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Abstract—Interference alignment (IA) is often considered in
the spatial domain in combination with MIMO systems. In
contrast, aligning interference in the frequency domain among
multiple subcarriers can also benefit single-antenna OFDM-
based access networks. It allows for flexible operation on a per-
subcarrier basis. We investigate the gains achievable by frequency
IA in practice for a scenario with multiple access points and
clients. Previous work is predominantly theoretical and focuses on
idealized cases where all nodes have the same average signal-to-
noise ratio (SNR). On the contrary, in practical networks, nodes
typically have heterogeneous SNRs depending on channel condi-
tions, which might have a significant impact on IA performance.
We tackle this problem by designing mechanisms that adaptively
choose which nodes shall perform IA on which subcarriers
depending on current channel conditions. We implement and
validate our approach on software-defined radios. To the best
of our knowledge, this is the first practical implementation of
IA in the frequency domain. Our measurements show that (1)
frequency IA is feasible in practice, and (2) choosing appropriate
nodes and subcarriers overcomes the main limitations due to
heterogeneous SNRs. Our mechanisms enable IA in scenarios
where it would be infeasible otherwise, achieving throughput
gains close to the 33% theoretical maximum.

I. INTRODUCTION

While the latest advances in signal processing and informa-
tion theory contribute promising techniques to keep up with the
increasing throughput demands in wireless access networks,
the implied assumptions often pose a significant challenge
for practical deployments. Such assumptions typically include
knowledge of full Channel State Information (CSI), frequency
and time synchronization of nodes, and operation in the high
signal-to-noise ratio (SNR) regime. Adapting state-of-the-art
theoretical approaches to practical scenarios is a major hurdle
itself which requires complex solutions. Work in this direction
has enabled practical implementations of, e.g., MIMO [1], joint
multi-user beamforming [2], and random network coding [3].

In information theory, a very recent and promising ap-
proach is Interference Alignment (IA) [4], which allows to
achieve an increased Degree-of-Freedom (DOF). This means
that, in a system with K interfering transmitter-receiver pairs,
each pair gets more than a 1/K resource share. Thus, the
sum of all shares is larger than one. This surprising result
was first established by Cadambe and Jafar in [4]. The key
idea behind IA is to align interfering signals into the same
subspace, while desired signals lie in orthogonal subspaces.
Hence, receivers can decode the desired signal by combin-

ing “aligned” unknowns in an underdetermined system of
equations. To achieve alignment, signals are precoded at the
transmitters based on CSI. For random channels, IA in the
time or frequency domain requires so-called symbol extensions,
which means that IA is done over multiple time slots or
subcarriers. The additional “symbols” provide overflow space
for interference that does not align perfectly. The achievable
DOF increases with larger extensions but is upper-bounded
by 1/2 DOF per user. Moreover, the larger the extension, the
higher the required SNR [5]. Still, for three transmitter-receiver
pairs and the smallest possible extension, which comprises
three symbols, a total of four packets can be sent using only
three symbols, which translates into a 33% gain compared to
no IA. Specifically, alignment allows the first pair to exchange
two packets, while the second and third pair exchange one.

The channel coefficients of all symbols in the extension are
needed at the senders to ensure alignment. For time extension,
this means knowing future CSI, which limits its practicability.
IA in space is also possible but requires multiple antennas. In
contrast, IA in frequency allows to estimate multiple carriers
in parallel using only one antenna. Hence, frequency IA is
directly applicable to the vast majority of nowadays wireless
networks, which are based on Orthogonal Frequency-Division
Multiplexing (OFDM) and thus allow for IA over multiple
subcarriers. This wide applicability motivates our research on
practical IA in the frequency domain. Still, wireless access
networks pose a critical problem to IA, since users experience
heterogeneous SNRs, while IA requires (a) similar and (b)
high SNRs [6]. Such heterogeneity may potentially cancel out
IA gains completely. In this paper, we investigate schemes to
overcome these limitations in a practical 802.11-like network.

In particular, instead of forcing all users to simultaneously
participate in IA, we propose multiple high-granularity selec-
tion algorithms to choose which transmitters shall send data
to which receivers on which subcarriers using IA. Moreover,
if channel quality makes IA infeasible, we allow to switch per
subcarrier to more robust mechanisms such as plain OFDM.
In other words, we provide mechanisms to adapt IA to the
current channel status. This allows us to achieve lower bit
error rates (BERs), which makes IA feasible altogether and
translates into a higher throughput. Furthermore, to the best of
our knowledge, our system is the first implementation of IA
in frequency. Concretely, our contributions are as follows:

• We propose multiple selection algorithms which enable
practical frequency IA in wireless access networks.
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• We show that using selection IA performs closely to the
theoretical boundaries, with better robustness and stability
compared to plain IA without selection algorithms.

• We implement frequency IA along with our selection
algorithms on a software-defined radio (SDR) platform.

• We deal with real-world effects such as carrier-frequency
offset (CFO), synchronization and channel quantization.

We first present related work and explain how frequency IA
works in Section II. Then, in Section III, we give an overview
on how our wireless access network based on IA operates. We
delve into the details of our selection algorithms in Section IV.
In Section V we explain how we deal with practical issues. We
present our measurements in Section VI and discuss them in
Section VII. Finally, we conclude the paper in Section VIII.

II. RELATED WORK AND BACKGROUND

A. Related work

The principle of IA can be applied in the dimensions of
time [4], frequency [4], [7], space [8], [9], [10], [11], [12],
and signal level [13]. In recent years, the practical imple-
mentation of IA schemes has drawn significant attentation,
yet remains challenging. [14] provides an overview of practical
hurdles for IA, including simulation results based on testbed
measurements of MIMO channels. In [15], the spatial IA
scheme presented in [8] is validated in a MIMO testbed with
up to four antennas per node for the three-user interference
channel. In [16], the IA scheme of [8] is combined with
interference cancellation, under the assumption that access
points are connected via an Ethernet backbone. The proposed
scheme is validated in GNU Radio on a testbed of 20 USRP
nodes, each equipped with two antennas. An alternative spatial
IA scheme named blind IA [11], [12] was implemented in
[17] on SDRs on top of an OFDM physical layer. In blind
IA, which does not require CSI at the transmitter, there are two
transmitting nodes, each with one antenna, and two receiving
nodes, each with two antennas among which it is possible to
switch. Alternating both receive antennas enables IA without
CSI feedback. Blind IA has also been implemented on the
FPGA-based SDR Wireless Open-Access Research Platform
(WARP) developed at Rice University [18] in [19]. In [20], a
spatial IA scheme based on [9] is implemented and validated
for 2 × 2 MIMO IA with 3 users on USRPs using OFDM at
the physical layer. Although some of the aforementioned work
uses OFDM, the actual IA does not take place in frequency
but in space, thus requiring multiple antennas. However, there
exists work on practical issues of IA in frequency. In [21], it
is shown that strict alignment conditions can be weakened in
practice if the “perfect” IA requirement is relaxed to “best-
effort” IA. In [5], the use of lattice decoding instead of
zero-forcing is discussed for various IA schemes such as
the frequency IA approach presented in [4]. Sphere decoding
allows to reduce the BER of IA significantly when compared
to conventional zero-forcing, thus enabling IA for lower SNRs.
However, this performance improvement comes at the cost of a
highly complex receiver whose practicability has not yet been
studied. In [22], the performance of frequency IA is evaluated
offline using jointly measured radio channels from three base
stations in an urban macrocell scenario. Still, note that none of
these works implements functional frequency IA on a testbed,
nor proposes selection schemes to enable it in practice.

B. Background on IA in the frequency domain

We briefly summarize frequency IA. We consider the
K = 3 case and a symbol extension over NP = 3 subcarriers,
since our schemes build on this setting. The general case for
NP = 2c + 1 subcarriers with c ∈ N can be found in [4].
In our setting, transmitter 1 encodes two packets, x1 and x2,
represented by a 2×1 column vector xS with precoding matrix
V1 ∈ C3×2, i.e., V1 is composed of two precoding vectors
having the size of the symbol extension, one for each packet
in xS. Transmitters 2 and 3 encode only one packet each,
denoted as x3 and x4 with precoding matrices V2, V3 ∈ C3×1,
respectively. In other words, each transmitter sends the same
data over all three subcarriers, but precoded with a different
value. Transmitter 1 sends a linear combination of x1 and x2,
that is, x1V1,1 + x2V1,2, V1,k being the k-th column of V1.

At the receiver side, each node receives the superposition
of all transmitted signals on each of the three subcarriers. As a
result, each receiver has three times the same overlapped data
but affected by different channel coefficients, i.e., each receiver
has a system of three linearly independent equations. Still,
there are four unknowns, one for each packet. Specifically, the
received signal rn at the n-th receiver can be written as

rn = Hn1V1xS +Hn2V2x3 +Hn3V3x4 + zn (1)

with the 3 × 3 matrix Hnm = diag(hnm[1], hnm[2], hnm[3])
m,n ∈ [1, 2, 3], where hnm[i] denotes the complex channel
coefficient of the channel from transmitter m to receiver n on
subcarrier i and zn ∼ CN (0, 1) denotes Additive White Gaus-
sian Noise (AWGN) at receiver n. To solve the aforementioned
linear system, two of the four packets need to be aligned.
As a result, they occupy a common signal space and can be
combined to one unknown representing interference, yielding
a solvable system of three equations and three unknowns. One
solution is discarded, as it is the sum of two interfering signals,
but the other two packets can be decoded. We use a design for
the precoding matrices [4] which allows to decode x1 and x2
at receiver 1, x3 at receiver 2 and x4 at receiver 3. In particular,
V1 = [w T1w], V2 = T2w and V3 = T3T1w, where

T1 = H12(H21)
−1H23(H32)

−1H31(H13)
−1, (2)

T2 = (H32)
−1H31, (3)

T3 = (H23)
−1H21, (4)

and w is the 3×1 initial precoding vector, which can be chosen
freely. As suggested in [4], we define w as an all-one vector.
At receiver n, the interference is zero-forced using the 3 × 3
zero-forcing filter matrix An = (Bn)

−1, which is designed
according to the precoding matrices. More precisely, the k-th
column Bn,k of matrix Bn is given by

Bn,k =

{
Hn1V1,k k = 1, 2
Hn2V2 k = 3 ∪ n = 1, 2
H33V3 k = 3 ∪ n = 3

(5)

with V1,k denoting the k-th column of precoding matrix V1.
Essentially, Bn contains the three aforementioned equations at
the receivers, i.e., with aligned interference. To solve the linear
system, we invert Bn and multiply the result by the received
data. The outcome is the zero-forced signal sn, which contains
the original packets x1, x2, x3 and x4 (c.f. Section IV-A2).
Since each receiver can decode two out of the four packets,
as a side-effect receivers 2 and 3 get one packet more than
needed, that is, x2 at receiver 2 and x1 at receiver 3.
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III. SYSTEM MODEL

Next, we explain the operation of a wireless access network
that uses IA for the downlink. We do not consider the uplink
because throughput demands are typically significantly lower
and thus the effort required for IA does not pay off. We assume
a scenario with m access points (APs) and n mobile stations
(MSs) which are randomly distributed. The APs are connected
to a wired backbone which allows them to synchronize. We
assume that all APs have data to send to all MSs. This setting
can be considered realistic since throughput demands on the
downlink are typically high. APs can exchange data packets
via the backbone and can thus deliver them to any MS. All APs
and MSs are in each other’s range, share the same bandwidth
and use OFDM with N subcarriers. As a baseline, we use
plain OFDM, i.e., all nodes use OFDM over all subcarriers.
MSs are served in a time-division manner, that is, one at a
time, by the AP to which their average SNR is best.

A. IA operation

We consider IA in the frequency domain as described in
Section II, i.e., an IA scheme which allows three transmitters
to send four streams to three receivers using only three OFDM
subcarriers. To deploy such a scheme in a network, nodes
need to be arranged in groups of six, i.e, three APs and three
MSs. The throughput performance of the scheme is directly
related to the channel quality of the links in each group. Hence,
arranging nodes in groups which are beneficial for IA is key to
achieve the theoretical 33% gain. Since we implement IA in the
frequency domain, nodes can also be grouped per subcarrier.
For ease of exposition, we use the following terms to refer to
the different types of grouping we perform to optimize IA:

• Node group. We define as node groups the aforemen-
tioned 3×3 node sets including three APs and three MSs.

• Subcarrier combination. We call a subcarrier combina-
tion the set of three subcarriers used for IA.

• Node pair. We call a node pair two nodes exchanging
a data stream using IA within a node group.

• Node subset. We define subsets as portions of the m×n
access network which are larger than a 3×3 node group.

Exploiting the wireless access network scenario and the
aforementioned backbone, IA allows to optimize the following:

1) Node Selection. Distinct subcarrier combinations can be
allocated to different 3× 3 groups. Thus, different nodes
can simultaneously use different parts of the spectrum.

2) Subcarrier Selection. Nodes can choose which subcar-
rier combinations to use. Ideally, IA works best when the
channels of a combination are linearly independent.

3) Stream Selection. Within a node group using a certain
subcarrier combination, we can choose which transmitter
sends to which receiver. There are six possible pairings
(Figure 1). Note that APs can exchange packets. Thus,
packets can be delivered regardless of the chosen pairings.

4) Mechanism Selection. APs can decide to resort on cer-
tain subcarriers to plain OFDM or any other alternative
mechanism if IA cannot perform well with the given CSI.

We estimate IA performance for each possible node, sub-
carrier, stream, and mechanism selection to find the best one.
To make this exhaustive search tractable, we use heuristics that
reduce the complexity of the resulting combinatorial problem.

B. Heuristics for scalable selection

1) Subcarrier Selection: The number of possible combina-
tions of three subcarriers is given by the binomial coefficient(
N
3

)
. While 802.11g only has 48 subcarriers, which leads to

17296 possible combinations, 802.11n or 802.11ac feature 112
and 484 subcarriers respectively, what causes the number of
combinations to exceed 18 million. Estimating IA performance
for each combination to find the best one is infeasible. We
propose exploiting the nature of wireless channels to overcome
this problem. While subcarriers behave similar if they are
close to each other in the frequency domain, they are likely
uncorrelated when they are far apart enough. This effect
is known as the coherence bandwidth BC . To ensure that
subcarriers are uncorrelated, we only need to allocate them
sufficiently far apart, that is, further than BC . Assuming an
indoor propagation delay spread of at most 700 ns [23],
BC ≈ 1

700ns = 1.42 MHz. In 802.11g/n/ac, subcarrier spacing
is 312.5 KHz. Hence, there must be at least d 1.42MHz

312.5KHze = 5
subcarriers in between subcarriers of the same combination.

Forming combinations. We thus define a fixed allocation
of combinations which maximizes the spacing between sub-
carriers of the same combination. More precisely, subcarrier i
is always combined with subcarriers N

3 + i and 2·N
3 + i, for

i ∈
[
1 . . . N3 − 1

]
. For 802.11g this means that subcarriers of a

combination are separated 5 MHz > BC . For 802.11n/ac, the
separation is even larger, as there are more subcarriers. Note
that this does not ignore frequency selective fading, since we
still do subcarrier-wise node, stream, and mechanism selection.
Subcarrier selection would just add a dimension but incurs in
the aforementioned unfeasibly large number of combinations.

2) Node Selection: IA needs to select 3×3 node groups out
of the m×n nodes available in the network. A straightforward
approach would measure CSI of all m× n links and find the
best group of six nodes. Still, drawbacks are (a) the number of
possible node groups gets unmanageably large with increasing
network size, (b) all links are constantly measured, which
causes overhead, and (c) if we always choose the best network-
wide group, nodes at adverse locations in terms of CSI might
not be served at all. Hence, we propose to split the network
into smaller subsets and serve each subset one at a time. This
reduces the combinatorial problem, as we only need to search
within each subset the 3×3 group that optimizes performance.

Forming subsets. IA works best if each MS in a node
group has (a) homogeneous, and (b) high SNRs to each AP in
the group [6]. While finding optimal schemes to divide an m×
n network into subsets of size ms×ns is beyond our scope, we
propose a greedy heuristic which provides suitable subsets. We
divide the m APs into sets of ms APs each. Broadly speaking,
the goal (a) is fulfilled by MSs at similar distances to all ms

APs, and the goal (b) requires MSs to be close to the APs.
Thus, we cluster APs which are close to each other, since then
the equidistant point to all APs is also close to them.

Fig. 1. Possible node pairs in a 3× 3 group.
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Next, we calculate at each MS the average SNR to each AP
in each set of APs. That is, at each node we obtain bm/msc
sets of ms SNR values. Then, each node associates in a greedy
manner to the set of APs to which its ms SNR values are most
similar. Since we use a greedy approach, the chosen AP set
might already have been chosen by ns MSs. In that case, the
node tries to join the AP set with next most similar SNRs.

We do not require CSI per subcarrier in terms of phase
and amplitude to form subsets, but only per node SNR values,
which causes much less feedback overhead. The larger the
subset size ms × ns, the higher the probability of finding a
good node selection. Still, we expect selections to improve only
marginally from a certain subset size on, since more nodes only
improve diversity slightly. Also, the number of possible node
groups increases quickly for larger subsets. Here we investigate
3 × 3 and 4 × 4 subsets, i.e., the former allow for no node
selection and the latter for 16 groups. A 5× 5 subset leads to(
5
3

)
·
(
5
3

)
= 100 groups, which is already critical for scalability.

3) Stream and Mechanism Selection: Node pairs can only
be formed in six ways and we only choose among two schemes
(IA/plain OFDM). Thus, finding the best pairs and mechanism
does not require further heuristics to reduce complexity.

In summary, our IA design works as follows. We (1)
measure the average SNR to each node on a periodical
basis to form node subsets, (2) calculate the aforementioned
optimizations regarding node/stream/mechanism selection for
each subset, and (3) serve each subset one at a time using IA
or plain OFDM according to the selected mechanism.

IV. SELECTION ALGORITHMS

The goal of our selection algorithms is to find the best
possible node group, stream pairings, and mechanism selection
out of all possible variants in a given node subset. Note that
selections are subcarrier-wise, i.e., the node/stream/mechanism
selection might be different for each subcarrier combination.

A. Noise impact

We use the error vector magnitude (EVM) as a metric
to determine the performance of each possible selection. We
estimate the EVM for plain OFDM and IA at the APs, and
choose the selection which minimizes it. This requires CSI at
the transmitter, which is available, as it is needed for IA.

1) Plain OFDM: The received signal Y in the frequency
domain is related to the sent signal X , the channel H , and the
noise N as Y = H ·X +N . After zero-forcing, the decoded
signal D is D = Y/H = X + N/H . Hence, we choose the
nodes and streams for which the involved links feature a large
|H|, thus minimizing the EVM N/H .

2) IA: In the case of IA, zero-forcing involves multiplica-
tion by an inverse matrix determined by the channels and the
precoding vectors. In particular, data at each receiver n is as
follows. Note that we specify the aligned signal sn individually
for each n, since data aligns differently at each receiver.

dn = An · rn = An · (Bn · sn + zn) = sn +An · zn,

s1 =

(
x1
x2

x3 + x4

)
, s2 =

(
x1 + x4
x2
x3

)
, s3 =

(
x1

x2 + x3
x4

)
,

where dn is the zero-forced signal, rn the received signal,
zn the noise at the receiver, and An = B−1

n the zero-forcing
matrix for receiver n. The EVM is determined by the term
An·zn, which is the noise after zero-forcing. Hence, we choose
the node groups and stream pairs whose channels minimize the
terms affecting the noise in An. Note that not all terms in An

contribute to the EVM, since receivers only decode at most
two out of the three dimensions in sn—the third one is used
to align interference. Equation 6 shows what rows of An, as
indicated by the arrows (→) next to them, affect what stream.

An =

an11 an
12 an

13

an
21 an

22 an
23

an
31 an

32 an
33

 → Stream 1 at n = 1
→ Stream 2 at n = 1
→ Streams 3, 4 at n = 2, 3

(6)

For our metric, we only consider the terms which contribute
to the sum of the EVM at all receivers, which we call evmall.

evmall = |a1|11 + |a1|12 + |a1|13 + |a1|21 + |a1|22 + |a1|23+
|a2|31 + |a2|32 + |a2|33 + |a3|31 + |a3|32 + |a3|33

We calculate evmall for all node groups/pairs in the subset
and choose for each subcarrier combination the smallest one.

B. Optimizations

Based on evmall, we design six selection algorithms—two
for our plain OFDM baseline mechanism and four for IA.

• OFDM 3 × 3 Fixed. For our non-optimized baseline, we
set the subset size to 3× 3. Each receiver RXe is paired
to a fixed transmitter TXf , for e = f with e, f ∈ [1, 2, 3].

• OFDM 4 × 4 Optimized. Our optimized default baseline
pairs each receiver to the transmitter to which it has
smallest N/H , i.e., we associate MSs to the AP which is
best for them. Pairs are chosen out of a 4× 4 subset.

• IA 3 × 3 Fixed. This is a non-optimized variant of IA.
There is no node selection as subsets and groups are of the
same size. We also do not select streams nor mechanisms.

• IA 3 × 3 Optimized. We form stream pairs according
to our metric in Section IV-A2, but no node selection is
done. All subcarrier combinations are only used for IA.

• IA 4 × 4 Optimized. We select 3× 3 node groups out
of 4 × 4 node subsets for each subcarrier combination.
Within each group, stream pairs are optimized.

• IA+OFDM 4 × 4. We extend the previous scheme using
our EVM metric (Sect. IV-A) to decide for each subcarrier
combination what to use: IA or OFDM. Similarly to Or-
thogonal Frequency-Division Multiple Access (OFDMA),
OFDM subcarriers can be allocated to different links.

V. PRACTICAL ISSUES

Implementing practical frequency IA poses significant chal-
lenges, such as timely and accurate feedback. In our system,
we deal with these challenges and propose suitable solutions.

Physical layer. We base our physical layer design on the
802.11 standards. Still, the way we use IA in our system is,
to a large extent, agnostic to the underlying physical layer.

Frame format. Figure 2 shows the frame format we use
for IA. In the pilot frame, each of the senders in the subset
transmits non-overlapping pilots back-to-back to allow channel

15th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks MWoWM, June 2014, Sydney, Australia



estimation at the receivers. In the feedback frame, the receivers
send CSI back to the transmitters, which can then decide
on node grouping, stream pairing, and mechanism selection.
Finally, in the IA frame, all transmitters send the overlapping
IA data. Note that we add again a non-overlapping pilot block
in front to (a) detect if the channel has changed in between
both frames, and (b) estimate carrier-frequency offset (CFO).

Channel quantization. After receiving the pilot frame, the
receivers quantize the estimated CSI using a codebook to send
it back. The codebook is known to both MSs and APs, and
contains quantized CSI values. Hence, MSs do not need to
send full CSI values back, but only the index of the codebook
value which is most similar. The larger the codebook is, the
more similar values can be found, but also the larger is the
index in terms of bits, which has a direct impact on overhead.
A codebook size of 64 is well suited for IA, as we have
established in [6]. Hence, we use this value as a default size
for our experiments. We also study the effects of bit errors
in the feedback frame in order to assess its robustness. While
we do not send feedback wirelessly, we do account for its
overhead, and in [6] we show experimentally that the number
of bit errors is small enough not to affect IA performance at all.
For overhead calculations, we assume a 1/2 convolutional code
to effectively protect feedback against external interference.

Time synchronization. IA requires that all APs start
transmitting at exactly the same time. In our wireless access
network scenario, we use the backbone to achieve synchro-
nization between APs. At the receiver side, MSs need to detect
the exact start of a frame. To this end, we use the 802.11 long
preamble, which all transmitters send simultaneously. Still, for
two consecutive frames the detected start may differ a few
samples, introducing a phase offset. As a result, the precoding
vectors based on the pilot frame are not valid for the IA frame.
We correct this using the pilots preceding the IA frame.

Frequency synchronization. Slightly different oscillator
frequencies at a receiver with respect to a sender cause CFO.
This means that in our IA system each receiver would expe-
rience a different CFO depending on the transmitter, which
is hard to correct as transmissions overlap in the IA frame.
We solve this using the backbone to share clocks among APs.
Therefore, all signals experience the same CFO, which can be
easily corrected at the receivers using a pilot-aided technique.

AGC. We use Automatic Gain Control (AGC) to ensure
that the overlapping signals in the IA frame do not saturate
the receivers. The AGC is set for each frame using the 802.11
preamble, and all transmitters send it at the same time. Thus,
the gains are set for the case of overlapping signals.

IA
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Fig. 2. Frame format for IA in a node subset of a wireless access network.

VI. EVALUATION

A. Testbed Setup

Hardware platform. Our testbed is based on WARP,
which is an FPGA-based SDR developed at Rice University
[18]. This allows us to experiment in settings similar to those of
an 802.11 network, but with full control over the lower layers.
We use the WARPLab Reference Design to evaluate our IA
system flexibly in Matlab while still performing transmissions
over-the-air. First, we calculate in Matlab the samples to be
transmitted. These samples are then transferred via Ethernet
to the sending WARP boards, which transmit them over the
physical wireless medium. The receiving WARP boards sample
the signal and send it back to Matlab. Note that in between the
pilot and the IA frame, data is processed in Matlab, i.e., while
not fully real-time due to the delay for transferring signals to
and from Matlab, we do not process data offline, but online
and interactively. If implemented on the FPGA, our system
would run in real-time as our heuristics keep complexity low.

Coherence time. The aforementioned delays are not criti-
cal for our testbed measurements since our setup is quasi-static
and thus channels change slowly. This means that the CSI we
obtain from the pilot frame is still up-to-date when we transmit
the IA frame. Hence, while algorithms do not run in real-time
on the FPGA, our testbed is perfectly suited for our purposes.

Throughput. We cannot measure throughput directly since
the delays incurred by WAPRLab would strongly affect the
result. Still, we define a “raw” throughput metric to capture
the impact of (a) the BER, and (b) the overhead. This metric
abstracts from data framing and error correction, but we use
it to compare the fundamental performance of our schemes,
except in Section VI-C7, where we do consider these issues.
We take (a) into account by subtracting bit errors from received
data, and (b) by including the overhead into the duration of the
transmission. Also, the longer the IA frame is, the less weight
the overhead carries. In turn, the coherence time gives the
maximum length since pilots have to be updated as soon as the
channels change. We consider an indoor environment, i.e., the
coherence time is about 45 ms [6]. For calculations, we assume
that the IA frame lasts the same as the coherence time, but in
practice it would be divided into multiple smaller packets. Still,
the key for overhead is that during the coherence time, CSI
does not need to be measured again. Since WARPLab buffers
are not large enough to send data for such a comparatively long
time, we calculate the raw throughput “thp” by extrapolating
our measurement as follows. We measure the correct bits
received for a duration of tmeasure, calculate how many times
tmeasure fits into tcoherence, subtract the time for transmitting
overhead and divide by tcoherence, as shown in Equation 7.

thp =
(bitsTX − bitsERR) · tcoherence−toverhead

tmeasure

tcoherence
(7)

Optimization goal. While our raw throughput metric takes
into account the BER, a higher throughput does not implicitly
mean a lower BER since IA has a larger Degree-of-Freedom
than plain OFDM. That is, if the IA BER impacts throughput
less than the achievable 33% gain, IA has a higher throughput.
Thus, in the following experiments we consider both metrics
to evaluate whether our IA optimizations based on selection
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are successful. We aim at maximizing throughput using IA at
comparable BERs. In experiments VI-C1 to VI-C6 we discuss
the interaction of both metrics for fixed modulation schemes to
understand how our selections work. In experiment VI-C7 we
then bring both metrics together using adaptive modulation.

Experiment setup. Our testbed consists of two WARPv3
boards, each with four radio interfaces. We use each radio as
if it were an individual node, but all data sent and received
is treated independently in Matlab. All radios on the first
board act as transmitters, while all radios on the second board
are receivers. Such a setup allows us to model 3 × 3 and
4 × 4 subsets with the aforementioned backbone, since all
transmitters synchronize automatically, and share clocks. On
the receiver side, having all nodes on one board is not required,
but simplifies our testbed setup. If not stated otherwise, the
two WARP boards are not synchronized. In our experiments,
we consider both a line-of-sight (LOS) and a non-line-of-
sight (NLOS) scenario, as depicted in Figure 3. For some
experiments we add an interferer to study the robustness of
our IA schemes. For both LOS and NLOS, we keep SNRs in
the range of typical indoor scenarios, that is, 20 to 30 dB.

If not stated otherwise, we use OFDM parameters equiv-
alent to an 802.11g system, i.e., 18 MHz channels, 54 usable
subcarriers, 312.5 KHz subcarrier spacing, and 12.5% cyclic
prefix (CP). For experiments inspired by 802.11ac, we increase
the number of subcarriers to 456, which in the standard corre-
sponds to 160 MHz channels. Since WARP does not support
such large bandwidths, we reduce the subcarrier spacing to 39
KHz, resulting in longer OFDM symbols. Still, this allows us
to assess performance with a large number of subcarriers.

B. Network simulation

While we evaluate our IA system primarily in practice, we
start with a simulation of a large and random topology which
we cannot recreate in our testbed.

Setup. We assume a scenario with a large number of nodes
in the same space, such as a conference room or a lobby. Our
model consists of a square room with walls of length s and
four APs, each placed in one corner. For each simulation run,
we place n MSs at random locations and form subsets of size
four, i.e., subsets include all APs, and four MSs chosen as in
Section III-B2. For 3× 3 schemes, we only consider the first
three APs. We assume a path loss exponent of α = 2, Rayleigh
channels and 70 dB SNR at a distance of 1 meter to the APs.

50 cm

150 cm

Lab A

Lab B

1250 cm

50 cm

Legend

NLOS node
LOS node
Interferer
TX SDR
RX SDR

Fig. 3. Node setup for practical experiments on SDRs.

Results. We focus on the results we cannot obtain in our
testbed, namely, (a) random deployment of MSs in flexibly
sized areas, and (b) a large number of nodes. Figure 4 depicts
the gains in terms of throughput (c.f. Eq. 7) of IA compared to
OFDM 4× 4 Optimized for increasing areas. The modulation
scheme is 16-QAM, the number of nodes is fixed to 12, and
we vary s from 5 to 80 meters. As expected, we observe an
overall decline of gains with increasing room size, which is
caused by nodes being on average further away from the APs
and thus having lower SNRs. For the smallest considered area
(s = 5), all algorithms achieve gains in between 25% and 30%.
We do not reach the theoretical 33% maximum, because we
include the feedback overhead with a codebook size of 64. The
schemes using 4×4 subsets have slightly worse gains because
they need to transmit CSI feedback of 16 links instead of only 9
links. However, this overhead pays off as soon as the room size
increases and SNRs become lower—while the 3× 3 schemes
quickly degrade, the 4×4 ones maintain gains close to 25% up
to s = 20 due to selection. For larger room sizes, we observe
that the throughput gain decreases more for IA+OFDM than
for 4×4 IA. The BER is responsible for this behavior. For low
SNRs, IA performs worse than OFDM w.r.t. the BER, that is,
while IA may achieve larger gross throughput, its BER cancels
out most of it in terms of raw throughput (Eq. 7). Hence,
IA+OFDM gradually switches more subcarriers to OFDM in
order to maintain a low BER, thus loosing throughput gain.
In other words, IA+OFDM is able to dynamically adapt to
channel conditions by transitioning individual subcarriers to
OFDM when the SNR is too low.

In further experiments, we analyzed the impact of higher
node densities on forming subsets. With more nodes per area,
we expect to find better subsets since the probability of finding
nodes with similar SNRs to all APs becomes larger (c.f.
Section III-B2). Thus, we fix the area size and increase the
number of nodes. As expected, the throughput decreases with
the number of subsets, as we serve subsets in a time-division
fashion. However, for each individual subset, the throughput is
approximately constant, which means that we do not require
a large number of nodes to find suitable subsets.

C. Testbed measurements

1) Plain IA: We first analyze how plain IA performs (i.e.,
without selection), and how the impact of practical issues is.
Figure 5 depicts the THP gain and the BER in our LOS setup.

802.11g. First we focus on 802.11g, which is our default
physical layer. We compare an idealized case, where we
assume perfect CSI and synchronize both WARP boards to
avoid CFO, with a realistic case where CSI is quantized, and
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Fig. 4. IA THP gain compared to plain OFDM for our selection algorithms.
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Fig. 6. BER over two and a half hours for 256-QAM in LOS setup.

CFO must be corrected. For perfect CSI, no feedback overhead
is generated. The ideal case achieves close to 30% gain over
OFDM 4×4 Optimized for 4-QAM. Since no selection is used,
it degrades and incurs high BERs for higher modulations. The
realistic case performs similarly, which means that we are able
to cope successfully with CFO and CSI. However, gains are
slightly lower due to the added feedback overhead.

802.11ac. Since we observed that we can cope with CFO,
for the case inspired by 802.11ac we keep estimating it real-
istically for both measurements. The first one assumes perfect
CSI and achieves similar results to 802.11g, which shows that
our IA system is also well suited for encoding a large number
of subcarriers. For the second measurement—with quantized
feedback—the gain drops despite similar BERs. The reason is
that feedback overhead is much larger when sending CSI for
456 subcarriers than for 52 in 802.11g. Note that an 802.11ac
system with 160 MHz channels would compensate for this.

2) Time dependence: In our next experiment we compare
the behavior over time of IA 3× 3 Fixed with IA 4× 4 Opti-
mized (Figures 6/7). In each measurement round all schemes
are measured, i.e., they experience virtually the same CSI for
each time in Figures 6/7. We fit curves on our measurements to
highlight their behavior. In both figures, IA 4×4 Opt. is clearly
more stable than plain IA, since it adapts to changing channel
conditions, while plain IA cannot avoid CSI fluctuations.

In particular, Figure 6 depicts the BER during 2.5 hours
for 256-QAM. At about minute 65, a change in channel
quality increases the BER for plain IA for about 10 minutes.
Meanwhile, IA 4 × 4 Optimized absorbs the CSI change by
automatically transitioning to a suitable node/stream allocation,
and is not affected at all. Figure 7 depicts the throughput for
six hours using 16-QAM, which is less prone to errors. Thus,
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Fig. 7. THP over six hours during daytime for 16-QAM in LOS setup.
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both IA 4×4 Optimized and IA 3×3 Fixed perform similarly.
However, note that IA 3 × 3 Fixed continuously fluctuates
around the average value while IA 4× 4 Optimized is stable.

3) Node selection: We now investigate scenarios where the
selection algorithms benefit most, starting with node selection.
To highlight its operation, we place the third transmitter of
the LOS setup further away from the receivers, as depicted
in Figure 8. The key is that 3 × 3 algorithms are forced to
use the far away node T3, while 4 × 4 schemes can resort
to T4, which is much closer and thus has better channels. As
expected, the results in Figure 8 show that both IA 3×3 Fixed
and Optimized perform significantly worse than IA 4×4. Note
that for 4-QAM IA 3× 3 Opt. still achieves good gains, since
its stream selection improves performance just enough for 4-
QAM to work, but not enough for higher modulations.

4) Mechanism selection: Next, we show how mechanism
selection improves transmission in terms of BER for heteroge-
neous scenarios. To this end, we use our NLOS setup and place
one transmitter closer to the receivers, as illustrated in Fig. 9.
When switching from NLOS to the “closer” setup, IA 4 × 4
Opt. experiences no improvement, since it involves at least
three nodes, and is limited by the SNRs of the far away ones.
IA+OFDM instead cuts down the BER to half its value, since
it can allocate individual OFDM subcarriers to the node with
better SNR. It trades throughput for BER, which is essential
if the channel code in use cannot cope with large BERs.

5) External interference: In what follows, we investigate
the robustness of selections when adapting to external interfer-
ence. We generate artificial noise on an increasing percentage
of subcarriers using the interferer in Figure 3. We set low
transmission gains to fit the setup. Thus, nodes on the right
side of the LOS setup are more strongly affected than nodes
on the left. The results are shown in Figure 10. OFDM 4× 4
Opt. degrades linearly with increasing noise bandwidth. The
reason is that it averages the performance of all nodes, and all
subcarriers affected by noise contribute equally to the BER.
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IA+OFDM is not affected, since it chooses the left 3×3 group
out of the 4× 4 subset to adapt to the interferer on the right.

For the IA algorithms without mechanism selection (dashed
lines), we observe a common trend. For a noise bandwidth up
to 30%, the BER rises, but beyond 30% it falls again. The
reason is that subcarrier combinations are evenly distributed
over the available bandwidth (c.f. Section III-B1). Hence,
even narrow noise bandwidths quickly affect at least one
subcarrier in each combination, causing a steep initial rise of
the BER. The subsequent decline beyond 30% is due to the
increasing distribution of noise power. Our interference signal
has the same power for all noise bandwidths, which means
that for narrow bandwidths, a large noise affects only a few
subcarriers, while a smaller noise affects many subcarriers for
large bandwidths. Thus, we conclude that IA can cope better
with small noise affecting all subcarriers in a combination
than with large noise affecting only one subcarrier. In other
words, the noisiest subcarrier determines the performance of
IA. The optimized IA algorithms stabilize already at 50%
noise bandwidth since they can circumvent noisy links by
selection. For OFDM, noise power is also constant, but the
BER improvement due to less noise per subcarrier is smaller
than the degradation due to noise affecting more subcarriers.
Regarding throughput gain, all mechanisms tend to improve
with increasing noise due to the baseline degrading linearly.

6) NLOS setup: We now investigate IA performance in
our NLOS setup. The results are depicted in Figure 11. For
low modulation schemes all algorithms achieve significant
gains. However, while plain IA 3× 3 Fixed degrades quickly
for increasing modulations, our selection algorithms enable
optimized IA to provide gains above 15% even for 256-QAM.
When switching from 64-QAM to 256-QAM, IA+OFDM
transitions to using OFDM on most subcarrier combinations,
thus loosing gain but achieving BERs comparable to OFDM
4 × 4 Optimized. We conclude that IA in NLOS scenarios is
feasible and benefits from node/stream/mechanism selection.

7) Adaptive modulation: In previous experiments we study
the IA gain for individual modulation schemes. Next, we
analyze its behavior for adaptive modulation. Since IA has
higher SNR requirements than plain OFDM, IA typically has
larger BER for a given modulation. Hence, this raises the
question whether for a given BER, plain OFDM could simply
switch to a higher modulation than IA and thus achieve higher
throughput. To understand this issue, we analyze a system
where APs adaptively choose for each frame the modulation
and technique (IA or OFDM) that provides best throughput.
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Fig. 9. THP gain over plain OFDM and BER in the “closer” setup.

Similarly to a real-world system, APs aim at achieving a
certain acceptable BER for each frame. The acceptable BER
may be the error correction capability of the code in use, or
the BER allowed by a loss-tolerant stream such as video. In
Figure 12, we show performance for a range of acceptable BER
values, without limiting them to a specific coding scheme or
stream type. For this experiment, we use an overnight measure-
ment (9.5 hours) in our NLOS scenario. Hence, the average
SNR is constant and provided by our setup. In particular,
we continuously measure all our schemes for all M-QAM
modulation orders we consider, i.e., M ∈ [4, 16, 64, 256]. Then,
for each acceptable BER value, we find the best modulation
and technique (IA or OFDM). We compare results to a baseline
which always uses OFDM, but still adapts modulation, i.e., we
do consider the case where our system and the baseline are
using different modulation orders. In Figure 12, the gain peaks
occur when the acceptable BER is larger than required for a
certain modulation order in plain OFDM, but not enough for
OFDM to switch to the next modulation. These are the margins
where IA pays off, since this “excess” of the acceptable BER
absorbs the higher SNR requirements of IA. For instance,
such margins naturally occur for error correction codes. This
happens because practical protocols usually provide a fixed set
of codes, among which it is possible to choose, and thus the
code often corrects more errors than actually needed. Since
each modulation order is feasible for a different range of
acceptable BERs, we observe multiple peaks in Figure 12.
Note that only 4 × 4 algorithms achieve gain, while the
aforementioned margins are too small for all other IA schemes.
This showcases how selection not only enables IA but also
makes it profitable in a realistic setting. For the 64-QAM peak,
IA+OFDM achieves even better results than IA 4×4, because it
uses IA only on good subcarriers. Also, it stabilizes at a rather
low gain value, since it transitions most of its subcarriers to
OFDM for large BERs. This translates into no increased DOF.

VII. DISCUSSION

While we consider particular cases in our testbed evalua-
tion, our simulations with random node locations and variable
SNRs provide equivalent results. Hence, we conclude that our
testbed experiments are representative and can be generalized
to larger networks. The subset size is critical for feasibility,
since full CSI of each subset link is required and the number of
possible node selections explodes in large subsets. We expect
the latter to be the constraining factor, since in our experiments
overhead has a limited impact. Still, larger subsets increase
the probability of finding good selections. In our testbed, a
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subset size of 4× 4 is an operable trade-off. Despite the high
SNR requirements of IA, we show that it provides gains with
realistic adaptive modulation. The gain is directly related to
the acceptable BER, which in turn depends on the coding
scheme in use, the type of data sent, and ultimately on the
application. Hence, cross-layer optimizations to fully exploit
the benefits of IA are possible, but we consider this to be out of
scope of this paper. Also, while we select resources based on a
physical layer metric, our approach opens the door to metrics
that include upper-layer requirements. Finally, our selection
algorithms can transition from one resource allocation to
another in order to adapt to changing channel conditions on a
subcarrier-wise basis. We believe that this is key to enable IA,
as adaptation is crucial in a wireless environment.

VIII. CONCLUSION

We propose an architecture for a wireless access network
based on Interference Alignment (IA) at the physical layer. To
this end, we deal with the practical issues of such a system.
Still, the key challenge of IA lies in the high SNRs required.
While an indoor wireless network might provide such SNRs,
channel quality is typically heterogeneous and variable. Hence,
selecting which nodes participate in IA using which resources
is crucial. We contribute three selection algorithms to choose
groups of nodes on top of which to operate, stream pairs within
each group, and alternative mechanisms in case of strongly
impaired channels. Selection decisions are based on an EVM
metric which can be calculated for each possible selection.
We implement our approach on a software-defined radio
(SDR) and conduct experiments in heterogeneous scenarios.
Moreover, we perform simulations to validate our results in
random networks. We achieve up to 30% gain compared to
plain OFDM. Future work includes choosing optimized IA
precoding vectors and investigating practical Sphere Decoding.
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