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Abstract—In this paper, we investigate the feasibility conditions
for relay-aided interference alignment in a class of partially
connected networks. The considered scenario consists of several
single-antenna communicating node pairs and multiple single-
antenna amplify-and-forward relays. Some of the direct links
between the source and the destination nodes may have zero gain.
A two-hop transmission scheme is applied. The relays’ scaling
factors, along with the transmit and receive filters, are adapted
to the channel to null the interference signals at every destination
node. However, this would also null the desired useful signal at
certain destinations if the number of relays is insufficient. To
avoid this, the required number of relays is studied. We show
that the required number of relays depends on the rank of the
incidence matrix of a graph defined by the topology of the direct
links.

I. INTRODUCTION

In recent years, interference alignment (IA) has attracted

particular interest. IA aims at achieving the maximum degrees

of freedom (DoF) at high signal-to-noise ratio (SNR) in sce-

narios where the achievable sum-rate is mainly interference-

limited. Generally speaking, the following conditions need to

be satisfied to accomplish IA:

• Interference-nulling conditions: The interference sig-

nals shall be aligned in a subspace of the signal space at

every destination node.

• Validity conditions: The received useful signals shall not

fall into the interference subspace and the multiple data

streams shall be separable at every destination node.

The IA conditions have been firstly formulated in [1]. An IA

solution must satisfy both the interference-nulling conditions

and the validity conditions, i.e., be a valid interference-nulling

solution.

In [1], it is shown that IA in MIMO interference channels

can be accomplished by properly choosing the transmit and

receive filters. An iterative algorithm converging to the IA

solution is proposed in this paper. For IA in MIMO inter-

ference channels, a non-trivial interference-nulling solution

fulfils the validity conditions in the almost-sure sense if the

channel matrices do not have a particular structure and all

channel coefficients are randomly drawn from a continuous

distribution [1]. This is because the direct useful channels

between the communicating source-destination node pairs do

not participate in the interference nulling. The solvability

of the interference-nulling conditions can be determined by

comparing the number of equations and the number of free

variables [2]. This is then proved in [3] for symmetric cases

in which the numbers of antennas at all nodes are equal.

A two-hop IA scheme in a three-user interference relay

channel utilizing direct links is also introduced in [1]. With

the help of the amplify-and-forward relays, one data symbol

can be transmitted by each user within two time slots when

every node has only a single antenna. In total, 3/2 DoF
can be achieved. For relay-aided IA, the solvability of the

interference-nulling conditions is no longer the sole concern

of the feasibility. Since the so called relay links are shared by

all users and are considered in the interference nulling, the “in-

dependency” of the effective useful links cannot be provided

if the number of relays is insufficient. In fact, there exist cases

in relay-aided IA in which all non-trivial interference-nulling

solutions are invalid. The feasibility conditions for relay-aided

IA in fully connected networks are studied in [4].

In the present paper, we examine a linear relay-aided IA

algorithm with adaptive transmit and receive filters proposed

in [5]. Based on this algorithm, we show that if the number of

relays is sufficient, valid interference-nulling solutions almost

surely exist, i.e., relay-aided IA is almost surely feasible.

Furthermore, a randomly picked interference-nulling solution

is almost surely a valid one. On the contrary, if the number

of relays is insufficient, all interference-nulling solutions are

almost surely invalid. The required number of relays to avoid

this is studied. We consider a class of partially connected net-

works where some direct links may be practically zero because

of attenuation effects, e.g., path loss and fading. However,

every relay is connected to every source and destination node.

With the given network topology, a graph theoretic approach

is applied to derive the required number of relays.

The rest of this paper is organized as follows. The consid-

ered scenario is introduced in Section II. The IA conditions are

formulated in Section III. We will then derive the feasibility

conditions in Section IV. The graph theoretic approach we

used is introduced in Section V, along with a few examples.

Finally, we present some simulation results in Section VI and

conclude the paper.

II. SYSTEM MODEL

Consider an interference channel consisting of K source-

destination node pairs and R one-way relays. Every node and
every relay is equipped with a single antenna. The amplify-

and-forward relaying strategy is used. A two-hop transmission
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Fig. 1. Two-hop transmission scheme.

scheme as illustrated in Fig. 1 is applied. In the first time

slot, every source node transmits a single data symbol to both

the relays and the destination nodes. In the second time slot,

the source nodes transmit the same data symbols again to the

destination nodes while the relays retransmit a scaled version

of their received signals to the destination nodes. Furthermore,

full channel state information is assumed to be available at

the nodes and at the relays. Throughout this paper, K > 1 is
always assumed. The noise signal is only considered in the

simulation results.

Define the channel matrices as HDS = [h
(k,j)
DS ]K×K ,

HRS = [h
(r,j)
RS ]R×K , and HDR = [h

(k,r)
DR ]K×R, where h

(k,j)
DS ,

h
(r,j)
RS , and h

(k,r)
DR denote the channel coefficients from the j-

th source node to the k-th destination node, from the j-th
source node to the r-th relay and from the r-th relay to the k-
th destination node, respectively. The channel coefficients are

independently drawn from a continuous distribution over the

complex field and are considered to be constant throughout

the transmission duration. In the partially connected networks

discussed in this paper, some elements of HDS are set be

zero and the other channel coefficients are non-zero with

probability 1. Fully connected networks are treated as special

cases. Let dj and v
(j) = (v

(j)
1 , v

(j)
2 )T denote the transmitted

data symbol and the temporal transmit filter of the j-th source

node, respectively. Let u(k) = (u
(k)
1 , u

(k)
2 )T and d̂k denote

the temporal receive filter and the filter output at the k-th
destination node, respectively. Additionally, let the r-th relay’s
scaling factor be denoted by g(r).
Since two time slots are utilized, the virtual channel between

the j-th source node and the k-th destination node is a 2× 2
MIMO channel and given by

H
(k,j) =

(
h
(k,j)
DS 0∑R

r=1 h
(k,r)
DR g(r)h

(r,j)
RS h

(k,j)
DS

)
. (1)

Therefore, the receive filter output at the k-th destination can
be written as

d̂k = u
(k)∗T

H
(k,k)

v
(k)dk + u

(k)∗T
K∑

j=1
j �=k

H
(k,j)

v
(j)dj . (2)

In (2), the first term represents the useful signal for the

k-th destination node and the second term contains only

interferences. Then the IA conditions can be formulated as

follows:

u
(k)∗T

H
(k,j)

v
(j) = 0, ∀k, j ∈ {1, . . . ,K}, k �= j (3)

u
(k)∗T

H
(k,k)

v
(k) �= 0, ∀k ∈ {1, . . . ,K}. (4)

III. IA CONDITIONS WITH ADAPTIVE FILTERS

A. Interference Nulling

The interference-nulling conditions of (3) are non-linear in

the relays’ scaling factors and the filter coefficients. But it

is natural to assume that u
(k)∗
2 v

(j)
1 �= 0, ∀k, j. Otherwise,

successful transmission would only be possible in very rare

scenarios, which do not influence our conclusions. Hence, we

exclude this situation from our discussion for simplicity. Under

this assumption, (3) can be reformulated as

R∑

r=1

h
(k,r)
DR g(r)h

(r,j)
RS + h

(k,j)
DS

(
v
(j)
2

v
(j)
1

+
u
(k)∗
1

u
(k)∗
2

)
= 0, ∀k �= j.

(5)

Let g(r), v
(j)
2 /v

(j)
1 and u

(k)∗
1 /u

(k)∗
2 be chosen as the un-

known variables. Then the equations of (5) form a linear

system of equations in R + 2K variables. Define HRL and

HDL to be matrices of dimensions K(K − 1) × R and

K(K−1)×2K as shown in (6) at the top of next page. Using

these matrices, the linear system of equations represented by

(5) can be rewritten in matrix-vector form as

(HRL|HDL)x = 0, (7)

where x contains the unknown variables. We refer to the

solution space of (7) as the interference-nulling solution space

denoted by Null (HRL|HDL). A simple non-trivial solution
of (7) can always be found by setting the relays’ scaling

factors to zero and choosing the transmit and the receive filters

to be pairwise orthogonal. Unfortunately, this solution nulls

the useful signals at every destination node and is an invalid

solution.

B. Invalid and Valid Solutions

Similarly, rewrite the validity conditions of (4) as

R∑

r=1

h
(k,r)
DR g(r)h

(r,k)
RS + h

(k,k)
DS

(
v
(k)
2

v
(k)
1

+
u
(k)∗
1

u
(k)∗
2

)
�= 0. (8)

Let the interference-nulling solutions which satisfy the in-

equalities of (8) for all k = 1, . . . ,K be defined as the valid

solutions. The sets of the valid and invalid solutions will be

given with the help of the following notations.

The expression on the left hand side of (8) is linear in

the chosen unknown variables. Let the coefficient vector be

denoted by (ak|bk), where ak is a 1 × R row vector with

h
(k,r)
DR h

(r,k)
RS , r = 1, . . . , R being its elements and bk is a

1×2K row vector with all elements being zero except for the
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ones in the k-th and the (K+k)-th column, which both equal

h
(k,k)
DS . Furthermore, define the following extended matrices:

(
H̃

(k)

RL

∣∣∣∣ H̃
(k)

DL

)
=

(
HRL HDL

ak bk

)
, k = 1, . . . ,K. (9)

Any vector lying in the null space of (H̃
(k)

RL|H̃
(k)

DL) is an invalid
solution nulling the useful signal of the k-th user. We refer to

Null(H̃
(k)

RL|H̃
(k)

DL) as the invalid solution subspace with respect
to the k-th user. Therefore, the set of the invalid solutions
Ψinvalid can be given by

Ψinvalid =

K⋃

k=1

Null

(
H̃

(k)

RL

∣∣∣∣ H̃
(k)

DL

)
. (10)

The set of the valid solutions Ψvalid, namely the set of IA

solutions, is the complement of Ψinvalid in Null (HRL|HDL).

IV. FEASIBILITY CONDITIONS FOR RELAY-AIDED IA

The validity conditions require that each individual vector

(ak|bk) is linearly independent of the rows in (HRL|HDL).
The following proposition indicates that this is also sufficient

in the almost-sure sense.

Proposition 1. An IA solution exists if and only if

rank

(
H̃

(k)

RL

∣∣∣∣ H̃
(k)

DL

)
= rank (HRL|HDL) + 1 (11)

holds for all k = 1, . . . ,K . Then a randomly picked
interference-nulling solution of (7) is almost surely a valid
one.

Proof: Since (H̃
(k)

RL|H̃
(k)

DL) is obtained by adding the row
(ak|bk) to (HRL|HDL),

Null

(
H̃

(k)

RL

∣∣∣∣ H̃
(k)

DL

)
⊆ Null (HRL|HDL) , ∀k (12)

holds. If (11) holds for the k-th user, then the invalid solution
subspace with respect to the k-th user represents a hyperplane
of Lebesgue measure 0 in the interference-nulling solution

space. If (11) holds for all users, then the set of invalid solu-

tions Ψinvalid, which is the union of a finite number of those

hyperplanes, is of Lebesgue measure 0 in the interference-

nulling solution space as well. Therefore, Proposition 1 fol-

lows. If (11) does not hold for at least one user, then the invalid

solution subspace with respect to this user is identical to the

interference-nulling solution space. Therefore, all interference-

nulling solutions are invalid.

The following corollary gives a principle for determine

whether relays are required at all.

Corollary 1. For an arbitrary number of relays, a randomly
picked interference-nulling solution is almost surely valid if

rank

(
H̃

(k)

DL

)
= rank (HDL) + 1 (13)

holds for all k = 1, . . . ,K .

Proof: Clearly, if (13) holds, then (11) holds for arbitrary
number of relays. The corollary follows.

In order to determine the required number of relays such that

(11) is satisfied, rank(H̃
(k)

RL|H̃
(k)

DL) and rank(HRL|HDL) need
to be studied. We first argue that in the considered partially

connected networks, the matrices HRL and H̃
(k)

RL are almost

surely of full rank. Note that HRL and H̃
(k)

RL are submatrices

of H
T
RS ⊙ HDR, where ⊙ denotes the Khatri-Rao product

[6], which can be understood as the column-wise Kronecker

product as well. Corollary 1 in [7] shows that the Khatri-Rao

product A of two matrices whose entries are independently

drawn from a continuous distribution is almost surely of full

k-rank1. This conclusion holds for AT as well. This means

a submatrix of H
T
RS ⊙ HDR consisting of a collection of

arbitrarily chosen r rows has rank min {r, R}. The matrices

HRL and H̃
(k)

RL can be obtained by removing K and K − 1
rows from H

T
RS ⊙ HDR, respectively. Therefore, HRL and

H̃
(k)

RL, k = 1, . . . ,K are almost surely of full rank.

We then argue that

rank (HRL|HDL) = min {K(K − 1), R+ rank (HDL)}
(14)

1Kruskal-rank or k-rank [8]: the k-rank of a matrix A is r if every r

columns of A are linearly independent and either A has r columns or A
contains a set of r + 1 linearly dependent columns.



almost surely holds. (HRL|HDL) is of dimension K(K −
1) × (R + 2K). For K = 2, it is obvious that HDL has two

independent rows. Equation (14) follows directly. For K ≥ 3,
first consider the case

K(K − 1) ≥ R + rank (HDL) . (15)

In this case, HRL is a tall matrix and of rank R. Rewrite HDL

as

HDL = DDSM, (16)

where M is obtained by replacing the non-zero entries of

HDL with ones and let DDS be a diagonal matrix with

(h
(2,1)
DS , . . . , h

(K,1)
DS , . . . , h

(1,K)
DS , . . . , h

(K−1,K)
DS ) being its diag-

onal entries. Note that some diagonal entries of DDS are zeros

because of the partial connectivity of the direct links. But

replacing them with arbitrary non-zeros cannot hurt the result.

When doing so, DDS becomes invertible. Therefore,HDL and

M are of the same rank and

rank (HRL|HDL) = rank
(
D

−1
DSHRL

∣∣M
)

(17)

holds. Then it suffices to show that the column spaces of

D
−1
DSHRL and M are almost surely disjoint under the con-

dition of (15). One the one hand, the entries of M are only

zeros and ones. In partially connected networks with given

topology, span (M) is a fixed subspace of CK(K−1) and is

of dimension rank (HDL). On the other hand, the entries
of D−1

DSHRL depend on the channel coefficients, which are

randomly drawn from a continuous distribution. From an

engineering point of view, we can conclude that span (M)
and span

(
D

−1
DSHRL

)
are almost surely disjoint as long as the

sum of their dimensions does not exceedK(K−1). This result
is also supported by numerical simulations. For K ≥ 3 and
K(K − 1) < R + rank (HDL), a submatrix of (HRL|HDL)
consisting of HDL and arbitrary K(K − 1) − rank (HDL)
columns of HRL is of rank K(K − 1) according to the
discussion for the case (15). Hence, (14) almost surely holds.

The argument above can be also applied to shown that

rank

(
H̃

(k)

RL

∣∣∣∣ H̃
(k)

DL

)
=

min

{
K(K − 1) + 1, R+ rank

(
H̃

(k)

DL

)}
(18)

almost surely holds for all k = 1, . . . ,K .
Equipped with these results, we can derive the required

number of relays. Define I to be a subset of the indices of
the user pairs for which equation (13) is not satisfied, thus

I =

{
k ∈ {1, . . . ,K}

∣∣∣∣rank
(
H̃

(k)

DL

)
= rank (HDL)

}
.

(19)

Regarding I, the feasibility conditions for linear relay-aided
IA in the considered partially connected networks can be

summarized as follows:

• If I is the empty set, then (13) holds for all users. Con-
sequently, IA is almost surely feasible with an arbitrary

number of relays.

• If I is non-empty and

R ≤ K(K − 1)− rank (HDL) , (20)

then by the equations of (14) and (18)

rank

(
H̃

(k)

RL

∣∣∣∣ H̃
(k)

DL

)
= rank (HRL|HDL) (21)

almost surely holds for the user pairs indexed by the

elements in I. By Proposition 1, IA solutions unlikely
exist, i.e., relay-aided IA is almost surely infeasible. Note

that for the user pairs which are not indexed by the

elements in I, the useful signals would unlikely be nulled
and 1/2 DoF per user are almost always achievable.

• If I is non-empty and

R ≥ K(K − 1)− rank (HDL) + 1, (22)

then (11) almost surely holds for all users. IA is almost

surely feasible and the total achievable DoF are K/2.

V. DETERMINING THE REQUIRED NUMBER OF RELAYS

In this section, we propose a graph theoretic approach to

determine the rank of HDL and H̃
(k)

DL as well as the required

number of relays.

Define a bipartite undirected graphG[S,D,E] whose vertex
subsets S = {s1, . . . , sK} and D = {d1, . . . , dK} represent
the source and the destination nodes, respectively. The non-

zero direct interference links form the set of edges E. For
instance, the diagram of G in a three-user partially connected

network is illustrated in Fig. 2a. The edge-vertex incidence

matrix MG of G can be obtained by removing the zero rows

from the matrix M in (16). Hence, HDL and MG are of the

same rank.

Based on G, define the graphs Gk[S,D,Ek], k = 1, . . . ,K
which are obtained by adding one edge indicating the direct

useful link between the k-th user pair to G, respectively.

Additionally, Gk is identical to G if h
(k,k)
DS equals zero.

Consider the example shown in Fig. 2a. We further assume

that the direct useful link between s3 and d3 is zero. Then the
diagrams of G1, G2 and G3 of the partially connected network

can be illustrated in Fig. 2b, 2c and 2d, respectively. Let the

incidence matrix of Gk be denoted by MGk
. Then H̃

(k)

DL and

MGk
have the same rank.

To determine the rank of the incidence matrix of a graph,

one can count the number of edges of a maximal forest in the

graph, i.e., a maximal acyclic subgraph including all vertices

[9]. In the following, we examine the feasibility of relay-aided

IA in three scenarios using the proposed method.

Scenario 1. Consider a K-user fully connected network
where K ≥ 3. The corresponding graphs G and Gk of such a

network are connected graphs with 2K vertices. Any spanning

tree of each of those graphs has 2K− 1 edges [9]. Therefore,

all matrices H̃
(k)

DL and HDL are of rank 2K− 1. According to
(22), the required number of relays is given by

R ≥ K2 − 3K + 2. (23)
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Fig. 2. Diagrams of G, G1, G2 and G3 in a three-user partially connected
network.

Scenario 2. Consider a three-user partially connected net-

work whose topology of the direct links is shown in Fig.

2. Two relays are connected to every source and destination

node. A maximal forest in G, G1, G2 and G3 has 4, 4, 5

and 4 edges, respectively. The invalid solution subspaces with

respect to the 1st and the 3rd user are almost surely identical

to the interference-nulling solution space. Hence, relay-aided

IA is almost surely infeasible. However, the useful signal of

the 2nd user would unlikely be nulled by a randomly picked

interference-nulling solution with arbitrary number of relays.

Scenario 3. Consider the three-user partially connected

network whose topology of the direct links is the same as the

one in scenario 2. Three relays are connected to every source

and destination node. Then the inequality of (22) is satisfied

and relay-aide IA is almost surely feasible.

VI. NUMERICAL RESULTS

In this section, the average sum-rate per time-slot is taken

as a measure of the performance of the considered relay-aided

IA scheme, thus

C =
1

2

K∑

k=1

ld (1 + γk) , (24)

where γk is the SNR at the k-th destination node. Define the
pseudo signal-to-noise ratio (γpSNR) to be the ratio of the

total energy transmitted in two time-slots by the source nodes

and the relays to the noise variance at a destination node [5].

Furthermore, the non-zero channel coefficients are assumed

to be i.i.d. Rayleigh fading with unit average channel gain.

Additive white Gaussian noise is assumed at both the relays

and the destination nodes. The system performances in the

three scenarios introduced in Section V are studied. In scenario

1, three user pairs and two relays are assumed. The aver-

age performance achieved by randomly chosen interference-

nulling solutions over a large number of channel realizations

is illustrated in Fig. 3. In the three-user fully connected

network with 2 relays, the chosen interference-nulling solution

is almost surely valid. The total achieved DoF per time-slot is

3/2. In scenario 2, only the useful signal of the 2nd user is
unlikely nulled by the chosen solution. Therefore, the achieved

DoF is 1/2. However, three relays are sufficient for scenario
3. Consequently, 3/2 DoF can be achieved.
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Fig. 3. The sum-rate as a function of the pSNR.

VII. CONCLUSION

We analyze the feasibility conditions for relay-aided IA

with adaptive transmit and receive filters in partially connected

networks. We show that the validity conditions are essential

for relay-aided IA. If the number of relays is sufficient, a

randomly picked interference-nulling solution is almost surely

valid. The required number of relays can be determined using

graph theory. Note that in partially connected networks more

relays may be required as compared to the fully connected

networks.
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