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Abstract—Broadcast is an important application in wireless
networks, e.g. for video streaming, file distribution, or event
notification. Wireless nodes are battery powered, their network
lifetime depends on the energy consumption. Thus, energy effi-
ciency is an important metric when designing broadcast protocols
in infrastructureless and all-wireless networks. In this paper, we
apply game theory to solve the minimum energy broadcast tree
construction problem using power control by formulating the
problem into a non-cooperative game. Our game-based broadcast
protocols are decentralized in nature. We demonstrate that our
game-based algorithms provide better performance than other
known decentralized algorithms and the performance loss of our
approach is small compared to a centralized solution.

I. INTRODUCTION

In wireless networks, broadcast is the process of sending

data from one node to all other nodes. In case the signal from

the source node cannot reach all other nodes, the network

must change its operation to an ad hoc-like network where

some nodes forward the data to other nodes. One of the key

challenges when designing broadcast protocols in wireless

networks is energy efficiency since the lifetime of wireless

networks is limited by the battery energy in wireless nodes.

Therefore, energy efficiency is a crucial when designing

broadcast protocols in wireless networks. Furthermore, de-

centralized algorithms are needed since centralized schemes

require a lot of signaling to the central node causing congestion

and increasing delay in the network. Moreover, centralized

approaches are less robust against topology changes in the

network.

The problem of finding the minimum energy broadcast tree

has already been studied in the literature. In [1], a Broadcast

Link-based Minimum Spanning Tree (BLiMST) algorithm is

proposed based on the use of the standard Minimum Spanning

Tree (MST) as in wired networks in which a link cost is

associated with each pair of nodes. This algorithm assumed

unicast transmissions only. Thus, the wireless multicast ad-

vantage is ignored during the the construction of MST. When

the multicast advantage is utilized, the problem of finding

the minimum energy broadcast tree is NP-complete [1]. The

authors of [1] proposed the Broadcast Incremental Power (BIP)

algorithm which is a widely used heuristic approach. BIP

constructs the broadcast tree by starting with the source node

and adds one node at a time to the tree choosing the node

with the minimum additional cost. This process is continued

until all the nodes in the network are added to the tree.

Implementation of BIP which require only local information

were considered in [2], [3]. In [4] the authors proposed a

decentralized algorithm for BIP-called dynamic incremental

power (DynaBIP). DynaBIP constructs a broadcast tree in a

similar manner to BIP. At each iteration, DynaBIP selects the

link which requires the minimum incremental cost but in a

decentralized manner. The corresponding node and link are

then added to the tree.

Recently, the application of game theory in modeling and

analysis of wireless communication networks has received

considerable attention and has led to numerous works, e.g.,

[5], [6], [7]. Game theory can be applied for scenarios having

the following features: there is a set of users, each user takes

some actions based on certain objective, and the achievement

of the objective depends on the actions taken by every user.

In [8], game theory has been applied to the problem of

finding a minimum transmission broadcast tree, however, a

fixed transmit power for each node is assumed, i.e., power con-

trol is not incorporated in the game leaving room for further

improvements. In a broadcast scenario, each node connected

to the network may decide to change its transmit power to

achieve a desired trade-off between its power consumption and

the coverage of its transmission. However, to avoid redundant

transmissions, the transmit power of each node depends on the

transmit power of other nodes. Therefore, the best action for

a node depends on the actions adopted by the others, and it

is not trivial to foresee the outcome of this interaction. Thus,

game-theoretic tools have to be exploited.

In this paper, we apply game theory to design a distributed

algorithm for finding the minimum energy broadcast tree

taking into account power control by formulating the problem

of assigning forwarding nodes and receiving nodes into a

non-cooperative game. The paper is organized as follows. In

Section II, we give the system model. In Section III, we

formulate the minimum energy broadcast tree problem as a

non-cooperative game and give the solution of the game. The

performance of the distributed algorithm based on game theory

is presented in Section IV.

II. SYSTEM MODEL

We consider one source and N nodes, which are randomly

distributed over a specified region. Let N denote the set of

nodes. In the considered broadcast scenario, the same message

shall be transmitted from the source to all N nodes in the
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network. The mobility of the nodes is not considered, i.e.,

the changes in the network topology are neglectable during a

broadcast session. Each broadcast session is divided into two

phases: a broadcast tree construction phase and a transmission

phase. The duration of the broadcast tree construction phase is

assumed to be short compared to the transmission phase such

that the wireless channel between the nodes remains constant

during the broadcast session. Reciprocity is assumed, i.e., the

channel from node i to node j is equal to the channel from

node j to node i. Each node measures the channel to other

nodes with the help of a beacon signal. The noise level is

equal at all nodes. Each node can choose its power level that

does not exceed a given maximum value Pmax.

A. Power consumption model

In the following, the transmit power and the total power

consumption of the nodes are discussed.

1) Transmit power in unicast transmission: A receiving

node j is said to be in the transmission range of transmitter

i, if the received power at node j is above a threshold Pth.

Let gi,j be the channel gain between node i and node j, then

the minimum required transmit power of node i is given by

P
(i,j)
T,req = Pth

gi,j
.

2) Transmit power in multicast transmission: Due to the

broadcast nature of the wireless medium, one transmitter can

transmit the same signal to multiple receivers simultaneously.

We consider a multicast transmission from a transmitter i

to receivers j = 1, 2, ...,K. Let P
(i,j)
T,req be the minimum

required transmit power of node i for a successful unicast

transmission to node j, then the minimum required transmit

power of node i for the multicast transmission is given by

P
(i)
T,req = max{P

(i,1)
T,req, ..., P

(i,K)
T,req }.

3) Power consumption of communication module: Each

wireless device is equipped with a communication module.

We adopt the power consumption model proposed in [9]. The

communication module consists of four main components:

Baseband Signal Processing Unit, RF Unit, Power Amplifier

and the antenna. The total power consumption Ptot is defined

as Ptot = P0 +PT,req, where P0 accounts for the total power

consumption of the four communication module components.

B. Graph representation

We say that node j is a neighbor of node i if P
(i,j)
t,req ≤

Pmax. Under this definition of the neighborhood, the wireless

network can be represented by a graph G(V,E) where V is the

set of vertices and E is the set of edges. A broadcast tree T is

defined as a tree in the graph G(V,E) which is rooted at the

source node and each node in the tree has exactly one parent

node. In Fig. 1, an example of a broadcast tree is given for

a scenario with one source S and six nodes. In this example,

source S is the parent of node 1, while node 1 is the parent

of nodes 2 and 3. Finally, node 3 is the parent of nodes 4, 5

and 6.

�

� �

�

� �

�

Fig. 1. Broadcast scenario consisting of one source and 6 nodes. The solid
arrows represent the edges of the broadcast tree, the dashed lines indicate
other possible links among the nodes.

C. Cost model

We define the cost of a unicast transmission from node r to

node j as the total power required for a successful transmis-

sion, i.e., Cr({j}) = P
(r)
0 + P

(r,j)
t,req . Under this definition, the

cost of a multicast transmission from node r to its children

nodes, denoted by the set Sr, is Cr(Sr) = max
j∈Sr

Cr({j}).

III. GAME-BASED APPROACH

The problem of finding the minimum cost broadcast tree can

be interpreted as the problem of assigning a given child node to

a given parent node such that every node can be reached from

the source node by edges in the tree while the tree consumes

minimum total cost. In a broadcast tree, each node must have

exactly one parent node. Each internal node in the tree must

spend a cost to forward the data to its children while only

spending as much power as necessary to serve all its children,

i.e., a power control is applied which is the main difference

to the approach of [8] where all parent nodes always transmit

with Pmax. Imagine that this cost should be compensated by

the payment from the children nodes. Being a parent, each

node has its cost-sharing rule which its children must follow.

Being a child, each node has the incentive to find the best

parent with whom its share is minimized or equivalently its

utility is maximized. Under this setting, the problem of parent-

selection can be formulated as a non-cooperative game of

choosing a service provider. The players of the game are the

nodes except for the source node. The providers are all the

nodes.

A. Cost-sharing game and power control

We consider a non-cooperative cost-sharing game which

consists of a set of players P and a set of providers

R. Each provider r has a cost function Cr and a cost-

sharing rule fr [10]. The game is defined as G =
(P,R, {A}i∈N , {fr}r∈R, {Cr}r∈R) where the set of players

P is the set of all nodes, except for the source node and R
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is the set of all nodes in the network. Set Ai is the set of all

possible actions of player i, in our case, the set of neighboring

nodes of node i. Let A = A1 × · · · × AN denote the set of

joint action profiles of all players, a ∈ A denotes the action

of all nodes in the game and {a}r denotes the set of nodes

which node r chooses as provider in action profile a, i.e.,

{a}r = {j ∈ N | aj = r}. According to the cost-sharing

rule of node r, the share of node i if node i chooses r is

fr(i, {a}r). Thus, for each node i, the utility function can be

defined as

ui(a) = −fr(i, {a}r) , ai = r. (1)

Note that the election of a node to relay a message is not part

of the game following our proposed game formulation, i.e.,

every potential parent node will always relay the data to its

children nodes.

The broadcast tree construction game is a repeated game.

In each iteration, each node considers the broadcast tree from

the last iteration and chooses a neighbor to be its parent that

maximizes its utility. Given a−i which denotes the actions of

all players except i in the last iteration, player i chooses the

best parent node a∗i such that ui(a
∗
i ,a−i) is maximized known

as best response. The repeated game continues until no player

can increase its utility by changing only its own action, i.e., a

Nash Equilibrium has been reached. Note that power control is

considered in the game by incorporating the power adjustment

of each parent node, as explained in Section II-A1 and II-A2,

respectively, into the utility function of each children node.

After finishing the parent-selection game, each parent node

then correspondingly adjusts its transmit power to serve all its

dedicated children nodes.

B. Action spaces

The action space of each node is a subset of the set of its

neighboring nodes. However, if each node can freely choose

its action from its neighboring nodes, then the resulting tree

is not necessarily connected, i.e., it can happen that several

nodes form a cycle resulting in a tree which is not connected.

In order to prevent this, some constraints to the action spaces

must be introduced. Based on the idea of [8], where the authors

proposed a hop-distance as a rank attribute of each node, we

propose a cost-distance rank attribute for each node. The cost-

distance rank rank(i) of node i is defined as the minimum total

cost on the path from node i to the source node. Using rank

attributes, we can define the action spaces of the nodes. Node

i can choose node ai to be its parent if the rank of node i is

higher than the rank of ai, i.e.,

Ai = {r | r is neighbor of i and rank(r) < rank(i)} . (2)

C. Cost-sharing rules

We consider two well-known cost-sharing rules from the

cooperative game theory literature: Marginal contribution and

Shapley value [10].

1) Marginal contribution sharing rule: According to the

definition of Marginal Contribution (MC) sharing rule [10],

each node i ∈ {a}r must share a cost of

fMC
r (i, {a}r) = Cr({a}r)− Cr({a}r − {i}) (3)

= max
j∈{a}r

Cr({j})− max
k∈{a}r−{i}

Cr({k}).

Obviously, only the node that has the highest link-cost must

share a non-zero cost. If we arrange the nodes in increasing

link-cost order, e.g., Cr({1}) ≤ · · · ≤ Cr({n}), then nodes

1, . . . , n − 1 must share no cost, i.e., fMC
r (i, {a}r) = 0,

∀ 1 ≤ i ≤ n − 1, but node n must share an amount of

fMC
r (n, {a}r) = Cr({n})− Cr({n− 1}).

Let H
(1)
r ({a}r) and H

(2)
r ({a}r) denote the highest and

second-highest link-cost in {a}r, respectively. Each node i can

calculate its own share as fMC
r (i, {a}r) = max{Cr({i}) −

H
(2)
r ({a}r), 0}. A node j which is not in {a}r must know its

possible share if it chooses r to be its parent. In order to cal-

culate its possible share, node j must know both H
(1)
r ({a}r)

and H
(2)
r ({a}r). If its link-cost to node r satisfies Cr({j}) ≥

H
(1)
r ({a}r) then his share is Cr({j}) - H

(1)
r ({a}r).

2) Shapley value sharing rule: According to the Shapley

Value (SV) sharing rule [10], each node i ∈ S = {a}r must

share an amount of

fSV
r (i, S) = (4)
∑

T⊆S−{i}

(|T |!)(|S| − |T | − 1)!)

|S|!
(Cr(T ∪ {i})− Cr(T )).

In general, the computation of individual payment is in-

tractable for large {a}r. Fortunately, in our application the SV

rule is easy to compute. Specifically, the cost-function satisfies

the rule Cr({a}r) = maxi∈{a}r
Cr({i}), so if we reorder the

single-node cost in increasing order, i.e., Cr({1}) ≤ · · · ≤
Cr({n}), then according to the result in [11], node i must

share

fSV
r (i, {a}r) =

i
∑

j=1

Cr({j})− Cr({j − 1})

n+ 1− j
(5)

where Cr({0}) = 0 is used for convenience.

D. Best response and convergence

In each iteration of the repeated game, one of the nodes con-

siders the state of the game from the last iteration and chooses

its best action that maximizes its utility. More precisely, given

the action profile of other players a−i from the last iteration,

player i determines the set Ai of possible actions, such that the

rank-constraint (2) is satisfied. Now for each r ∈ Ai, player

i chooses the one that maximizes its utility compared to its

current utility:

rmax = argmax
r∈Ai

−fr(i, {r,a−i}r) (6)

s.t. − fr(i, {r,a−i}r) > −fai
(i, {a}ai

).

Furthermore, the game we are considering with both MC and

SV sharing rule is an exact potential game [10], i.e., the best-

response dynamic converges to a Nash Equilibrium [10]. Thus,
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the convergence of the game is guaranteed and due to the rank

constraints, the resulting broadcast tree is connected.

E. Implementation of the game-based algorithm

For the implementation of our algorithm, so called Hello

messages are essential. The Hello message of node i includes

the following information: its identity IDi, its parent ID ai,

its rank rank(i). In case of the MC rule, it further includes the

current highest and second highest link-costs H
(1)
i and H

(2)
i

between itself and its current children. In case of the SV rule,

the message includes all the current link-cost Ci({j}) between

node i and its current children. With this information, each

node k can compute the expected utility if node k chooses i

as parent.

With the designed Hello message, we can describe the

algorithm for computing the rank attribute. At the beginning,

the rank of the source node is set to zero. Each node puts

his own rank value into a Hello message and disseminates the

Hello message one-hop away. Each node i overhears the Hello

messages from its neighbors and updates its rank as following

rank(i) = min
j∈N(i)

{rank(j) + Ci({j})} . (7)

This can be done, for example, whenever node i overhears the

Hello message from its neighbor j, node i compares its current

rank rank(i) with the value rank(j) +Ci({j}). If rank(j) +
Ci({j}) < rank(i) then node i updates its rank: rank(i) ←
rank(j) + Ci({j}) and set its parent ai = j by sending a

Leave message to its current parent and a Join message to

node j. The rank of each node decreases after every update.

Thus, the computation of the rank attribute must converge to

an equilibrium. After computing the rank attribute, we obtain

not only the rank attributes, but also a broadcast tree. This tree

is then used as the initial broadcast tree for the game. After the

rank computing process, each node’s rank ends up being equal

to its parent’s rank plus the link-cost between them. The game

can now be played as previously described. If a player wants

to change its strategy, it needs to send a message to inform

both the old and new parent. It sends a Leave message to the

old parent and sends a Join message to the new parent and

then a Hello message to inform other nodes about the change.

The old and new parent, after receiving the Leave and Join

message, need to broadcast the Hello message immediately to

inform their neighbors about the change.

IV. PERFORMANCE EVALUATION

In the following, we evaluate the performance of the game-

based algorithms assuming a network with a specified number

of nodes between 20 and 50 which are uniformly distributed

in a square region of 1000m × 1000m. One of the nodes

is randomly chosen to be the source node. The pathloss

coefficient is considered to be α = 2. The channel gains

are assumed to be exponentially distributed given by gi,j =
(

d0

di,j

)α

|hi,j |
2g0, where di,j is the distance between node i

and node j, hi,j is the complex Gaussian distributed channel

coefficient and g0 = −60dB is the reference channel gain at
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Fig. 2. Total transmit power vs. number N of nodes for P0 = 0.

distance d0 = 100m. The maximum transmit power Pmax is

set to 10dBm. It is assumed that there is no interference in the

network and the noise power is set to −70dBm at receiving

nodes. The threshold received power is Pth = −60dBm. We

consider different values for the power consumption of the

hardware module, e.g., P0 = 0, P0 = 0.05 · Pmax, P0 =
0.1 · Pmax. As reference schemes, we apply the Broadcast

Link-based Minimum Spanning Tree (BLiMST) algorithm [1],

the Broadcast Incremental Power (BIP) algorithm [1] and the

dynamic incremental power (DynaBIP) [4].

A. Case with P0 = 0

Figure 2 shows the total required transmit power of the

broadcast trees obtained by different algorithms assuming

P0 = 0. As the number of nodes increases, the total transmit

power decreases since the distance between neighboring nodes

decreases. According to Fig. 2, BLiMST performs worst

because, in contrast to the others, it uses only unicast transmis-

sion and, thus, does not utilize the advantage of the broadcast

nature of the wireless medium. The performance of BIP is

best due to its centralized nature. Among the decentralized

algorithms, the two proposed game-based algorithms with SV

and MC rules perform approximately 8% and 10% better than

DynaBIP, respectively. The reason why MC outperforms SV

is due to the fact that in MC rule, among the children of a

node, only the one which has the worst condition pays the cost

and the others pay nothing. This leads to a broadcast tree with

larger multicast group and therefore fewer parents compared

to the SV rule in which each child node has to pay a part of

the cost. In other words, in contrast to the SV rule, applying

MC rule reduces the number of transmissions, the network can

benefit from multicast transmission more and this reduces the

final power consumption in the network.

B. Case with P0 > 0

Figures 3 and 4 show the performance of the algorithms

for the case when the power consumption of the hardware

10th International ITG Conference on Systems, Communications and Coding (SCC), 2015, Hamburg, Germany



20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

Number of nodes

T
o
ta

l 
tr

a
n
s
m

it
 p

o
w

e
r 

in
 t

h
e
 n

e
tw

o
rk

 (
m

W
)

 

 

BLiMST

DynaBIP

Game with Shapley rule

Game with Marginal rule

BIP

Fig. 3. Total used power vs. number N of nodes for P0 = 0.05 · Pmax

part is included in the cost assuming P0 = 0.05 · Pmax and

P0 = 0.1 · Pmax, respectively. In other words, the required

power for each link is the transmission power plus a fixed

value of internal power P0. It can be seen that by considering

the internal power, the game-based algorithms still perform

approximately 10% better than DynaBIP and the performance

is very close to the BIP algorithm. It also can be observed that

by increasing the number of nodes in the network, the total

power consumption increases. This is due to the fact that by

increasing the number of nodes, the number of transmissions

in the network increases and each transmission contains a fixed

internal power regardless of the transmission power.

Moreover, by increasing the internal power, the performance

of the SV rule becomes closer to the MC rule and the BIP

algorithm. This behavior can be explained based on how these

algorithms react to a fixed increment in the links’ required

power. For instance, in case of applying the MC rule, based

on (3), P0 will be canceled in the cost model and would not

affect the nodes’ decisions. In case of applying the SV rule,

although there would be more transmissions in the network, P0

will be considered in the cost sharing calculations and a better

broadcast tree compared to the MC rule could be achieved.

This also explains why the performance difference between

the game-based algorithm with SV rule and the other two

schemes, i.e., MC rule and BIP, becomes smaller for a higher

value of P0.

V. CONCLUSION

We have successfully applied the non-cooperative game

theory framework in solving the problem of finding an energy-

efficient broadcast tree in wireless broadcast networks using

power control. We formulated the energy-efficient broadcast

tree problem as a non-cooperative cost-sharing game between

the nodes in the network applying two different cost-sharing

rules: the Marginal contribution and the Shapley value sharing

rule. The resulting cost-sharing game under these two cost-

sharing mechanisms is a potential game and, thus, a Nash

Equilibrium is guaranteed. We have provided a decentralized
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Fig. 4. Total used power vs. number N of nodes for P0 = 0.1 · Pmax

implementation of the game-based algorithms and have shown

that our proposed algorithms outperform other decentralized

solutions.
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