
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX 1

Context-Aware Proactive Content Caching with
Service Differentiation in Wireless Networks

Sabrina Müller, Student Member, IEEE, Onur Atan, Mihaela van der Schaar, Fellow, IEEE,
and Anja Klein, Member, IEEE

Abstract—Content caching in small base stations or wireless
infostations is considered to be a suitable approach to improve
the efficiency in wireless content delivery. Placing the optimal
content into local caches is crucial due to storage limitations, but
it requires knowledge about the content popularity distribution,
which is often not available in advance. Moreover, local content
popularity is subject to fluctuations since mobile users with
different interests connect to the caching entity over time. Which
content a user prefers may depend on the user’s context. In
this paper, we propose a novel algorithm for context-aware
proactive caching. The algorithm learns context-specific content
popularity online by regularly observing context information of
connected users, updating the cache content and observing cache
hits subsequently. We derive a sublinear regret bound, which
characterizes the learning speed and proves that our algorithm
converges to the optimal cache content placement strategy in
terms of maximizing the number of cache hits. Furthermore, our
algorithm supports service differentiation by allowing operators
of caching entities to prioritize customer groups. Our numerical
results confirm that our algorithm outperforms state-of-the-art
algorithms in a real world data set, with an increase in the
number of cache hits of at least 14%.

Index Terms—Wireless Networks, Caching at the Edge, Cache
Content Placement, Online Learning

I. INTRODUCTION

W IRELESS networks have been experiencing a steep
increase in data traffic in recent years [2]. With the

emergence of smart mobile devices with advanced multimedia
capabilities and the trend towards high data rate applications,
such as video streaming, especially mobile video traffic is
expected to increase and to account for the majority of
mobile data traffic within the next few years [2]. However,
despite recent advances in cellular mobile radio networks,
these networks cannot keep up with the massive growth of
mobile data traffic [3]. As already investigated for wired
networks [4], content caching is envisioned to improve the

Manuscript received May 19, 2016; revised September 30, 2016; accepted
November 20, 2016.

A preliminary version of this work has been presented in part at the IEEE
International Conference on Communications (ICC), 2016 [1].

The work by S. Müller and A. Klein has been funded by the German
Research Foundation (DFG) as part of projects B3 and C1 within the Col-
laborative Research Center (CRC) 1053 – MAKI. The work by O. Atan and
M. van der Schaar is supported by NSF CCF1524417 and NSF ECCS1407712
grant.

S. Müller and A. Klein are with the Communications Engineering
Lab, Technische Universität Darmstadt, Darmstadt, 64283 Germany (e-mail:
s.mueller@nt.tu-darmstadt.de, a.klein@nt.tu-darmstadt.de).

O. Atan and M. van der Schaar are with the Department of Electrical
Engineering, University of California, Los Angeles, CA, 90095 USA (e-mail:
oatan@ucla.edu, mihaela@ee.ucla.edu).

efficiency in wireless content delivery. This is not only due
to decreasing disk storage prices, but also due to the fact that
typically only a small number of very popular contents account
for the majority of data traffic [5].

Within wireless networks, caching at the edge has been
extensively studied [1], [6]–[19]. At the radio access network
level, current approaches comprise two types of wireless
local caching entities. The first type are macro base stations
(MBSs) and small base stations (SBSs) that are implemented
in wireless small cell networks, dispose of limited storage
capacities and are typically owned by the mobile network
operator (MNO). The second type are wireless infostations
with limited storage capacities that provide high bandwidth
local data communication [16], [17], [20], [21]. Wireless
infostations could be installed in public or commercial areas
and could use Wi-Fi for local data communication. They could
be owned by content providers (CPs) aiming at increasing
their users’ quality of experience. Alternatively, third parties
(e.g., the owner of a commercial area) could offer caching
at infostations as a service to CPs or to the users [17]. Both
types of caching entities store a fraction of available popular
content in a placement phase and serve local users’ requests
via localized communication in a delivery phase.

Due to the vast amount of content available in multi-
media platforms, not all available content can be stored in
local caches. Hence, intelligent algorithms for cache content
placement are required. Many challenges of cache content
placement concern content popularity. Firstly, optimal cache
content placement primarily depends on the content popularity
distribution, however, when caching content at a particular
point in time, it is unclear which content will be requested
in future. Not even an estimate of the content popularity
distribution might be at hand. It therefore must be computed
by the caching entity itself [1], [13]–[19], which is not only
legitimate from an overhead point of view, since else a periodic
coordination with the global multimedia platform would be
required. More importantly, local content popularity in a
caching entity might not even replicate global content popular-
ity as monitored by the global multimedia platform [22]–[24].
Hence, caching entities should learn local content popularity
for a proactive cache content placement. Secondly, different
content can be favored by different users. Consequently, local
content popularity may change according to the different
preferences of fluctuating mobile users in the vicinity of a
caching entity. Therefore, proactive cache content placement
should take into account the diversity in content popularity
across the local user population. Thirdly, the users’ preferences

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

in terms of consumed content may differ based on their
contexts, such as their location [24], personal characteristics
(e.g., age [25], gender [26], personality [27], mood [28]),
or their devices’ characteristics [29]. Hence, cache content
placement should be context-aware by taking into account
that content popularity depends on a user’s context. Thereby, a
caching entity can learn the preferences of users with different
contexts. Fourthly, while its typical goal is to maximize the
number of cache hits, cache content placement should also
take into account the cache operator’s specific objective. In
particular, appropriate caching algorithms should be capable
of incorporating business models of operators to offer service
differentiation to their customers, e.g., by optimizing cache
content according to different prioritization levels [30], [31].
For example, if users with different preferences are connected
to a caching entity, the operator could prioritize certain users
by caching content favored by these users. Moreover, certain
CPs’ content could be prioritized in caching decisions.

In this paper, we propose a novel context-aware proactive
caching algorithm, which for the first time jointly considers
the above four aspects. Firstly, instead of assuming a priori
knowledge about content popularity, which might be exter-
nally given or estimated in a separate training phase, our
algorithm learns the content popularity online by observing
the users’ requests for cache content. Secondly, by explicitly
allowing different content to be favored by different users,
our algorithm is especially suitable for mobile scenarios, in
which users with different preferences arrive at the wireless
caching entity over time. Thirdly, we explicitly model that
the content popularity depends on a user’s context, such as
his/her personal characteristics, equipment, or external factors,
and propose an algorithm for content caching that learns this
context-specific content popularity. Using our algorithm, a
caching entity can proactively cache content for the currently
connected users based on what it has previously learned,
instead of simply caching the files that are popular ”on
average”, across the entire population of users. The learned
cache content placement strategy is proven to converge to the
optimal cache content placement strategy which maximizes
the expected number of cache hits. Fourthly, the algorithm
allows for service differentiation by customer prioritization.
The contributions of this paper are as follows:

• We present a context-aware proactive caching algorithm
based on contextual multi-armed bandit optimization.
Our algorithm incorporates diversity in content popularity
across the user population and takes into account the de-
pendence of users’ preferences on their context. Addition-
ally, it supports service differentiation by prioritization.

• We analytically bound the loss of the algorithm compared
to an oracle, which assumes a priori knowledge about
content popularity. We derive a sublinear regret bound,
which characterizes the learning speed and proves that
our algorithm converges to the optimal cache content
placement strategy which maximizes the expected num-
ber of cache hits.

• We present additional extensions of our approach, such
as its combination with multicast transmissions and the

incorporation of caching decisions based on user ratings.
• We numerically evaluate our caching algorithm based

on a real world data set. A comparison shows that by
exploiting context information in order to proactively
cache content for currently connected users, our algorithm
outperforms reference algorithms.

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of related works. In Section III,
we describe the system model, including an architecture and
a formal problem formulation. In Section IV, we propose a
context-aware proactive caching algorithm. Theoretical analy-
sis of regret and memory requirements are provided in Sec-
tions V and VI, respectively. In Section VII, we propose some
extensions of the algorithm. Numerical results are presented
in Section VIII. Section IX concludes the paper.

II. RELATED WORK

Practical caching systems often use simple cache replace-
ment algorithms that update the cache continuously during
the delivery phase. Common examples of cache replacement
algorithms are Least Recently Used (LRU) or Least Frequently
Used (LFU) (see [32]). While these simple algorithms do
not consider future content popularity, recent work has been
devoted to developing sophisticated cache replacement algo-
rithms by learning content popularity trends [33], [34].

In this paper, however, we focus on cache content place-
ment for wireless caching problems with a placement phase
and a delivery phase. We start by discussing related work
that assumes a priori knowledge about content popularity.
Information-theoretic gains achieved by combining caching
at user devices with a coded multicast transmission in the
delivery phase are calculated in [7]. The proposed coded
caching approach is optimal up to a constant factor. Content
caching at user devices and collaborative device-to-device
communication are combined in [8] to increase the efficiency
of content delivery. In [9], an approximation algorithm for
uncoded caching among SBSs equipped with caches is given,
which minimizes the average delay experienced by users that
can be connected to several SBSs simultaneously. Building
upon the same caching architecture, in [10], an approxima-
tion algorithm for distributed coded caching is presented for
minimizing the probability that moving users have to request
parts of content from the MBS instead of the SBSs. In [11], a
multicast-aware caching scheme is proposed for minimizing
the energy consumption in a small cell network, in which
the MBS and the SBSs can perform multicast transmissions.
The outage probability and average content delivery rate in
a network of SBSs equipped with caches are analytically
calculated in [12].

Next, we discuss related work on cache content placement
without prior knowledge about content popularity. A com-
parison of the characteristics of our proposed algorithm with
related work of this type is given in Table I. Driven by a
proactive caching paradigm, [13], [14] propose a caching
algorithm for small cell networks based on collaborative
filtering. Fixed global content popularity is estimated using
a training set and then exploited for caching decisions to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MÜLLER et al.: CONTEXT-AWARE PROACTIVE CONTENT CACHING WITH SERVICE DIFFERENTIATION IN WIRELESS NETWORKS 3

TABLE I
COMPARISON WITH RELATED WORK ON LEARNING-BASED CACHING WITH PLACEMENT AND DELIVERY PHASE.

[13], [14] [15]–[17] [18] [19] This work
Model-Free Yes Yes No Yes Yes

Online/Offline-Learning Offline Online Online Online Online
Free of Training Phase No Yes Yes No Yes

Performance Guarantees No Yes No No Yes
Diversity in Content Popularity No No No Yes Yes

User Context-Aware No No No No Yes
Service Differentiation No No No No Yes

maximize the average user request satisfaction ratio based on
their required delivery rates. While their approach requires
a training set of known content popularities and only learns
during a training phase, our proposed algorithm does not need
a training phase, but learns the content popularity online,
thus also adapting to varying content popularities. In [15],
using a multi-armed bandit algorithm, an SBS learns a fixed
content popularity distribution online by refreshing its cache
content and observing instantaneous demands for cached files.
In this way, cache content placement is optimized over time to
maximize the traffic served by the SBS. The authors extend
their framework for a wireless infostation in [16], [17] by
additionally taking into account the costs for adding files
to the cache. Moreover, they provide theoretical sublinear
regret bounds for their algorithms. A different extension of
the multi-armed bandit framework is given in [18], which
exploits the topology of users’ connections to the SBSs by
incorporating coded caching. The approach in [18] assumes
a specific type of content popularity distribution. Since in
practice the type of distribution is unknown a priori, such an
assumption is restrictive. In contrast, our proposed algorithm is
model-free since it does not assume a specific type of content
popularity distribution. Moreover, in [15]–[18], the optimal
cache content placement strategy is learned over time based
only on observations of instantaneous demands. In contrast,
our proposed algorithm additionally takes diversity of content
popularity across the user population into account and exploits
users’ context information. Diversity in content popularity
across the user population is for example taken into account
in [19], but again without considering the users’ contexts.
Users are clustered into groups of similar interests by a spectral
clustering algorithm based on their requests in a training phase.
Each user group is then assigned to an SBS which learns the
content popularity of its fixed user group over time. Hence, in
[19], each SBS learns a fixed content popularity distribution
under the assumption of a stable user population, whereas
our approach allows reacting to arbitrary arrivals of users
preferring different content.

In summary, compared to related work on cache content
placement (see Table I), our proposed algorithm for the first
time jointly learns the content popularity online, allows for
diversity in content popularity across the user population,
takes into account the dependence of users’ preferences on
their context and supports service differentiation. Compared
to our previous work [1], we now take into account context
information at a single user level, instead of averaging context

information over the currently connected users. This enables
more fine-grained learning. Additionally, we incorporate ser-
vice differentiation and present extensions, e.g., to multicast
transmission and caching decisions based on user ratings.

We model the caching problem as a multi-armed bandit
problem. Multi-armed bandit problems [35] have been applied
to various scenarios in wireless communications before [36],
such as cognitive jamming [37] or mobility management [38].
Our algorithm is based on contextual multi-armed bandit
algorithms [39]–[42]. The closest related work is [42], in
which several learners observe a single context arrival in each
time slot and select a subset of actions to maximize the sum
of expected rewards. While [42] considers multiple learners,
our system has only one learner – the caching entity selecting
a subset of files to cache in each time slot. Compared to [42],
we extended the algorithm in the following directions: We
allow multiple context arrivals in each time slot, and select
a subset of actions which maximize the sum of expected
rewards given the context arrivals. In the caching scenario, this
translates to observing the contexts of all currently connected
users and caching a subset of files which maximize the sum
of expected numbers of cache hits given the users’ contexts.
In addition, we enable each arriving context to be annotated
with a weight, so that if different contexts arrive within the
same time slot, differentiated services can be provided per
context, by selecting a subset of actions which maximize the
sum of expected weighted rewards. In the caching scenario,
this enables the caching entity to prioritize certain users when
selecting the cache content, by placing more weight on files
that are favored by prioritized users. Moreover, we enable each
action to be annotated with a weight, such that actions can be
prioritized for selection. In the caching scenario, this enables
the caching entity to prioritize certain files when selecting the
cache content.

III. SYSTEM MODEL

A. Wireless Local Caching Entity

We consider a wireless local caching entity that can either
be an SBS equipped with a cache in a small cell network or
a wireless infostation. The caching entity is characterized by
a limited storage capacity and a reliable backhaul link to the
core network. In its cache memory, the caching entity can
store up to m files from a finite file library F containing
|F | ∈ N files, where we assume for simplicity that all files
are of the same size. Users located in the coverage area can
connect to the caching entity. The set of currently connected

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

MBS

caching
entity

Mobile device
requests cached

file from caching
entity

Mobile device requests
file from MBS since file
is not cached at caching

entity

Fig. 1. System model.

users may change dynamically over time due to the users’
mobility. At most Umax ∈ N users can be simultaneously
connected to the caching entity. To inform connected users
about available files, the caching entity periodically broadcasts
the information about the current cache content [15]–[17]. If
a user is interested in a file that the caching entity stored in
its cache, the user’s device requests the file from the caching
entity and is served via localized communication. In this case,
no additional load is put on neither the macro cellular network
nor the backhaul network. If the file is not stored in the
caching entity, the user’s device does not request the file
from the caching entity. Instead, it requests the file from the
macro cellular network by connecting to an MBS. The MBS
downloads the file from the core network via its backhaul
connection, such that in this case, load is put on both the
macro cellular as well as the backhaul network. Hence, the
caching entity can only observe requests for cached files,
i.e., cache hits, but it cannot observe requests for non-cached
files, i.e., cache misses. Note that this restriction is specific
to wireless caching and is usually not used in wired caching
scenarios. In this way, the caching entity is not congested by
cache misses [15]–[17], but learning content popularity is more
difficult. Fig. 1 shows an illustration of the considered system
model.

In order to reduce the load on the macro cellular network
and the backhaul network, a caching entity might aim at
optimizing the cache content such that the traffic it can serve
is maximized, which corresponds to maximizing the number
of cache hits. For this purpose, the caching entity should learn
which files are most popular over time.

B. Service Differentiation

Maximizing the number of cache hits might be an adequate
goal of cache content placement in case of an MNO operating
an SBS, one reason being net neutrality restrictions. However,
the operator of an infostation, e.g., a CP or third party operator,
may want to provide differentiated services to its customers
(those can be both users and CPs). For example, if users
with different preferences are connected to an infostation, the
operator can prioritize certain users by caching content favored
by these users. In this case, a cache hit by a prioritized user
is associated with a higher value than a cache hit by a regular
user. For this purpose, we consider a finite set S of service

TABLE II
EXAMPLES OF CONTEXT DIMENSIONS.

Class Context Dimension
demographic factors

personal characteristics personality
mood

type of device
user equipment device capabilities

battery status
location

external factors time of day, day of the week
events

types. For service type s ∈ S, let vs ≥ 1 denote a fixed and
known weight associated with receiving one cache hit by a
user of service type s. Let vmax := maxs∈S vs. The weights
might be selected based on a pricing policy, e.g., by paying a
monthly fee, a user can buy a higher weight. Alternatively, the
weights might be selected based on a subscription policy, e.g.,
subscribers might obtain priority compared to one-time users.
Yet another prioritization might be based on the importance
of users in terms of advertisement or their influence on the
operator’s reputation. Finally, prioritization could be based
on usage patterns, e.g., users might indicate their degree of
openness in exploring other than their most preferred content.
Taking into account the service weights, the caching entity’s
goal becomes to maximize the number of weighted cache hits.
Clearly, the above service differentiation only takes effect if
users with different preferences are present, i.e., if content
popularity is heterogeneous across the user population.

Another service differentiation can be applied in case of a
third party operator whose customers are different CPs. The
operator may want to prioritize certain CPs by caching their
content. In this case, each content is associated with a weight.
Here, we consider a fixed and known prioritization weight
wf ≥ 1 for each file f ∈ F and let wmax := maxf∈F wf .
The prioritization weights can either be chosen individually
for each file or per CP.

The case without service differentiation, where the goal is
to maximize the number of (non-weighted) cache hits, is a
special case, in which there is only one service type s with
weight vs = 1 and the prioritization weights satisfy wf = 1
for all f ∈ F . While we refer to the more general case in the
subsequent sections, this special case is naturally contained in
our analysis.

C. Context-Specific Content Popularity

Content popularity may vary across a user population since
different users may prefer different content. A user’s prefer-
ences might be linked to various factors. We refer to such
factors as context dimensions and give some examples in
Table II. Relevant personal characteristics may, for example,
be demographic factors (e.g., age, gender), personality, or
mood. In addition, a user’s preferences may be influenced by
user equipment, such as the type of device used to access and
consume the content (e.g., smart phone, tablet), as well as
its capabilities, or its battery status. Besides, external factors
may have an impact on a user’s preferences, such as the user’s

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MÜLLER et al.: CONTEXT-AWARE PROACTIVE CONTENT CACHING WITH SERVICE DIFFERENTIATION IN WIRELESS NETWORKS 5

Users External

Information

User Interface Context Monitor

Cache Management Learning Module

Decision

Engine

Learning

Database

Context

Database

Local Cache

Cache

Controller

Request

Handler

Storage

 Interface

Storage

Servers

Upon Request

Periodically

Caching Entity

1

1

2

2

3

45

6

7

8

9

8

8

10 11

11

11

12

8

Fig. 2. Context-aware proactive caching architecture.

location, the time of day, the day of the week, and the taking
place of events (e.g., soccer match, concert). Clearly, this
categorization is not exhaustive and the impact of each single
context dimension on content popularity is unknown a priori.
Moreover, a caching entity may only have access to some of
the context dimensions, e.g., due to privacy reasons. However,
our model does not rely on specific context dimensions; it
can use the information that is collected from the user. If
the caching entity does have access to some relevant context
dimensions, these can be exploited to learn context-specific
content popularity.

D. Context-Aware Proactive Caching Architecture

Next, we describe the architecture for context-aware proac-
tive caching, which is designed similarly to an architecture
presented in [33]. An illustration of the context-aware proac-
tive caching architecture is given in Fig. 2. Its main building
blocks are the Local Cache, a Cache Management entity,
a Learning Module, a Storage Interface, a User Interface,
and a Context Monitor. The Cache Management consists of
a Cache Controller and a Request Handler. The Learning
Module contains a Decision Engine, a Learning Database, and
a Context Database. The workflow consists of several phases
as enumerated in Fig. 2 and is described below.
• Initialization

(1) The Learning Module is provided with the goal of
caching (i.e., maximize number of cache hits or achieve
operator-specific goal). It fixes the appropriate periodicity
of context monitoring and cache refreshment. Then, it
informs the Cache Management and the Context Monitor
about the periodicity.

• Periodic Context Monitoring and Cache Refreshment
(2) The Context Monitor periodically gathers context
information by accessing information about currently
connected users available at the User Interface and op-
tionally by collecting additional information from exter-
nal sources (e.g., social media platforms). If different
service types exist, the Context Monitor also retrieves
the service types of connected users. (3) The Context

t

observe
user

contexts,
service
types

t+1 time slot

select
cache

content

observe
cache hits

Fig. 3. Sequence of operations of context-aware proactive caching in time
slot t.

Monitor delivers the gathered information to the Context
Database in the Learning Module. (4) The Decision
Engine periodically extracts the newly monitored context
information from the Context Database. (5) Upon com-
parison with results from previous time slots as stored in
the Learning Database, (6) the Decision Engine decides
which files to cache in the coming time slot. (7) The
Decision Engine instructs the Cache Controller to refresh
the cache content accordingly. (8) The Cache Controller
compares the current and the required cache content and
removes non-required content from the cache. If some
required content is missing, the Cache Controller directs
the Storage Interface to fetch the content from storage
servers and to store it into the local cache. (9) Then,
the Cache Controller informs the User Interface about
the new cache content. (10) The User Interface pushes
the information about new cache content to currently
connected users.

• User Requests
(11) When a user requests a cached file, the User Interface
forwards the request to the Request Handler. The Request
Handler stores the request information, retrieves the file
from the local cache and serves the request.

• Periodic Learning
(12) Upon completion of a time slot, the Request Handler
hands the information about all requests from that time
slot to the Learning Module. The Learning Module up-
dates the Learning Database with the context information
from the beginning of the time slot and the number of
requests for cached files in that time slot.

E. Formal Problem Formulation

Next, we give a formal problem formulation for context-
aware proactive caching. The caching system operates in
discrete time slots t = 1, 2, ..., T , where T denotes the
finite time horizon. As illustrated in Fig. 3, each time slot
t consists of the following sequence of operations: (i) The
context of currently connected users and their service types
are monitored. Let Ut be the number of currently connected
users. We assume that 1 ≤ Ut ≤ Umax and we specifically
allow the set of currently connected users to change in between
the time slots of the algorithm, so that user mobility is taken
into account. Let D be the number of monitored context
dimensions per user. We denote the D-dimensional context
space by X . It is assumed to be bounded and can hence be
set to X := [0, 1]D without loss of generality. Let xt,i ∈ X
be the context vector of user i observed in time slot t. Let
xt = (xt,i)i=1,...,Ut be the collection of contexts of all users
in time slot t. Let st,i ∈ S be the service type of user i

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

in time slot t and let st = (st,i)i=1,...,Ut be the collection
of service types of all users in time slot t. (ii) The cache
content is refreshed based on the contexts xt, the service types
st and their service weights, the file prioritization weights
wf , f ∈ F , and knowledge from previous time slots. Then,
connected users are informed about the current cache content,
which is denoted by Ct = {ct,1, ..., ct,m}. (iii) Until the end of
the time slot, users can request currently cached files. Their
requests are served. The demand dct,j (xt,i, t) of each user
i = 1, ..., Ut for each cached file ct,j ∈ Ct, j = 1, ...,m, in
this time slot is observed, i.e., the number of cache hits for
each cached file is monitored.

The number of times a user with context vector x ∈ X
requests a file f ∈ F within one time slot is a random variable
with unknown distribution. We denote this random demand
by df (x) and its expected value by µf (x) := E(df (x)).
The random demand is assumed to take values in [0, Rmax],
where Rmax ∈ N is the maximum possible number of
requests a user can submit within one time slot. This explicitly
incorporates that a user may request the same file repeatedly
within one time slot. In time slot t, the random variables
(df (xt,i))i=1,..,Ut,f∈F , are assumed to be independent, i.e., the
requests of currently connected users and between different
files are independent of each other. Moreover, each random
variable df (xt,i) is assumed to be independent of past caching
decisions and previous demands.

The goal of the caching entity is to select the cache content
in order to maximize the expected cumulative number of
(weighted) cache hits up to the finite time horizon T . We
introduce a binary variable yt,f , which describes if file f is
cached in time slot t, where yt,f = 1, if f ∈ Ct, and 0
otherwise. Then, the problem of cache content placement can
be formally written as

max

T∑
t=1

∑
f∈F

yt,fwf

Ut∑
i=1

vst,iµf (xt,i) (1)

s.t.
∑
f∈F

yt,f ≤ m, t = 1, ..., T,

yt,f ∈ {0, 1}, f ∈ F, t = 1, ..., T.

Let us now first assume that the caching entity had a priori
knowledge about context-specific content popularity like an
omniscient oracle, i.e., suppose that for each context vector
x ∈ X and for each file f ∈ F , the caching entity would
know the expected demand µf (x) = E(df (x)). In this case,
problem (1) corresponds to an integer linear programming
problem. The problem can be decoupled into T independent
sub-problems, one for each time slot t. Each sub-problem is
a special case of the knapsack problem [43] with a knapsack
of capacity m and with items of non-negative profit and unit
weights. Hence, its optimal solution can be easily computed
in a running time of O(|F | log(|F |)) as follows. In time
slot t, given the contexts xt and the service types st, the
optimal solution is given by ranking the files according to their
(weighted) expected demands and by selecting the m highest
ranked files. We denote these top-m files for pair (xt, st)

by f∗1 (xt, st), f
∗
2 (xt, st), ..., f

∗
m(xt, st) ∈ F . Formally, for

j = 1, ...,m, they satisfy 1

f∗j (xt, st) ∈ argmax
f∈F\(

⋃j−1
k=1{f

∗
k (xt,st)})

wf

Ut∑
i=1

vst,iµf (xt,i), (2)

where
⋃0
k=1{f∗k (xt, st)} := ∅. We denote by C∗t (xt, st) :=⋃m

k=1{f∗k (xt, st)} an optimal choice of files to cache in time
slot t. Consequently, the collection

(C∗t (xt, st))t=1,...,T (3)

is an optimal solution to problem (1). Since this solution can
be achieved by an omniscient oracle under a priori knowledge
about content popularity, we call it the oracle solution.

However, in this paper we assume that the caching entity
does not have a priori knowledge about content popularity. In
this case, the caching entity cannot simply solve problem (1)
as described above, since the expected demands µf (x) =
E(df (x)) are unknown. Hence, the caching entity has to learn
these expected demands over time by observing the users’
demands for cached files given the users’ contexts. For this
purpose, over time, the caching entity has to find a trade-
off between caching files about which little information is
available (exploration) and files of which it believes that they
will yield the highest demands (exploitation). In each time
slot, the choice of files to be cached depends on the history of
choices in the past and the corresponding observed demands.
An algorithm which maps the history to the choices of files
to cache is called a learning algorithm. The oracle solution
given in (3) can be used as a benchmark to evaluate the loss
of learning. Formally, the regret of learning with respect to
the oracle solution is given by

R(T) =

T∑
t=1

m∑
j=1

Ut∑
i=1

vst,i

(
wf∗

j (xt,st)E
(
df∗
j (xt,st)(xt,i)

)
(4)

− E
(
wct,jdct,j (xt,i, t)

))
,

where dct,j (xt,i, t) denotes the random demand for the cached
file ct,j ∈ Ct of user i with context vector xt,i at time t. Here,
the expectation is taken with respect to the choices made by
the learning algorithm and the distributions of the demands.

IV. A CONTEXT-AWARE PROACTIVE CACHING
ALGORITHM

In order to proactively cache the most suitable files given
the context information about currently connected users, the
caching entity should learn context-specific content popularity.
Due to the above formal problem formulation, this problem
corresponds to a contextual multi-armed bandit problem and
we can adapt and extend a contextual learning algorithm [41],
[42] to our setting. Our algorithm is based on the assumption
that users with similar context information will request similar
files. If this natural assumption holds true, the users’ context

1Several files may have the same expected demands, i.e., the optimal set
of files may not be unique. This is also captured here.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MÜLLER et al.: CONTEXT-AWARE PROACTIVE CONTENT CACHING WITH SERVICE DIFFERENTIATION IN WIRELESS NETWORKS 7

information together with their requests for cached files can
be exploited to learn for future caching decisions. For this
purpose, our algorithm starts by partitioning the context space
uniformly into smaller sets, i.e., it splits the context space
into parts of similar contexts. Then, the caching entity learns
the content popularity independently in each of these sets of
similar contexts. The algorithm operates in discrete time slots.
In each time slot, the algorithm first observes the contexts of
currently connected users. Then, the algorithm selects which
files to cache in this time slot. Based on a certain control
function, the algorithm is either in an exploration phase, in
which it chooses a random set of files to cache. Theses phases
are needed to learn the popularity of files which have not
been cached often before. Otherwise, the algorithm is in an
exploitation phase, in which it caches files which on average
were requested most when cached in previous time slots with
similar user contexts. After caching the new set of files, the
algorithm observes the users’ requests for these files. In this
way, over time, the algorithm learns context-specific content
popularity.

The algorithm for selecting m files is called Context-
Aware Proactive Caching with Cache Size m (m-CAC) and its
pseudocode is given in Fig. 4. Next, we describe the algorithm
in more detail. In its initialization phase, m-CAC creates a
partition PT of the context space X = [0, 1]D into (hT)

D

sets, that are given by D-dimensional hypercubes of identical
size 1

hT
× . . . × 1

hT
. Here, hT is an input parameter which

determines the number of sets in the partition. Additionally, m-
CAC keeps a counter Nf,p(t) for each pair consisting of a file
f ∈ F and a set p ∈ PT . The counter Nf,p(t) is the number of
times in which file f ∈ F was cached after a user with context
from set p was connected to the caching entity up to time slot t
(i.e., if 2 users with context from set p are connected in one
time slot and file f is cached, this counter is increased by 2).
Moreover, m-CAC keeps the estimated demand d̂f,p(t) up to
time slot t of each pair consisting of a file f ∈ F and a set
p ∈ PT . This estimated demand is calculated as follows: Let
Ef,p(t) be the set of observed demands of users with context
from set p when file f was cached up to time slot t. Then,
the estimated demand of file f in set p is given by the sample
mean d̂f,p(t) := 1

|Ef,p(t)|
∑
d∈Ef,p(t) d.2,3

In each time slot t, m-CAC first observes the number of cur-
rently connected users Ut, their contexts xt = (xt,i)i=1,...,Ut

and the service types st = (st,i)i=1,...,Ut . For each context
vector xt,i, m-CAC determines the set pt,i ∈ PT , to which
the context vector belongs, i.e., such that xt,i ∈ pt,i holds.
The collection of these sets is given by pt = (pt,i)i=1,...,Ut .
Then, the algorithm can either be in an exploration phase or in
an exploitation phase. In order to determine the correct phase
in the current time slot, the algorithm checks if there are files
that have not been explored sufficiently often. For this purpose,

2The set Ef,p(t) does not have to be stored since the estimated demand
d̂f,p(t) can be updated based on d̂f,p(t−1), Nf,p(t−1) and on the observed
demands at time t.

3Note that in the pseudocode in Fig. 4, the argument t is dropped from
counters Nf,p(t) and d̂f,p(t) since previous values of these counters do not
have to be stored.

m-CAC: Context-Aware Proactive Caching Algorithm
1: Input: T , hT , K(t)
2: Initialize context partition: Create partition PT of context

space [0, 1]D into (hT)
D hypercubes of identical size

3: Initialize counters: For all f ∈ F and all p ∈ PT , set
Nf,p = 0

4: Initialize estimated demands: For all f ∈ F and all p ∈
PT , set d̂f,p = 0

5: for each t = 1, ..., T do
6: Observe number Ut of currently connected users
7: Observe user contexts xt = (xt,i)i=1,...,Ut and service

types st = (st,i)i=1,...,Ut
8: Find pt = (pt,i)i=1,...,Ut such that xt,i ∈ pt,i ∈

PT , i = 1, ..., Ut
9: Compute the set of under-explored files F ue

pt
(t) in (5)

10: if F ue
pt
(t) 6= ∅ then . Exploration

11: u = size(F ue
pt
(t))

12: if u ≥ m then
13: Select ct,1, ..., ct,m randomly from F ue

pt
(t)

14: else
15: Select ct,1, ..., ct,u as the u files from F ue

pt
(t)

16: Select ct,u+1, ..., ct,m as the (m − u) files
f̂1,pt,st(t), ..., f̂m−u,pt,st(t) from (6)

17: end if
18: else . Exploitation
19: Select ct,1, ..., ct,m as the m files

f̂1,pt,st(t), ..., f̂m,pt,st(t) from (7)
20: end if
21: Observe demand (dj,i) of each user i = 1, ..., Ut

for each file ct,j , j = 1, ...,m
22: for i = 1, ..., Ut do
23: for j = 1, ...,m do
24: d̂ct,j ,pt,i =

d̂ct,j ,pt,iNct,j ,pt,i+dj,i

Nct,j ,pt,i+1 and
Nct,j ,pt,i = Nct,j ,pt,i + 1

25: end for
26: end for
27: end for

Fig. 4. Pseudocode of m-CAC.

the set of under-explored files F ue
pt
(t) is calculated based on

F ue
pt
(t) := ∪Uti=1F

ue
pt,i(t)

:= ∪Uti=1{f ∈ F : Nf,pt,i(t) ≤ K(t)}, (5)

where K(t) is a deterministic, monotonically increasing con-
trol function, which is an input to the algorithm. The control
function has to be set adequately to balance the trade-off
between exploration and exploitation. In Section V, we will
select a control function that guarantees a good balance in
terms of this trade-off.

If the set of under-explored files is non-empty, m-CAC
enters the exploration phase. Let u(t) be the size of the set of
under-explored files. If the set of under-explored files contains
at least m elements, i.e., u(t) ≥ m, the algorithm randomly se-
lects m files from F ue

pt
(t) to cache. If the set of under-explored

files contains less than m elements, i.e., u(t) < m, it selects
all u(t) files from F ue

pt
(t) to cache. Since the cache is not fully

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

filled by u(t) < m files, (m − u(t)) additional files can be
cached. In order to exploit knowledge obtained so far, m-CAC
selects (m−u(t)) files from F \F ue

pt
(t) based on a file ranking

according to the estimated weighted demands, as defined by
the files f̂1,pt,st(t), ..., f̂m−u(t),pt,st(t) ∈ F \ F ue

pt
(t), which

satisfy for j = 1, ...,m− u(t):

f̂j,pt,st(t) ∈ argmax

f∈F\(Fue
pt

(t)∪
j−1⋃
k=1

{f̂k,pt,st (t)})

wf

Ut∑
i=1

vst,i d̂f,pt,i(t).

(6)

If the set of files defined by (6) is not unique, ties are broken
arbitrarily. Note that by this procedure, even in exploration
phases, the algorithm additionally exploits, whenever the num-
ber of under-explored files is smaller than the cache size.

If the set of under-explored files F ue
pt
(t) is empty, m-CAC

enters the exploitation phase. It selects m files from F based
on a file ranking according to the estimated weighted demands,
as defined by the files f̂1,pt,st(t), ..., f̂m,pt,st(t) ∈ F , which
satisfy for j = 1, ...,m:

f̂j,pt,st(t) ∈ argmax
f∈F\(

⋃j−1
k=1{f̂k,pt,st (t)})

wf

Ut∑
i=1

vst,i d̂f,pt,i(t).

(7)

If the set of files defined by (7) is not unique, ties are again
broken arbitrarily.

After selecting the subset of files to cache, the algorithm
observes the users’ requests for these files in this time slot.
Then, it updates the estimated demands and the counters of
cached files.

V. ANALYSIS OF THE REGRET

In this section, we give an upper bound on the regret R(T)
of m-CAC in (4). The regret bound is based on the natural
assumption that expected demands for files are similar in
similar contexts, i.e., that users with similar characteristics
are likely to consume similar content. This assumption is
realistic since the users’ preferences in terms of consumed
content differ based on the users’ contexts, so that it is
plausible to divide the user population into segments of users
with similar context and similar preferences. Formally, the
similarity assumption is captured by the following Hölder
condition.

Assumption 1. There exists L > 0, α > 0 such that for all
f ∈ F and for all x, y ∈ X , it holds that

|µf (x)− µf (y)| ≤ L||x− y||α,

where || · || denotes the Euclidean norm in RD.

Assumption 1 is needed for the analysis of the regret, but
it should be noted that m-CAC can also be applied if this
assumption does not hold true. However, a regret bound might
not be guaranteed in this case.

The following theorem shows that the regret of m-CAC
is sublinear in the time horizon T , i.e., R(T) = O(T γ)
with γ < 1. This bound on the regret guarantees that the

algorithm has an asymptotically optimal performance, since
then limT→∞

R(T)
T = 0 holds. This means, that m-CAC

converges to the oracle solution strategy. In other words,
m-CAC converges to the optimal cache content placement
strategy, which maximizes the expected number of cache hits.
In detail, the regret of m-CAC can be bounded as follows for
any finite time horizon T .

Theorem 1 (Bound for R(T)). Let K(t) = t
2α

3α+D log(t) and
hT = dT

1
3α+D e. If m-CAC is run with these parameters and

Assumption 1 holds true, the leading order of the regret R(T)
is O

(
vmaxwmaxmUmaxRmax|F |T

2α+D
3α+D log(T)

)
.

The proof can be found in our online appendix [44]. The re-
gret bound given in Theorem 1 is sublinear in the time horizon
T , proving that m-CAC converges to the optimal cache content
placement strategy. Additionally, Theorem 1 is applicable for
any finite time horizon T , such that it provides a bound on
the loss incurred by m-CAC for any finite number of cache
placement phases. Thus, Theorem 1 characterizes m-CAC’s
speed of convergence Furthermore, Theorem 1 shows that
the regret bound is a constant multiple of the regret bound
in the special case without service differentiation, in which
vmax = 1 and wmax = 1. Hence, the order of the regret is
O
(
T

2α+D
3α+D log(T)

)
in the special case as well.

VI. MEMORY REQUIREMENTS

The memory requirements of m-CAC are mainly determined
by the counters kept by the algorithm during its runtime (see
also [41]). For each set p in the partition PT and each file
f ∈ F , the algorithm keeps the counters Nf,p and d̂f,p. The
number of files is |F |. If m-CAC runs with the parameters
from Theorem 1, the number of sets in PT is upper bounded
by (hT)

D = dT
1

3α+D eD ≤ 2DT
D

3α+D . Hence, the required
memory is upper bounded by |F |2DT

D
3α+D and is thus sub-

linear in the time horizon T . This means, that for T → ∞,
the algorithm would require infinite memory. However, for
practical approaches, only the counters of such sets p have
to be kept to which at least one of the connected users’
context vectors has already belonged to. Hence, depending
on the heterogeneity in the connected users’ context vectors,
the required number of counters that have to be kept can be
much smaller than given by the upper bound.

VII. EXTENSIONS

A. Exploiting the Multicast Gain

So far, we assumed that each request for a cached file is
immediately served by a unicast transmission. However, our
algorithm can be extended to multicasting, which has been
shown to be beneficial in combination with caching [7], [11].
For this purpose, to extend our algorithm, each time slot t
is divided into a fixed number of intervals. In each interval,
incoming requests are monitored and accumulated. At the
end of the interval, requests for the same file are served
by a multicast transmission. In order to exploit knowledge
about content popularity learned so far, a request for a file
with low estimated demand could, however, still be served

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MÜLLER et al.: CONTEXT-AWARE PROACTIVE CONTENT CACHING WITH SERVICE DIFFERENTIATION IN WIRELESS NETWORKS 9

by a unicast transmission. In this way, unnecessary delays
are prevented in cases in which another request and thus a
multicast transmission are not expected. Moreover, service
differentiation could be taken into account. For example, high-
priority users could be served by unicast transmissions, such
that their delay is not increased due to waiting times for
multicast transmissions.

B. Rating-Based Context-Aware Proactive Caching

So far, we considered cache content placement with respect
to the demands df (x) in order to maximize the number of
(weighted) cache hits. However, a CP operating an infostation
might want to cache not only content that is requested often,
but which also receives high ratings from the users. Consider
the case that after consumption users rate content in a range
[rmin, rmax] ⊂ R+. For a context x, let rf (x) be the random
variable describing the rating of a user with context x if he
requests file f and makes a rating thereafter. Then, we define
the random variable

d̃f (x) := rf (x)df (x), (8)

which combines the demand and the rating for file f of
a user with context x. By carefully designing the range
of ratings, the CP chooses the trade-off between ratings
and cache hits. Now, we can apply m-CAC with respect
to d̃f (x). In this case, m-CAC additionally needs to ob-
serve the users’ ratings in order to learn content popularity
in terms of ratings. If the users’ ratings are always avail-
able, Theorem 1 applies and provides a regret bound of
O
(
vmaxwmaxrmaxmUmaxRmax|F |T

2α+D
3α+D log(T)

)
.

However, users might not always reveal a rating after
consuming a content. When a user’s rating is missing, we
assume that m-CAC does not update the counters based on this
user’s request. This may result in a higher required number of
exploration phases. Hence, the regret of the learning algorithm
is influenced by the users’ willingness to reveal ratings of
requested content. Let q ∈ (0, 1) be the probability that a user
reveals his rating after requesting a file. Then, the regret of
the learning algorithm is bounded as given below.

Theorem 2 (Bound for R(T) for rating-based caching
with missing ratings). Let K(t) = t

2α
3α+D log(t) and

hT = dT
1

3α+D e. If m-CAC is run with these param-
eters with respect to d̃f (x), Assumption 1 holds true
for d̃f (x) and a user reveals his rating with prob-
ability q, the leading order of the regret R(T) is
O
(

1
q vmaxwmaxrmaxmUmaxRmax|F |T

2α+D
3α+D log(T)

)
.

The proof can be found in our online appendix [44].
Comparing Theorem 2 with Theorem 1, the regret of m-CAC
is scaled up by a factor 1

q > 1 in case of rating-based caching
with missing ratings. This factor corresponds to the expected
number of requests until the caching entity receives one rating.
However, the time order of the regret remains the same. Hence,
m-CAC is robust under missing ratings in the sense that if
some users refuse to rate requested content, the algorithm still
converges to the optimal cache content placement strategy.

C. Asynchronous User Arrival

So far, we assumed that the set of currently connected users
only changes in between the time slots of our algorithm. This
means, that only those users connected to the caching entity
at the beginning of a time slot, will request files within that
time slot. However, if users connect to the caching entity
asynchronously, m-CAC should be adapted. If a user directly
disconnects after the context monitoring without requesting
any file, he should be excluded from learning. Hence, in m-
CAC, the counters are not updated for disconnecting users.
If a user connects to the caching entity after cache content
placement, his context was not considered in the caching
decision. However, his requests can be used to learn faster.
Hence, in m-CAC, the counters are updated based on this
user’s requests.

D. Multiple Wireless Local Caching Entities

So far, we considered online learning for cache content
placement in a single caching entity. However, real caching
systems contain multiple caching entities, each of which
should learn local content popularity. In a network of mul-
tiple caching entities, m-CAC could be applied separately
and independently by each caching entity. For the case that
coverage areas of caching entities overlap, in this subsection,
we present m-CACao, an extension of m-CAC to Context-
Aware Proactive Caching with Area Overlap. The idea of m-
CACao is that caching entities can learn content popularity
faster by not only relying on their own cache hits, but also
on cache hits at neighboring caching entities with overlapping
coverage area. For this purpose, the caching entities overhear
cache hits produced by users in the intersection to neighboring
coverage areas.

In detail, m-CAC is extended to m-CACao as follows: The
context monitoring and the selection of cache content works
as in m-CAC. However, the caching entity not only observes
its own cache hits (line 21 in Fig. 4), but it overhears cache
hits at neighboring caching entities of users in the intersection.
Then, the caching entity not only updates the counters of its
own cached files (lines 22-26 in Fig. 4), but it additionally
updates the counters of files of which it overheard cache hits
at neighboring caches. This helps the caching entity to learn
faster.

VIII. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed learn-
ing algorithm m-CAC by comparing its performance to several
reference algorithms based on a real world data set.

A. Description of the Data Set

We use a data set from MovieLens [45] to evaluate our
proposed algorithm. MovieLens is an online movie recom-
mender operated by the research group GroupLens from the
University of Minnesota. The MovieLens 1M DataSet [46]
contains 1000209 ratings of 3952 movies. These ratings were
made by 6040 users of MovieLens within the years 2000 to
2003. Each data set entry consists of an anonymous user ID,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

time slot t

n
u
m
b
er

o
f
co
n
te
n
t
re
q
u
es
ts

Fig. 5. Number of content requests in used data set as a function of time
slots. Time slots at an hourly basis.

a movie ID, a rating (in whole numbers between 1 and 5) and
a timestamp. Additionally, demographic information about the
users is given: Their gender, age (in 7 categories), occupation
(in 20 categories) as well as their Zip-code. For our numerical
evaluations, we assume that the movie rating process in the
data set corresponds to a content request process of users
connected to a wireless local caching entity (see [33], [34]
for a similar approach). Hence, a user rating a movie at a
certain time in the data set for us corresponds to a request
to either the caching entity (in case the movie is cached in
the caching entity) or to the macro cellular network (in case
the movie is not cached in the caching entity). This approach
is reasonable since users typically rate movies after watching
them.

In our simulations, we only use the data gathered within the
first year of the data set, since around 94% of the ratings were
provided within this time frame. Then, we divide a year’s time
into 8760 time slots of one hour each (T = 8760), assuming
that the caching entity updates its cache content at an hourly
basis. Then, we assign the requests and corresponding user
contexts to the time slots according to their timestamps and
we interpret each request as if it was coming from a separate
user. At the beginning of a time slot, we assume to have access
to the context of each user responsible for a request in the
coming time slot. Fig. 5 shows that the corresponding content
request process is bursty and flattens out towards the end. As
context dimensions, we select the dimensions gender and age.4

B. Reference Algorithms

We compare m-CAC with five reference algorithms. The
first algorithm is the omniscient Oracle, which has complete
knowledge about the exact future demands. In each time slot,
the oracle selects the optimal m files that will maximize the
number of cache hits in this time slot.5

4We neglect the occupation as context dimension since by mapping them
to a [0,1] variable, we would have to classify which occupations are more
and which are less similar to each other.

5Note that this oracle yields even better results than the oracle used as a
benchmark to define the regret in (4). In the definition of regret, the oracle only
exploits knowledge about expected demands, instead of exact future demands.

The second reference algorithm is called m-UCB, which
consists of a variant of the UCB algorithm. UCB is a classical
learning algorithm for multi-armed bandit problems [35],
which has logarithmic regret order. However, it does not take
into account context information, i.e., the logarithmic regret is
with respect to the average expected demand over the whole
context space. While in classical UCB, one action is taken in
each time slot, we modify UCB to take m actions at a time,
which corresponds to selecting m files.

The third reference algorithm is the m-ε-Greedy. This is
a variant of the simple ε-Greedy [35] algorithm, which does
not consider context information. The m-ε-Greedy caches a
random set of m files with probability ε ∈ (0, 1). With
probability (1 − ε), the algorithm caches the m files with
highest to m-th highest estimated demands. These estimated
demands are calculated based on previous demands for cached
files.

The fourth reference algorithm is called m-Myopic. This is
an algorithm taken from [15], which is investigated since it is
comparable to the well-known Least Recently Used algorithm
(LRU) for caching. m-Myopic only learns from one time slot
in the past. It starts with a random set of files and in each of
the following time slots discards all files that have not been
requested in the previous time slot. Then, it randomly replaces
the discarded files by other files.

The fifth reference algorithm, called Random, caches a
random set of files in each time slot.

C. Performance Measures

The following performance measures are used in our anal-
ysis. The evolution of per-time slot or cumulative number of
cache hits allows comparing the absolute performance of the
algorithms. A relative performance measure is given by the
cache efficiency, which is defined as the ratio of cache hits
compared to the overall demand, i.e.,

cache efficiency in % =
cache hits

cache hits + cache misses
· 100.

The cache efficiency describes the percentage of requests
which can be served by cached files.

D. Results

In our simulations, we set ε = 0.09 in m-ε-Greedy, which
is the value at which heuristically the algorithm on average
performed best. In m-CAC, we set the control function to
K(t) = c · t

2α
3α+D log(t) with c = 1/(|F |D).6 The simula-

tion results are obtained by averaging over 100 runs of the
algorithms. First, we consider the case without service differ-
entiation. The long-term behavior of m-CAC is investigated
with the following scenario. We assume that the caching entity
can store m = 200 movies out of the |F | = 3952 available
movies. Hence, the cache size corresponds to about 5% of
the file library size. We run all algorithms on the data set and
study their results as a function of time, i.e., over the time slots
t = 1, ..., T . Fig. 6(a) and 6(b) show the per-time slot and the

6Compared to the control function in Theorem 1, the additional factor
reduces the number of exploration phases which allows for better performance.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MÜLLER et al.: CONTEXT-AWARE PROACTIVE CONTENT CACHING WITH SERVICE DIFFERENTIATION IN WIRELESS NETWORKS 11

time slot t
1000 2000 3000 4000 5000 6000 7000 8000

n
u
m
b
er

o
f
ca
ch
e
h
it
s

0

500

1000

1500

2000

Oracle

m-CAC

m-UCB

ǫ-m-Greedy

m-Myopic

Random

(a) Number of cache hits per time slot.

time slot t
1000 2000 3000 4000 5000 6000 7000 8000

cu
m
u
la
ti
v
e
n
u
m
b
er

o
f
ca
ch
e
h
it
s

×10
5

0

1

2

3

4

5

6

7

Oracle

m-CAC

m-UCB

ǫ-m-Greedy

m-Myopic

Random

(b) Cumulative number of cache hits.

Fig. 6. Time evolution of algorithms for m = 200.

cumulative numbers of cache hits up to time slot t as a function
of time, respectively. Due to the bursty content request process
(compare Fig. 5), also the number of cache hits achieved by
the different algorithms is bursty over time. As expected, the
Oracle gives an upper bound to the other algorithms. Among
the other algorithms, m-CAC, m-ε-Greedy and m-UCB clearly
outperform m-Myopic and Random. This is due to the fact
that these three algorithms learn from the history of observed
demands, while m-Myopic only learns from one time slot in
the past and Random does not learn at all. It can be observed
that m-ε-Greedy shows a better performance than m-UCB,
even though it uses a simpler learning strategy. Overall, m-
CAC outperforms the other algorithms by additionally learning
from context information. At the time horizon, the cumulative
number of cache hits achieved by m-CAC is 1.146, 1.377,
3.985 and 5.506 times higher than the ones achieved by m-ε-
Greedy, m-UCB, m-Myopic and Random, respectively.

Next, we investigate the impact of the cache size m by
varying it between 50 and 400 files, which corresponds to
between 1.3% and 10.1% of the file library size, which is
a realistic assumption. All remaining parameters are kept as
before. Fig. 7 shows the overall cache efficiency achieved

cache size m

50 100 150 200 250 300 350 400

o
v
er
a
ll
ca
ch
e
effi

ci
en
cy

in
%

0

10

20

30

40

50

60

70

80

90

Oracle

m-CAC

m-UCB

ǫ-m-Greedy

m-Myopic

Random

Fig. 7. Overall cache efficiency at T as a function of cache size m.

at the time horizon T as a function of cache size, i.e., the
cumulative number of cache hits up to T is normalized by
the cumulative number of requests up to T . The overall cache
efficiency of all algorithms is increasing with increasing cache
size. Moreover, the results indicate that again m-CAC and m-
ε-Greedy slightly outperform m-UCB and clearly outperform
m-Myopic and Random. Averaged over the range of cache
sizes, the cache efficiency of m-CAC is 28.4%, compared to an
average cache efficiency of 25.3%, 21.4%, 7.76% and 5.69%
achieved by m-ε-Greedy, m-UCB, m-Myopic and Random,
respectively.

Now, we consider a case of service differentiation, in which
two different service types 1 and 2 with weights v1 = 5 and
v2 = 1 exist. Hence, service type 1 should be prioritized due
to the higher value it represents. We randomly assign 10% of
the users to service type 1 and classify all remaining users as
service type 2. Then, we adjust each algorithm to take into
account service differentiation by incorporating the weights
according to the service types. Fig. 8 shows the cumulative
number of weighted cache hits up to time slot t as a function of
time. At the time horizon, the cumulative number of weighted
cache hits achieved by m-CAC is 1.156, 1.219, 3.914 and
5.362 times higher than the ones achieved by m-ε-Greedy,
m-UCB, m-Myopic and Random, respectively. A comparison
with Fig. 6(b) shows that the behavior of the algorithms is
similar to the case without service differentiation.

Finally, we investigate the extension to multiple caching en-
tities and compare the performance of the proposed algorithms
m-CAC and m-CACao. We consider a scenario with two
caching entities and divide the data set as follows: A fraction
o ∈ [0, 0.3] of randomly selected requests is considered to be
made in the intersection of the two coverage areas. We use the
parameter o as a measure of the overlap between the caching
entities. The remaining requests are randomly assigned to ei-
ther one of the caching entities. These requests are considered
to be made by users solely connected to one caching entity.
Then, on the one hand we run m-CAC separately on each
caching entity and on the other hand we run m-CACao on
both caching entities. Fig. 9 shows the cumulative number
of cache hits achieved in sum by the two caching entities at

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

time slot t
1000 2000 3000 4000 5000 6000 7000 8000

cu
m
u
la
ti
v
e
n
u
m
b
er

o
f
w
ei
g
h
te
d
ca
ch
e
h
it
s ×10

5

0

2

4

6

8

10

12

14

Oracle

m-CAC

m-UCB

ǫ-m-Greedy

m-Myopic

Random

Fig. 8. Cumulative number of weighted cache hits for m = 200 as a function
of time.

the time horizon T as a function of the overlap parameter o.
As expected, m-CAC and m-CACao perform identically for
non-overlapping coverage areas. With increasing overlap, the
number of cache hits achieved by both m-CAC and m-CACao
increases. The reason is that users in the intersection can more
likely be served since they have access to both caches. Hence,
even though the caching entities do not coordinate their cache
content, more cache hits occur. For up to 25% of overlap
(o ≤ 0.25), m-CACao outperforms m-CAC. Clearly, m-
CACao performs better since by overhearing cache hits at the
neighboring caching entity, both caching entities learn content
popularity faster. For very large overlap (o > 0.25), m-CAC
yields higher numbers of cache hits. The reason is that when
applying m-CACao in case of a large overlap, neighboring
caching entities overhear such a large number of cache hits,
that they learn very similar content popularity distributions.
Hence, over time it is likely that their caches contain the
same files. In contrast, applying m-CAC, a higher diversity in
cache content is maintained over time. Clearly, further gains in
cache hits could be achieved by jointly optimizing the cache
content of all caching entities. However, this would either
require coordination among the caching entities or a central
planner deciding on the cache content of all caching entities,
which results in a high communication overhead. In contrast,
our heuristic algorithm m-CACao does not require additional
coordination or communication and yields good results for
small overlaps.

IX. CONCLUSION

In this paper, we presented a context-aware proactive
caching algorithm for wireless caching entities based on
contextual multi-armed bandits. To cope with unknown and
fluctuating content popularity among the dynamically arriving
and leaving users, the algorithm regularly observes context
information of connected users, updates the cache content and
subsequently observes cache hits. In this way, the algorithm
learns context-specific content popularity online, which allows
for a proactive adaptation of cache content according to fluc-
tuating local content popularity. We derived a sublinear regret

overlap parameter o
0 0.05 0.1 0.15 0.2 0.25 0.3

cu
m
u
la
ti
v
e
n
u
m
b
er

o
f
ca
ch
e
h
it
s
a
t
T

×10
5

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

m-CACao

m-CAC

Fig. 9. Cumulative number of cache hits at T as a function of the overlap
parameter o.

bound, which characterizes the learning speed and proves that
our proposed algorithm converges to the optimal cache content
placement strategy, which maximizes the expected number of
cache hits. Moreover, the algorithm supports customer priori-
tization and can be combined with multicast transmissions and
rating-based caching decisions. Numerical studies showed that
by exploiting context information, our algorithm outperforms
state-of-the-art algorithms in a real world data set.

REFERENCES

[1] S. Müller, O. Atan, M. van der Schaar, and A. Klein, “Smart caching
in wireless small cell networks via contextual multi-armed bandits,” in
Proc. IEEE International Conference on Communications (ICC), 2016,
pp. 1–7.

[2] [Online]. Available: http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html

[3] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the
air: Exploiting content caching and delivery techniques for 5G systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, Feb. 2014.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. IEEE International Conference
on Computer Communications (INFOCOM), 2010, pp. 1–9.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” in Proc. IEEE
International Conference on Computer Communications (INFOCOM),
vol. 1, 1999, pp. 126–134.

[6] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck,
“To cache or not to cache: The 3G case,” IEEE Internet Computing,
vol. 15, no. 2, pp. 27–34, Mar. 2011.

[7] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, May
2014.

[8] N. Golrezaei, A. Molisch, A. Dimakis, and G. Caire, “Femtocaching and
device-to-device collaboration: A new architecture for wireless video
distribution,” IEEE Communications Magazine, vol. 51, no. 4, pp. 142–
149, Apr. 2013.

[9] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp.
8402–8413, Dec. 2013.

[10] K. Poularakis and L. Tassiulas, “Exploiting user mobility for wireless
content delivery,” in Proc. IEEE International Symposium on Informa-
tion Theory (ISIT), 2013, pp. 1017–1021.

[11] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 4, pp. 2995–3007, Apr. 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

MÜLLER et al.: CONTEXT-AWARE PROACTIVE CONTENT CACHING WITH SERVICE DIFFERENTIATION IN WIRELESS NETWORKS 13

[12] E. Bastug, M. Bennis, and M. Debbah, “Cache-enabled small cell
networks: Modeling and tradeoffs,” in Proc. International Symposium
on Wireless Communications Systems (ISWCS), 2014, pp. 649–653.

[13] ——, “Living on the edge: The role of proactive caching in 5G wireless
networks,” IEEE Communications Magazine, vol. 52, no. 8, pp. 82–89,
Aug. 2014.

[14] E. Bastug, M. Bennis, E. Zeydan, M. A. Kader, A. Karatepe, A. S.
Er, and M. Debbah, “Big data meets telcos: A proactive caching
perspective,” Journal of Communications and Networks, Special Issue
on Big Data Networking – Challenges and Applications, vol. 17, no. 6,
pp. 549–558, Dec. 2015.

[15] P. Blasco and D. Gündüz, “Learning-based optimization of cache content
in a small cell base station,” in Proc. IEEE International Conference on
Communications (ICC), 2014, pp. 1897–1903.

[16] ——, “Multi-armed bandit optimization of cache content in wireless
infostation networks,” in Proc. IEEE International Symposium on Infor-
mation Theory (ISIT), 2014, pp. 51–55.

[17] ——, “Content-level selective offloading in heterogeneous networks:
Multi-armed bandit optimization and regret bounds,” arXiv preprint,
arXiv: 1407.6154, 2014.

[18] A. Sengupta, S. Amuru, R. Tandon, R. Buehrer, and T. Clancy, “Learning
distributed caching strategies in small cell networks,” in Proc. IEEE In-
ternational Symposium on Wireless Communications Systems (ISWCS),
2014, pp. 917–921.

[19] M. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Proc.
IEEE International Symposium on Wireless Communications Systems
(ISWCS), 2014, pp. 945–949.

[20] D. Goodman, J. Borras, N. B. Mandayam, and R. Yates, “Infostations:
A new system model for data and messaging services,” in Proc. IEEE
Vehicular Technology Conference (VTC), vol. 2, 1997, pp. 969–973.

[21] A. L. Iacono and C. Rose, “Infostations: New perspectives on wireless
data networks,” in Next Generation Wireless Networks, S. Tekinay, Ed.
Boston, MA: Springer US, 2002, ch. 1, pp. 3–63.

[22] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube traffic characteri-
zation: A view from the edge,” in Proc. ACM Conference on Internet
Measurement (IMC), 2007, pp. 15–28.

[23] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube
network traffic at a campus network – measurements, models, and
implications,” Computer Networks, vol. 53, no. 4, pp. 501–514, Mar.
2009.

[24] A. Brodersen, S. Scellato, and M. Wattenhofer, “YouTube around the
world: Geographic popularity of videos,” in Proc. ACM International
Conference on World Wide Web (WWW), 2012, pp. 241–250.

[25] M.-L. Mares and Y. Sun, “The multiple meanings of age for television
content preferences,” Human Communication Research, vol. 36, no. 3,
pp. 372–396, July 2010.

[26] C. A. Hoffner and K. J. Levine, “Enjoyment of mediated fright and
violence: A meta-analysis,” Media Psychology, vol. 7, no. 2, pp. 207–
237, Nov. 2005.

[27] P. J. Rentfrow, L. R. Goldberg, and R. Zilca, “Listening, watching,
and reading: The structure and correlates of entertainment preferences,”
Journal of Personality, vol. 79, no. 2, pp. 223–258, Apr. 2011.

[28] D. Zillmann, “Mood management through communication choices,”
American Behavioral Scientist, vol. 31, no. 3, pp. 327–340, Jan. 1988.

[29] C. Zhou, Y. Guo, Y. Chen, X. Nie, and W. Zhu, “Characterizing user
watching behavior and video quality in mobile devices,” in Proc. IEEE
International Conference on Computer Communication and Networks
(ICCCN), 2014, pp. 1–6.

[30] B.-J. Ko, K.-W. Lee, K. Amiri, and S. Calo, “Scalable service differenti-
ation in a shared storage cache,” in Proc. IEEE International Conference
on Distributed Computing Systems (ICDCS), 2003, pp. 184–193.

[31] Y. Lu, T. F. Abdelzaher, and A. Saxena, “Design, implementation, and
evaluation of differentiated caching services,” IEEE Transactions on
Parallel and Distributed Systems, vol. 15, no. 5, pp. 440–452, May
2004.

[32] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
Proc. USENIX Symposium on Internet Technologies and Systems, 1997,
pp. 193–206.

[33] S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. IEEE International Conference on Computer Com-
munications (INFOCOM), 2016, pp. 1–9.

[34] ——, “Trend-aware video caching through online learning,” IEEE
Transactions on Multimedia, vol. 18, no. 12, pp. 2503–2516, Dec. 2016.

[35] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May 2002.

[36] S. Maghsudi and E. Hossain, “Multi-armed bandits with application to
5G small cells,” IEEE Wireless Communications, vol. 23, no. 3, pp.
64–73, Jun. 2016.

[37] S. Amuru, C. Tekin, M. v. der Schaar, and R. M. Buehrer, “Jamming
bandits – a novel learning method for optimal jamming,” IEEE Transac-
tions on Wireless Communications, vol. 15, no. 4, pp. 2792–2808, Apr.
2016.

[38] C. Shen, C. Tekin, and M. van der Schaar, “A non-stochastic learning
approach to energy efficient mobility management,” IEEE Journal on
Selected Areas in Communications, Series on Green Communications
and Networking, to be published.

[39] T. Lu, D. Pal, and M. Pal, “Contextual multi-armed bandits,” in Proc.
International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2010, pp. 485–492.

[40] A. Slivkins, “Contextual bandits with similarity information,” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 2533–2568, Jan. 2014.

[41] C. Tekin and M. van der Schaar, “Distributed online learning via co-
operative contextual bandits,” IEEE Transactions on Signal Processing,
vol. 63, no. 14, pp. 3700–3714, Mar. 2015.

[42] C. Tekin, S. Zhang, and M. van der Schaar, “Distributed online learning
in social recommender systems,” IEEE Journal of Selected Topics in
Signal Processing, vol. 8, no. 4, pp. 638–652, Aug. 2014.

[43] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer
Berlin Heidelberg, 2004.

[44] [Online]. Available: http://kang.nt.e-technik.tu-darmstadt.de/nt/
fileadmin/kt/Publikationen PDFs/2016/TWC/TWC2016 Mueller App.
pdf

[45] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems, vol. 5,
no. 4, pp. 1–19, Dec. 2015.

[46] [Online]. Available: http://grouplens.org/datasets/movielens/1m/
[47] W. Hoeffding, “Probability inequalities for sums of bounded random

variables,” Journal of the American Statistical Association, vol. 58, no.
301, pp. 13–30, Mar. 1963.

[48] E. Chlebus, “An approximate formula for a partial sum of the divergent
p-series,” Applied Mathematics Letters, vol. 22, no. 5, pp. 732 – 737,
May 2009.

Sabrina Müller (S’15) received the B.Sc. and the
M.Sc. degrees in mathematics from the Technis-
che Universität Darmstadt, Germany, in 2012 and
2014, respectively. She is currently pursuing the
Ph.D. degree in electrical engineering as member
of the Communications Engineering Laboratory at
the Technische Universität Darmstadt, Germany. Her
research interests include machine learning and opti-
mization methods and their applications to wireless
networks.

Onur Atan received the B.Sc. degree in electri-
cal engineering from Bilkent University, Ankara,
Turkey, in 2013 and the M.Sc. degree in electrical
engineering from the University of California, Los
Angeles, USA, in 2014. He is currently pursuing the
Ph.D. degree in electrical engineering at the Univer-
sity of California, Los Angeles, USA. He received
the best M.Sc. thesis award in electrical engineering
at the University of California, Los Angeles, USA.
His research interests include online learning and
multi-armed bandit problems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO. XX, XX XXXX

Mihaela van der Schaar (M99–SM04–F10) is Chancellor’s Professor of
Electrical Engineering at University of California, Los Angeles, USA. Her
research interests include machine learning for decision making, medical
informatics and education, online learning, real-time stream mining, network
science, engineering economics, social networks, game theory, wireless net-
works and multimedia. Prof. van der Schaar was a Distinguished Lecturer of
the Communications Society from 2011 to 2012, the Editor in Chief of the
IEEE Transactions on Multimedia from 2011 to 2013, and a Member of the
Editorial Board of the IEEE Journal on Selected Topics in Signal Processing
in 2011. She was a recipient of the NSF CAREER Award (2004), the Best
Paper Award from the IEEE Transactions on Circuits and Systems for Video
Technology (2005), the Okawa Foundation Award (2006), the IBM Faculty
Award (2005, 2007, 2008), the Most Cited Paper Award from the EURASIP
Journal on Image Communications (2006), the Gamenets Conference Best
Paper Award (2011), and the IEEE Circuits and Systems Society Darlington
Award Best Paper Award (2011). She received three ISO Awards for her
contributions to the MPEG video compression and streaming international
standardization activities, and holds 33 granted U.S. patents.

Anja Klein (M96) received the Diploma and Dr.-
Ing. (Ph.D.) degrees in electrical engineering from
the University of Kaiserslautern, Germany, in 1991
and 1996, respectively. In 1996, she joined Siemens
AG, Mobile Networks Division, Munich and Berlin.
She was active in the standardization of third gener-
ation mobile radio in ETSI and in 3GPP, for instance
leading the TDD group in RAN1 of 3GPP. She was
vice president, heading a development department
and a systems engineering department. In 2004, she
joined the Technische Universitt Darmstadt, Ger-

many, as full professor, heading the Communications Engineering Laboratory.
Her main research interests are in mobile radio, including interference man-
agement, cross-layer design, relaying and multi-hop, computation offloading,
smart caching and energy harvesting. Dr. Klein has authored over 290 refereed
papers and has contributed to 12 books. She is inventor and co-inventor of
more than 45 patents in the field of mobile radio. In 1999, she was named the
Inventor of the Year by Siemens AG. She is a member of Verband Deutscher
Elektrotechniker - Informationstechnische Gesellschaft (VDE-ITG).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TWC.2016.2636139

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

