
Wireless Pers Commun
DOI 10.1007/s11277-014-1910-0

Comparison and Extension of Existing 3D Propagation
Models with Real-World Effects Based on Ray-Tracing
A Basis for Network Planning and Optimization

Dereje W. Kifle · Lucas C. Gimenez · Bernhard Wegmann ·
Ingo Viering · Anja Klein

© Springer Science+Business Media New York 2014

Abstract The next generation of cellular network deployment is heterogeneous and tempo-
rally changing in order to follow the coverage and capacity needs. Active Antenna Systems
allows fast deployment changes by cell shaping and tilt adaptation which have to be controlled
in self-organized manner. However, such kind of automated and flexible network operations
require a Self Organizing Network (SON) algorithm that works based on network perfor-
mance parameters being partly derived from the radio measurements. Thus, appropriate radio
propagation models are not only needed for network planning tools but also for simulative lab
tests of the developed SON algorithm controlling the flexible deployment changes enabled
by Active Antenna Systems. In this paper, an extension of the existing 3D propagation model
is proposed in order to incorporate the propagation condition variation effects, not considered
so far, by changing antenna beam orientation like antenna tilting or when users are distributed
in the third dimension (height) in multi-floor scenarios. Ray tracing based generated prop-
agation maps that show the realistic propagation effect are used as 3D real world reference
for investigation and model approval.
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1 Introduction

Cellular system design requires an in depth understanding of the characteristics of the propa-
gation environment. Therefore, accurate and robust propagation prediction models are needed
to be able to predict the characteristics of the physical radio channel where the cellular system
is going to be deployed. A very good prediction of the radio channel ensures more reliabil-
ity in delivering high system capacity with high efficiency and provides more flexibility in
further optimization. As the impact of the propagation environment is determined by several
factors, including the operating frequency of the radio signal and varying clutter type, its
modeling is the most difficult task. Plenty of propagation models and prediction schemes
have been proposed for various case scenarios and are being utilized in order to approximate
all those effects and predict the signal power loss in the course of propagation [1–4].

The total propagation loss of a signal can be modeled as a distance dependent path loss
plus an additional random variable component which depends on the nature of the propa-
gation environment characteristics. The path loss component L(x), also known as distance
dependent path loss, gives the average signal attenuation level and it is exponentially propor-
tional to the shortest distance r between the receiver terminal location x and the transmitter
antenna, L ∝ rβ , where β is called the path loss component and its value depends on the
clutter type of the propagation environment in the vicinity of the receiving mobile terminal,
such as terrain, buildings, vegetation, etc. Different kinds of path loss models are available in
literatures that are derived based on analytical and empirical approaches [2,3]. The additional
variability of the propagation loss component is caused by different physical phenomena that
the radio wave undergoes in the course of propagation, i.e. reflection, diffraction and scat-
tering thereby resulting in a signal fading. The large scale signal fading which is known as
shadowing is typically modeled as a random variation of a signal attenuation level around
the path loss caused by presence of obstructing objects on the path of the signal propagation
[5,6] and therefore, it is location dependent.

Proper radio propagation models are not only needed for network planning tools but
also in system level simulators being used to evaluate Self Organizing Network (SON) algo-
rithms designed for flexible deployment changes enabled by Active Antenna Systems (AAS).
Antenna beam characteristics can be fast adapted from simple tilt changes to more compli-
cated beam shaping techniques like cell splitting [7]. Such types of network operation changes
are implemented in a system level simulator or network planning tool where the prediction of
the expected network performance indicators like coverage, signal to interference level, etc.
are calculated by utilizing propagation models [6]. Hence, accurate propagation model that is
able to reflect a very good approximation of the realistic propagation effect is essential. The
existing models and assumptions are fair enough for application as used in network planning
tasks for stationary deployments. However, automated traffic dependent network adaptation
and optimization of the 3D antenna characteristics require an accurate approximation of the
realistic propagation condition. Due to this fact, the performance of such algorithm later in
the field is limited by the accuracy of the utilized models during the development of the
algorithm.

Shadowing effect is modeled as a log-normal distributed random variable with zero mean
and a standard deviation of 5–12 dB depending on the nature of the propagation environment.
Shadowing is assumed to be a Gaussian process that de-correlates exponentially with distance
and its value is assumed to be constant at a fixed location as long as deployment is not changed
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[5,6]. However, when the antenna beam orientation is changed, the radio signal experiences a
different propagation behavior for the same user location resulting from changed path way of
the radio wave. The received signal change does not only result from changing antenna beam
direction but also from a change in shadowing effect [5,6]. This variability of the shadowing
and its dependency with respect to antenna tilt changes are presented in [8]. Their effect
requires, therefore, a new shadowing model taking the tilt dependency into account.

This paper provides more further studies of the shadowing effect variability with respect
to antenna tilt changes which are used as basis to introduce a new shadowing model. The tilt
dependency of the shadowing process is statistically approximated based on the propagation
statistics generated using a ray tracing based network planning tool that employs 3D model
for a typical European urban deployment scenario. Moreover, the paper also investigates the
height gain variation in the propagation loss associated to different clutter type experience for
a signal at a different height level. This height gain effect becomes necessary when considering
in-door users in multi-floor building scenarios. Thus a height dependent propagation model
is also presented utilizing ray tracing based propagation maps generated at different floor
height levels.

The paper is organized as follows: Sect. 2 formulates the problem and the proposed propa-
gation models are presented in Sect. 3. The scenario description, site layout and other settings
used in the ray tracing tool are described in Sect. 4. Section 5 discusses and evaluates the per-
formance of the proposed models using propagation statistics from ray tracing. The impact
of the tilt and height models in planning and optimization is discussed in Sects. 6 and 7
concludes the work.

2 Problem Formulation

2.1 Tilt Dependency of Propagation Model

Assuming the antenna beam has a tilt setting of Θo, a pixel point in a network located at x
and at a height of ho above the ground with respect to the base station antenna, i.e. xho , the
total propagation loss from the transmitting antenna to xho is described by Lt (xho ,Θo). In
the existing propagation model [6], the Lt (xho ,Θo) is given by:

Lt (xho ,Θo) = L(xho) − Ga(xho ,Θo) + S(xho) (1)

where L(xho) is the distance dependent path loss and S(xho) is a log-normal random variable
with zero mean and standard deviation of σ, S(xho) ∼ N (0, σ 2), that gives the shadowing
fading effect. The term Ga(xho ,Θo) is the total antenna gain at xho and it is given by the
sum of the dBi gain of the antenna Ad Bi and the three dimensional radiation pattern loss
Bp(Φ,Θo, φ, θ) normalized to the maximum antenna gain value and given in terms of the
azimuth and elevation angular location of xho , (φ, θ), the antenna beam azimuth orientation
Φ and the elevation tilt Θo: i.e. Ga(xho ,Θo) = Ad Bi + Bp(Φ,Θo, φ, θ).

When the elevation tilt configuration is changed from Θo to Θi the total propagation loss
at xho with respect to the new tilt configuration Θi , Lt (xho ,Θi ), is described by the existing
model [6] as shown in Eq. (2).

Lt (xho ,Θi ) = L(xho) − Ga(xho ,Θi ) + S(xho) (2)

According to the model, the associated change in the total propagation loss while the tilt
configuration is changed is described by only the difference in the total antenna gain value
ΔGa(xho ,Θi ,Θo) experienced at the same location before and after applying the tilt change
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Fig. 1 Different tilt settings and multi-floor propagation scenario

where ΔGa(xho ,Θi ,Θo) = Ga(xho ,Θi )−Ga(xho ,Θo). Whereas the L(xho) is not affected
as it is dependent only on the distance r and the shadowing effect is assumed to be identical
and, hence, always the same shadowing is assumed independent of the tilt. Accordingly, the
total propagation loss after a tilt change is expressed in terms of the total propagation loss
before the change and the difference in the total antenna gain at xho associated to the applied
tilt change in Eq. (3):

Lt (xho ,Θi ) = Lt (xho ,Θo) + ΔGa(xho ,Θi ,Θo) (3)

However, in reality, in the presence of obstructing building environments, the shadow-
ing effect does not remain identical during tilt configuration change. The variability of the
shadowing with respect to tilt change has been shown by extracting shadowing maps from
propagation maps generated using a ray tracing tool that reflects the real propagation effect
changes by employing a ray based prediction in a real based 3D model scenario in [8]. The
ray tracing scenario and further scenario description are discussed in the forthcoming sec-
tions. Based on the ray tracing based generated propagation maps, it has been observed that
the total propagation loss change during a tilt change is not equal to only the total antenna
gain difference as described in the existing model in Eq. (3) but also on the shadowing effect
change associated with the applied tilt difference. The paper [8] discusses the impact of tilt
change on the shadowing value and the result shows the existence of dependency of the shad-
owing with the tilt configuration setting. However, in [8], only the impact of tilt setting on
propagation shadowing is discussed. Therefore, tilt dependent shadowing model denoted by
S(xho ,Θi ) is required in order to properly include the shadowing effect change while carry-
ing out tilt related system level simulation. As a consequence, an enhancement of the existing
shadowing model is proposed to include propagation effect variation with tilt configuration
change.

2.2 Height Gain

In urban areas with high rise buildings, mobile users are probably distributed at different
height levels above the ground on various building floors as depicted in Fig. 1. For a multi-
floor building scenario, the prediction of the total propagation loss for indoor users residing
at different floors requires proper approximation of the outdoor propagation and the corre-
sponding penetration loss. In many existing planning tools and models, the common approach
to estimate the indoor propagation loss is to predict the outdoor propagation loss in the prox-
imity of the buildings and then add some additional constant penetration loss [9,10]. The
corresponding outdoor propagation conditions are also dependent on the surrounding clut-
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ter type projected from the corresponding floor height level. Apparently, at a higher height
levels, the clutter type gets better leading to a higher probability of line of sight visibility
between the transmitter and the receiver. Consequently, this clutter level variation leads to
a propagation gain with height. The existing propagation model approximates a so-called a
floor height gain H(xhi ,ho) which is included when the height level changes from ho to hi .
Hence, the existing model prediction of the total propagation loss Lt (xhi ,Θo) at hi height
level is done by applying the floor height gain to the the total propagation loss at ho as shown
in Eq. (5)

Lt (xhi ,Θo) = Lt (xho ,Θo) + H(xhi ,ho) (4)

In the existing models [9,10], H(xhi ,ho) is accounted and approximated with a constant
average floor height gain values determined from different measurement statistics. In COST
231 [10], floor height gain of 1.5–2 dB/floor and 4–7 dB/floor has been reported for buildings
with storey heights of 3 and 4–5 m respectively. The floor height gains are translated to dB/m
to be generally applied for floors with different floor height. Currently, an average height gain
of 0.6 dB/m is proposed by COST and is widely adopted in different literatures [9,10]. The
studies in [9] have also indicated that this value of 0.6 dB/m is independent of the operating
frequency and the relative distance from the corresponding base station.

However, since all these models recommend constant floor height gain values independent
of the type of the building scenario, in some cases, this does not properly reflect the actual
gain variation per height relative to what is assumed at the ground level. Hence, enhanced
height gain model that includes the floor height gain variation with respect to the ground floor
is required to better reflect the non constant height gain level in order to be able to predict
the propagation loss accurately when dealing with a multi-floor building scenario in network
planning and system level simulation setups.

3 Derivation of Tilt and Height Dependent Propagation Model

3.1 Tilt Dependent Shadowing Model

Antenna tilt configuration change from Θo to Θi is primarily intended to change the cell
coverage by directing the beam orientation in a desired direction in order to have change
in the total antenna gain with respect to each location xho in a network. During the tilt
adjustment, the path loss component, however, is not affected due to the fact that it is rather
dependent only on the relative distance of xho from the base station.

As stated in Sect. 2.1, the tilt setting change has an impact on the shadowing effect of the
propagation environment, particularly, in urban clutter type case. Thus, shadowing at a tilt
Θ is modeled as tilt dependent, S(xho ,Θ). In our extended shadowing model derivation, tilt
specific shadowing values, S(xho ,Θ), are extracted from propagation maps generated with
a ray tracing tool at various Θ settings. Hence, a new propagation model is required where
the effect of the experienced change in the shadowing ΔS(xho ,Θi ,Θo) is considered in case
of tilt configuration changes, ΔS(xho ,Θi ,Θo) = S(xho ,Θi )− S(xho ,Θo), accordingly, the
new total propagation loss L̂ t (xho ,Θi ) that includes tilt dependent shadowing variation after
tilt change from Θi to Θo can be expressed as shown in Eq. (5).

L̂ t (xho ,Θi ) = Lt (xho ,Θo) + ΔGa(xho ,Θi ,Θo) + ΔS(xho ,Θi ,Θo) (5)

Since the shadowing process is modeled as log-normally distributed random value, the
shadowing difference, ΔS(xho ,Θi ,Θo), can be also approximated to follow a log-normal
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distribution with zero mean and a standard deviation of σ
ΔS . It has been found from ray

tracing based data, to be discussed more in later section, that with the tilt configuration
change, ΔΘ = Θi − Θo, the shadowing effect experience for a user at xho becomes more
different and the random shadowing values become more and more de-correlated at a higher
ΔΘ . The statistical correlation between the random shadowing values at xho at two different
settings, Θi and Θo is given by the correlation coefficient value ρΘi Θo and the respective
tilt shadowing statistics are assumed as a zero mean, μΘi = 0. The correlation coefficient is
given by:

ρΘi Θo = Exp{(S(xho ,Θi ) − μΘi )(S(xho ,Θo) − μΘo)}
σΘi

σΘo

(6)

On the other hand, it has been indicated in [8], and it will also be justified later, that the first
and second order characteristics of the shadowing statistics, the mean and standard deviation,
show a very slight variation with tilt that the overall shadowing map has closely the same
statistical distribution before and after tilt change. Hence, it is reasonable to assume the same
value of shadowing standard deviation at various tilt, i.e. σΘi

≈ σΘo
. According to the ray

tracing based propagation data, the shadowing effect variability and statistical de-correlation
of the shadowing values at xho for different tilt increases with the amount of ΔΘ applied.
This in turn leads to an increase in the standard deviation σ

ΔS of ΔS(xho ,Θi ,Θo).
The tilt dependent shadowing model proposes a prediction approach to find a shadowing

map Ŝ(xho ,Θi ) for Θi tilt configuration from a known shadowing map at a reference tilt
Θo. In our investigation, Ŝ(xho ,Θi ) is to be predicted accordingly from the S(xho ,Θo)

statistics which is extracted from the ray tracing propagation map data generated at a tilt of
Θo. In this case, the proposed model should also maintain the statistical correlation level
observed between the extracted shadowing values at Θi and Θo tilt settings. Hence, a cross
correlation coefficient ρ̂Θi Θo is defined to give the statistical correlation level between the
predicted shadowing statistics at Θi with the reference shadow map at Θo. In order to estimate
ρ̂Θi Θo , the proposed model introduces a correlation coefficient predictor function fs(ΔΘ)

that approximates the corresponding correlation level between two shadowing statistics for
tilt setting difference ΔΘ ,

ρ̂Θi Θo = fs(ΔΘ) (7)

where fs(ΔΘ) is going to be derived empirically by using ray tracing based extracted tilt
dependent shadowing statistics from a real world based 3D deployment scenario, from several
sectors. It has been observed in [8] and it will be also shown in later section that the cross
correlation coefficient values drop linearly with ΔΘ . As a result, the function fs(ΔΘ) can
be approximated as a linear predictor function with coefficients a and b such that fs(ΔΘ) =
a · ΔΘ + b. The coefficients a and b are to be determined empirically based on the cross
correlation coefficient data values ρΘi Θo found from the ray tracing propagation map data
extracted shadowing statistics.

During the tilt change of ΔΘ , the proposed model estimates the shadowing effect
Ŝ(xho ,Θi ) ∼ N (0, σ̂ 2

Θi
) at Θi = Θo + ΔΘ from the shadowing value before the tilt change

S(xho ,Θo) and an additional uncorrelated Gaussian random variable Ω(ΔΘ) ∼ N (0, σ 2
Ω

).
Utilizing the predicted cross correlation coefficient ρ̂Θi Θo , the resulting shadowing is mod-
eled as:

Ŝ(xho ,Θi ) = ρ̂Θi Θo · S(xho ,Θo) +
√

1 − ρ̂Θi Θo · Ω(ΔΘ) (8)
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where:

ρ̂Θi Θo = Exp{(Ŝ(xho ,Θi ) − μ̂Θi )(S(xho ,Θo) − μΘo)}
σΘi

σΘo

= fs(ΔΘ) (9)

As discussed earlier, σ̂Θi
≈ σΘo

. Thus, σΩ can be derived from the variance relationship
as:

Var[Ŝ(xho ,Θi )] = Var[S(xho ,Θo)] (10)

Var[ρ̂Θi Θo · S(xho ,Θo) +
√

1 − ρ̂Θi Θo · Ω(ΔΘ)] = σ 2
Θo

(11)

From the above expression the σΩ is:

σΩ =
√

1 + ρ̂Θi Θo · σΘo
(12)

Accordingly, the total propagation loss L̂ t (xho ,Θi ) expression at Θi shown in Eq. (5) can
be rewritten by including the predicted shadowing effect change ΔŜ(xho ,Θi ,Θo) as,

L̂ t (xho ,Θi ) = Lt (xho ,Θo) + ΔGa(xho ,Θi ,Θo) + ΔŜ(xho ,Θi ,Θo) (13)

where:

ΔŜ(xho ,Θi ,Θo) = Ŝ(xho ,Θi ) − S(xho ,Θo) (14)

ΔŜ(xho ,Θi ,Θo) = (ρ̂Θi Θo − 1) · S(xho ,Θo) +
√

1 − ρ̂Θi Θo · Ω(ΔΘ) (15)

The standard deviation of ΔŜ(xho ,Θi ,Θo), σ̂
ΔS , can be found by evaluating the variance

of equation above and using the relationship shown in above, and it becomes:

σ̂
ΔS =

√
2 · (1 − ρ̂Θi Θo) · σΘo

(16)

3.2 Height Gain Model

In this paper the height gain effect is investigated by means of evaluating the floor height gain
values from propagation maps generated at different floor height levels using the employed ray
tracing tool. The investigation aims at showing the statistical variation of the floor height gains
and compares it with the existing constant average hight gain assumption of 0.6 dB/m [10].
In reality this constant gain value deviates randomly depending on the type of propagation
environment. Hence, the proposed height gain model approximates the effect of the clutter
type with a better estimation of height gain values.

Accordingly, a non constant and variable height gain denoted by Ĥ(xhi ,ho) is determined
by subtracting the ray tracing propagation map generated at hi and ho floor height levels.
Thus, the total propagation loss L̂ t (xhi ,Θo) at hi height level can now be rewritten as:

L̂ t (xhi ,Θo) = Lt (xho ,Θo) + Ĥ(xhi ,ho) (17)

where Ĥ(xhi ,ho) = L̂ t (xhi ,Θo) − Lt (xho ,Θo) gives the corresponding floor height gain.
The height gain model in this paper investigates the statistical variation of Ĥ(xhi ,ho) and
compares it with the existing model assumption by utilizing the ray tracing based propagation
map statistics generated for a multi-floor scenario in Sect. 5.
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Fig. 2 Ray tracing site layout

4 Ray Tracing Scenario Description and Statistics Extraction

4.1 Ray Tracing Scenario

For the investigation, a network planning tool that employs ray tracing technique for the
propagation map prediction is used. A 3D city model and the urban clutter behavior of a
typical European city is considered in the scenario. The scenario assumes 27 sectorized sites
consisting of 75 sectors where the site plan and system parameter configuration settings are
done based on realistic site deployment information. In the ray tracing tool, Dominant path
Prediction Model (DPM) is adopted where the propagation loss from a transmitting antenna
to a point is predicted in the direction of a ray path taken by the dominant ray which brings
most of the energy to the point of prediction. It has been shown in [11,12] that DPM has as
high accuracy as the prediction technique that employs several rays. The ray tracing technique
along with the 3D models reflects the real propagation effects and an accurate prediction of
the received signal at each pixel point. The propagation prediction is done for each sector
antenna in a pixel based approach where the total network is divided into a grid of pixels
of 5 m resolution with a total prediction area of 3.4 km by 2.4 km. The site layout and the
prediction area of the ray tracing scenario is shown in Fig. 2 and basic system parameters
settings are also summarized in Table 1.

Two sets of outdoor propagation maps are generated via ray tracing based prediction of the
received signal strength at each pixel point from each sector antenna. One set of prediction
is done for ground floor at a 1.5 m user height level for different tilt settings varying from
4◦ to 14◦ in order to carry out the tilt dependent shadowing investigation. The other set of
prediction has been carried out at different floor height levels but fixed tilt setting for the
height gain study. The indoor propagation is estimated from the outdoor maps by adding a
10 dB penetration loss plus an additional attenuation of 0.6 dB/m to the strongest ray detected
around the building being considered [9,10,13].

4.2 Statistics Extraction

The total propagation loss Lt (xhi ,Θi ) map is obtained by subtracting the total transmit
power level used in the prediction, i.e. 43 dBm, from the generated received power map. The
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Table 1 Basic scenario settings Information Settings

Network size 3.4 km by 2.4 km

Site and sector 27 sites, 75 sectors

Transmit power 20 W (43 dBm)

Antenna gain 17.5 dBi

Radiation beam Φ3d B = 62, Θ3d B = 5

Sector orientation [10◦, 250◦, 130◦]

Mechanical tilt 4◦
Electrical tilt 0◦–10◦, step 1◦
Prediction height Ground + 6 Floor

Floor height 3.1 m

Fig. 3 3D city building layout used in ray tracing scenario

corresponding shadowing maps are extracted for each prediction setting scenario of Θi tilt
and hi m height by using the empirical propagation model described in Eq. (2). Accordingly,
S(xhi ,Θi ) is given as:

S(xhi ,Θi ) = Lt (xhi ,Θi ) − L(xhi ) + Ga(xhi ,Θi ). (18)

Since only Lt (xhi ,Θi ) is available from Eq. (18), the path loss component L(xhi ) and the
total antenna gain Ga(xhi ,Θi ) values are needed to be determined. It is apparent that L(xhi )

is the mean propagation loss whereas the S(xhi ,Θi ) corresponds to the rest of the large scale
attenuation over the mean, thus, the path loss plus shadowing can be evaluated from Eq. (18)
as:

S(xhi ,Θi ) + L(xhi ) = Lt (xhi ,Θi ) + Ga(xhi ,Θi ) (19)

In this case, the path loss is approximated by the empirical path loss model as L(xhi ) =
α + β · log10(r) where α and β are the path loss loss coefficients and can be determined
via linear regression estimation from the the path loss plus shadowing statistics and the
coefficients correspond to the path loss offset and the path loss exponent, respectively [5,6].

Proper extraction of the shadowing statistics requires estimating and excluding of the total
antenna gain values with respect to each xhi in Eq. (19). And this needs a beam pattern model
that provides the antenna gain variation. In this investigation, the beam pattern model from
3rd Generation Partnership Project (3GPP) [6] is employed. The two dimensional and total
three dimensional patterns are approximated as shown in Eqs. (20)–(22) where the variables
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Fig. 4 Approximation of the real antenna radiation pattern

Φo, Θi , Φ3d B and Θ3d B are the azimuth orientation, elevation tilt, azimuth and elevation
half power beam-widths, respectively [6,14], whereas φ and θ are the angular position of xhi .
The 3GPP pattern model estimates the main lobe radiation patterns and approximates the
side and back lobe effect with a constant value of Am known as backward attenuation factor.
Figure 4 depicts the estimated and real antenna elevation pattern behaviour for a typical value
of Am = 25 dB proposed by 3GPP [6].

BH (φ) = − min

{

Am, 12 ·
(

φ − Φo

Φ3d B

)2
}

,⇒ Azimuth (20)

BV (θ) = − min

{

Am, 12 ·
(

θ − Θi

Θ3d B

)2
}

⇒ Elevation (21)

B3D(φ, θ) = − min
{

Am,−[
BH (φ) + BV (θ)

]}
,⇒ Total Pattern (22)

However, the backward attenuation effect depends on the nature of the propagation envi-
ronment as it attributes to the various physical phenomena that the signal wave undergoes
during radiation like reflection, scattering and diffraction which determines the effective
antenna gain behavior from side lobes [14,15]. As a consequence, Am is characterized by
the clutter type seen by each antenna and could have different values for each antenna in the
same scenario. Hence, an exhaustive search optimization has been carried out for a range
of Am values that will lead to a path loss plus shadowing statistics satisfying a minimum
standard deviation criteria for the shadowing [8].

5 Model Coefficient Prediction and Performance Evaluation

5.1 Shadowing Statistics and Predictor Coefficients

5.1.1 Shadowing Statistics

The shadowing statistics extracted for each tilt Θi from the ray tracing data, S(xho ,Θi ),
has been investigated for its statistical behavior and invariability property along with the
applied tilt change. Statistics observed from each site antenna confirmed that the extracted
shadow map for each tilt settings have a Gaussian statistical distribution with closely the
same standard deviation independent of the tilt. This is also illustrated in Fig. 5 where the
shadowing map distribution is shown for a sample site for different tilt case validating that
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Fig. 6 Distribution of shadowing value differences, ΔS(xho , Θi ,Θ0), for different Θi

the standard deviation of the shadowing statistics is independent of the tilt change as assumed
in Sect. 3.

However, this does not guarantee the invariability of the shadowing effect with respect
to tilt change. Hence, further investigation is done by evaluating the corresponding shadow-
ing map change, ΔS(xho ,Θi ,Θo), at each pixel xho location in the prediction area for the
applied tilt setting change. Figure 6 shows the distribution of the shadowing value differences
ΔS(xho ,Θi ,Θo) for various tilt differences evaluated per pixel showing that the shadowing
effect indeed changes while tilt setting is varied. The figure confirms that ΔS(xho ,Θi ,Θo)

also follows a Gaussian distribution with a mean value around zero and standard deviation,
σ

ΔS , which is increasing with ΔΘ indicating that the actual shadowing experience has depen-
dency on the tilt and the shadowing effect variation gets higher at a larger relative tilt change.
Moreover, the statistical mean and standard deviation of the shadowing map are not changed
considerably with tilt as discussed before and this behavior is more depicted in Fig. 7 for
various tilt Θi .

5.1.2 Shadowing Correlation and Predictor Coefficients

Shadow fading effects at different locations depend on the transmitting base station location
with respect to the receiver terminal and the surrounding environment of the considered pixel
location. Shadowing values of the neighboring pixels exhibit a statistical correlation which is
also used in the existing shadowing model for system level simulations in order to generate
a shadowing map with respect to each site [6]. In this investigation, the statistical correlation
property among shadowing map associated for different tilt settings is exploited in order to
derive the relationship between the random shadowing process at different tilt settings.
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Fig. 7 Mean and standard deviation of S(xho ,Θi ) at different Θi

Fig. 8 Shadowing correlation coefficients for various ΔΘ

In the existing shadowing model [6], since the same shadowing effect is assumed irre-
spective of the tilt setting, the random shadowing process is seen as fully correlated before
and after a tilt change. In reality, however, the shadowing statistics extracted from the ray
tracing propagation map data for different tilt settings show that the shadowing fading effect
for any two different tilt settings does not remain the same and the variation increases with
the increase in the tilt difference. This is illustrated in Fig. 8 where the shadowing correlation
coefficient value is shown for the shadowing at a reference tilt, Θo = 4◦, and at a different
tilt settings, Θi . This confirms the existence of tilt dependency of the shadowing fading with
respect to the antenna tilt setting. The figure also depicts that the shadowing correlation level
drops approximately linearly with the applied tilt change.

As discussed in Sect. 3, the new model introduced in this paper defines a linear function,
fs(ΔΘ) as shown in Eq. (23), to predict the corresponding statistical correlation level of
the shadowing effect at, ρ̂Θi Θo , for a tilt change of ΔΘ from Θo to Θi . The coefficients
of fs(ΔΘ) are determined from the shadowing correlation coefficients, ρΘi Θo , evaluated
from the ray tracing based shadowing statistics for various tilt settings using a linear curve
fitting approach as shown in Fig. 8. The linear predictor function is given by Eq. (23) with
coefficients a and b.

ρ̂Θi Θo = fs(ΔΘ) = a · ΔΘ + b (23)
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The approximation of predictor coefficients is done using a linear least square method such
that fs(ΔΘ) fits the correlation coefficient data, ρ

Θi Θo
k,i , calculated from each sector k for

different tilt change values, ΔΘi , at N number of sectors in our ray tracing scenario where
ΔΘi = Θi −Θo. In this investigation, 19 sectors are randomly considered and at each sector,
the tilt configuration, Θi , is changed from 4◦ up to 14◦ with 1◦ step size resulting in T = 11
tilt settings. Thus, the coefficients a and b that linearly best fit the data minimizing the error
ε in Eq. (24) are calculated accordingly.

ε =
N∑

k=1

T∑

i=1

(ρ
Θi Θo
k,i − (a · ΔΘi + b))2 (24)

Thus, based on the shadowing values extracted from the ray tracing based generated prop-
agation maps, predictor coefficient value of a = −0.035 and b = 0.96 are found with
error ε = 2.3. The correlation coefficient predictor function is then given by fs(ΔΘ) =
−0.035 · ΔΘ + 0.96 and its slop indicates that the shadowing correlation drops by approxi-
mately 3% per 1◦ tilt change.

5.1.3 Performance of the Proposed Model

In this subsection the performance of the proposed model is checked against the ray tracing
data. In this case, a new shadowing map of Ŝ(xho ,Θi ) is generated for a sector at a tilt setting
Θi from the ray tracing propagation extracted shadowing map S(xho ,Θo) of the same sector
at the reference tilt, Θo = 4◦, by using the proposed model described in Eqs. (7)–(15) and the
correlation coefficient predictor function. The statistical correlation between the predicted
Ŝ(xho ,Θi ) and S(xho ,Θo) is equal to ρ̂Θi Θo and it is the same as the value of fs(ΔΘ)

evaluated for the respective tilt change. Thus, the correlation property is well approximated
by the model as already demonstrated in Fig. 8. The mean μ̂Θi

and the standard deviation σ̂Θi

of the newly generated shadowing map, Ŝ(xho ,Θi ), at different tilt setting is also evaluated
for selected sites. The standard deviation of the normally distributed random values, Ω(ΔΘ),
used while generating Ŝ(xho ,Θi ) is also determined as described in Eq. (11) and in this case it
is also assumed that independent random values are generated for pixel points separated by the
same de-correlation distance as S(xho ,Θ0 ) and the other values in between are evaluated via
interpolation. Spatial de-correlation distance of 40 m is assumed in our case during generating
the new shadowing map while validating the performance of the proposed model.

Results shown in Fig. 9 have indicated that the Ŝ(xho ,Θi ) has closely the same statistical
distribution with the shadowing map S(xho ,Θi ) extracted from the ray tracing data. This
is illustrated by comparing the corresponding mean and standard deviation values for the
extracted and the newly generated shadow map depicted in Figs. 7 and 9 respectively at
different tilt settings.

Moreover, it is also interesting to show how close the model predicts the corresponding
shadowing effect change, ΔŜ(xho ,Θi ,Θo), that happens during the tilt configuration change
from Θi to Θo which is found by subtracting the shadowing values at each pixel, xho , at the
respective tilt settings, i.e. ΔŜ(xho ,Θi ,Θo) = Ŝ(xho ,Θi ) − S(xho ,Θo). Thus, this value is
checked with the corresponding shadowing difference values evaluated from the ray tracing
data at the respective tilt settings, i.e. ΔS(xho ,Θi ,Θo) = S(xho ,Θi )−S(xho ,Θo). The com-
parison between distribution curves and standard deviation values shown in Figs. 6 and 10
demonstrate that the proposed model predicts the shadowing variation with respect tile
changes closely to what is observed from the ray tracing data.
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Fig. 9 Mean and standard deviation of Ŝ(xho ,Θi ) at different Θi
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Fig. 10 ΔŜ(xho , Θi ,Θ0) statistical distribution

5.2 Statistical Behavior of Height Gain

The height gain effect is investigated by using the propagation maps generated by a ray tracing
tool for the considered 3D urban model scenario depicting a typical European city clutter
type as shown in Fig. 3. In this case the total propagation loss L(xhi ,Θo) is predicted at a
different floor height level using ray tracing technique where the ray tracing tool considers
the propagation effects experienced in real life by using the employed 3D model scenario
during the propagation map prediction. Accordingly, various propagation maps are generated
for 7 different floors at a different height levels, i.e. ground floor at 1.5 m hight and 6 higher
floors with 3.1 m height difference between them.

Accordingly, the height gain Ĥ(xhi ,h0) at each pixel points x at a floor height level of
hi with respect to the ground floor height ho is evaluated from the ray tracing propagation
maps, predicted for each floor height, as shown in Eq. (25).

Ĥ(xhi ,h0) = L(xhi ,Θo) − L(xho ,Θo); (25)

The evaluated Ĥ(xhi ,h0) statistics from each pixel points are analyzed for different sectors.
Ĥ(xhi ,h0) statistical distribution is presented in Fig. 11 for one sample sector from the ray
tracing scenario. It can be seen from the figure that, the height gain value is different at
different location and this value even deviates significantly from the corresponding average
height gain value at the respective floor height level. The deviation is due to the fact that the
clutter effect experienced at various points at a certain floor height level is different at different
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Fig. 11 Ĥ(xhi ,h0 ) statistical distribution with respect to the ground floor

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20
Average Height Gain Values

Floor Lveles

G
ai

n 
[d

B
]

SITE−7−1
SITE−10−1
SITE−14−1
SITE−28−2
Existing Height Gain Model

Fig. 12 Average floor height gain value comparisons for different floors

building locations. The average floor height gain level is also evaluated for various sector
propagation cases and it is compared with the exiting 0.6 dB/m gain in Fig. 12. The same
kind of statistical distribution behavior is observed for the height gain values evaluated with
respect to different sectors. It has been also shown in Fig. 11 that the height gain statistics
follows a chi-square distribution and fits well in the figure with a chi-square distribution
curve with 4 degree of freedom, i.e. Ĥ(xhi ,h0) ∼ χ2

4 , centered at different mean for each
floor height level.

As it can be seen in Fig. 12, the average height gain values extracted from the ray tracing
data fits quite well until the 4th floor but different starting higher floors. This could be
attributed to the specific clutter type considered in our ray tracing 3D urban scenario. However,
the average height gain from different sites shows quite similar trends.

6 Impact of Tilt and Height Based Models in Network Planning and Optimization

The proposed tilt dependent shadowing model and the floor height gain investigation results
have shown that proper tuning is required to the existing propagation model in order to
accurately reflect the real time propagation effects. As discussed in the Sect. 2, in net-
work planning and optimization tasks, the planning and optimization tool should be able
to properly estimate the accompanying changes that occurs in reality due to any applied
change in network parameters. The antenna tilt is one of the significant radio parameters
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Fig. 13 RSRP CDF from ray
tracing scenario for different floor
height
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which is used in order to ensure network coverage and also to control the co-channel inter-
ference level in the system. In dynamic and flexible cell lay out deployment, supported
by the AAS features, the antenna beam orientation is adapted to the capacity and traffic
demands in the network. Evaluation phases of a self-organized network operation mecha-
nisms and algorithms as well as network planning tools should include the impact of the tilt
change and the corresponding clutter type variation experienced in the course of radio signal
propagation.

In the case of multi-floor building scenario, using a constant floor height gain, as proposed
by the existing model, always leads to a propagation gain that increases linearly with floor
height level as depicted in Fig. 12. However, in reality, the floor height gain value is highly
dependent on the relative position of a user location with respect to the corresponding trans-
mitting antenna and also the line of sight probability for the signal reception at respective floor
height level. Consequently, the height gain value might not be observed despite an increase in
floor height level if the clutter effect remains unchanged. Figure 13 illustrates the height gain
trends with the Cumulative Distribution Function (CDF) of the Reference Signal Received
Power (RSRP) level evaluated for indoor propagation at various floors taken from the ray
tracing scenario. From the figure, it can be seen that, the floor height gain is observed up to
the 3rd floor while no height gain is observed at higher percentiles. At the lower percentile of
the CDF curve, it can also be seen that the height gain is observed up to a certain floor level
and stops showing further gain while increasing the floor level. This is due to the fact that, the
line of sight probability and the clutter experience of some locations gets worse with height
due to their geographical location with respect the transmitting antenna. The presence of
various height gain experience in real network results in a different RSRP level reception at
each floor height but different locations. This, consequently, leads to a different cell coverage
and serving cell dominance per floor.

According to the the existing floor height gain model, however, the signals received from
any transmitting antenna will have the same amount of height gain, therefore, the existing
model predicts the same server map plot for each floor at any 2D location, x . However, the
best server map plots found from the ray tracing data which are shown in Fig. 14 demonstrates
that, due to the random variation of the height gain values, certain locations could experience
different floor height gains on the RSRP value detected from different transmitting sector
antennas. As a consequence, users could lie under different best server sector coverage at the
same 2D geographical location while being at different floor heights. It is also well illustrated
in Fig. 14 that while changing the floor, a new sector could merge and dominate a certain
coverage area. Other sectors also change either the size of their coverage dominance area or
disappear after a certain floor.
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Fig. 14 Best server map plot at different floor levels

7 Conclusion

In this paper, a new tilt dependent shadowing model is proposed as an extension to the existing
propagation shadowing model. The tilt dependent shadowing model predicts the shadowing
effect variation that could be experienced in real propagation environment when a tilt con-
figuration change is applied. While the tilt is changed, the proposed model approximates
and generates new shadowing fading values from the shadowing effect assumed before the
tilt change. The level of the change in the shadowing effect with the tilt difference and the
corresponding de-correlation of the shadowing process can be also predicted by the proposed
shadowing model. The model is derived and validated with a ray tracing based generated
propagation maps for a 3D model scenario of a typical European city urban clutter type.
Though sample site results are presented in the paper, the investigation has been carried
out for 75 different sectors and closely the same prediction performance is observed in the
proposed model.

Furthermore, the floor height gain variation and its effects have been investigated and
discussed in this paper. It has been found out that the height gain variation deviates from the
mean value with an increase in height level. Moreover, ray tracing based data has demon-
strated that the floor height gain is actually different for different locations and hence, in
real deployment, it leads to a different server map experience for a service area depending
on the pixel relative location with respect to the transmitting antenna. This suggests to use
a random variable floor height gain than a deterministic gain value as stated in the existing
model.

The proposed tilt dependent model is derived based on the propagation map data generated
using a ray tracing tool considering a typical urban scenario. Hence, some parameter values
introduced in the proposed model might be scenario dependent, for example, the correlation
prediction function fs(ΔΘ) whose coefficients are derived from the considered specific
scenario. Therefore, universal application of the proposed shadowing model still requires
analysis with different various scenarios. The authors would like to put this limitation as an
outlook in order to investigate how far the predictor coefficients deviate from one scenario
to another scenario.
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