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Abstract—This paper analyzes multicast (MC) as an efficient
approach in transmitting the same information to multiple
receivers (RXs). In each transmission time slot (TS), based on the
channel realizations and on the specific MC strategy, a subset
of RXs to be served is selected. The members of the served
subset may change in the next TS. We assume that the channels
from the transmitter (TX) to the RXs are independent and
identically distributed (i.i.d.). This makes it possible for each
RX to get, on average, the same amount of information. Herein,
we find a closed form solution regarding the throughput of the
Opportunistic Multicast strategy with fixed group size (OppMC-
FS) [1] and present a new variant of this strategy called OppMC
with optimal group size (OppMC-OS), providing an analytical
solution regarding its throughput. Both variants, OppMC-FS
and OppMC-OS, require instantaneous channel state information
(CSI) at the TX. In addition, we also propose a new MC strategy,
named MC based on statistical channel knowledge (StCSI-MC),
and find the throughput of this strategy in a closed form. Results
show that our strategies outperform broadcast or unicast and
also that a good MC strategy can be found without the need of
instantaneous CSI.

Index- Multicast, Broadcast, Opportunistic Scheduling, Statis-
tical CSI.

I. INTRODUCTION

The ever increasing demand for higher data rates in wireless

networks has triggered the research of different strategies

in order to increase the efficiency and optimize the use of

the wireless channel. Many applications, e.g., Multimedia

Broadcast and Multicast Service (MBMS) [2], Digital Video

Broadcast (DVB) [3], software update, video streaming, etc,

require the delivery of the same information to a large group

of users. In some mobile systems this is done by copying

the information and then sending each one of the copies to

the designated receiver (RX) using a unicast (UC) strategy.

Another possible solution is to send the same information

to all the RXs using a broadcast (BC) strategy. Both of

those strategies may exploit the random nature of the wireless

channel in different ways. UC creates multi-user diversity gain

if the information is transmitted always to the RX under the

best channel conditions, while BC produces broadcast gain

since the information is transmitted to all the RXs using the

same resource.

There has been much research on UC in wireless net-

works. In [4], the authors propose the Proportional Fair (PF)

strategy while in [5], the Max CIR (Carrier to Interference

Ratio) strategy has been proposed. A strategy considering

both fairness and efficiency of UC has been introduced in [6]

and another similar strategy, called FECD (fair and efficient

channel dependent), has been introduced in [7]. Typically, the

aforementioned UC strategies utilize Time Division Multiplex-

ing (TDM) and, during each transmission time slot (TS), the

transmitter (TX) decides which RX to serve based on the

channel state information (CSI), which has to be provided to

the TX. Once the RX is selected, the TX transmits as much

information as only that RX can decode.

In the multicast (MC) strategy, in each TS, the TX transmits

to one group of RXs and all the members of that group get

as much information as the RX of that group under the worst

channel conditions (RXmin) can decode [8]. BC can be seen

as a special case of MC where all the RXs in the system are

part of the served group.

Various papers [1], [9]–[12] have compared different UC

or MC strategies and intensive work has been performed in

determining which strategy to use for which scenario. In [9],

a comparison between UC and BC is performed under the

assumption that the RXs are equidistant from the TX. Therein,

it can be seen that BC is good when the RXs are close

to the TX or in a high SNR (signal to noise ratio) regime

while UC shows good performance for low SNR values. In

[10] [1] and [11], opportunistic multicast (OppMC) strategies

are introduced. In [10], the authors introduce the Median

Scheduling Strategy which divides the number of RXs in half

and serves the best group during each TS. In [1], different

group sizes have been simulated and it has been shown that the

system throughput scales linearly with the number of multicast

receivers in the system. The authors in [11] investigate deeper

non i.i.d. wireless channels while in [12], quantized rate

levels and different wireless channel scenarios, concerning the

strategy introduced in [1], have been simulated.

The works in [1], [10], [11] show that MC outperforms

BC and UC for a large range of SNR values. Herein, we

extend their research by providing a closed form solution

regarding the system throughput of their strategies and also

proposing a way to find the best MC group size given the

SNR distributions. Furthermore we investigate the case when

the TX does not have instantaneous CSI.

In this paper, we first investigate OppMC presenting a

closed form solution regarding the throughput of the strategies

considered in [10] and [1] which are OppMC strategies with
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fixed group size (OppMC-FS). Based on that solution, we

find the best group size in the OppMC-FS strategy, given

the SNR distribution at the RXs and the number of RXs in

the system. After that, we propose a new variant of OppMC

strategy, called OppMC with optimal group size (OppMC-

OS), in which the group size may change in each TS in order

to maximize the throughput. Furthermore, we propose a new

strategy, called MC based on statistical channel knowledge

(StCSI-MC), which does not require instantaneous channel

knowledge at the TX. For each strategy, we always investi-

gate the achievable throughput under the assumption of i.i.d.

(independent and identically distributed) channel conditions.

This assumption leads to the fact that, given one of our MC

strategies, all the RXs in the system will get the same average

throughput, named average user throughput. If we change the

strategy, the average user throughput changes, but remains the

same for all the RXs in the system.

The rest of the paper is organized as follows. In Section II,

the system model is presented. Section III refers to the OppMC

strategy, introducing also the OppMC-OS variant. Section IV

describes the StCSI-MC strategy. In Section V, a performance

comparison between our strategies, and also the UC and BC

strategies, is performed. In Section VI, conclusions are drawn.

II. SYSTEM MODEL

In this section, the system model is introduced. We are

considering one TX and a number N of RXs. Each RX has

a distance d from the TX, see Fig. 1, and wants to receive

the same information from the TX. The TX and all the RXs

are equipped with omnidirectional antennas. The transmission

takes place in TSs. In each TS, depending on the MC strategy

that we are using, only certain RXs are selected to be served.

Each RX will have the same probability to be selected on

average, since all the RXs have the same channel statistics.

The scenario can, e.g., be seen as a downlink of a cellular

network.

Fig. 1. Scenario

Regarding the wireless channel, with hn we denote the

channel coefficients between the TX and RX n, n = 1..N .

We suppose that ∀n = 1..N , hn are i.i.d. complex circularly

symmetric Gaussian distributed random variables with zero

mean and variance 1. Furthermore, block flat fading will be

assumed, i.e., the channel coefficients are constant for the

entire duration of the TS and for the whole bandwidth of

the transmitted signal. In addition, we assume a path loss

channel model. We also assume additive white Gaussian noise

(AWGN) at each RX. This noise can be thermal noise or

interference coming from other TXs close to this RX. Because

of these assumptions, we will have a memory-less channel.

If the path loss coefficient is denoted by α, the transmit

power is denoted by PT and the noise power at each RX is

denoted by PNoise, then the instantaneous SNR value at RX n
will be

γn =

(

d

d0

)

−α

·
PT|hn|

2

PNoise

=
PT|hn|

2

dαnPNoise

= γ · |hn|
2 (1)

assuming that d0 = 1 m. γ is the average SNR value that RX

n is experiencing. γ is not dependent on the RX’s index n
since it is the same for all the RXs.

Due to the assumptions above, the channel power coefficient

|hn|
2 is exponentially distributed, making also γn exponen-

tially distributed with an average value of γ. The probability

density function (PDF) of the SNR for RX n is

fγ(γ) = fγn
(γn) =

{

1
γ
exp

(

−γ
γ

)

if γ ≥ 0

0 otherwise
(2)

and it is independent of the index n of the RX.

The cumulative distribution function of γ is

Fγ(γ) =

{

1− exp
(

−γ
γ

)

if γ ≥ 0

0 otherwise
(3)

We will study the system from the information theoretical

point of view and allow infinite delay. This assumption is

acceptable if we consider a large buffer at each RX and make

use of the fountain codes where every transmitted bit counts as

useful bit since each RX can reconstruct the original message

from the received encoded bits [13]. The average throughput

which can be transmitted to each RX will be derived from the

Shannon-Hartley theorem [14], in form of the ergodic capacity

(in bits/s) and, for simplicity, it will be assumed that B = 1
Hertz.

III. OPPORTUNISTIC MULTICASTING (OPPMC) STRATEGY

In this section, we will analyze OppMC more in details. In

the OppMC strategy, in each TS, after having the CSI of all

the channels between the TX and all the RXs, the TX decides

which group of RXs should be served. In Section III-A, we

will examine the OppMC with fixed group size K (OppMC-

FS) strategy, in which the number of RXs in the served group

is fixed in each TS, while the members of this group may

change [1]. In Section III-B, we propose an OppMC variant,

called OppMC with optimized group size (OppMC-OS), in

which the cardinality of the served group may change in each

TS. BC and UC can be considered as special cases of the

OppMC-FS strategy, for group sizes of K = N and K = 1,
respectively. The gain of this strategy with respect to UC or
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BC is that, by modifying the cardinality of the MC group that

we serve, we can profit from both multi-user diversity gain

and broadcast gain. The larger the group size, the higher the

broadcast gain, but the lower the multi-user diversity gain.

A. OppMC-FS Strategy

In this section, the OppMC-FS strategy is analysed in details

and a closed form solution is provided regarding the average

throughput of this strategy. In OppMC-FS, we serve K out of

N receivers in a multicast way and, in every TS, the cardinality

of the served subset is always fixed to K . The members of this

subset are the K RXs which have the highest instantaneous

SNR values in a given TS and we send as much information

as RXmin of this subset can decode. Since we assumed i.i.d.

channels, each RX has the same probability to be part of the

served subset.

In order to determine the average user throughput, which is

the throughput that each RX gets on average, we first order the

instantaneous SNR values γn based on their realizations, from

the highest to the smallest. We denote with yK the random

variable expressing the K th maximum ordered statistics, i.e.,

for every TS, (K − 1) γn values are higher than that value

and (N −K) γn values are lower than it. The PDF of yK is

found as

fK(γ) =
N !

(N −K)!(K − 1)!
F

N−K
γ (γ)[1− Fγ(γ)]

K−1
fγ(γ) (4)

[15], where Fγ(γ) and fγ(γ) are given in (2) and (3),

respectively.

In this case, since we are sending to all the RXs of the

served subset as much as RXmin of this subset can decode, to

obtain the average user throughput, we have to average over

the SNR distribution of RXmin in the served subset. Thus, the

average user throughput is

DK = E(DOppMC-FSK) =
K

N

∫

∞

0

log2(1 + γ)fK(γ)dγ (5)

In (5), the factor K takes into account the fact that K RXs

are served in each TS, while the factor 1/N expresses the

average user throughput. For (5), we can find a closed form

solution if we apply the binomial theorem for the expansion

of the power of a series [16, Eq 1.111] and by solving the

integral [16, Eq 4.337.2]. Finally, the average user throughput

of this strategy, is

DK = C

N−K
∑

l=0

(

N −K

l

)

−1l

l +K
exp

(

l +K

γ

)

E1

(

(l +K)

γ

)

(6)

where C = K(N−1)!
(K−1)!(N−K)!ln(2) and E1(x) = −Ei(−x) is

the exponential integral function [17]. For any combination of

γ and N , an optimal K can be found which maximizes DK .

B. OppMC-OS Strategy

In this paragraph, the OppMC-OS variant is explained.

Since we have the full instantaneous CSI knowledge at the

TX, in each TS, we can also form a subset of RXs to be

served without a fixed cardinality. This subset may change

its cardinality and also its members in each TS in order to

maximize the average user throughput. In a specific TS, if we

want to transmit to the RX with the j th highest SNR value γj ,
we should send Dj = log2(1+ γj) bits/s and the total system

throughput, from all the N RXs in the system, will be j ∗Dj ,

since the number of RXs that can decode Dj is j. In order to

find the maximum achievable system throughput DOpt-Sys, in

each TS, we have to find:

DOpt-Sys = max
j=1..N

j ∗ log2(1 + γj) (7)

and send DOpt-Sys to all the RXs, but only to the RXs that

are in condition to decode DOpt-Sys will get information and

contribute to the system throughput. Even here, in each TS,

every RX will have the same probability to be served since

they have i.i.d. channels from the TX.

The average user throughput of this strategy is

E(DOppMC-OS) =
E(DOpt-Sys)

N

=
1

N

∫

∞

0

[

1−

N
∏

K=1

N
∑

l=N−K+1

l
∑

i=0

(

N

l

)(

l

i

)

(−1)i

exp

(

−(2
x
K − 1)(i(N − l))

γ

)]

dx (8)

For the derivation of (8) see the Appendix.

IV. STCSI-MC STRATEGY

Having instantaneous CSI at the TX has always a cost in

terms of resources used to find it, cost which increases with

the number of RXs in the system. In some cases, it is much

simpler to have only statistical CSI at the TX, e.g., the distance

of the RXs, the SNR distribution at each of them and the

correlation between the channel coefficients. Because of this,

in this section, a MC strategy, called StCSI-MC, is proposed

for the case when the TX has only statistical CSI.

In StCSI-MC, the TX will determine its throughput based on

statistical CSI. Some RXs, under good instantaneous channel

conditions will be able to decode and will be part of the served

subset (SSB), while other RXs, under bad channel conditions,

will not be able to decode. In each TS, the TX does not

know the cardinality and the members of the SSB. Based on

the transmitted throughput, the TX can estimate an average

cardinality of the SSB.

The idea of this strategy is as follows. In each TS, the

TX transmits DΓ = log2(1 + Γ) bits/s, where Γ is a fixed

quantity which does not depend on the channel conditions.

Thus, DΓ does not depend on the instantaneous SNR values

on the RXs. In each TS, the RXs with an instantaneous

SNR value γn higher than Γ will be able to decode the

transmitted information and the amount of throughput that

each one of them will get is log2(1+Γ), independent on their

actual SNR values. If DΓ increases, the average cardinality of

SSB decreases while the throughput of each one of the SSB

members increases. Hence, the best trade-off has to be found
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in order to maximize the throughput in terms of average user

throughput.

If we apply StCSI-MC, the average user throughput is

E(DStCSI-MC) =
1

N

N
∑

i=1

∫

∞

Γ

log2(1 + Γ)fγ(x)dx

= exp

(

−Γ

γ

)

log2(1 + Γ) (9)

In Fig. 2, we plot the average user throughput of (9) as a

function of Γ, for a given value of γ.
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Fig. 2. Average user throughput of the StCSI-MC strategy versus Γ for
different values of γ

From Fig. 2, it can be seen that given γ, there is always a

value of Γ, named ΓOPT, for which E(DStCSI-MC) reaches its

maximum. We can find this value if we set the derivative of

E(DStCSI-MC) to zero as:
(

1

ln 2

1

1 + Γ
−

1

γ
ln(1 + Γ)

)

exp

(

−Γ

γ

)

= 0 (10)

The solution of (10) is given by:

ΓOPT = −1 +
γ

W (γ)
(11)

where W (x) is the Lambert function [18]. In the following,

the StCSI-MC using ΓOPT will be called OStCSI-MC, where

O stands for optimal.

V. NUMERICAL RESULTS AND COMPARISONS

This section is divided in two parts. In the first part, nu-

merical results will be shown regarding the different OppMC

variants while in the second part, a comparison of the best

OppMC variants with the OStCSI-MC strategy is shown. Since

the UC and BC strategies can be seen as special cases of the

OppMC-FS strategy, they are also included in the comparisons.

The system parameters are given in Table I.

A. Numerical results for OppMC

The performance of our proposed OppMC strategies can be

shown in terms of throughput gain that our variants produce

with respect to the UC case (OppMC-FS forK = 1). This gain
is defined as the ratio between the average user throughput

of the specific OppMC strategy divided by the average user

TABLE I
SYSTEM PARAMETERS

Nomenclature Value Meaning

PT 38 dBm Transmission Power

PNoise -80 dBm Noise Power

α 3.5 Path Loss Coefficient

d 50m — 300 m Distance between RXs and TX

γ 22.8 dB — -4.2 dB Resulting average SNR values

throughput of the UC strategy. GK is the gain of the OppMC-

FS variant with respect to UC and Gb is the gain of the

OppMC-OS variant with respect to UC. These gains are:

GK =
E(DK)

E(D1)
and Gb =

E(DOppMC−OS)

E(D1)
(12)

In Fig. 3, GK is plotted. Here, K takes values 4, 8, 12, 16,
20 and also N (BC), which, in this case, is chosen to be 25.
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Fig. 3. Gain of the OppMC-FS strategy with respect to UC versus the average
SNR value on each RX (γ). In this case, N = 25.

From Fig. 3, we can see that by using the OppMC-FS

strategy we can have higher average user throughput values

than by using UC or BC strategies, especially in the middle

and in the low SNR regime. Furthermore, the higher the γ, the
better the BC strategy. Also for different γ, different values of
K lead to the maximum GK .

In Fig. 4, we can see GK and Gb as a function of K for

given average SNR values γ. It can be seen that the higher γ,
the higher the gain, for both OppMC-FS and OppMC-OS. A

gain of 10 means that each RX will get on average 10 times

more information than if we were using the UC strategy. The

gain, Gb or GK , is always between 0 and N , while the gap

between Gb and GK with the optimal K is rather small.

In Fig. 5, E(DK) is plotted as a function of N for different

values of γ, under the condition that K
N

stays constant (in our

case 1
3 ). In the same figure, also the average user throughput

provided from the UC or BC strategies is plotted.

From Fig. 5 it can be seen that for high values of N ,

E(DK) stays constant if we increase the number of RXs in

our system, under the condition that the fraction of served RXs

over the total number of RXs stays constant. For the UC or BC

strategies, if the total number of RXs in the system increases,
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Fig. 4. GK versus the number of RXs in the served subset K in the OppMC-
FS strategy. In the same graph, also Gb is shown. Different values of γ are
taken into consideration. For this case, the number of RXs in the system is
N = 25.
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Fig. 5. Average user throughput versus number of users in the system N
for the OppMC-FS strategy

the average user throughput decreases. In the UC case, this

is due to the fact that we serve just one (the best) RX per

TS and what each RX will get is proportionally inverse with

N and proportional with the PDF of the best RX, see (4). If

N increases, also fK(y) increases, but still the factor 1
N

is

dominant for this case and drops the E(D1) down. For the

BC case, if N increases, E(DN ) goes down because we have

to serve the RX under the worst instantaneous SNR conditions

and the higher N , the worse are the conditions of this RX.

Also, from Fig. 4, we can see that there is always one value

of K for which E(DK) achieves a maximum and this K value

depends only on γ and N . Because of this, if we know γ,
we can always find a value of K

N
in order for our variant to

outperform all the others OppMC-FS variants. This variant is

called Optimal OppMC-FS (OOppMC-FS). The best values of
K
N
, for different values of N , as a function of γ of all the RXs

are given in Figure 6.

In Fig. 6, it can be noticed that the best K
N

ratio, regarding

OppMC-FS, depends in general on γ tending to 1 for large

γ. Furthermore, it can be seen that for a given γ, the best K
N

ratio is almost independent from the number N of users in the

system.

−5 0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

K
/N

 

 

N=25

N=50

N=80

N=170

N=200

γ

Fig. 6. Best K
N

value versus γ for OppMC-FS for different values of N .

B. Comparison OppMC and OStCSI-MC strategies

This paragraph is dedicated to a comparison of all the

strategies discussed in this paper. In the case of OppMC-FS

and StCSI-MC, we have taken into consideration only the best

performing variant of those strategies which are OOppMC-FS

and OStCSI-MC respectively. In addition, also a comparison

with the UC and BC schemes is made.

In Fig. 7, the average user throughput as a function of γ for

all the different strategies is shown. Here, it can be seen that

each one of our introduced strategies, OOppMC-FS, OppMC-

OS, OStCSI-MC, outperforms the UC or BC strategy for the

given γ values. In addition to that, OStCSI-MC needs less

CSI knowledge than the other strategies, including UC and

BC. Furthermore the performance of our discussed strategies

(OOppMC-FS, OppMC-OS, OStCSI-MC) are very close to

each other. Of course, the best performance is reached by

OppMC-OS, which requires instantaneous CSI knowledge and

has the most complex solution.
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Fig. 7. Strategies comparison in terms of average user throughput versus the
average SNR value at each receiver (γ). In this example, N = 25.

In Fig. 8, the average user throughput, for each one of our

strategies as a function of the total number N of users is

plotted assuming γ = 20 dB. Even here it can be seen that

both of our closed formed solution strategies outperform UC

or BC and they are very close to OppMC-OS. In addition to

that, the average user throughput for our proposed strategies

does not depend on the number of RXs in the system. In this

way, the TX will manage its resources based on what it wants

to send to them and not on how many RXs are in the system.

This means that if a new RX enters into our system, it will

not influence what the others are receiving. The only thing
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that should be done at the TX is to find again a new value of
K
N
, if it wants to be very rigorous, or just a new value of K ,

if it is performing OppMC-FS scheduling or nothing if it is

performing StCSI-MC.
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Fig. 8. Strategies comparison in terms of average user throughput versus the
total number of RXs in the system (N ) with γ = 20 dB.

VI. CONCLUSIONS

In this paper, we investigated different multicast strategies

in i.i.d. Rayleigh fading channels. We have derived a closed

form solution for the opportunistic multicast with fixed group

size (OppMC-FS) strategy for the average user throughput.

We have also proposed two new strategies. We have given

an analytical solution for the average user throughput of

the OppMC-OS strategy and a closed form solution for the

average user throughput of the StCSI-MC strategy. The StCSI-

MC strategy requires less channel knowledge than the other

strategies. Results show that the average user throughput of the

OppMC-OS strategy is slightly higher than the average user

throughput of the OppMC-FS strategy and that the OppMC-

FS average user throughput is slightly higher than the StCSI-

MC average user throughput. Moreover, the average user

throughput of our analyzed strategies is much higher than the

average user throughput of unicast or broadcast. Furthermore,

the average user throughput in our strategies does not depend

on the number of receivers in the system, in contrast to unicast

or broadcast strategies. The investigation of the scenarios

where the receivers are under different average SNR conditions

is left for future work.
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APPENDIX

In this appendix, the formula regarding average user throughput
of the OppMC-OS strategy, given in (8), is derived.

Based on (4), we can find that the CDF of the K th ordered statistic
γK is given by:

FK(γK) =
N
∑

l=N−K+1

(

N

l

)

F
l
γ(γK)[1− Fγ(γK)]N−l

(13)

We define the random variable tK = Klog2(1 + yK). Its CDF
can be found as:

FtK (γK) = P [tK < γK ] = P [Klog2(1 + yK) < γK ]

= P [yK < 2
γK
K

− 1] = FK(2
γK
K

− 1) (14)

Now, we define Tmax = max
K=1..N

(tK) and we have:

FTmax (γ) = P [Tmax < γ] =

N
∏

K=1

P [tK < γ]

=
N
∏

K=1

FK(2
γ
K

− 1) (15)

Since FTmax (γ) = 0 if y < 0 we can find:

E(DOppMC-OS) =
1

N

∫

∞

0

1− FTmax (x)dx (16)

which can be written as shown in (8).
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