values and the corresponding required data rate

required for each layer used throughout the simulations are

shown in Table. I. The values in Table I are average over

the values of three videos encoded by scalable video Coding

H.264/SVC [12]. The measurements are provided by xiph.org3

and the videos are called CrowdRun, BlueSky and ParkJoy.

B. Results

We first depict the social welfare of the network. The social

welfare is defined as the aggregated utility of the nodes in the

network as SW =
∑

i∈W
Ui. In Fig. 2, the social welfare is

depicted for different number of nodes. It can be observed that

by increasing the density of the network, the social welfare of

the networks improves. This is because in a dense network,

the distances between the transmitting and receiving nodes

become shorter than the ones in sparse networks. With a

shorter distance, the energy required at a transmitting node

as well as the cost paid by the receiving node are lower.

Therefore, lower cost paid to get the video increases the social

welfare. For instance when there are 30 nodes in the network,

about 10% improvement is achievable in the network with

the proposed incentive mechanism compared to the case of

non-incentive mechanism. It can also be observed in Fig. 2

that, by increasing the incentive coefficient θ, a higher social

welfare is obtained. As discussed earlier, this is due to the fact

that with higher incentive, more video enhancement layers are

obtained by the nodes which are located relatively close to the

source. In such a case, the social welfare improves as more

nodes benefit from the enhancement layers and perceive higher

quality of experience.

To have a better insight about how the proposed game-

theoretic algorithm works, Fig. 3 shows the convergence of

the algorithm over different iterations when there are 25 nodes

in the network. Using the proposed incentive-based method,

1http://cvxr.com/cvx/
2http://www.gurobi.com/
3https://media.xiph.org/video/derf/
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Fig. 2: Social welfare of the network for
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Fig. 3: Convergence of the mechanism to
the NE. There are 25 nodes in the network.
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Fig. 4: Average number of video layers
received by the nodes of the network.

the algorithm requires more iterations to converge. The game

is played iteratively and the nodes update their actions until

reaching the NE point at which no improvement is possible.

In Fig. 3, the first 25 iterations show the iterations in which

the nodes join the network one after another. At the time of

joining the network, a node has no CN and no incentive and

thus, based on Fig. 3, the nodes receive less than 5 layers on

average. After finding the initial PNs, the nodes update their

decision to lower their own cost and get higher layers of video

if possible. Therefore, the average number of received layers

by nodes increases over the iterations until the convergence.

In Fig. 4, the average number of layers received by the

nodes of the network is depicted. As can be seen, with the

proposed algorithm, the average number of layers distributed

in the network significantly increases. When there are 30

nodes in the network and θ = 0.5, seven layers out of 8

layers are received by the nodes of the network. The average

number of distributed layers increases when the network

density increases, that confirms the result depicted in Fig. 2.

V. CONCLUSION

In this paper, we proposed an incentive mechanism for video

dissemination in multi-hop wireless networks. The mechanism

is based on a cross-layer model that takes the subjective QoE

of the users from overlay and the energy consumption of

transmission from underlay. The distributed video is encoded

into multiple layers such that receiving higher video layers

results in a higher video quality. In the proposed mecha-

nism, the contributing node of the network will be paid by

its respective receivers in case of forwarding the video to

them. We suggested a game theoretic framework by which

a node achieves its preferred video quality by maximizing its

own utility function selfishly. We showed that the proposed

algorithm motivates the nodes to actively contribute in the

network that results in a higher quality of experience and social

welfare for the whole network.
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