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Abstract—In this paper, we consider the three-user multiple-
input multiple-output interference channel, where the transmit-
ters and the receivers have M and N antennas, respectively, and
there is the delayed channel state information at the transmitters
(CSIT). For this scenario, we propose a new transmission scheme,
which achieves a number of degrees of freedom greater than that
known in the literature for the region of antenna configurations
of 1 < M/N < 2. The proposed transmission scheme has a
three-phase transmission structure, where in phases 1 and 2 a
novel approach of using the delayed CSIT is employed.

I. INTRODUCTION

The number of degrees of freedom (DoF) of the three-user

multiple-input multiple-output (MIMO) interference channel

(IC) where each transmitter has M antennas and each receiver

has N antennas was evaluated in [1], where the achievability

was based on a combination of beamforming and interference

alignment. The result of [1] assumes perfect and instanta-

neous channel state information at the transmitters (CSIT), an

assumption which does not always hold in practice. Under

identically and independently distributed (i.i.d.) fading, the

number of DoF of [1] is not achievable with the delayed CSIT,

hence it is interesting whether the delayed CSIT can be used

to achieve a number of DoF greater than that in absence of

CSIT in this network.

In the context of the K-user multiple-input single-output

(MISO) broadcast channel (BC), this question has been an-

swered affirmatively by Maddah-Ali and Tse in [2] by showing

that the number of DoF of this network with the delayed

CSIT is greater than that in absence of CSIT. The number

of DoF was achieved by a multi-phase transmission strategy,

where in each phase the interference overheard in the previous

phases was reconstructed at the transmitters using the delayed

CSIT and retransmitted. [2] proposed an iterative procedure to

construct the signals which were simultaneously useful for a

larger subset of receivers in each phase, where the number of

the phases equals the number of the receivers in the network.

An extension of the approach of [2] to the 3-user single-

input single-output (SISO) IC as well as for the SISO X-

channel (XC) is challenging since the transmitters do not

share the information symbols and hence, the interference

due to multiple simultaneously active interferers cannot be

reconstructed using the delayed CSIT. This problem has been

circumvented in [3] and [4] by applying a transmission tech-

nique where the transmitters transmit the information symbols

along with some redundancy, such that each transmitter oc-

cupies only part of the receive signal space of each receiver.

In such case, the receivers can cancel the signal of one of

the interferers from the received signal, where the remaining

interference originates from only a single transmitter and can

be reconstructed using the delayed CSIT. [3] and [4] showed

that 9/8 DoF and 36/31 DoF are achievable in the 3-user SISO

IC, respectively, where [5] and [6] extended the schemes of [3]

and [4] to the 3-user MIMO IC for M/N ≤ 1, respectively,

and [7] studied the case of M/N > 1.

For the MIMO XC, [8] and [9] showed that instead of

applying redundancy transmission, the transmitters can be

forced to occupy the receive signal space of the unintended

receivers only partially by exploiting the delayed CSIT. [8] and

[9] proposed to split the transmission into two parts, where in

part 2 the interference overheard at the unintended receivers

in part 1 was retransmitted. As compared to redundancy

transmission, such approach reduces the size of the signal

space occupied by the interference at the unintended receivers,

which increases the number of the interference terms obtained

at the receivers after the interference cancellation and increases

the achievable number of DoF.

In this paper, we apply the approach of [8] to design a novel

transmission scheme for the 3-user MIMO IC, which achieves

a number of DoF greater than that known in literature for

the region of antenna configurations of 1 < M/N < 2. The

proposed transmission scheme has a three-phase transmission

structure, where the transmissions in phases 1 and 2 are

split into three and two parts, respectively, where in each

part the interference overheard at the unintended receivers in

the previous parts is retransmitted. Recently, [10] proposed

a transmission scheme for the K-user MIMO IC, which

similarly to the scheme proposed in this paper uses the multi-

part transmission principle of [8]. As compared to [10] for

K = 3, the scheme proposed in this paper has a more

effective transmission in phase 2 and in phase 1 for the antenna

configurations of 5/3 < M/N < 2, which results in greater

achieved number of DoF.

The organisation of the paper is as follows. Section II

describes the system model. In Section III, the proposed
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Fig. 1. Three-user MIMO IC

transmission scheme is described and the achieved number

of DoF is given in Section IV.

II. SYSTEM MODEL

We consider the three-user MIMO IC depicted in Fig. 1,

where the transmitters and the receivers have M and N
antennas, respectively. During the transmission period of TΣ

time slots, each of the transmitters Txi intends to communicate

a vector of information symbols u′
i ∈ Cb×1 to the receiver

Rxi, i ∈ {1, 2, 3}, where b denotes the number of the

information symbols transmitted by each transmitter.

Let xi (t) denote the signal which is transmitted by Txi in

time slot t, 1 ≤ t ≤ TΣ. The signal received by Rxj in time

slot t, j ∈ {1, 2, 3}, is evaluated as

yj (t) =

3
∑

i=1

Hji (t)xi (t) + nj (t) , (1)

where Hji (t) ∈ CN×M is the channel matrix between

Txi and Rxj and nj (t) ∼ CN (0, IN). The signal trans-

mitted by Txi is subject to the average power constraint

of 1
TΣ

TΣ
∑

t=1
E
[

xH
i (t)xi (t)

]

≤ P , where P is the maximum

transmit power.

The entries of the channel matrices Hji (t) , ∀i, j ∈ {1, 2, 3}
are drawn from a continuous distribution and are i.i.d. for

different transmitter and receiver pairs as well as for different

antennas and time slots. We suppose that in time slot t,
1 ≤ t ≤ TΣ, each of the receivers has the global channel

knowledge for the current and the previous time slots, which

corresponds to the knowledge about the sets of channel

matrices of {Hji (τ)}tτ=1, ∀i, j ∈ {1, 2, 3}. The transmitters

have the identical channel knowledge delayed by a single time

slot, which corresponds to the knowledge about the sets of

channel matrices of {Hji (τ)}
t−1
τ=1, ∀i, j ∈ {1, 2, 3}.

We say that the number of DoF d = 3b/TΣ is achievable in

the 3-user MIMO IC if each of the information symbol vectors

u′
i transmitted by Txi to Rxi, i ∈ {1, 2, 3}, is decodable with

probability one.

III. PROPOSED TRANSMISSION SCHEME

In this section, the proposed transmission scheme is de-

scribed. The first subsection introduces the three-phase struc-

T

k T

T T T

T

k T

T T

T

k T

Fig. 2. Structure of transmission scheme

ture of the transmission scheme and in the following subsec-

tions, each phase of the scheme is given in details.

A. Structure of Transmission Scheme

The proposed transmission scheme is comprised of three

phases. In phase 1, the original information symbols are

transmitted, where from the interference terms overheard at the

unintended receivers in phase 1, terms simultaneously useful

for subsets of two receivers are generated. These terms are

transmitted in phase 2, where from the interference terms over-

heard at the remaining unintended receivers in phase 2, terms

useful for subsets of two receivers and known at the remaining

unintended receivers are generated. The transmission of these

terms is performed in phase 3.

As shown in Fig. 2, phase l, l ∈ {1, 2, 3}, is comprised of kl
transmission periods of T (l) time slots, referred to as transmis-

sion blocks throughout the paper, where the terms transmitted

in a single transmission block can be decoded independently

from the terms transmitted in other transmission blocks. In a

transmission block of phase l, a subset of the transmitters is

scheduled for the transmission, where a scheduled transmitter

Txi transmits b
(l)
i terms, with b

(l)
Σ denoting the number of

the terms transmitted by all transmitters. The transmitters are

shuffled between the transmission blocks to ensure an equal

number of terms is transmitted by each transmitter in each

phase. After the transmission of a transmission block of phase

l, l ∈ {1, 2}, q(l) terms to be transmitted in phase l + 1 are

generated. The numbers of the blocks are chosen to ensure

the number of the terms generated after phase l is equal to the

number of the terms transmitted in phase l+1, l ∈ {1, 2}, i.e.

klq
(l) = kl+1b

(l+1)
Σ , l ∈ {1, 2} (2)

holds. Due to the identical structure of the transmission blocks,

only the first transmission block of each phase is described.

The transmission blocks of phases 1 and 2 are divided into

transmission periods, referred to as parts throughout the paper,

where each transmission block of phases 1 and 2 is split into

three and two parts, respectively. In each part, a subset of the

scheduled transmitters retransmits the interference overheard

at the unintended receivers in the previous parts of the trans-

mission block. The duration of part k of phase 1, k ∈ {1, 2, 3},

is denoted as T (1,k) and the duration of part k of phase 2,

k ∈ {1, 2}, is denoted as T (2,k), T (l) =
∑

k T
(l,k), l ∈ {1, 2}.
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B. Transmission in Phase 1

In phase 1, all transmitters are scheduled to transmit simul-

taneously. In the first transmission block of phase 1, Tx1, Tx2
and Tx3 are scheduled to transmit information symbol vectors

u1 ∈ Cb
(1)
1 ×1, u2 ∈ Cb

(1)
2 ×1 and u3 ∈ Cb

(1)
3 ×1, respectively,

where b
(1)
1 = b

(1)
2 = M

(

T (1,1) + T (1,2)
)

and b
(1)
3 ≥ NT (1,1).

Part 1: In part 1 of the transmission block, Tx1, Tx2 and

Tx3 transmit information symbol vectors u
(1)
1 ∈ CMT (1,1)×1,

u
(1)
2 ∈ CMT (1,1)×1 and u3, respectively, where u

(1)
1 and u

(1)
2

denote the vectors comprising the first MT (1,1) elements of

u1 and u2, respectively. Tx1 and Tx2 apply a precoding, where

a new information symbol is transmitted from each antenna in

each time slot and Tx3 employs random precoding.

Let x
(l,k)
i ∈ C

MT (l,k)×1 denote the vertical concatenation

of the signal vectors transmitted by Txi, in part k of the

transmission block of phase l. The signals transmitted by Tx1,

Tx2 and Tx3 are calculated as x
(1,1)
1 = u

(1)
1 , x

(1,1)
2 = u

(1)
2

and x
(1,1)
3 = C

(1)
3 u3, where C

(1)
3 ∈ CMT (1,1)×b

(1)
3 is the

concatenation of the random precoding matrices used by Tx3.

Let us denote the diagonal concatenation of the channel

matrices between Txi and Rxj in part k of the transmis-

sion block of phase l as H
(l,k)
ji ∈ CNT (l,k)×MT (l,k)

. Let

y
(l,k)
j ∈ CNT (l,k)×1 denote the vertical concatenation of the

signal vectors received by Rxj in part k of the transmission

block of phase l. y
(1,1)
j is evaluated as

y
(1,1)
j = H

(1,1)
j1 u

(1)
1 +H

(1,1)
j2 u

(1)
2 +H

(1,1)
j3 C

(1)
3 u3+n

(1,1)
j , (3)

where n
(1,1)
j ∼ CN (0, INT (1,1)).

Part 2: In part 2 of the transmission block, Tx1 and Tx2
transmit information symbol vectors u

(2)
1 ∈ CMT (1,2)×1 and

u
(2)
2 ∈ CMT (1,2)×1 which correspond to the last MT (1,2)

elements of u1 and u2, respectively, where the signals trans-

mitted by Tx1 and Tx2 are evaluated as x
(1,2)
1 = u

(2)
1 and

x
(1,2)
2 = u

(2)
2 . Tx3 retransmits linear combinations of u3

which are linearly dependent on the linear combinations of

u3 overheard by Rx1 and Rx2 in part 1 of the transmission

block. Such transmission ensures that the sizes of the spaces

spanned by the signals of Tx3 at Rx1 and Rx2 do not increase

during the transmission in part 2 of the transmission block.

In part 1 of the transmission block, Rx1 and Rx2 re-

ceived the interference from Tx3 denoted as H
(1,1)
13 C

(1)
3 u3 and

H
(1,1)
23 C

(1)
3 u3, respectively. The entries of H

(1,1)
13 , H

(1,1)
23 and

C
(1)
3 are distributed independently, hence the spaces spanned

by the rows of H
(1,1)
13 C

(1)
3 and H

(1,1)
23 C

(1)
3 have an intersection

space of a size δ3 = 2NT (1,1) − b
(1)
3 almost surely. It means

there exist full rank projection matrices V13 ∈ Cδ3×NT (1,1)

and V23 ∈ Cδ3×NT (1,1)

for which

V13H
(1,1)
13 C

(1)
3 = V23H

(1,1)
23 C

(1)
3 = V1,2;3 (4)

holds, where the rows of V1,2;3 ∈ Cδ3×b
(1)
3 contain the

coefficients of the linear combinations of u3, which are

linearly dependent on the linear combinations of u3 received

by Rx1 and Rx2 in part 1 of the transmission block. The signal

transmitted by Tx3 is evaluated as x
(1,2)
3 = C

(2)
3 V1,2;3u3,

where C
(2)
3 ∈ CMT (1,2)×δ3 denotes the concatenation of the

random precoding matrices.

The signal received by Rxj in part 2 of the transmission

block reads as

y
(1,2)
j = H

(1,2)
j1 u

(2)
1 +H

(1,2)
j2 u

(2)
2 +

H
(1,2)
j3 C

(2)
3 V1,2;3u3 + n

(1,2)
j , (5)

where n
(1,2)
j ∼ CN (0, INT (1,2)).

Part 3: In part 3 of the transmission block, all transmitters

transmit the linear combinations of the information symbols

which are linearly dependent on the linear combinations of the

information symbols overheard at the unintended receivers in

parts 1 and 2 of the transmission block.

Similarly to (4), we define matrices V
(1)
2,3;1 ∈ Cδ

(1)
1 ×NT (1,1)

and V
(2)
2,3;1 ∈ Cδ

(2)
1 ×NT (1,2)

, δ
(1)
1 = (2N −M)T (1,1),

δ
(2)
1 = (2N −M)T (1,2), the rows of which contain the

coefficients of the linear combinations of u
(1)
1 and u

(2)
1 which

are linearly dependent on the linear combinations of u
(1)
1

and u
(2)
1 received by Rx2 and Rx3 in parts 1 and 2 of the

transmission block, respectively. The signal transmitted by

Tx1 is evaluated as x
(1,3)
1 = C

(1)
1 V

(1)
2,3;1 +C

(2)
1 V

(2)
2,3;1, where

C
(1)
1 ∈ C

MT (1,3)×δ
(1)
1 and C

(2)
1 ∈ C

MT (1,3)×δ
(2)
1 are the

concatenations of the random precoding matrices. Similarly,

Tx2 and Tx3 transmit x
(1,3)
2 = C

(1)
2 V

(1)
1,3;2 + C

(2)
2 V

(2)
1,3;2

and x
(1,3)
3 = C

(3)
3 V1,2;3, where V

(1)
1,3;2 ∈ Cδ

(1)
1 ×NT (1,1)

and

V
(2)
1,3;2 ∈ Cδ

(2)
1 ×NT (1,2)

are defined similarly to (4) and C
(1)
2 ∈

CMT (1,3)×δ
(1)
1 , C

(2)
2 ∈ CMT (1,3)×δ

(2)
1 and C

(3)
3 ∈ CMT (1,3)×δ3

are the concatenations of the random precoding matrices.

In part 3 of the transmission block Rxj receives

y
(1,3)
j = H

(1,3)
j1

(

C
(1)
1 V

(1)
2,3;1u

(1)
1 +C

(2)
1 V

(2)
2,3;1u

(2)
1

)

+

H
(1,3)
j2

(

C
(1)
2 V

(1)
1,3;2u

(1)
2 +C

(2)
2 V

(2)
1,3;2u

(2)
2

)

+

H
(1,3)
j3 C

(3)
3 V1,2;3u3 + n

(1,3)
j , (6)

where n
(1,3)
j ∼ CN (0, INT (1,3)).

Generation of overheard interference terms: To generate the

terms to be transmitted in phase 2 of the transmission scheme,

each of the receivers alternatively cancels the signal of one of

the interferers from the received signal, where the remaining

interference constitutes the signal to be retransmitted. We

consider the generation of the signals at Rx1, where the

processing at the other receivers is performed similarly.

Let us denote the concatenation of the signal vectors re-

ceived by Rx1 during the transmission block of phase 1 as

y
(1)
j =

[

y
(1,1)
j

T

y
(1,2)
j

T

y
(1,3)
j

T
]T

∈ CNT (1)×1. We write

the signal received by Rx1 in a form of

y
(1)
1 = H

(1)
11 u1 +H

(1)
12 u2 +H

(1)
13 u3 + n

(1)
1 , (7)

where H
(1)
11 ,H

(1)
12 ∈ C

NT (1)×M(T (1,1)+T (1,2)) and H
(1)
13 ∈

CNT (1)×b
(1)
3 are the effective channel matrices and n

(1)
1 ∼

CN (0, INT (1)).
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Let us consider the interference of Tx2 in (7). H
(1)
12 can be

written as

H
(1)
12 =

⎡

⎣

INT (1,1) 0

0 INT (1,2)

H
(1,3)
12 C

(1)
2 V

(1)
12 H

(1,3)
12 C

(2)
2 V

(2)
12

⎤

⎦

[

H
(1,1)
12 0

0 H
(1,2)
12

]

,

which almost surely has a rank of N
(

T (1,1) + T (1,2)
)

with
(

NT (1,3)
)

-dimensional left null space. It means there ex-

ists a full rank matrix W12 ∈ CNT (1,3)×NT (1)

, for which

W12H
(1)
12 = 0

NT (1,3)×M(T (1,1)+T (1,2)) holds. By multiplying

y
(1)
1 with W12, Rx1 cancels the signal of Tx2 and obtains

W12y
(1)
1 = W12H

(1)
11 u1 +W12H

(1)
13 u3, (8)

where the noise term has been omitted since it does not

influence the DoF analysis.

The sum in (8) is comprised of the term useful for Rx1

of W12H
(1)
11 u1 and the remaining interference term of Tx3 of

W12H
(1)
13 u3, which is useful for both Rx1 and Rx3 as follows:

• it can be subtracted from W12y
(1)
1 to yield W12H

(1)
11 u1;

• it is a term useful for Rx3.

Further, we will use the notation of order-2 symbols, where

an order-2 symbol is a term which is desired by two receivers

simultaneously. By ul|i,j ∈ C
q×1 we denote a vector of q ∈

N order-2 symbols, which is desired by Rxi and Rxj and is

available at Txl, 1 ≤ i, j, l ≤ 3, i �= j, l ∈ {i, j}. From (8), the

vector of order-2 symbols u3|1,3 = W12H
(1)
13 u3 ∈ CNT (1,3)×1

is generated at Tx3.

Now, let us consider the interference of Tx3 in (7). H
(1)
13

can be written as

H
(1)
13 =

⎡

⎢

⎣

INT (1,1)

H
(1,2)
13 C

(2)
3 V13

H
(1,3)
13 C

(3)
3 V13

⎤

⎥

⎦
H

(1,1)
13 C

(1)
3 , (9)

which almost surely has a rank of NT (1,1)

with
(

N
(

T (1,2) + T (1,3)
))

-dimensional left null

space. It means there exists a full rank matrix

W13 ∈ C
N(T (1,2)+T (1,3))×NT (1)

, for which

W13H
(1)
13 = 0

N(T (1,2)+T (1,3))×b
(1)
3

holds. By multiplying

y
(1)
1 with W13, Rx1 cancels the signal of Tx3, where from

the remaining interference term of Tx2, the vector of order-2

symbols u2|1,2 = W13H
(1)
12 u

(1)
2 ∈ C

N(T (1,2)+T (1,3))×1 is

generated at Tx2.

By applying the processing similar to that of Rx1, Rx2

obtains vectors of order-2 symbols u3|2,3 ∈ CNT (1,3)×1 and

u1|1,2 ∈ C
N(T (1,2)+T (1,3))×1 and Rx3 obtains vectors of order-

2 symbols u2|2,3 ∈ CNT (1,3)×1 and u1|1,3 ∈ CNT (1,3)×1.

This results in overall q(1) = 2N
(

T (1,2) + 3T (1,3)
)

order-2

symbols generated after the transmission of the transmission

block of phase 1.

Choice of T (1,1), T (1,2), T (1) and b
(1)
3 : The parameters

of the transmission block are designed to maximize the nor-

malized number of the transmitted information symbols
b
(1)
Σ

T (1) ,

while ensuring the transmitted information symbols can be

decoded given all order-2 symbols are provided to the receivers

which desire them.

Order-2 symbol vectors u3|1,3, u3|2,3, u2|2,3 and u1|1,3

provide 4NT (1,3) linear combinations of u3 to Rx3. To ensure

the decodability of u3, we require the number of the linear

combinations to be equal to the number of the unknowns, i.e.

b
(1)
3 = 4NT (1,3). (10)

For Rx1, order-2 symbol vectors u3|1,3, u2|1,2, u1|1,2 and

u1|1,3 provide 2N
(

T (1,2) + 2T (1,3)
)

linear combinations of

u1. Similarly, to ensure the decodability of u1, we require

M
(

T (1,1) + T (1,2)
)

= 2N
(

T (1,2) + 2T (1,3)
)

, which can be

rewritten in terms of T (1,1)

T (1) and T (1,2)

T (1) as

4N +M

4N

T (1,1)

T (1)
+

2N +M

4N

T (1,2)

T (1)
= 1. (11)

Due to symmetry, the identical requirement holds for the de-

codability of u2 by Rx2. The following theorem introduces an

additional constraint on T (1,1)

T (1) and T (1,2)

T (1) , which is necessary

for the decodability.

Theorem 1: u
(1)
1 and u

(1)
2 are decodable only if

9N − 2M

4N

T (1,1)

T (1)
+

T (1,2)

T (1)
≥ 1. (12)

Proof: The proof shows that the linear combinations of

u
(1)
1 obtained by Rx1 from order-2 symbol vectors u3|1,3,

u2|1,2, u1|1,2 and u1|1,3 are linearly dependent when (12) does

not hold. A similar statement holds for u
(1)
2 due to symmetry.

First, we construct a matrix, the rows of which are comprised

of the coefficients of the linear combinations of u
(1)
1 obtained

by Rx1. By using rank properties of sums and products of

matrices, we obtain an upper bound on the rank of this matrix,

where the obtained upper bound is less than the maximum rank

when (12) does not hold. Due to space limitation, the details

of the proof are omitted.

To choose T (1,1), T (1,2) and T (1), we first express
b
(1)
Σ

T (1) as

b
(1)
Σ

T (1)
= 4N − 2 (2N −M)

(

T (1,1)

T (1)
+

T (1,2)

T (1)

)

, (13)

which is inversely proportional to T (1,1)

T (1) + T (1,2)

T (1) . To maximize
b
(1)
Σ

T (1) while ensuring decodability, we would like to minimize
T (1,1)

T (1) + T (1,2)

T (1) while ensuring that (11) and (12) hold. Next,

we consider the following regions of antenna configurations.

Region 1.1: 1 < M/N ≤ 5/3, only (11) is active. To

minimize T (1,1)

T (1) + T (1,2)

T (1) while ensuring (11), we choose

T (1,1) = 4N, T (1,2) = 0, T (1) = 4N +M. (14)

Region 1.2: 5/3 < M/N < 2, both (11) and (12) are active.

To minimize T (1,1)

T (1) + T (1,2)

T (1) while ensuring (11) and (12), we

choose

T (1,1) = 4N (2N −M) , T (1,2) = 4N (3N − 5M) ,

T (1) = 2M2 −MN − 2N2. (15)

SCC 2017  ·  February 6 – 9, 2017 in Hamburg, Germany

ISBN  978-3-8007-4362-9 4 © 2017 VDE VERLAG GMBH  Berlin  Offenbach



C. Transmission in Phase 2

In phase 2, the order-2 symbols generated in phase 1 are

transmitted. The transmitters are scheduled to transmit in pairs,

where the scheduled transmitters Txi and Txj transmit the

order-2 symbols simultaneously useful for the pair of receivers

of Rxi and Rxj , 1 ≤ i, j ≤ 3, i �= j. In the first transmission

block of phase 2, Tx1 and Tx2 are scheduled to transmit order-

2 symbol vectors u1|1,2 ∈ Cb
(2)
1 ×1 and u2|1,2 ∈ Cb

(2)
2 ×1,

respectively, where b
(2)
1 = MT (2) and b

(2)
2 ≥ NT (2,1).

Part 1: In part 1 of the transmission block, Tx1 and Tx2
transmit the order-2 symbol vectors u

(1)
1|1,2 ∈ CMT (2,1)×1

and u2|1,2, respectively, where u
(1)
1|1,2 denotes a vector of

the first MT (2,1) elements of u1|1,2. The signals transmit-

ted by Tx1 and Tx2 are evaluated as x
(2,1)
1 = u

(1)
1|1,2 and

x
(2,1)
2 = C

(1)
2|1,2u2|1,2, where C

(1)
2|1,2 ∈ CMT (2,1)×b

(2)
2 is the

concatenation of the random precoding matrices used by Tx2.

In part 1 of the transmission block, Rxj receives

y
(2,1)
j = H

(2,1)
j1 u

(1)
1|1,2 +H

(2,1)
j2 C

(1)
2|1,2u2|1,2 + n

(2,1)
j , (16)

where n
(2,1)
j ∼ CN (0, INT (2,1)).

Part 2: In part 2 of the transmission block, Tx1 trans-

mits order-2 symbol vector u
(2)
1|1,2 ∈ CMT (2,2)×1, which is

comprised of the last MT (2,2) elements of u1|1,2, where the

transmitted signal reads as x
(2,2)
1 = u

(2)
1|1,2. Tx2 retransmits the

interference it produced at Rx3 in part 1 of the transmission

block, which ensures the size of the space occupied by Tx2
at Rx3 does not increase during part 2 of the transmission

block. The signal transmitted by Tx2 is evaluated as x
(2,2)
2 =

C
(2)
2|1,2H

(2,1)
32 C

(1)
2|1,2u2|1,2, where C

(2)
2|1,2 ∈ CMT (2,2)×NT (2,1)

is

the concatenation of the random precoding matrices. In part 2

of the transmission block, Rxj receives

y
(2,2)
j = H

(2,2)
j1 u

(2)
1|1,2+H

(2,2)
j2 C

(2)
2|1,2H

(2,1)
32 C

(1)
2|1,2u2|1,2+n

(2,2)
j ,
(17)

where n
(2,2)
j ∼ CN (0, INT (2,2)).

Generation of overheard interference terms: To generate the

terms to be transmitted in phase 3 of the transmission scheme,

Rx3 cancels the signal of Tx2 from the received signal and

obtains the remaining interference of Tx1.

Let y
(2)
j =

[

y
(2,1)
j

T

y
(2,2)
j

T
]T

∈ CNT (2)×1 denote the

concatenation of the signal vectors received by Rxj during the

transmission block of phase 2. We write the signal received

by Rx3 in a form of

y
(2)
3 = H

(2)
31 u1|1,2 +H

(2)
32 u2|1,2 + n

(2)
j , (18)

where H
(2)
31 and H

(2)
32 are the effective channel matrices and

n
(2)
2 ∼ CN (0, INT (2)). H

(2)
32 can be written as

H
(2)
32 =

[

INT (2,1)

H
(2,2)
32 C

(2)
2|1,2

]

H
(2,1)
32 C

(1)
2|1,2, (19)

which almost surely has a rank of NT (2,1) with
(

NT (2,2)
)

-

dimensional left null space. Hence, there exists a full rank

matrix W3 ∈ C
NT (2,2)×NT (2)

, with W3H
(2)
32 = 0

NT (2,2)×b
(2)
2

.

By multiplying y
(2)
3 with W3, Rx3 cancels the signal of

Tx2 and obtains the remaining interference term of Tx1 of

W3y
(2)
3 = W3H

(2)
31 u1|1,2, which is simultaneously useful for

both Rx1 and Rx2, where the noise term has been omitted.

Further, we use the notation of order-(2,1) symbols, where

an order-(2,1) symbol is a term desired by two receivers

and overheard at the third unintended receiver. We denote by

ul|i1,i2;j ∈ Cq×1 a vector of q ∈ N order-(2,1) symbols, which

is desired by Rxi1 and Rxi2 , available at Txl, and is known

at Rxj , 1 ≤ i1, i2, l, j ≤ 3, i1 �= i2 �= j, l ∈ {i1, i2}. The

remaining interference term of Tx1 is hence denoted as order-

(2,1) symbol vector u1|1,2;3 = W3H
(2)
31 u1|1,2 ∈ CNT (2,2)×1,

with q(2) = NT (2,2).

Choice of T (2,1), T (2) and b
(2)
2 : The parameters are chosen

to maximize the normalized number of the transmitted order-2

symbols
b
(2)
Σ

T (2) , while ensuring the transmitted order-2 symbols

can be decoded given all order-(2,1) symbols are provided

to the receivers which desire them. Since b
(2)
1 = MT (2),

maximizing
b
(2)
Σ

T (2) is equivalent to maximizing
b
(2)
2

T (2) .

Let us consider the decodability of u1|1,2 and u2|1,2 at Rx1,

where the identical decodability condition holds for Rx2 due to

symmetry. y
(2)
1 and u1|1,2;3 provide in total N

(

T (2) + T (2,2)
)

linear combinations of u1|1,2 and u2|1,2 to Rx1. To ensure the

decodability of u1|1,2 and u2|1,2, we require the number of

the available linear combinations to be equal to the number of

the unknowns N
(

T (2) + T (2,2)
)

= MT (2) + b
(2)
2 , which can

be used to express
b
(2)
2

T (2) as

b
(2)
2

T (2)
= (2N −M)−N

T (2,1)

T (2)
, (20)

which is inversely proportional to T (2,1)

T (2) .

b
(2)
2 is restricted as b

(2)
2 ≤ MT (2,1), which can be rewritten

in terms of T (2,1)

T (2) using (20) as

T (2,1)

T (2)
≥

2N −M

M +N
. (21)

A further restriction on T (2,1)

T (2) follows from Theorem 2.

Theorem 2: u1|1,2 and u2|1,2 are decodable only if

T (2,1)

T (2)
≥

2N −M

4N −M
. (22)

Proof: The statement can be proven by showing linear

dependency of the linear combinations of u1|1,2 and u2|1,2

obtained by Rx1 and Rx2 when (22) does not hold by using

the approach of the proof of Theorem 1 in [9]. The details of

the proof are omitted due to space limitation.

Since
b
(2)
2

T (2) is inversely proportional to T (2,1)

T (2) , to maximize
b
(2)
2

T (2) , T (2,1)

T (2) has to be chosen as a minimum satisfying (21)

and (22). Next, we distinguish two regions of antenna config-

urations, where either (21) or (22) override each other.

Region 2.1: M/N ≤ 3/2, (21) overrides (22). To ensure

(21), we choose

T (2,1) = 2N −M, T (2) = M +N. (23)

SCC 2017  ·  February 6 – 9, 2017 in Hamburg, Germany

ISBN  978-3-8007-4362-9 5 © 2017 VDE VERLAG GMBH  Berlin  Offenbach



TABLE I
CALCULATION OF NUMBERS OF TRANSMISSION BLOCKS

Phase 1 Phase 2 Phase 3

M/N b
(1)
Σ

q(1) k1 b
(2)
Σ

q(2) k2 b
(3)
Σ

k3

1 < M

N
< 3

2
12MN 6MN 3 3MN N(2M−N) 6 6N 2M −N

3
2
< M

N
≤ 5

3
12MN 6MN 6N −M N(6N−M) 2N2 6M 6N 2MN

5
3
< M

N
≤ 2

4N(6M2 −
15MN+10N2)

2N(6M2 −
15MN+10N2)

3(6N −
M)

N(6N−M) 2N2 6(6M2 −
15MN+10N2)

6N
2N(6M2 −

15MN+10N2)

Region 2.2: M/N > 3/2, (22) overrides (21). To ensure

(22), we choose

T (2,1) = 2N −M, T (2) = 4N −M. (24)

D. Transmission in Phase 3

In phase 3, all transmitters are scheduled to transmit simul-

taneously, where during the transmission block of T (3) = 4N

time slots, each transmitter transmits b
(3)
1 = b

(3)
2 = b

(3)
3 = 2N

order-(2,1) symbols. The transmission block of phase 3 is iden-

tical to the transmission block of phase 3 of the transmission

scheme of [6], where the description of the transmission block

is omitted due to lack of space.

IV. ACHIEVED NUMBER OF DOF

In this section, the number of DoF achieved by the proposed

transmission scheme is evaluated. The numbers of the blocks

of each phase are chosen according to (2), where the calcula-

tions are summarized in Table I. Using d = 3b∑
3
i=1 kiT (i) , the

achieved number of DoF is evaluated as

d =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪



36MN
17M+14N , if 1 < M

N
≤ 3

2 ,

12MN(6N−M)
−7M2+34MN+24N2 , if 3

2 < M
N

≤ 5
3 ,

12N(6N−M)(6M2−15MN+10N2)
−42M3+321M2N−552MN2+284N3 , if 5

3 < M
N

< 2.
(25)

As shown in Fig. 3, the normalized number of DoF d
3N

of the proposed transmission scheme is greater than that of

the transmission schemes of [7] and [10]. As compared to

[10], the proposed transmission scheme has a more effective

transmission in phase 2 and in phase 1 for the antenna

configurations of 3/5 < M/N < 2, where the difference in

phase 1 has a greater impact on the performance difference.

V. CONCLUSION

The three-user MIMO IC with delayed CSIT has been

considered, where a new transmission scheme which achieves

a number of DoF greater than that known in literature for the

region of antenna configurations of 1 < M/N < 2 has been

proposed. The proposed scheme has a three-phase transmission

structure, where in phases 1 and 2 a novel approach of using

the delayed CSIT is employed.
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