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Abstract—A promising architecture for content caching in
wireless small cell networks is storing popular files at small base
stations (sBSs) with limited storage capacities. Using localized
communication, an sBS serves local user requests, while reducing
the load on the macro cellular network. The sBS should cache
the most popular files to maximize the number of cache hits.
Content popularity is described by a popularity profile containing
the expected demand of each file. Assuming a fixed popularity
profile of which the sBS has complete knowledge, the optimal
content placement problem reduces to ranking the files according
to their expected demands and caching the highest ranked ones.
Instead, we assume that the popularity profile is varying, for
example depending on fluctuating types of users in the vicinity
of the sBS, and it is unknown a priori. We present a novel
algorithm based on contextual multi-armed bandits, in which the
sBS regularly updates its cache content and observes the demands
for cached files in different contexts, thereby learning context-
dependent popularity profiles over time. We derive a sub-linear
regret bound, proving that our algorithm learns smart caching.
Our numerical results confirm that by exploiting contextual
information, our algorithm outperforms reference algorithms in
various scenarios.

I. INTRODUCTION

Global mobile data traffic has been increasing over the past

years and is predicted to grow almost tenfold within the next

few years [1]. One of the major generators of mobile data

traffic is video traffic. While mobile video traffic accounts for

more than half of the mobile data traffic already today, it is

predicted to constitute almost three quarters of mobile data

traffic in a few years [1]. A solution to alleviate highly-loaded

networks from the burdens of mobile data traffic is caching at

the edge [2]. The most popular files, such as popular videos,

are stored at local caches to serve end users’ requests directly

via localized communication. By bringing content closer to the

end user, bandwidth requirements and delay can be reduced.

Recent work showed that a promising caching architecture is

given by small cell networks in which small base stations

(sBSs) are utilized as local caching entities [3], [4]. These sBSs

dispose of limited storage capacities. In their caches, they can

store a fraction of the available content to serve users in their

vicinity via localized communication. In this way, the load on

the macro cellular network is reduced.

Due to the vast amount of content available in wireless

multimedia applications such as YouTube and Netflix, not all

available files can be stored in a local cache. Hence, a crucial

question for content caching is which files to store. A first

line of literature investigates the problem of cache content

placement in various caching scenarios under the assumption

that the popularity profile is fixed and known in advance,

i.e., the set of expected demands of available files is given,

or even the actual future demands are known. In this way,

the problem of cache content placement can be formulated

as an optimization problem. In [2], distributed approximation

algorithms for cache content placement in a hierarchical tree

cache network are presented. The goal is to minimize the

total bandwidth cost in the network. For this purpose, each

leaf-cache in the tree can either store a file or fetch it upon

request from another cache or from the main cache. In [3],

a small cell network with several sBSs serving as caches

is studied. Exploiting that users can be connected to several

sBSs at the same time, content should be distributed among

the caches such that the delay experienced by the users is

minimized. An approximation algorithm for this problem is

given. Building upon the same caching architecture, in [4], a

distributed algorithm for cache content placement is proposed

when users move in between sBSs. Since the users cannot

receive the whole content from one single sBS, encoded

parts of the content are stored in the sBSs. An approximate

algorithm is presented that minimizes the probability that users

have to request parts of the file from the main base station

instead of the sBSs.

Assuming the popularity profile of files is given in advance

requires knowledge about the expected demand of each file.

Therefore, a second line of literature deals with the more

realistic case of cache content placement without prior know-

ledge about file popularity, but still assuming a fixed popularity

profile. Applying methods from machine learning, algorithms

are developed that learn the optimal cache content placement

over time. In [5], using a multi-armed bandit algorithm, an

sBS learns the fixed popularity profile online by refreshing its

cache content and observing instantaneous demands for cached

files over time. In this way, the cache content placement at an

sBS is optimized over time to maximize the traffic that can

be served by the sBS. The authors extend their framework

for a similar scenario in [6] and [7], where they additionally

take into account the costs for adding new files to the cache.

Moreover, they provide theoretical sub-linear regret bounds for

their algorithms. In references [5] - [7], the optimal caching

strategy is learned over time based on previous observations

of instantaneous demands. On the contrary, social correlations
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are exploited in [8], [9] by taking into account user ratings

as available for example in social networks. However, they

only consider one period in time in which the popularity

profile is estimated based on a training set of ratings instead

of learning online by updating the popularity estimates over

time. Moreover, all aforementioned approaches do not take

into account the potential diversity of file popularity among

different user types or at different points in time. Popularity

diversity among user types is taken into account in [10], where

users are clustered into groups of similar interests. Each user

group is assigned to an sBS which then learns the popularity

profile of its user group. However, the popularity profile which

is learned by each sBS is again fixed.

In this paper, we propose a novel online learning algorithm

for cache content placement based on a contextual multi-

armed bandit problem. Algorithms for different variants of the

contextual multi-armed bandit problem have been developed

before, e.g. for click-through rate maximization in web search

[11], [12] or distributed online learning [13]. Our proposed

algorithm for smart caching at an sBS is inspired by the

distributed contextual learning algorithm presented in [13],

which considers a general multi-agent learning setting, while

we focus on a single learner. In [13], a learner selects one

action at a time, while we extend the case to taking multiple

actions at a time, since the sBS has to select multiple files

to cache. In our proposed algorithm, an sBS learns the best

caching strategy to maximize the average number of cache

hits by observing context-dependent instantaneous demands

over time. By taking into account context information, the sBS

learns the specific file popularity of different contexts, instead

of averaging popularity estimates over all possible contexts.

The context information considered here can include global

information about the system state (e.g., the time of the day

or the time in the week, the number of users in the vicinity

of the sBS), but also characteristics related to each single

file (e.g., how often it has been shared in social media), or

characteristics of users in the vicinity of the sBS (e.g., their

ages, their genders, their interests, their ratings).

The contributions of this paper are as follows:

• We present a novel caching algorithm based on contextual

multi-armed bandit optimization to maximize the number

of cache hits at an sBS.

• We derive a sub-linear regret bound for the caching

algorithm, which proves that our algorithm learns smart

caching.

• We numerically evaluate the caching algorithm in differ-

ent settings. A comparison shows that by exploiting con-

textual information, our algorithm outperforms reference

algorithms.

The remainder of the paper is organized as follows. In

Section II we describe the system model and give the problem

formulation for smart caching at an sBS. In Section III we pro-

pose an online learning algorithm based on contextual multi-

armed bandit optimization that exploits context information to

learn the optimal caching strategy over time. In Section IV

we derive a sub-linear bound on the regret of the learning

algorithm. Numerical results of the learning algorithm are

presented in Section V. Section VI concludes the paper.

II. SYSTEM MODEL

Consider an sBS with a cache memory in a wireless

network. The sBS has a reliable backhaul link to the core

network. In its cache memory, the sBS can store up to m
files from a set F = {1, ..., |F |}, where we assume that all

files are of the same size. To inform users in its vicinity

about available files, the sBS broadcasts the information about

currently cached files periodically [5]. When a user requests

a file that the sBS stored in its cache, the sBS serves the user

via localized communication. In this case, no additional load is

put on the macro cellular network. Otherwise, the user directly

downloads the file from the macro cellular network. In order

to relieve load from the macro cellular network, the sBS aims

at optimizing the cache content such that the traffic it can

serve directly is maximized. Maximizing the traffic served by

the sBS corresponds to maximizing the number of cache hits,

i.e., the number of requests for files cached at the sBS. Note

that the sBS can only observe the requests for cached files, i.e.,

cache hits, but it cannot observe the requests for non-cached

files, i.e., cache misses. For this purpose, over time the sBS

should learn which files are most popular in which context,

by observing not only demands for cached files, but also in

which context they occur.

We consider a system that works in a discrete time setting

t = 1, 2, ..., T , with finite time horizon T , where the following

events happen sequentially, in each period t: (i) The sBS

observes a D-dimensional context vector xt ∈ X which

characterizes the system in this period, where X is a bounded

D-dimensional context space. Possible context dimensions are

for example the time of the day or the time in the week,

the number of users in the vicinity of the sBS, the users’

ages, their genders or their ratings. (ii) Based on the context

vector xt ∈ X , the sBS refreshes the cache content. The sBS

then sends a broadcast message to all users in the vicinity

informing about the set of currently cached files, which is

denoted by Ct = {c1,t, ..., cm,t}. (iii) The sBS observes the

demands dci,t(xt, t) for all files ci,t ∈ Ct in this period, i.e.,

the number of requests for each single file currently stored in

the cache. Then it provides the users with their requested files

according to their demands.

Since the context space X is assumed to be bounded, it can

be set to X := [0, 1]D without loss of generality. When file

f ∈ F is stored in the cache after observing a context x ∈ X ,

the sBS observes the random demand df (x), which is sampled

from an unknown distribution depending on the context x.

The demand is assumed to take values in [0, Umax], where

Umax is the maximum number of users that can be served by

the sBS. The expected demand for file f given context x is

denoted by µf (x). In time slot t, the random variable df (xt)
is assumed to be independent of all past caching decisions

and previous demands. Since the sBS aims at maximizing the

total number of cache hits, the demands for cached files can



be seen as rewards which the sBS receives for cache hits. The

goal of the sBS is to optimize the cache content to maximize

the total number of cache hits up to the finite time horizon

T . Suppose that for each context, the expected demands of

all files would be known. Then, for each context, the optimal

solution would be to cache the m files with highest expected

demands, which is formalized as follows. For context x ∈ X ,

we define the top-m files for context x as the following m
files f∗

1 (x), f
∗
2 (x), ..., f

∗
m(x) ∈ F which satisfy 1

f∗
1 (x) ∈ argmax

f∈F

µf (x)

f∗
2 (x) ∈ argmax

f∈F\{f∗

1
(x)}

µf (x) (1)

...

f∗
m(x) ∈ argmax

f∈F\{f∗

1
(x),...,f∗

m−1
(x)}

µf (x).

Then, an optimal choice of files to cache given context x
is defined by the files in (1). However, we assume that the

expected demands are unknown a priori. In this case, the sBS

has to learn the expected demands over time. The optimal

solution given in (1) can then serve as a benchmark to evaluate

the loss of learning the expected demands instead of knowing

them a priori. Below, this loss will be defined as the regret

of learning. Under the assumption that the context-dependent

expected demands are unknown a priori, the sBS has to learn

these expected demands over time. For this purpose, the sBS

has to find a trade-off between caching files about which few

information is available (exploration) and files of which it

believes that they will yield the highest demands (exploitation).

In each time period, the choice of files to be cached depends

on the history of choices in the past and the corresponding

observed demands. An algorithm which maps the history to

the choices of files to cache is called a learning algorithm.

Recall that Ct = {c1,t, ..., cm,t} is the set of cached files

chosen in time period t according to the learning algorithm

of the sBS. The regret of learning with respect to the optimal

benchmark solution is given by

R(T ) =

T
∑

t=1

(

m
∑

i=1

µf∗

i
(xt)(xt)

)

− E

(

T
∑

t=1

m
∑

i=1

dci,t(xt, t)

)

,

(2)

where dci,t(xt, t) denotes the random demand for the cached

file ci,t ∈ Ct for context xt at time t. Here, the expectation

is taken with respect to the choices made by the learning

algorithm of the sBS and the distributions of the demands.

III. A UNIFORM CONTEXT PARTITIONING ALGORITHM

FOR SMART CACHING

The basic idea of the algorithm for smart caching at

an sBS is as follows: The algorithm partitions the context

space uniformly into smaller sets. Then, the sBS learns the

expected demands for files independently in each of the sets,

1Several files may have the same expected demands, i.e., the optimal set
of files may not be unique. This is also captured here.

m-CLUP for Smart Caching

1: Input: T , sT , K(t)
2: Initialize context partition: Create partition PT of context

space [0, 1]D into (sT )
D hypercubes of identical size

3: Initialize counters: For all f ∈ F and all p ∈ PT , set

Nf,p = 0
4: Initialize estimates: For all f ∈ F and all p ∈ PT , set

d̂f,p = 0
5: for each t = 1, ..., T do

6: Observe context xt

7: Find the set p ∈ PT such that xt ∈ p
8: Compute the set of under-explored files Fue

p (t) in (3)

9: if Fue
p (t) 6= ∅ then

10: u = size(Fue
p (t))

11: if u ≥ m then

12: Select c1,t, ..., cm,t randomly from Fue
p (t)

13: else

14: Select c1,t, ..., cu,t as the u files from Fue
p (t)

15: Select cu+1,t, ..., cm,t as the (m− u) files

f̂1,p(t), ..., f̂m−u,p(t) from (4)

16: end if

17: else

18: Select c1,t, ..., cm,t as the m files

f̂1,p(t), ..., f̂m,p(t) from (5)

19: end if

20: Observe user demands d1, ..., dm for files c1,t, ..., cm,t

21: for i=1,...,m do

22: d̂ci,t,p =
d̂ci,t,p

+di

Nci,t,p
+1

23: Nci,t,p = Nci,t,p + 1
24: end for

25: end for

Fig. 1. Pseudocode for m-CLUP

by estimating the expected demands for files based on the

observed demands when context arrived from that set. In the

algorithm, a time period t can either be an exploration or

an exploitation phase. In exploration phases, the sBS chooses

a random set of files to cache. Theses phases are needed to

update the estimated demands also for files with low estimated

demands. In exploitation phases, the sBS caches the files with

the highest estimated demands. The algorithm for selecting m
files is called m- Contextual Learning with Uniform Partition

(m- CLUP) and its pseudocode is given in Figure 1.

Next, we describe the algorithm in more detail. In its

initialization phase, m-CLUP creates a partition PT of the

context space [0, 1]D into (sT )
D D-dimensional hypercubes

of identical size 1
sT

× . . . × 1
sT

. Here, sT is an input pa-

rameter which determines the number of sets in the partition.

Additionally, m-CLUP keeps a counter Nf,p(t) for each pair

consisting of a file f ∈ F and a set p ∈ PT . The counter

Nf,p(t) is the number of periods in which file f ∈ F was

cached after a context from set p arrived up to period t.
Moreover, m-CLUP initializes the estimated demand d̂f,p(t)
of each pair consisting of a file f ∈ F and a set p ∈ PT up



to period t. This estimated demand is calculated as follows:

Let Ef,p(t) be the set of demands observed when file f was

cached after a context from set p arrived up to period t. Then,

the estimated demand of file f in set p is given by the sample

mean d̂f,p(t) :=
1

|Ef,p(t)|

∑

d∈Ef,p(t)
d.2

In each time period t, m-CLUP determines the set p(t) ∈
PT , from which the context arrived in this period, i.e., such

that xt ∈ p(t) holds. Then, the algorithm can be in one of the

two phases mentioned above, in an exploration phase or in an

exploitation phase. In order to determine the correct phase for

the current period, the algorithm checks if there are files that

have not been explored sufficiently often. For this purpose, the

set of under-explored files Fue
p (t) is calculated based on

Fue
p (t) := {f ∈ F : Nf,p(t) ≤ K(t)}, (3)

where K(t) is a deterministic, monotonically increasing con-

trol function, which is an input to the algorithm. The control

function has to be set correctly to balance the trade-off

between exploration and exploitation. In Section IV, we will

select a control function that guarantees a good balance in

terms of this trade-off. If the set of under-explored files is

non-empty, m-CLUP enters the exploration phase. Let u(t) be

the size of the set of under-explored files. If the set of under-

explored files contains at least m elements, i.e., u(t) ≥ m, the

algorithm randomly selects m files from Fue
p (t) to cache. If

the set of under-explored files contains less than m elements,

u(t) < m, it selects all u(t) files from Fue
p (t) to cache. Since

the cache is not fully filled by u(t) < m files, additionally

(m − u(t)) other files can be cached. In order to exploit

knowledge obtained so far, m-CLUP selects (m − u(t)) files

from F \ Fue
p (t) with highest estimated demands, as defined

by the files f̂1,p(t), ..., f̂m−u(t),p(t) ∈ F \ Fue
p (t), for which

the following holds for j = 1, ...,m− u(t):

f̂j,p(t) ∈ argmax
f∈F\(Fue

p (t)∪
⋃j−1

i=1
{f̂i,p(t)})

d̂f,p(t), (4)

where
⋃0

i=1{f̂i,p(t)} = ∅. If the set of files defined by

(4) is not unique, ties are broken arbitrarily. Note that by

this procedure, even in exploration phases, the algorithm

additionally exploits, whenever the number of under-explored

files is smaller than the cache size. If the set of under-explored

files Fue
p (t) is empty, m-CLUP enters the exploitation phase.

It selects m files from F with highest estimated demands as

defined by the files f̂1,p(t), ..., f̂m,p(t) ∈ F \Fue
p (t), for which

the following holds for j = 1, ...,m:

f̂j,p(t) ∈ argmax
f∈F\(Fue

p (t)∪
⋃j−1

i=1
{f̂i,p(t)})

d̂f,p(t). (5)

If the set of files defined by (5) is not unique, again ties are

broken arbitrarily. After selecting the files to be cached, the

user demands for these files in this period are observed. Then,

the estimated demands and the counters for cached files are

updated.

2The set Ef,p(t) does not have to be stored since the estimated demand

d̂f,p(t) can be updated based on d̂f,p(t − 1) and on the observed demand
at time t.

IV. ANALYSIS OF THE REGRET

In this section, we give a regret bound for the proposed

learning algorithm, where regret describes the loss incurred

by the algorithm. We will prove that the regret is sublinear,

i.e., R(T ) = O(T γ) with γ < 1. This bound on the regret

guarantees that for T → ∞, the algorithm converges to the

benchmark solution given by (1) in the sense that the average

number of cache hits is maximized in the limit.

The regret bound is enabled by the natural assumption that

expected demands for files are similar for similar contexts.

For example, at a similar time of day and with similar

characteristics of users in the vicinity, the requests for files will

also be similar. Such an assumption is crucial to learn from

previous observations and can be captured by the following

Hölder condition.3

Assumption 1. There exists L > 0, α > 0 such that for all

f ∈ F and for all x, y ∈ X , it holds that

|µf (x)− µf (y)| ≤ L||x− y||α,

where || · || denotes the Euclidian norm in R
D.

The theorem given below shows that the regret of our pro-

posed algorithm m-CLUP is sublinear in the time horizon T .

Theorem 1 (Bound for R(T )). Let K(t) = t
2α

3α+D log(t) and

sT = ⌈T
1

3α+D ⌉. If m-CLUP is run with these parameters and

Assumption 1 holds true, the leading order of the regret is

O
(

mUmax|F |T
2α+D
3α+D log(T )

)

.

The interested reader can find the proof of Theorem 1 in

our online appendix [14].

V. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed learn-

ing algorithm m-CLUP by comparing its solution to several

reference algorithms under different scenarios.

A. Reference Algorithms

We compare m-CLUP with five reference algorithms. The

first algorithm is the optimum benchmark. This algorithm

works under the assumption of complete knowledge, i.e., the

expected demands of all files are known a priori. Given context

vector x ∈ X , the optimal benchmark algorithm selects the m
files with highest to m-th highest expected demands for this

context x as given by (1).

The second reference algorithm is called m-UCB, which

consists of a variant of the UCB algorithm. UCB is a classical

learning algorithm for multi-armed bandit problems [15],

which has logarithmic regret order. However, it does not take

into account context information, i.e., the logarithmic regret is

with respect to the average expected demand over the whole

context space. While in classical UCB, one action is taken

in each period, we modify UCB to take m actions at a time,

which corresponds to selecting m files.

3This assumption is only needed for the analysis of the regret. m-CLUP
can be applied even when this assumption does not hold true.



The third reference algorithm is the m-ǫ-Greedy. This is a

variant of the simple ǫ-Greedy [15] algorithm, which does not

consider context information. This algorithm caches a random

set of m files with probability ǫ ∈ (0, 1). With probability

(1 − ǫ), the algorithm caches the m files with highest to m-

th highest estimated demands. These estimated demands are

calculated based on previous demands for cached files.

The forth reference algorithm is called m-Myopic. This is

an algorithm taken from [5], which is investigated since it is

comparable to the well known Least Recently Used algorithm

(LRU) for caching. m-Myopic learns only from one period

in the past. It starts with a random set of files and in each

of the following periods discards all files that have not been

requested in the previous period. Then it replaces the discarded

files randomly by other files.

The fifth reference algorithm is called Random. It is a lower

benchmark for the other algorithms, since it caches a random

subset of files in each period.

B. Performance Measures

The following performance measures are used in our anal-

ysis. One measure is the aggregated number of cache hits,

which allows comparing the absolute performance of the

algorithms. A relative performance measure is given by the

cache efficiency, which is defined as the ratio of cache hits

compared to the overall demand, i.e.,

cache efficiency in % =
cache hits

cache hits + cache misses
· 100.

The cache efficiency describes the percentage of user requests

which can be served by the files cached at the sBS. Note

that in general, even the optimum benchmark cannot serve all

user requests since first, the cache size is limited and second,

the optimum benchmark algorithm has knowledge about the

expected demands, but it does not know the actual demand in

the future period. Another important performance measure is

given by the average numerical regret of an algorithm. It is

given as the time-averaged difference between the number of

realized cache hits in the optimum benchmark and the number

of realized cache hits obtained by the learning algorithm.

C. Simulation Model for Context-Dependent Demands

The proposed learning algorithm does not make any as-

sumptions on the underlying distribution of the context-

dependent demands. However, to evaluate the performance of

the algorithm, we have to model context-dependent demands

of files. The set of expected demands {µf}f∈F of all files

is called popularity profile. As confirmed by measurement

studies [16], the popularity profile can be modeled by a Zipf-

like distribution that is characterized by a parameter β. In this

distribution, given U requests for files from a set of |F | files,

the expected demand of the i-th most popular file is given by

µi = U ·
1
iβ

Ω
,

where

Ω =

|F |
∑

j=1

1

jβ
.

The parameter β ≥ 0 accounts for the skewness of the distri-

bution, where a larger β stands for a more skewed distribution.

The Zipf-like distribution gives a fixed popularity profile.

In order to additionally include context information, for our

simulations, we model context-dependent demands of files

by adapting the popularity profile for different contexts. We

assume that in each period, the sBS observes a 3-dimensional

context vector related to the users currently present in its

vicinity, i.e., the dimension of the context space is D = 3.

These three dimensions are (i) the number of users normalized

to a maximum number Umax, where Umax is the maximum

number of users that can be served by the sBS, (ii) the fraction

of female users and (iii) the fraction of underage users. We

assume that the number of users changes U and thereby the

scaling of the expected demands in the distribution above.

Further we assume that the fraction of female users and the

fraction of underage users changes the order of the popularity

among the files. We define 4 user contexts, which are classified

based on whether the fraction of female users is below or

above 50% and whether the fraction of underage users is below

or above 50%. Each of the 4 user contexts has its specific order

of files in the popularity ranking. To model this, the set of files

F is divided into 4 file classes of size |F |/4. Then each of

the 4 user contexts is mapped to a specific order of the 4

file classes in the popularity ranking. The popularity profile is

adapted in each of the 4 user contexts based on this specific

order of the popularity ranking.

D. Results

In our simulations, in m-ǫ-Greedy we set ǫ = 0.25 and in

m-CLUP we set the control function to K(t) = c·t
2α

3α+D log(t)
with c = 1/(|F |D). Tuning K(t) with c < 1, compared to

Theorem 1, the number of exploration phases can be reduced.

To evaluate the long-term behavior of our proposed algo-

rithm, we first investigate the following scenario. We assume

that the sBS can store m = 5 files out of |F | = 100 available

files, i.e., the cache size corresponds to 5% of the overall

file set [5]. In each period, a random number of users is in

the vicinity of the sBS. The number of users is uniformly

distributed between 20 and Umax = 50. The fractions of

female and underage users among the users are uniformly

distributed between 0 and 1. Note that uniformly distributed

context arrivals are among the most difficult scenarios for our

algorithm since they require the algorithm to explore all sets

in its constructed partition PT equally. Hence, we evaluate

our algorithm under worst-case conditions. In each period, the

file demands are sampled from a context-dependent Zipf-like

distribution as described above. The skewness parameter is

set to β = 0.7 (compare measurement results in [16]). The

time horizon is set to T = 10000. We run all algorithms for

this scenario and average the results over 100 realizations of

random contexts and demands.
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Fig. 2. Aggregated number of cache hits as a function of time

The long-term behavior is investigated by plotting the

results of the algorithms as a function of time, i.e., over the

periods t = 1, ..., T . Figure 2 shows the aggregated number of

cache hits up to period t as a function of time. Figure 3 shows

the average regret up to period t as a function of time. As can

be seen from the plots, the optimum benchmark, assuming

complete knowledge, serves as upper bound for all other

algorithms. In the starting phase, the proposed algorithm m-

CLUP shows worse performance than the reference algorithms

in terms of aggregated cache hits and average regret. This

is due to the cold start in which m-CLUP requires many

exploration steps for each set in its partition. After a number

of periods, among the non-optimal algorithms, m-CLUP, m-

UCB and m-ǫ-Greedy have a much better performance than

m-Myopic and Random, since they learn from the whole

history of observed demands. However, m-CLUP outperforms

all other non-optimal algorithms since it additionally exploits

context information already collected, even though the context

arrivals are uniformly distributed so that contextual learning

is difficult. For all five non-optimal algorithms the aggregated

number of cache hits seems to be linearly increasing with

smaller slope than that of the optimum benchmark. However,

Figure 3 reveals that the average regret of both m-CLUP

and m-UCB is decreasing over time, while the one of m-ǫ-
Greedy is nearly constant. m-Myopic and Random have a high

constant average regret.

Next, we investigate the impact of the cache size m. For this

scenario, we set the time horizon to T = 5000 and consider a

smaller number |F | = 20 of files. Then we vary the cache size

m between 1 and 20. All remaining parameters are kept as in

the first scenario. For varying cache size, Figures 4 and 5 show

the cache efficiency in percent and the average regret after

T = 5000 periods, respectively. For all algorithms, the cache

efficiency is increasing for increasing cache size until hitting

100% when all files can be cached, i.e., m = |F |. Interestingly,

however, the average regret of all non-optimal algorithms is

highest when the cache size is in the region of 15 − 30% of

the total file number. Moreover, the results indicate that again

m-CLUP and m-UCB slightly outperform m-ǫ-Greedy and

clearly outperform m-Myopic and Random. The performance
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Fig. 3. Average regret as a function of time
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Fig. 4. Cache efficiency in % for |F | = 20 vs. cache size m
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Fig. 5. Average regret for |F | = 20 vs. cache size m

of m-UCB is better than that of m-CLUP for cache sizes above

50% of the total file number. For smaller cache sizes, however,

m-CLUP has a better performance, which is the practically

relevant case, since caches can usually store only a small

fraction of all available content.

Finally, the effect of the popularity skew β is studied.

Again we set T = 5000 and |F | = 20. Then we vary

the popularity skewness β between 0 and 3. All remaining

parameters are kept as in the first scenario. For varying cache

size, Figures 6 and 7 show the cache efficiency in percent
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Fig. 6. Cache efficiency in % for |F | = 20 vs. popularity skew β
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Fig. 7. Average regret for |F | = 20 vs. popularity skew β

and the average regret after T = 5000 periods, respectively.

For increasing popularity skew β, the cache efficiency of all

algorithms is increasing. This can be explained by the higher

skewness of the popularity distribution for increasing values

of β. For high β, only few files are very popular so that

a small cache size is sufficient to serve a high number of

requests. The average regret of m-CLUP, m-UCB and m-ǫ-
Greedy stagnates or decreases for higher β, while it keeps

increasing for m-Myopic and Random. Hence, especially in

case of highly skewed distributions, a learning algorithm is

required for good performance. Apart from very small values

of β, m-CLUP yields better results than all other non-optimal

algorithms.

VI. CONCLUSION

In this paper, we investigated smart content caching in wire-

less small cell networks, in which popular content is stored at

an sBS. To maximize the number of cache hits, the sBS should

cache the most popular files. We assumed that the popularity

profile is (i) varying, for example depending on users in the

vicinity of the sBS and (ii) not known a priori. We presented an

algorithm based on contextual multi-armed bandits, in which

the sBS regularly updates its cache content and observes the

demands for cached files. Over time, the sBS then learns

the context-dependent popularity profiles. We derived a sub-

linear regret bound, which proves that our algorithm learns

smart caching. Numerical results confirmed that by exploiting

contextual information, our proposed algorithm performs well

in comparison to reference algorithms in different scenarios.
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