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Abstract—We consider a data dissemination scenario in a
wireless network with selfish nodes. A message available at a
source node has to be disseminated through the network in a
multi-hop manner. In order to incentivize a node to forward
the source’s message to others, a forwarding cost is paid to a
forwarder by its respective receiver. In the case of multicast
transmission, the cost is shared among the receivers using the
Shapley value (SV). Moreover, a node may exploit the maximal
ratio combining (MRC) technique to receive the message from
multiple transmitting nodes. In this paper, we show that in a
game theoretic framework, the optimal decision of a node for
receiving the message with minimum cost can be achieved by
solving a linear optimization problem. In addition, we propose
an algorithm by which truthfulness is a dominant strategy for
the nodes and thus, fair cost allocation is guaranteed. Simulation
results show that our proposed algorithm shares the cost of data
dissemination among the nodes of a network in a fair manner.
Compared to previous algorithms, the proposed algorithm can
reduce the total cost paid by the nodes in the network for
receiving messages.

I. INTRODUCTION

Ad hoc networks attracted much attention over the past

decade and researchers studied different problems related to

these networks, such as energy consumption or delay mini-

mization [1]. This paper focuses on a multi-hop data dissem-

ination scenario in which a common message available at a

source should be distributed throughout the whole network.

Since in this scenario, some nodes must forward the source’s

message to others, incentivizing the nodes to participate in the

forwarding process is of high importance. In this network, in

order to incentivize a node to act as a forwarder, the forwarding

node is paid by its respective receivers. In fact, every node

must pay the cost of receiving data. The main goal of this

paper is to distribute the source’s message through the whole

network while under a fair cost allocation, every node pays

the least possible cost.

Wireless devices are battery equipped, and energy consump-

tion of such devices is a concern that may prevent the nodes

from contributing in the network. The cost in this network

is based on the energy that a forwarding node spends for

transmitting to its receivers. A receiving node can exploit

the maximal ratio combining (MRC) technique to receive the

message from multiple forwarders, but it must pay a price

to each of its selected forwarding nodes. In other words, the

scenario can be viewed as a network with multiple accessible

message providers in which a node, in order to receive the

message, must pay the price of forwarding the message, e.g.,

by a virtual currency [2], to each of its providers.

We use game theory to model the nodes’ behavior in this

network. A non-cooperative game is proposed in which every

receiving node chooses one or more nodes among the nodes

of the network as its respective forwarders. In addition, from

each of its respective forwarders, the receiving node requests

the power level that the forwarder should utilize as its transmit

power such that the receiving node receives the message with

an acceptable signal to noise ratio (SNR). In a multicast trans-

mission where a forwarding node has multiple receivers, the

cost paid to the forwarder can be shared among the receiving

nodes. In this case, since different receiving nodes may have

different power level requests, the fairness of the shared cost

is a key issue for the receiving nodes. In our algorithm, we use

the Shapley value (SV) [3] as a fair cost allocation method,

to determine the cost share of each receiving node. Multicast

transmission in such networks may lead to free-riding, i.e.,

some nodes receive the message without paying the cost of it.

We also propose a mechanism that guarantees the truthfulness

of the nodes in this network. This results in a completely fair

cost sharing among the receivers of a multicast transmission.

The rest of the paper is organized as follows. Section II

presents the related work and the main contributions of the

paper. Section III describes the network model and states the

problem. The proposed algorithm is explained in Section IV.

Simulation results and discussions are presented in Section V

and finally, Section VI concludes the paper.

II. STATE OF THE ART AND RELATED WORK

Optimizing the network parameters, such as finding energy

efficient algorithms [4] or minimizing the number of trans-

missions for multihop broadcast [5], was the main challenge

in ad hoc networks over the past years. The authors of [4]

propose a heuristic algorithm called broadcast incremental

power (BIP) that aims at minimizing the energy consumption
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for data dissemination in a wireless ad hoc network. The BIP,

like some other algorithms, e.g., proposed in [6] and [7], is

based on finding the best connections between the nodes to

minimize the energy consumption. Some algorithms propose

to reduce the number of transmissions in order to save energy

in the network, like [5] in which the authors propose exploiting

a sleeping schedule.

Since in ad hoc networks a centralized authority may

not be available, game theory has been widely employed

in the literature in proposing decentralized algorithms. Par-

ticularly, game theory is a powerful tool for studying the

problems related to collaboration or conflicts among selfish

nodes [7–11]. For instance, the authors in [7] address the

energy minimization problem by centralized and decentralized

heuristics based on game theory. The authors of [8] study

incentivizing the nodes under a game theoretic model. They

analyze two main approaches that are used to incentivize the

nodes for collaboration in ad hoc networks, namely reputation-

based and price-based approaches. They propose an integrated

model composed of the two mentioned approaches in order

to improve the network performance, such as decreasing the

packet drop rate. A framework with a game-theoretic model

incorporated with the Q-learning algorithm is proposed in [9]

for reputation-based collaboration among the nodes. As the

nodes in a network may encounter each other more than once,

a node is able to find its optimum strategy against its opponent

based on the reputation of its opponent. The scenario consid-

ered in [9] is a simple two-source two-destination scenario

and the proposed game is based on the iterative prisoners

dilemma model [12]. In [10] and [11], we have proposed game

theoretic algorithms as a decentralized approach for the energy

minimization problem in a single-source data dissemination

scenario. In these algorithms, a cost is assigned to every node,

assumed to be a player of the game. Then, a node chooses

another node in the network to connect to and receive the

source’s message, in a way to minimize its cost. The MRC

technique is exploited in [11] as a technique that can reduce

the energy consumption in multihop broadcast networks.

Most of the existing works merely rely on optimization

of the network parameters and the fairness issue is usually

ignored in multihop data dissemination. In a network in which

the nodes can decide by their own whether or not to collab-

orate with others, incentive mechanisms and fairness of the

algorithm are two vital issues that affect the final performance

of the network. The objective in [11] is energy minimization

and the proposed algorithm does not take fairness into account.

More precisely, the cost assigned to a node is not based on

the service the node receives in a network, and some nodes

may benefit from free riding. This means that some nodes

pay nothing for receiving messages while some other nodes

pay more than what they really have to. Hence, for networks

in which the cost is monetary-based and the fairness of the

outcome is important for the nodes, it may not be possible to

apply the algorithm suggested by [11].

In this paper we propose a game theoretic model that

considers fairness in terms of cost allocation and truthfulness

of the nodes in a multihop broadcast scenario. Briefly, our

algorithm has the following properties:

• Incentive: A nodes is incentivized to be a forwarding

node. It is paid by its respective receivers.

• Fairness: In a multicast transmission, the total cost that

must be paid to a forwarding node is shared among

its respective receiving nodes using the SV method. SV

is known as a fair cost allocation method in coalition

formation games [12]. This is achieved if the nodes

truthfully reveal their real power requirement.

• Truthfulness: A method will be proposed by which every

node must reveal its real power requirement in order to

receive data. Therefore, the nodes cannot benefit from

free riding, and fairness is guaranteed.

• Optimal decision: The optimal decision of a node that

minimizes its cost is achieved by solving a linear opti-

mization problem.

III. NETWORK MODEL AND ASSUMPTIONS

We consider a wireless ad hoc network consisting of N +1
nodes: a source S and a set N = {1, . . . , N} of nodes

interested in receiving the source’s message. The message is

the same for the whole network, e.g., a video with a specific

quality and the same length, in a video streaming scenario.

Each node has a coverage area that is determined by its

maximum transmit power pmax. To increase the coverage area,

some intermediate nodes must forward the source’s message

to other nodes.

Every node in this network is assumed to be selfish, that

is, not only a node’s goal in this network is to maximize its

own benefit, but also in order to forward the message to other

nodes, it must be incentivized by its respective receiving nodes.

It is assumed that any node j ∈ N has the potential to act as a

forwarder. We call a forwarding node a parent node (PN) for

the set of its respective receivers. A node served by PN j is

called a child node (CN) of PN j. Due to the broadcast nature

of wireless channels, a PN may serve multiple CNs. The set of

CNs served by PN j is denoted by Mj with cardinality Mj .

The set of all nodes that can be a PN for node i is called the

candidate parents of node i. The candidate parents of a node

i can be the nodes that receive the source’s message prior to

node i. We define Di for i ∈ N as the distance of node i from

the source and thus, DS = 0 . The set of candidate parents of

a CN i, denoted by Wi and cardinality Wi, are the nodes that

have lower distance to S than that of i, i.e.,

Wi =
{

j


j ∈ N ∪ {S}, Dj < Di

}

. (1)

Fig. 1 shows a sample network. In this network, the source’s

message is disseminated throughout the network by some

forwarders including nodes j and l. Nodes j and l are among

the set of PNs for node i, i.e., j, l ∈ Wi. PN j has multiple

CNs including CNs i and k.

In this network, PNs are incentivized by a payment from

their respective CNs. PNs are paid based on the energy that

they spend for message transmission. A CN needs a minimum

SNR denoted by γmin in order to decode the message sent





joining the multicast group of parent node j. Assume that node

i decides to join PN j and preqi,j is the (n+1)th lowest request

from PN j such that the sorted requested powers from PN j
become 0 ≤ · · · ≤ preqn,j ≤ preqi,j ≤ preqn+2,j ≤ · · · ≤ preqMj+1,j ≤
pmax, in which preqi,j = preqn+1,j . Based on (6), ci,j(p

req
i,j ) by

considering i = n+ 1 can be written as a function of n as

ci,j(p
req
i,j , n) =

preqi,j − preqn,j

(Mj + 1) + 1− (n+ 1)

+
n
∑

k=1

preqk,j − preqk−1,j

(Mj + 1) + 1− k
(7)

in which Mj + 1 represents the total number of CNs of PN

j including i. By expanding the right side of (7) and some

transformations, (7) can be written as

ci,j(p
req
i,j , n) =

preqi,j

Mj − n+ 1

−
preqn,j

Mj − n+ 1
+

preqn,j

Mj − n+ 2

+ · · · −
preq1,j

Mj

+
preq1,j

Mj + 1
. (8)

Eq. (8) can be written in the form of

ci,j(p
req
i,j , n) = ai(n)p

req
i,j + bi(n) (9)

in which

ai(n) =
1

Mj + 1− n
(10)

and

bi(n) =

n≥1
∑

k=1

(

−preqk,j

(Mj − k + 1)(Mj − k + 2)

)

. (11)

It can be derived form (9) that the cost of node i is obtained

by a linear function with slope ai(n) and y-intercept bi(n).
Both ai(n) and bi(n) depend on the interval that preqi,j falls in.

Eq. (9) shows that if preqi,j increases and falls inside an interval

with a higher n, the slope of the function ci,j in (9) increases

accordingly. Besides, the y-intercept of ci,j decreases in this

case. Therefore, ci,j in (9) forms a piecewise linear function

in the interval [0, pmax] with an increasing slope.

Corollary 1: The optimal request vector of node i, i.e., p
req
i

can be obtained by solving a linear optimization problem.

Proof: To minimize its cost, node i has to solve the

optimization problem

argmin
p

req

i

∑

j∈Wi

ci,j(p
req
i,j ), (12)

s.t.
∑

j∈Wi

preqi,j |hi,j |
2

σ2
≥ γmin, (13)

0 ≤ preqi,j ≤ pmax, ∀j ∈ Wi

in which the first condition represents the minium SNR

requirement at CN i. Knowing the piecewise linearity of

ci,j(p
req
i,j ), the problem in (12) can be written as a linear

optimization problem. Let us define ti,j ∈ R
+, ∀j ∈ Wi

as an auxiliary scalar variable. Then, the equivalent linear

optimization problem of (12) is given by

argmin
{preq

i
,ti,j}

∑

j∈Wi

ti,j , (14)

s.t. ci,j(p
req
i,j , n) ≤ ti,j ∀j ∈ Wi, n = 0, . . . ,Mj ,

∑

j∈Wi

preqi,j |hi,j |
2

σ2
≥ γmin,

0 ≤ preqi,j ≤ pmax, ∀j ∈ Wi.

The problem in (14) is a linear optimization problem that can

be solved efficiently by a proper solver.

Every node i ∈ N , iteratively finds its optimum request

vector using (14), until none of the nodes updates its action

given the action of others. This point is called as the Nash

equilibrium (NE) point of the game.

C. Discussion

In this subsection, we discuss the properties of the proposed

algorithm.

Proposition 1: The proposed game converges to a NE point.

Proof: A non-cooperative cost sharing game with the

SV rule is in the class of potential games for which the

convergence of the game to NE point is guaranteed [14].

Definition: The social cost of a game with N players, shown

by Q, is defined as Q =
∑N

i=1 Ci [12].

Theorem 2: Decreasing the cost at the nodes decreases

the social cost and the required total transmit power in the

network.

Proof: Since the SV cost sharing rule is budget balanced,

for every PN j ∈ N we have
∑

i∈Mj
ci,j(p

req
i,j ) = pTx

j . This

implies that

N+1
∑

j=1

∑

i∈Mj

ci,j(p
req
i,j ) =

N+1
∑

j=1

pTx
j (15)

in which j = N+1 represents the source. The left side of (15)

is the total price received by the PNs in the network, which

is equal to the total cost paid by CNs. Therefore, the left side

of (15) can be written as

N+1
∑

j=1

∑

i∈Mj

ci,j(p
req
i,j ) =

N+1
∑

i=1

∑

j∈Wi

ci,j(p
req
i,j ). (16)

Since the source does not pay anything to other nodes,

cN+1,j(p
req
i,j ) = 0 for all j ∈ N . Hence, using (15) and (16)

we have
N
∑

i=1

∑

j∈Wi

ci,j(p
req
i,j ) =

N+1
∑

j=1

pTx
j . (17)

Based on the definition in (5), we can rewrite (17) as

Q =
N
∑

i=1

Ci(p
req
i,j ) =

N+1
∑

j=1

pTx
j . (18)

It can be observed that when the total cost paid by the nodes in

the network decreases, the total transmit power in the network



decreases accordingly. In other words, what the nodes pay as

cost in total is directly related to the amount of energy spent

for message forwarding in this network.

One of the concerns in cost sharing-based decentralized

algorithms is fairness and truthfulness of the nodes. In such

networks, a node may benefit by not revealing its real power

requirement. More precisely, a node i ∈ Mj may request a

power much lower than what it really requires, preq′i,j ≪ preqi,j ,

when it finds another node k ∈ Mj with higher requested

power, i.e., when preqi,j < preqk,j . By doing so, since pTx
j is

determined by the highest request of CNs in Mj , CN i
receives its required SNR from PN j while it pays less than

what it really should. Therefore, the cost is not shared between

nodes i and j based on their real contribution. This point was

not addressed in [11].

In order to overcome this problem, we propose using a

unique key for each node for message decoding [15]. More

precisely, prior to multicasting the message, PN j generates a

unique key for every CN i ∈ Mj and transmits the key by a

unicast transmission to CN i based on the the power that CN

i requested, that is, preqi,j . If CN i cheats and requests a power

lower than what it really needs, it cannot decode the key and

consequently the message. Therefore, truthfulness becomes the

dominant strategy for the nodes.

V. SIMULATION RESULTS

To experimentally evaluate our approach, we simulated a

square region of 1km×1km in which the nodes are randomly

deployed. The number of nodes in this network varies between

10 and 40 and the maximum transmit power of a node is set

to pmax = 20 dBm. The simulation is based on the Monte

Carlo method and in each network realization, the source

node is chosen randomly. The channel is based on the path-

loss model as |hi,j |
2 = 1/dαi,j in which di,j represents the

distance between nodes i and j and α shows the attenuation

exponent considered as α = 3. The minimum required SNR

at the receiving nodes is considered as γmin = 10 dB and the

noise power is set to σ2 = −90 dBm.

Fig. 2 shows the social cost when there are 30 nodes in the

network. The nodes join the network one by one by choosing

their respective parent nodes and sending them their request

given the requests of previous nodes. Joining a new node to

the network increases the total cost paid by the nodes until all

the nodes join the network. After this step some nodes may

update their decision about their parent nodes or requested

powers to decrease their own cost. Updating continues until

reaching the NE point where none of the nodes can find a

lower cost given the action of other nodes. It can be seen that

when the nodes are allowed to choose more than one parent,

the total cost paid by the nodes in the network to receive

the source’s message is less than in the case of receiving the

message from only one parent. Note that in both cases, the

parent nodes are incentivized in the same way, that is a PN

is paid by its CNs exactly equal to the energy that it spends,

but the total cost that the CNs pay in the network to receive

the message decreases when they are allowed to choose more
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than one parent. In Fig. 2 the game converges to the NE point

after about 35 iterations.

Fig. 3 compares the fairness of the proposed algorithm with

the one proposed in our previous work [11]. To capture the fair

behavior of the nodes, we measure the SNR that an individual

node receives in a unicast transmission based on its requested

power. More precisely, for each node γnorm
i = γreq

i /γmin

shows the SNR at CN i based on its requested power, nor-

malized to the minimum required SNR. With this parameter,

we are able to measure the fairness of the algorithm and

truthfulness of the nodes in terms of revealing their true power

requirements. We use Jain’s index [16] as the fairness metric

J =

(
∑

i∈N γnorm
i

)2

N
∑

i∈N (γnorm
i )

2
(19)

such that 1
N

≤ J ≤ 1. The closer J to 1, the fairer the

algorithm performs.

Since in our proposed model, on one hand, the optimization

problem at every node is subjected to receiving at least γmin

(13), and on the other hand, the objective of a node is to
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Fig. 4: Total transmit power in the network for different algorithms.

minimize its cost, the power requested by a node i from its

candidate parents results in the exact amount of minimum

required SNR, i.e., γreq
i = γmin. This means that every node

reveals its true power requirement to receive the minimum

SNR, but it tries to find the best parent and adjust its required

power level to minimize its cost. Hence, for every node i ∈ N ,

γnorm
i = 1 and consequently J = 1. Moreover, using a

unique key at every individual node for message decoding,

as discussed in subsection IV-C, results in truthfulness of the

nodes about their required power. Fig. 3 also shows that based

on the algorithm proposed in [11], the nodes may not reveal

their true power requirements and benefit from free riding.

In fact, in [11] 0 ≤ γnorm
i ≤ 1 holds, which means that the

request of some nodes is less than what they really require.

This leads to an unfair cost allocation among the nodes such

that the nodes, usually the nodes with few neighboring nodes

or bad channel conditions, pay a larger share of the cost, more

than what they really have to.

Fig. 4 compares the performance of different algorithms in

terms of total required transmit power in the network for data

dissemination. It is evident that by increasing the number of

nodes, since the nodes become closer to each other, the total

transmit power required for data dissemination decreases. As

shown in Fig 4, the proposed algorithm outperforms the BIP

algorithm and the game theoretic algorithm of [11]. In both

algorithms, the MRC technique is not exploited. Compared

to the decentralized algorithm that exploits MRC in [11], the

proposed algorithm performs (slightly) worse, but it considers

a fair cost allocation among the nodes Although the algorithm

of [11] performs better than our proposed algorithm, it does

not consider a fair cost allocation among the nodes. That is,

in networks where the forwarding nodes must be incentivized

and the fairness of the cost is critical for receiving nodes, our

proposed algorithm suggests a fair solution with reasonable

performance, see Fig. 3. In other words, higher required

transmit power for our proposed algorithm compared to [11]

is the price that the network pays for achieving a fair result.

VI. CONCLUSION

We proposed an algorithm for multi-hop data dissemination

in a network with selfish nodes. We modeled the nodes’

behavior by game theory and proved that the minimum cost

of a node based on the Shapley value cost allocation can be

found by solving a linear optimization problem. Moreover,

the proposed algorithm is fair and has reasonable performance

compared to other algorithms.
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