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Abstract—Energy harvesting point-to-point communications
are considered. The transmitter harvests energy from the en-
vironment and stores it in a finite battery. It is assumed that
the transmitter has always data to transmit and the harvested
energy is used exclusively for data transmission. As in practical
scenarios prior knowledge about the energy harvesting process
might not be available, we assume that at each time instant only
information about the current state of the transmitter is available,
i.e., harvested energy, battery level and channel coefficient.
We model the scenario as a Markov decision process and we
implement reinforcement learning at the transmitter to find a
power allocation policy that aims at maximizing the throughput.
To overcome the limitations of traditional reinforcement learning
algorithms, we apply the concept of function approximation and
we propose a set of binary functions to approximate the expected
throughput given the state of the transmitter. Numerical results
show that the performance of the proposed approach, which

requires only causal knowledge of the energy harvesting process
and channel coefficients, has only a small degradation compared
to the optimum case which requires perfect non-causal knowl-
edge. Additionally, the proposed approach outperforms naı̈ve
policies that assume only causal knowledge at the transmitter.

I. INTRODUCTION

Having wireless communication nodes with energy harvest-

ing (EH) capabilities holds the promise of self-sustainability

and perpetual operation [1]. The idea behind EH is that

the communication nodes can recharge their batteries in an

environmentally friendly way using natural energy sources,

e.g., solar, thermal, vibrational, chemical, etc. and afterwards

use the harvested energy for transmitting data [2]. In addition

to the channel fluctuations existing in any wireless communi-

cation system, the variable availability of energy inherent to

EH communication systems has to be considered. The exact

amount of available energy and the precise time when it can

be harvested is hard to predict, resulting in new challenges in

the design of transmission strategies.

Recent effort has been focused on EH communication

systems when non-causal knowledge of the EH process is

assumed [3]–[6]. This approach, termed offline, assumes that

the energy arrival times and the amounts of harvested energy

are completely known at the beginning of the communica-

tion. Although this assumption cannot be perfectly fulfilled

in reality, it allows the calculation of upper bounds of the

performance. In [3], the problem of throughput maximization

within a deadline in a point-to-point scenario is considered.

Additionally, it is shown that this problem is equivalent to

the minimization of the completion time for the transmission

of a fixed amount of data. Similarly, in [4], a point-to-point

communication scenario with a fading channel is assumed and

the corresponding problem of offline throughput maximization

within a deadline is addressed. The processing cost at the

transmitter in a point-to-point scenario is analyzed in [5] and

the effect of inefficient energy storage is studied in [6].

More realistic approaches, termed online, assume only sta-

tistical information about the EH process. In [4] and [7]–[9],

the point-to-point scenario is investigated. A fading channel

is assumed in [4] and the problem of online scheduling for

throughput maximization within a deadline is considered. The

problem is solved using continuous time stochastic dynamic

programming with statistical and causal knowledge of the

energy and fading variations. In [7], an on-off mechanism

at the transmitter is studied in which for each packet arrival

a binary decision of whether to transmit or drop the packet

is made. Additionally, the energy arrival is described as a

continuous time Markov chain and the statistical distribution

of the importance of the messages is assumed to be known. A

save-then-transmit protocol that minimizes the system outage

probability is proposed in [8]. There, a fixed amount of data

is to be transmitted during the duration of a time interval. The

energy arrival is modeled as a random variable for each time

interval.

All the aforementioned approaches require knowledge of the

statistics of the EH process. However, in practical scenarios

this knowledge might not be available. Consider, for example,

an EH transmitter which collects energy from different sources

simultaneously and assume that each source can be switched

on or off at random times. In this scenario, the EH process

cannot be considered as stationary and consequently, keeping

track of its statistics becomes challenging. Another example,

in which knowledge of the EH process cannot be obtained,

is when information about the exact location where the EH

transmitter will operate is unavailable. To overcome these

problems, a learning theoretic approach for EH is adopted

in [9]. Specifically, the well-known reinforcement learning

(RL) algorithm Q-learning is used to maximize the throughput

within a deadline. The authors assume that the amount of

harvested energy, the channel coefficients and the transmit

power in each time instant are taken from a finite discrete

set. Moreover, they assume the data arrives in packets and for

each data packet the decision of transmit or drop has to be



made. Although this approach requires only causal knowledge

of the EH process and the channel fading at the transmitter,

its performance is limited by the number of values considered

in the discrete sets defined for the harvested energy and the

channel coefficients. As stated in [10] and [11], when the

size of the sets increases, the number of states in which the

transmitter can be also increases and the probability of learning

about each of these states is reduced. In other words, the larger

the discrete set, the slower the Q-learning algorithm learns the

power allocation policy.

In this paper, we consider an EH point-to-point commu-

nication scenario in which the transmitter is equipped with

a finite battery and no knowledge about the EH process is

available. In contrast to [9], where the amount of harvested

energy and the channel coefficients are taken from a finite

discrete set, we study the more realistic scenario in which the

harvested energy, the battery level and the channel coefficients

can take any real positive value. As a consequence, in our

model the transmitter can be in an infinite number of states.

To overcome the limitations of traditional Q-learning, we apply

the concept of linear function approximation in RL in order

to find a power allocation policy that aims at maximizing

the throughput. To achieve this, we propose a set of binary

functions to approximate the expected throughput given the

state of the transmitter. The proposed RL algorithm is applied

at the transmitter and it is able to learn the power allocation

policy with only causal knowledge about the EH process and

the channel coefficients.

The rest of the paper is organized as follows. In Section

II, the system model is presented. The EH power allocation

problem is modeled as a Markov decision process in Section

III. In Section IV, the RL algorithm used for the continuous

valued EH point to point communication scenario is explained.

Numerical performance results are presented in Section V and

Section VI concludes the paper.

II. SYSTEM MODEL

In this paper, a point-to-point communication scenario con-

sisting of two single-antenna nodes is considered. As depicted

in Fig. 1, transmitter node N1 harvests energy from the

environment and uses it for transmitting data to receiver node

N2. It is assumed that N1 has always data available for

transmission. As a result, the achievable throughput is only

limited by the availability of harvested energy.

As in [3]–[5], it is assumed that the energy is harvested

in fixed time instants ti, where i = 1, 2, ..., I is the index of

the EH time instants and I is the total number of EH time

instants. This means that at ti an amount of energy Ei ∈ R+

is received by N1. The maximum amount of energy that can

be harvested, termed Emax, depends on the energy source that

is used. After Ei is harvested, it is stored in a rechargeable

finite battery with maximum capacity Bmax. The battery is

assumed to be ideal. Therefore, no energy is lost while storing

or retrieving energy from it. As the battery cannot be recharged

instantaneously, it is assumed that at ti the battery only stores

the energy which has been harvested until ti−1. Furthermore,

Fig. 1: Point-to-point communication scenario with an EH

transmitter node.

it is assumed that at t1, the node has not yet harvested any

energy and the battery is empty. The time interval τi = ti+1−

ti between two consecutive EH time instants ti and ti+1 is

assumed to be constant such that τi = τ , i = 1, 2, ..., I .
The noise at N2 is assumed to be independent and iden-

tically distributed (i.i.d.) zero mean additive white Gaussian

noise (AWGN) with variance σ2. Additionally, the transmit

power pi is kept constant during each time interval τ [3]. It

is assumed that the harvested energy is used solely for the

transmission of data to N2.

In our scenario, only causal information is available at N1.

This means that at ti, N1 has knowledge about the current state

of the battery Bi ∈ R
+, the harvested energy Ei, the fading

channel coefficient hi ∈ C and the past states. According to

the state of N1 at ti, it selects pi and transmits data to N2.

The throughput achieved in one time interval τ is given by

Ri = τ log2

(

1 +
|hi|

2pi
σ2

)

. (1)

As mentioned before, the transmit power can be allocated

only after the harvested energy has been stored in the battery.

Therefore, the causality condition,

τpi ≤ Bi ∀i = 1, ..., I, (2)

must be fulfilled by any feasible power allocation solution.

Additionally, overflow situations in which part of the harvested

energy is wasted because the battery is full, must be avoided.

A battery overflow is a suboptimal solution because a higher

throughput can always be achieved if a higher pi is selected.

Consequently, the overflow constraint,

Bi − τpi + Ei ≤ Bmax, (3)

must also be considered.

III. MARKOV DECISION PROCESS MODEL FOR EH

In this section, the EH point-to-point communication sce-

nario is modeled as a Markov decision process (MDP) because

it provides a suitable mathematical framework for modeling

decision-making situations [9]. The proposed RL algorithm of

Section IV provides a solution of the MDP presented here.

As mentioned above, at ti, N1 has only causal knowledge

about its state. Consequently, since τ is fixed and known, the

selection of pi depends solely on the values of Bi, Ei and

hi. Since the selection of pi does not depend on the state

of the system in previous time instants, the system under



consideration fulfills the Markov property and can be modeled

as an MDP [10], [11]. An MDP consists of a set of states S,

a set of actions A, a transition model P and a set of rewards

R [11]. At ti, the corresponding state Si ∈ S is a function of

Bi, Ei and hi. In our model, the battery level, the harvested

energy and the channel coefficients can take any value in a

continuous range. As a result, the set S contains an infinite

number of possible states given by all the combinations of Bi,

Ei and hi. The set of actions A corresponds to the values of

transmit power that can be selected. In our model, A is finite

and it is given by A = {pi, pi ∈ 0 : δ : Bmax}, where δ is

the step size. The action dependent transition model defines

the transition probabilities as P [Si+1 ∈ U|Si, pi], where U is

a measurable subset of S [12]. Finally, the rewards indicate

how beneficial the selected pi is for the corresponding Si. For

each Si and pi, we define the reward Ri ∈ R as the throughput

achieved in the interval τ , which is given by (1). Ri can be

calculated at N1 because it knows hi and the selected pi.
Since Ni only has information of its state at ti, the amount

of energy to be harvested in future time instants is unknown.

Therefore, it is preferred to achieve a higher throughput in

the current ti over future ones. To take into account this

preference, let us define 0 ≤ γ ≤ 1 as the discount factor

of future rewards. Our goal is to select pi, ∀i, in order to

maximize the expected throughput which is given by

R = lim
I→∞

E

[

I
∑

i=1

γiRi

]

. (4)

A policy π is a mapping from a given Si to the pi that should
be selected, i.e. pi = π(Si), and it corresponds to the solution

of an MDP [11]. To measure how good a policy π is from

Si onwards, let us define the so-called value functions. These

functions can depend solely on the states, called state-value

functions or on the states-actions pairs, called action-value

functions [10]. The state-value function Vπ is the expected

reward given that N1 follows the policy π from state Si

onwards. Similarly, the action-value function Qπ is defined

as the expected reward starting from state Si, selecting pi and
following π thereafter [10]. As it would become clear later,

the action-value functions play an important role in the RL

framework. Following the formulation in [10] it is written as

Qπ(Si, pi) = E

{

∞
∑

k=0

γkRi+k+1

∣

∣

∣

∣

∣

Si, pi

}

. (5)

The optimal policy π∗ is the policy whose state-value

function is greater than or equal to any other policy for every

state. The corresponding action-value function for the optimal

policy π∗ is denoted by Q∗. Determining the optimal actions

becomes easier when Q∗ is known because for each state

Si, any action pi that maximizes Q∗(Si, pi) is an optimal

action. Consequently, any policy formed by the collection

of optimal actions is an optimal policy π∗. A fundamental

property of the value functions is that they can be written in a

recursive manner in what is known as the Bellman equations

[10]. This recursive representation facilitates the design of

RL algorithms. The general form of the Bellman optimality

equation for the action-value function is given in [10] as

Q∗(Si, pi) =
∑

Sk∈S

P pi

Si,Sk

[

Ri + γmax
pk∈A

Q∗(Sk, pk)

]

. (6)

IV. RL FOR EH COMMUNICATIONS

In this section, the concept of linear function approximation

[10] is applied in RL to find a power allocation policy that

aims at maximizing the throughput in the EH point-to-point

scenario. Specifically, we consider an on-policy temporal-

difference RL algorithm, termed SARSA, which is based

on the estimation of Qπ(Si, pi) [10]. To handle the infinite

number of states, we propose a set of binary functions

to approximate Qπ(Si, pi). For the implementation of the

algorithm, the following steps are considered. Firstly, the

estimation and update of Qπ(Si, pi) is presented. Secondly,

the ǫ-greedy policy to select pi, ∀i according to the estimated

Qπ(Si, pi) is defined. Thirdly, the concept of linear function

approximation is applied. Fourthly, the set of proposed binary

functions are linearly combined to approximate Qπ(Si, pi) and
at last, the resulting algorithm, termed approximated SARSA,

is presented.

A. Action-value function update

In this paper, we use the SARSA algorithm due to its favor-

able convergence properties when linear function approxima-

tion is used [10], [13]. In SARSA, given a policy π, Qπ(Si, pi)
is estimated considering the transitions from a state-action

pair (Si, pi) to another state-action pair (Si+1, pi+1) while

obtaining reward Ri. This fact explains the name of the

algorithm: State-Action-Reward-State-Action [10]. In other

words, when N1 is in state Si, it selects pi following policy π.
Afterwards, it obtains a reward Ri and moves to state Si+1.

According to the current values of Qπ(Si, pi) and the policy

π, the algorithm selects the next pi+1. At this point, Q
π(Si, pi)

is updated using the gained experience and the current value

of Qπ(Si+1, pi+1). The updating rule for Qπ(Si, pi) in the

SARSA algorithm is given by

Qπ(Si, pi)← Qπ(Si, pi)(1− αi)

+ αi [Ri + γQπ(Si+1, pi+1)] (7)

[10], where αi is a small positive fraction which influences

the learning rate.

B. ǫ-greedy policy

In the following, the characteristics of the policy π which is

followed throughout the learning process are discussed. When

the number of states is finite, acting greedily with respect

to Qπ(Si, pi), i.e., given Si selecting the pi that achieves

the maximum Qπ(Si, pi), leads to the optimal policy [10].

This is due to the fact that Qπ(Si, pi) is the expected reward

given the state-action pair (Si, pi). Therefore, selecting the pi
that maximizes Qπ(Si, pi) means that we are selecting the pi
that leads to the highest expected reward, which in our case

corresponds to the throughput.



It has to be noticed that N1 can only act greedily with

respect to the states it has already encountered and the power

values it has already used. Consequently, if N1 follows the

greedy policy, it does not have the opportunity to discover

transmit power values that can potentially lead to higher

rewards. To ensure that N1 is able to explore the use of new

transmit power values, the ǫ-greedy policy [10] is considered

instead. In ǫ-greedy, most of the time N1 acts greedily, this

means

P

[

pi = max
pk∈A

Qπ(Si, pk)

]

= 1− ǫ, 0 < ǫ < 1. (8)

However, with a probability ǫ, N1 will randomly select a

transmit power value from the set A. This method provides a

trade-off between the exploration of new transmit power values

and the exploitation of the known ones [10], [11].

C. Linear function approximation

As mentioned before, the concept of function approximation

is used to handle the infinite number of states. When a

finite number of states is considered, Qπ(Si, pi) is a table

that assigns values for each state-action pair. However, when

the number of states is infinite a table can no longer be

constructed. With linear function approximation, Qπ(Si, pi)
is represented by a linear combination of M feature functions

fm(Si, pi), m = 1, ...,M . Each fm(Si, pi), maps the state-

action pair (Si, pi) into a feature value. Let f ∈ R
M×1 be a

vector containing the feature values for a given state-action

pair and let w ∈ RM×1 be the vector containing the weights

indicating the contribution of each feature. The action-value

function approximation is given by

Q̂
π
(Si, pi,w) = fTw. (9)

[10]. To ensure that Q̂
π
(Si, pi,w) is a good representation of

Qπ(Si, pi), the error between them has to be minimized. This

can be done using a gradient descent approach [10]. However,

as Qπ(Si, pi) is still unknown, the gradient descent method is

performed using the current reward and the current value of

Q̂
π
(Si, pi,w) [10].

In approximate SARSA, the updates are not performed on

Q̂
π
(Si, pi,w) directly, as in the conventional case, but are

performed on the weights. At ti, the vector w is adjusted in

the direction that reduces the error between Qπ(Si, pi) and

Q̂
π
(Si, pi,w) following the gradient descent approach. For-

mally, the update rule for the approximate SARSA algorithm

is given by

w = w+ αi

[

Ri + γQ̂
π
(Si+1, pi+1,w)

− Q̂
π
(Si, pi,w)

]

∇wQ̂
π
(Si, pi,w) (10)

[10]. As linear function approximation is used, the gradient of

Q̂
π
(Si, pi,w) is calculated as

∇wQ̂
π
(Si, pi,w) = f. (11)

D. Feature functions

An important step in the implementation of the approximate

SARSA algorithm is the definition of the feature functions.

The features should correspond to the natural attributes of

the EH problem in order to provide a good model of the

effect of possible transmit power values on the state of the

transmitter. In our scenario, the most important characteristics

are the limited battery at N1 and the unknown EH process.

To apply linear function approximation, we propose a set of

M = 3 binary functions which take into account the limited

battery and the power allocation problem.

As overflow conditions are undesirable, the first feature

function f1(Si, pi) indicates if a given pi avoids the overflow

of the battery. Additionally, it evaluates if the given pi fulfills
the feasibility condition in (2). The binary function assigns

”1“ if no overflow is caused by the use of pi in ti and the

feasibility condition is fulfilled. f1(Si, pi) is written as

f1(Si, pi) =

{

1, if (Bi + Ei − τpi ≤ Bmax) ∧ (τpi ≤ Bi)

0, else,
(12)

where ∧ represents the logical conjunction operation.

The second feature function f2(Si, pi) addresses the power

allocation problem. From [4], it is known that in the offline

case a directional water-filling algorithm can be used to

optimally allocate the power. However, as in our scenario the

knowledge of future channel coefficients and energy values

is unavailable, we propose to use past channel realizations to

estimate the mean value of the distribution of the channel gain

and to perform water-filling considering the estimated mean

value of the channel gain and the current channel realization.

For the estimation, the sample mean estimator is used such

that at ti the estimated mean value h̄i is calculated as

h̄i =
1

i

i
∑

j=1

hj. (13)

Although Ei cannot be allocated in ti, for the water-filling

algorithm it is assumed that the available energy is Ei + Bi.

The reason is that by performing water-filling between h̄i and

hi, we are assuming that h̄i approximates the state of the

channel in the subsequent time instant and consequently, the

available harvested energy has to be considered. The water

level υi is calculated as

υi =
1

2

(

Bi

τ
+

Ei

τ
+ σ2

(

1

|h̄i|
+

1

|hi|

))

. (14)

To ensure that the feasibility condition in (2) is fulfilled, the

power allocation value given by the water-filling algorithm is

given by

pi,WF = min

{

Bi

τ
,max

{

0, υi −
σ2

|hi|

}}

. (15)

From Section III, we know that pi ∈ A. As a result, the

calculated pi,WF has to be rounded such that pi,WF ∈ A also



Algorithm 1 Approximate SARSA for EH

initialize γ, α, ǫ
initialize all the weights to one

observe Si

select pi using ǫ-greedy
while N1 is harvesting energy do

transmit using the selected pi
calculate corresponding reward Ri ⊲ Eq. (1)

observe next state Si+1

select next transmit power pi+1 using ǫ-greedy
update w ⊲ Eq. (10)

set Si = Si+1

set pi = pi+1

end while

holds. f2(Si, pi) is written as

f2(Si, pi) =

{

1, if δ
⌊pi,WF

δ

⌋

= pi

0, else,
(16)

where ⌊x⌋ is the rounding operation to the nearest integer less

than or equal to x and δ is the step size used in the definition

of the action set A.

The third feature function f3(Si, pi) handles the case when

Ei ≥ Bmax. In such situations, the battery should be depleted

to minimize the energy losses due to battery overflow. The

function assigns a ”1“ if the selected pi is equal to the available
power in the battery and it is defined as

f3(Si, pi) =

{

1, if (Ei ≥ Bmax) ∧
(

pi = δ⌊Bi

τδ
⌋
)

0, else.
(17)

E. Approximate SARSA

The approximate SARSA algorithm for EH point-to-point

communications is shown in Algorithm 1. Regarding the

convergence properties of approximate SARSA, it has been

shown in [13] that if αi satisfies
∑

i αi =∞ and
∑

i α
2
i <∞

and the policy is not changed during the learning process, the

approximate SARSA algorithm converges to a bounded region

with probability one, i.e. it does not diverge. In our case, αi

is selected as αi = 1/i which fulfills the two conditions.

Additionally, throughout the execution of the algorithm, the

ǫ-greedy policy is followed.

V. PERFORMANCE RESULTS

In this section, numerical results for the evaluation of

the approximate SARSA algorithm in the EH point-to-point

communication scenario are presented. For the simulations,

T = 1000 independent random channel and energy real-

izations are generated. It is assumed that each realization

corresponds to an episode where N1 harvests energy from the

environment I = 1000 times. Moreover, it is assumed that the

amount of harvested energy Ei at ti is taken from a uniform

distribution with maximum value Emax.

The time interval τ between two consecutive EH time

instants is set to one second and the channel between N1
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Fig. 2: Average throughput versus Emax/(2σ
2).

and N2 is assumed to be i.i.d. Rayleigh fading with zero

mean and unit variance. Additionally, the noise variance is

assumed as σ2 = 1. The step size δ used in the definition of

the action set A that contains the transmit power values is set

to δ = 0.01Bmax. For the approximate SARSA algorithm, the

ǫ-greedy policy is used with ǫ = 1/i and γ = 0.9. To compare

the performance, four additional approaches are considered:

• Offline Optimum [4]: Non-causal information about the

EH process is assumed as well as perfect channel state

information, as presented in [4].

• Hasty Policy: In this approach, at each ti, N1 allocates all

the power available in the battery. As a result, overflow

conditions are completely avoided.

• Random Policy: In this approach, a set of feasible trans-

mit power values is constructed in each time instant such

that (2) is fulfilled. From this set, a transmit power value

is randomly selected. It is assumed that all the transmit

power values in the set have the same probability of being

selected.

• Q-learning [9]: This method is the off-policy temporal-

difference RL approach used in [9]. As Q-learning re-

quires finite states, the results are obtained by the dis-

cretization of the energy, channel and battery values. For

the simulations, the values are discretized using the step

size δ defined above.

Fig. 2 shows the average throughput versus different values

of Emax/(2σ
2). For this simulation, the battery size is set such

that Bmax = 2Emax for each value of Emax. As expected,

the performance of all the approaches increases when the

amount of harvested energy also increases. The upper bound

of the achievable throughput is given by the optimum offline

approach which assumes non-causal perfect information re-

garding the EH process and the channel. The approximate

SARSA algorithm is able to overcome this unrealistic require-

ment at the cost of only 6% of performance reduction when

Emax/(2σ
2) = 5dB. For approximate SARSA, only causal

information is assumed at N1. Similarly, the hasty policy and

the random policy assume only causal knowledge. However,

since this information is not used for the power allocation, their
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performance is worse compared to our proposed approach. The

throughput achieved by approximate SARSA is 9% and 16%

higher than the throughput achieved by the hasty and random

policy, respectively, when Emax/(2σ
2) = 5dB. The lowest

throughput is achieved by the Q-learning algorithm of [9].

This behavior is explained by the fact that Q-learning requires

a finite number of states and to fit it to our system model,

discretization is required for the harvested energy, battery and

channel coefficients. Additionally, as the number of states

increases (depending on how fine the discretization is), the

probability of visiting all the states decreases and the learning

becomes slower.

Fig. 3 evaluates the effect of the battery size on the through-

put achieved by the different approaches for an Emax/(2σ
2) =

5dB. In this case, the battery size is set to Bmax = ρEmax,

where ρ is a tunable parameter. When Bmax < Emax, the offline

optimum cannot be calculated because overflow conditions are

unavoidable and the problem becomes infeasible. Fig 3 shows

that for different battery sizes, the proposed approximate

SARSA algorithm performs better than the other approaches.

When the battery is small, the performance of the approxi-

mate SARSA and the hasty policy is similar because all the

harvested energy has to be spent in order to reduced the energy

waste due to overflow. However, as the battery size increases,

the transmitter conditions in each time instant have to be

considered for the power allocation. As in the previous case,

the lower throughput of the Q-learning algorithm is explained

by the large number of states which reduce the learning

speed compared to the approximate SARSA. An interesting

result is that when the battery size is large compared to

Emax, its effect on the performance is reduced. It can be

seen that the performance of all the approaches saturates from

approximately ρ = 2. The reason for this is that as Bmax

increases, the overflow conditions become less probable.

VI. CONCLUSIONS

We have investigated the EH point-to-point communication

scenario when only causal information regarding the EH pro-

cess and channel is available at the transmitter. The scenario

is modeled as a Markov decision process. Assuming that

the transition probabilities between the states are unknown,

RL with linear function approximation is applied at the

transmitter in order to find a policy that aims at maximizing

the throughput. To achieve this, a set of binary functions

has been proposed to approximate the expected throughput

in each state. Results show that the proposed approach is

able to overcome the requirement of non-causal information

with only a small reduction in the performance compared to

the optimum offline case. Additionally, it is shown that the

proposed approach performs better than naı̈ve approaches that

consider only causal information at the transmitter.

ACKNOWLEDGEMENT

This work was funded by the LOEWE Priority Program

NICER under grant No. III L5-518/81.004.

REFERENCES
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