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Abstract—Reputation networks are an important building
block of distributed systems whenever reliability of nodes is
an issue. However, reputation ratings can easily be undercut:
colluding nodes can spread good ratings for each other while
third parties are hardly able to detect the fraud. There is
strong analytical evidence that reputation networks cannot be
constructed in a way to guarantee security. Consequently, only
statistical approaches are promising. This work pursues a sta-
tistical approach inspired by the idea that colluding node’s
behavior changes the local structure of a reputation network.
To measure these structural changes, we extend a graph analysis
method originating from molecular biology and combine it with
a machine learning approach to analyze fingerprints of node’s
interactions. We evaluate our method using an adaptive Peer-to-
Peer (P2P) streaming system and show that a correct classification
of up to 98% is possible.

I. INTRODUCTION

Reputation networks play an outstanding role in the daily

interaction with online services For instance, Amazon’s or

eBay’s star rating influence the buying decisions of millions

of customers and Facebook’s like button determines the impor-

tance of postings. In all of these settings, the ratings reflect

an aggregated opinion on the posting, service or product of

interest [1]. In many distributed networking systems such as

email, ad hoc networks or P2P systems, reputation networks

work similarly: nodes rate each other according to the service

received in the past.

Despite their importance, it is trivial to undercut reputation

networks. A very simple strategy is the creation of two

identities by the same node spreading good ratings for each

other (sybil strategy). The same strategy can be applied to

two physically different nodes. In this case, the strategy is

called collusion strategy. We use both terms interchangeably

in the following. Seuken et al. [2] proved that even with tight

monitoring and control from a central entity collecting repu-

tation ratings, no mechanism can provide a 100% guarantee

to prevent the mentioned strategies under realistic conditions.

Consequently, the only viable approaches remaining to solve

the problem at a satisfactory level are statistical approaches,

e.g. [3]. This work proposes a novel methodology to classify

nodes in reputation networks by fraud strategy. For that pur-

pose, we combine the motif-counting graph analysis method

originating from molecular biology and a rule inference ma-

chine learning approach. The proposed algorithms are capable

of reaching a classification accuracy of up to 98%.

We apply our methodology to a set of 4 different fraud

strategies in an adaptive hybrid Content Delivery Network

(CDN)/P2P live streaming system. The system resembles the

architecture of recently emerging hybrid CDN/P2P deploy-

ments such as Akamai NetSession [4] with 32 million active1

installations and a centralized control plane with sufficiently

large capacity to compensate bandwidth bottlenecks of the

peers. Using this system, we demonstrate the positive impact

of excluding classified nodes on the overall Quality of Expe-

rience (QoE) of clients.

The remainder of this work is organized as follows: Section

II details background information on reputation networks and

graph analysis. Moreover, the section describes the architecture

of the streaming system used as a case study for evaluation.

Section III defines the methodology of motif-based fingerprint-

ing analysis and details the integration of our approach into

the streaming system. In Section IV, the approach is evaluated

with respect to classification performance as well as impact on

the streaming system’s performance, i.e., the QoE of nodes

in the network. Section V places this work in the context of

related approaches. Finally, Section VI concludes the work and

discusses extended use cases of our methodology.

II. BACKGROUND

In the following, we define Reputation Networks formally,

explain some details on Network Motifs and TRANSIT, the

streaming system used as a case study for evaluating the

proposed methods and algorithms.

Reputation Networks: A reputation network is defined as a

directed graph G = (V,E), where V is the set of nodes and

E ⊆ V × V is a set of directed edges. Moreover, each edge

has a weight defined by a weighting function w : E → R
+

0

mapping each edge to a weight. The weight of edge (vi, vj)
defines a measure for the quality of service node vj claims to

1According to Akamai’s own statistics: http://wwwnui.akamai.com/gnet/
globe/index.html, last visited 04/21/2016.



Figure 1: Target graph G and 2 matches for 3-motif m.

have received from node vi in the past. The term quality can

be related to different metrics (e.g., delivery times of an online

shop or the bandwidth delivered by a network node). The

sum (or average, or minimum) of the weights of all outgoing

edges of a node vk defines the reputation of a node, e.g.,

rk =
∑

vi∈E\vk
w(vi, vk). Notably, this definition includes

the possibility to lie on provided service. In particular, two

nodes may collude to raise each other’s reputation.

Network Motifs: A network motif is a small graph m =
(Vm, Em) usually characterized by its number of nodes, e.g.,

|Vm| = 3. A match G′ of a motif m in a target graph G

is a subgraph of G that is isomorphic to m, i.e., a bijective

mapping of the nodes in m to G′ can be found such that the

edges in both graphs are equivalent. More intuitively, a motif

is a connected substructure in a graph as depicted in Figure 1.

The frequency F(m) of a motif in a target graph G is

the number of matches of m in G. For identifying inter-

esting motifs, the frequency of a motif in a target graph is

compared to the average frequency Fr(m) of the same motif

in a sufficiently large set of randomly generated graphs with

comparable properties (index r).

The z-score of a motif m is a metric for comparing F(m)
with the average frequency Fr(m) and is defined as:

Z(m) =
F(m)−Fr(m)

σr(m)
, (1)

where σr(m) denotes the standard deviation of the motif

frequency in the set of randomly generated graphs [5]. More

intuitively, the z-score measures the difference of motif occur-

rence in multiples of the standard deviation.

TRANSIT streaming system: TRANSIT is a hybrid CDN/P2P

live streaming system serving to evaluate the proposed meth-

ods in a realistic scenario. It has a strong, centralized control

and mechanisms to compensate bandwidth bottlenecks of

peers with CDN resources. The system was first proposed

in [6] as a fixed bitrate streaming system. Later on, it was

extended with a reputation system [7] and adaptive video

streaming capabilities using Scalable Video Coding (SVC)

[8]. SVC is an extension of the H.264 video codec standard

and allows splitting the video stream into layers of increasing

quality, where a layer n can be decoded when all lower layers

[0 . . . n− 1] are present for decoding as well [9].

III. SYSTEM DESIGN

The main idea of this work evolves around the observation

that subversive behavior in reputation networks changes the

structure of the network interactions and thus the frequency

of certain motifs. More precisely, a node trying to undercut

a reputation scheme will change the structure of the network

around itself, which is reflected in a local change of motif

frequencies in the node’s neighborhood. In the following, we

first describe a methodology to identify a set of distinctive

motifs. Using the distinctive motifs as features, we show how

to learn a classification of nodes according to their applied

subversion strategies.

A. Identifying Distinctive Motifs

The number of motifs grows exponentially with the motif

size. At the same time, motif counting on a graph is based

on the graph isomorphism problem, which is believed to

be in NP [5]. Consequently, it is advisable to reduce the

number of different motifs to be counted and their size as

far as possible. This will reduce the number of motifs that

have to be counted for feature extraction and minimizes the

computational overhead for later processing.

The reduction of the number of motifs is done in three steps.

First, four different simulation scenarios (S1 to S4) are defined

on top of the TRANSIT simulation model [7], each with a

composition of 80% honest nodes, i.e., nodes not undercutting

the reputation scheme, and a share of 20% subversive nodes

applying a certain strategy to undercut the scheme (see Table

I for more details).

Namely the four strategies applied by the nodes are freerid-

ing, the simple refusal of uploading any content, reduced

service, a reduction of the upload capacity to a certain share

of the total available upload capacity, 2-collusion, two nodes

boosting each other’s reputation, and n-collusion, a node

colluding with n other nodes from the neighborhood to boost

each other’s reputation, where n is chosen randomly from a

normal distribution.

The two collusion strategies are implemented by introducing

a malicious alternative back-end structure. All nodes willing to

collude can register additionally with this back-end structure

to find other nodes to collude with. The colluding nodes

pick 2 or more of the other colluding nodes to send faked

reputation values to, but may receive faked reputation values

for themselves from two different nodes. That means, two

colluding nodes cannot easily be identified by a back-and-forth

connection between nodes.

The simulation approach allows to create a large number

of periodical graph snapshots containing (a) the structure of

the network and (b) a ground truth of the subversion strategy

applied by each node in the network. Afterwards, all Z(m)-
scores are calculated for all motifs in all graph snapshots

over all scenarios. This allows constructing an N ×N matrix

Tm,α=0.05 for each motif m, where N is the total number

of subversion strategies to be classified and each element

tij = 1, if there is a significant difference between Z(m)
in Scenario i and Z(m) in Scenario j, and 0 otherwise. As



Figure 2: Z-score probability density of a 4-motif.

a statistical test for the significance of differences, Welch’s

two-sided unequal variance test [10] statistic for the average

Z-score in both scenarios estimated as Z(m)i and Z(m)j with

variance var(Z(m)i) and var(Z(m)j) is used. More formally,

Tm,α=0.05 is defined as follows:

Tm,α=0.05 =
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Figure 2 illustrates the procedure for a 4-motif. Intuitively,

the respective 4-motif is powerful for telling apart the honest

nodes from nodes applying the 2-collusion strategy due to

a minimal overlap of the respective Z-score distributions.

However it is not distinctive for the 2-collusion and the

freeriding strategy as the Z-score distributions have a large

overlap.

Constructing Tm enables an identification of a subset S

of all possible motifs being distinctive for the mentioned

strategies. We chose a greedy strategy to compose S, i.e., all

motifs are ordered by the number of strategies they can tell

apart. In particular, we use the ranking function

r(m) = ~eTTm,α=0.05~e, (2)

where e is a vector of length N with ei,1≤i≤N = 1. After-

wards, the most distinctive Motifs are added to S until all

strategies can be distinguished. More precisely, we add those

motifs with the highest rank r(m) to the set of distinctive

motifs S, until the condition

g(
∑

m∈S

Tm,α=0.05) ≥ t (3)

is met, where g(A) maps a matrix A to its minimum element

not considering the diagonal elements, i.e., min{ai,j |i 6= j}.

The condition contains a parameter t to determine the minimal

number of distinctive motifs per strategy combination. The

Figure 3: Personalized 4-motif and two possible matches of a

substructure.

parameter can be used to tune the accuracy that can be gained

from using S for classification at the cost of the number of

features, i.e., the size |S| of the set.

Applying this methodology to our system with t = 1,

the five strategies (including the honest strategy) defined

beforehand, and an initial set of 199 directed 4-motifs and

13 directed 3-motifs yields a set S of two 3 motifs and two

4 motifs as an output, i.e., only four motifs are sufficient to

classify all strategies.

B. Feature Vector Extraction

After having identified the set S of distinctive motifs, S

should be used as efficiently as possible. For that purpose we

introduce personalized motifs. A personalized motif is a motif

with the extension of vertex indices, which express that a node

is not only participating in a certain motif in the graph, but

also in which position within the respective motif.

Figure 3 shows a personalized motif and the possible

matches to a subgraph structure. The given example illustrates

two advantages of personalized motifs. First, personalized mo-

tifs inherently distinguish symmetric matches, i.e., in Figure

3, a match at position 1 can be distinguished from a match

at position 4. Second, personalized motifs can account for

the ”passiveness” or ”activeness” of a certain position in the

motif’s structure. In particular, in Figure 3, a match at positions

1 or 4 involves the delivery of service of the node to the two

other nodes, while positions 2 or 3 only have incoming edges.

We denote a personalized motif m with respect to a node n

by the following syntax: mn,p, where m denotes a motif in S

and 1 ≤ p ≤ |Vm| denotes the position of n in the respective

motif.

This work utilizes the FAst Network MOtif Detection

(FANMOD) algorithm for motif counting [11]. Compared

to other motif counting algorithms, FANMOD has a better

runtime performance and enumerates each subgraph only once

[12]. We modify the original algorithm with respect to two

properties: first, the algorithm only counts the motifs contained

in the set of distinctive motifs S. Second, the algorithm is

extended to not only count all motif occurrences but also to

return which node matches the motif at which position in order

to count personalized motifs. Notably, the latter extension

does not affect the complexity class of motif matching, as all

possible graph isomorphisms for each tested substructure have

to be enumerated anyways. However, the reduced number of

motifs contained in S compared to the full number of possible
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Figure 4: Performance of Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), Support Vector Machine

(SVM), and Artificial Neural Networks (ANN) machine learn-

ing algorithms per strategy.

motifs yields a reduction in overall run time depending on the

size of S compared to the full number of possible motifs. In

our scenario, this factor is as low as 2.3% for t = 1.

As a result of the feature extraction step, the following

feature vector

~vn = [v1, . . . , vk, vk+1] (4)

is generated for each node n in the system, where v1, . . . , vk
represents the motif count F(mn,p) for all personalized motifs

from the distinctive motif set S and vk+1 is the difference

of uploads and downloads n claims to have performed. The

difference of uploads and downloads is added as an additional

feature as it is easily available and cannot be captured by

purely considering the edges, i.e., it cannot be expressed by

pure motif counting.

C. Node Classification

Figure 4 compares the accuracy for a number of popular

machine learning algorithms using ~vn as the feature vector.

The measurement was performed using the WEKA toolkit

[13] with standard settings. As a performance metric, the

established machine learning definition of accuracy

A =
pt + nt

pt + nt + pf + nf

, (5)

where pt and pf refer to the number of true and false positives

and nt and nf refer to the number of true and false negatives,

is used.

Interestingly, the rule inference based RIPPER [14] al-

gorithm outperforms the other algorithms in the set. Rule

inference refers to the process of learning propositional logic

rules over a set of features such that the classification accuracy

metric is maximized. The algorithm utilizes a repeating grow

and prune approach by adding propositional rules to a rule set

until a classification precision of 100% is reached. Afterwards,

Figure 5: Overview of streaming system integration.

rules with little classification precision gain are pruned to reach

compact rules. This result is encouraging from a practical

perspective, as a set of fixed, propositional logic rules can

easily be implemented and checked against feature vectors.

More precisely, the rules can easily be implemented with a

decent amount of code in a real world system and do not

incur large computational overhead to be tested for matches.

D. Streaming System Integration

For the integration into the TRANSIT P2P streaming system,

the tracker managing the list of present nodes in the network

is extended for monitoring capabilities. As a goal, the CDN

backend managing the streaming nodes should be capable of

reconstructing the complete graph for motif analysis.

For that purpose, a receipt-mechanism based on the ex-

change of cryptographically signed receipts is used, i.e., if a

peer A provides service to a peer B, B sends a signed receipt

message certifying the amount of provided service to A by

B. We refer to the amount of provided service certified by

a receipt as contribution from now on. Notably, the usage of

receipts aligns well with the general definition of reputation

networks at the beginning of Section II and can be understood

as a real-world implementation of the weighting function.

After having received the receipt, A forwards the receipt to

the CDN backend node. The CDN collects all receipts from all

nodes and processes the information in three steps as depicted

in Figure 5. First, the aggregated information on the flow of

data in the network is used to reconstruct the graph of claimed

contributions. Each claimed contribution is held as an edge

in the graph representation for a constant amount of time.

Alongside with each edge, the contribution is annotated to the

edge.

Afterwards, the modified FANMOD algorithm described in

Section III-B is executed on the graph to extract the feature

vector ~vn of personalized motifs contained in set S. Third,

the rules learned by the RIPPER algorithm are applied to the

feature vector to classify nodes according to their strategy.

After having identified the strategy of a node, two measures

can be taken to counteract subversive behavior. The classifica-

tion can either be ignored, i.e., a subversive node can continue

to stream without any counter measures, or the node can be

excluded (banned) from the system.



Strategy S1 S2 S3 S4 M5 M6 M7 M8 M9

Honest 80% 80% 80% 80% 80% 70% 60% 40% 20%
n-Coll. 20% - - - 5% 7.5% 10% 15% 20%
2-Coll. - 20% - - 5% 7.5% 10% 15% 20%
Free Rd. - - 20% - 5% 7.5% 10% 15% 20%
Red. Serv. - - - 20% 5% 7.5% 10% 15% 20%

# Nodes 200 200 200 200 200 200 200 200 200

Table I: Definition of evaluation scenarios. Scenarios names

starting with an S indicate single strategy scenarios, whereas

M-scenarios describe scenarios with multiple strategies present

in the system at the same time.

IV. EVALUATION

The simulation setup is designed to accurately resemble

the conditions in a real-world system. It is composed of a

bandwidth, latency, and workload model running inside the

event based simulator PeerFactSim.KOM [15].

Three bandwidth classes for peers exist: high, mid, and low.

Each classes’ available asymmetric up-/download bandwidth

and the share of peers in each class is modeled according to

the annual OECD broadband report [16]. As a latency model,

a normally distributed latency with N (µ=100ms, σ=50ms)
between peers is used. In order to challenge the proposed

algorithms, we use a flash-crowd workload (see Figure 6, grey

solid line). The workload constitutes a worst-case scenario

with a steep increase of nodes at the beginning resulting in

a highly dynamic reputation graph. The workload is scaled

to 200 present peers, as this is the smallest amount of

nodes yielding significant differences of the results while still

allowing for a decent simulation time.

Table I shows the six scenarios used throughout the eval-

uation. Scenarios S1 to S4 are single strategy scenarios as

they were used to identify the relevant motif set S in the

beginning, whereas M5-M9 are multi strategy scenarios with

multiple subversive strategies present in the system at the same

time. Especially M8/9 are challenging scenario as more than

60% of the nodes follow a subversive strategy, i.e., on average

more than 60% of an honest node’s neighbors try to cheat.

Moreover, the M scenarios allow judging the performance of

our approach in a graph having a high interaction of malicious

nodes among each other, which is expected to considerably

change the structure of the reputation network.

A. Machine Learning Performance

In this section, the stability of the classification’s per-

formance is evaluated with varying scenarios. All metrics

used in this section are standard machine learning metrics

composed from the basic pt/pf metrics referring to the number

of true/false positives and nt/nf referring to the number of

true/false negatives (see Section III-C). Accuracy is used as

defined in Equation 5, recall is defined as R = pt

tp+ft
and

precision is defined as P = pt

tp+fn
.

Figure 6 depicts the accuracy depending on the time

progress of the several scenarios. In the startup phase, accuracy

is starting to increase quickly up to values above 90% across

all scenarios except M9. The low accuracy at the beginning of

Predicted
Actual Free rd. n-Coll Honest 2-Coll. Red. Serv.

Free Rd. 64.81% 3.71% 5.04% 26.35% .09%
n-Coll 8.76% 60.52% 11.47% 16.44% 2.80%
Honest .02% .21% 98.90% .03% .85%
2-Coll. 39.07% 14.34% 7.80% 36.29% 2.51%
Red. Serv. .80% 4.08% 18.97% 1.95% 74.20%

Table II: Confusion matrix of classification. A binary classifi-

cation of honest and subversive strategies is highly accurate.

Distinguishing between multiple subversive strategies turns out

to be less precise.
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Figure 6: Stability of Accuracy over time (workload in grey).
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Figure 7: Accuracy, precision and recall in different scenarios.

Accuracy and precision start to drop in scenarios with a high

share of subversive nodes, while recall stays nearly constant.

some of the scenarios, e.g., M8/M9, is caused by a low number

of present nodes at a comparably high ratio of subversive

nodes. Consequently, false positives have a high impact in this

phase. In fact this phase of the scenario is the most challenging

part with little to no information on the past behavior of nodes.

Contrary to that, the cool-down phase after the peak does not

constitute a large relative drop of accuracy.

Figure 7 shows accuracy, precision, and recall for all sce-

narios. Notably, the accuracy does not drop below 90% up

to scenario M5. Beyond this scenario, the loss in accuracy is

related to a loss in precision, not in recall. More precisely,

with more challenging scenarios, a higher number of false
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(d) Playback Smoothness with banning.
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(e) Relative Received Video Quality w/o banning.

High Mid Low

Host Group

0

20

40

60

80

100

R
e
la

ti
ve

R
e
c
e
iv

e
d

V
id

e
o

Q
u
a
lit

y
V

Q
M

[%
]

Honest

n-Coll.

2-Coll

Free Rd.

Red. Serv.
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Figure 8: Comparison of Streaming System Performance Metrics without (left column) and with banning (right column) of

classified nodes split by bandwidth groups and applied strategy. The measurements are based on scenario M8.

positives is generated but a stable share of more than 95% of

the subversive nodes is classified correctly to be subversive

across all scenarios except M9.

Besides binary classification metrics, we also investigate the

confusion matrix of our approach in Table II. Notably, the

classification into honest nodes and subversive nodes classifies

98.90% of honest nodes correctly. Differentiating between the

different classes of subversive nodes is more difficult. As an

example, the classification of 2-Collusion nodes is correct in

36.29% of all classification attempts only.

B. Streaming Performance

In this section, the effects of classifying and removing

subversive peers from the system are evaluated. For that

purpose, we define three performance metrics describing the

performance of the streaming system: the free upload capacity

metric defining the amount of free upload capacity of a node,

the playback smoothness metric defining the fraction of time

a peer was able to play back the video stream compared

to the length of the complete session without the delay to

start playback and the relative received video quality metric,



defining the relative visual quality a peer was able to receive

from the system compared to the maximum visual quality.

The latter measures the visual quality of the SVC video layer

received on average compared to the visual quality of the

highest possible SVC layer. As a metric for comparing visual

quality, the Video Quality Metric (VQM) is used. VQM is

a standardized, full-reference video quality model showing a

high correlation to perceived visual quality of human subjects

[17], [18]. The exact methodology is defined in [19].

Figure 8 shows the three metrics in the challenging scenario

M8 with 60% subversive nodes, where Figures 8a, 8c, and 8e

are obtained without banning subversive nodes and Figures

8b, 8d, and 8f show the performance of the system with the

enabled motif fingerprinting algorithm and banning of classi-

fied nodes. The measurements are differentiated by bandwidth

class as well as applied strategy.

The free upload capacity metric stays similar with banning

(Figure 8b) and without banning (Figure 8a), showing that

subversive nodes are at an advantage by having roughly twice

as much spare capacity compared to honest nodes. At the same

time, a comparison of the playback smoothness metric (Figures

8c, 8d) shows that classifying and banning of subversive

nodes has a positive effect on the system’s performance. In

particular, without classification and banning the reachable

playback smoothness is comparably low for all types of nodes.

As opposed to that, Figure 8d shows a large performance

drop for subversive nodes, while honest nodes can profit from

system resources not wasted for subversive nodes compared

to Figure 8c by gaining an advantage of more than 20% of

playback smoothness.

A similar observation, albeit not that distinctive, can be

made when comparing the relative received video quality in

Figures 8e/8f. While in the case without banning, all nodes

reach a comparable video quality regardless of their strategy,

in the case with banning, honest nodes can reach a significantly

higher video quality of up to 80%.

V. RELATED WORK

We survey related work in three major categories: works

investigating subversion strategies in reputation networks in

general, works aiming at social networks and works aiming

at distributed systems.

Reputation networks in general: Seuken et al. [2] make

fundamental statements by formally analyzing sybil proof

accounting mechanisms, which are conceptually similar to

collusion proof mechanisms. We use both names interchange-

ably in the following. The authors prove that under reason-

able assumptions, it is impossible to construct a completely

sybil proof mechanism. However, a weaker form (K-sybil-

proofness) can be achieved by only accepting a positive report

on a node, if it is reported by K other nodes. Nevertheless,

this approach would inherently slow down the update of the

reputations. The work by Seuken et al. is a main motivation

to think into the direction of statistical approaches to solve the

problem from a practical perspective.

Social network analysis: A number of algorithms target

statistical sybil detection in social networks motivated by

the need to prevent spam. For instance, SybilGuard [20],

SybilLimit [21], SybilInfer [22] and SumUp [23] assume some

kind of clustering of subversive nodes and the fast mixing

property, i.e., that a region outside a cluster of subversive

nodes mixes inherently faster than within the cluster. These

properties (amongst others) are used to detect subversive

clusters. However, at least the fast mixing property was shown

to be a poor feature for social networks by [3]. Moreover, these

algorithms are tailored towards social networks and the set of

features investigated are specific to this use case.

Distributed systems: From the distributed systems centric

works, those focusing on hybrid CDN/P2P architectures with

a strong, centralized control are most relevant to our work.

Piatek et al. propose Contracts [24], a scheme using two-

hop reputations to score the contribution of a node. The

scheme applies three approaches to mitigate collusion: (1)

standard techniques limit the creation of identities per node,

(2) the contributions of peers are checked to never exceed

upload/download capacities, and (3) a global diversity weight-

ing allows peers contributing to a more diverse set of IPs

to reach a higher performance. All three methods have their

drawbacks. (1) makes it difficult for new peers to join the

system, (2) relies on the peer telling the truth on available

capacity and (3) counteracts mechanisms to keep traffic local

for ISP-friendliness.

Aditya et al. [25] propose an accounting scheme for hybrid

P2P/infrastructure systems based on consistency checks, i.e.,

each transmission in the system is acknowledged and logged

in a hash chain constituting a proof of work. The work focuses

on the 32 million peers deployment of Akamai NetSession2.

The hash-chaining approach requires every transaction to

be logged and checked for inconsistencies. Additionally, the

neighborhood of each peer is artificially narrowed to prevent

colluding nodes from talking to each other. The approach

presented in this paper may serve as a statistical extension

on top to catch users applying sophisticated strategies like

collusion or can replace the system entirely.

The work presented by Goncalves et al. [26] focuses on

graph metrics to identify peers that are highly likely to provide

a good service in a live-streaming setting. While performing

an analysis of the correlation of service provided and graph

metrics like the out-degree of a node using data traces from the

SopCast network. The focus is not on security and the metrics

are simple to be imitated for a node planning to undercut the

scheme.

Our approach differs from the related approaches by relying

on network structure analysis to reliably identify misbehavior

in a reputation scheme. However, as opposed to [20], [21],

[22] and [23], our work neither relies on clustering nor on

fast mixing, but on the structural change of interactions in each

node’s neighborhood, as measured by a fingerprint of person-

2According to http://wwwnui.akamai.com/gnet/globe/index.html, last vis-
ited 2/3/2016.



alized motifs. Consequently, our approach is more generic and

can be adapted to detect a multitude of subversive strategies

by using the high expressiveness of motif fingerprints. At the

same time, our approach differs from a practical perspective

from the distributed systems centric works ([24], [25], [26])

by not relying on very fine-granular accounting, thus imposing

a lower overhead. Additionally, our approach does not rely

on an artificially narrowed neighborhood as in [25], which

decreases the flexibility for other optimizations, e.g., topology

optimization algorithms.

VI. CONCLUSIONS AND OUTLOOK

This work is motivated by the outstanding role of reputation

networks in e-commerce, social networks, and distributed

systems and the simplicity of undercutting their efficiency by

applying cooperative, subversive strategies such as collusion.

To counteract subversion, we developed a methodology to

classify nodes according to their strategy. The methodology

is inspired by the idea, that a node behaving subversively

in a reputation network changes the structure of interactions

in the neighborhood. To measure and evaluate structural

changes of the reputation network, two methods are combined:

the motif-counting methodology creates fingerprints of local

substructures around a node, which can then be classified

using a machine learning algorithm. The methodology is

integrated into a hybrid CDN/P2P streaming system and shows

a classification accuracy of up to 98%. Moreover, when using

the proposed method to classify and ban subversive nodes, a

significant increase in terms of QoE can be reached for honest

nodes.

While this work uses a hybrid CDN/P2P streaming system

as a case study, the developed methodology beyond that scope,

as it can be applied to any reputation network to classify

nodes according to their behavior. In particular, combining

our approach with use case specific features can make the

methodology useful to work on social graphs, virtual market

places, crypto currencies, and the identification of email spam

networks.
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