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Abstract—In this paper, bi-directional communication between
K node pairs is considered. Each node has N antennas and
wants to transmit d data streams to its communication partner.
Q relays with R antennas each aid in their communication. Two-
way relaying is assumed. The nodes do not have transmit channel
state information and the relays do not have enough antennas to
spatially separate the data streams. Taking these two constraints
into account, the relays and the receive filters are designed based
on two different objectives. In the first case, the relays cooperate
with each other to design their filters such that interferences are
aligned at the receivers. The receive filters are simple zero forcing
filters that nullify the interferences. In the second case, the relays
and the receive filters jointly minimize the mean square error
(MMSE) at the receivers. Through simulation results it is shown
that both schemes achieve the same number of degrees of freedom
in the system. However, the MMSE based scheme has better sum
rate performance than the interference alignment based scheme.

I. INTRODUCTION

Interference alignment (IA) is a promising technique for

achieving high capacity gains in wireless networks. In [1], IA is

introduced for a K-user interference channel. In [1], it is shown

that K/2 degrees of freedom (DoF) are achievable in the K-

user interference channel. However, there are several challenges

like the bilinear nature of the IA problem, the need for global

channel knowledge, infinite symbol extensions over which IA

is performed etc. Recently, relays have been used to overcome

some of these challenges.

Relay aided IA can simplify the process of IA and reduce

the amount of channel state information (CSI) needed at each

node. In this paper, bidirectional communication between K
node pairs is considered where each node transmits d data

streams to its communication partner. We focus on two-way

relaying and IA along spatial dimensions. In [2], it is shown

that a single relay with R = Kd antennas can decouple the

bilinear IA problem into three linear problems, namely signal

alignment (SA), channel alignment (CA), and transceive zero

forcing. This decoupling achieves exactly the same number of

DoF as IA along spatial dimensions in a K-user interference

channel without the relay. For the case R > Kd, multiple

IA solutions exist. Several methods to choose a solution that

maximizes a given utility function have been proposed in [3]–

[5].
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In all the signal alignment based schemes [2]–[5], the number

N of antennas at the nodes should satisfy 2N ≥ (K+1)d. This

condition is relaxed in [6]. Here, in order to achieve IA, only

the condition 2N +R ≥ (2K +1)d needs to be satisfied. Note

that R ≥ Kd. Hence, increasing R, the number of antennas at

each node can be reduced. Note that, in addition to the K-user

interference channel, signal alignment based relay aided IA is

also considered in [7], [8] for the MIMO Y channel and in [9]

for the MIMO X channel.

In all the schemes discussed above, only a single relay is

considered and transmit CSI (TxCSI) is assumed at all the

nodes. Relay aided IA is interesting especially for the case

where the relay cannot spatially separate the data streams. In

the single relay case, if the relay cannot spatially separate the

data streams, SA is necessary to achieve IA. Hence, the nodes

need Tx CSI. However, for the case of multiple relays, say Q
relays, as long as RQ ≥ 2Kd, SA is not necessary even if the

nodes cannot spatially separate the data streams. Hence, IA can

be achieved without TxCSI at the nodes.

In this paper, we consider multiple relays and the nodes

do not have TxCSI. The relays cannot spatially separate the

data streams. However, the relays cooperate with each other in

choosing their filters and perform IA at the receivers. The nodes

have receive CSI (RxCSI) and perform zero forcing to separate

the useful and the interference signals. An iterative algorithm to

achieve IA is proposed. Furthermore, the properness condition

is derived in terms of K, N, d,R and Q to identify if a given

scenario is likely to be feasible. IA aims at maximizing the

DoF and, hence, it is optimal at high signal to noise ratios

(SNR). To improve the performance at low and medium SNR,

in addition we propose an iterative algorithm to minimize the

mean squared error (MSE) at the receivers subject to a total

power constraint at the relays. This scheme is an extension of

the iterative schemes proposed in [10] and [11] for one- and

two-way relaying, respectively. In [10], [11] individual power

constraints at the relays are considered and hence, the relay

filters are optimized one after another. In the current paper, we

have a total power constraint and hence, the relay filters are

optimized at the same time.

The organization of the paper is as follows. The system

model is introduced in Section II. In Section III and Section

IV, the proposed iterative IA algorithm and the proposed

iterative MMSE algorithm, respectively, are described. Section
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Fig. 1. K-pair two-way relay network

V evaluates the performance of the proposed schemes in terms

of the sum rate of the system. Section VI concludes the paper.

We use lower case letters for scalars and lower case bold

letters and upper case bold letters to denote column vectors and

matrices, respectively. (.)∗, (.)T and (.)H denote the complex

conjugate, transpose and complex conjugate transpose of the

element within the brackets, respectively. Tr(.) and vec(.)
denote the trace and vectorization operations, respectively.

II. SYSTEM MODEL

A K-pair two-way relay network with Q amplify and for-

ward half-duplex relays each having R antennas is considered,

see Figure 1. Each of the 2K nodes has N antennas and wants

to transmit d data streams to its communication partner. Global

channel knowledge is assumed at all the relays. No TxCSI is

available at the nodes, but RxCSI is available at the nodes.

Let node j and node k be the communication partners for

j = 1, . . . , 2K and k = j + K if j ≤ K and k = j − K
if j > K. Two-way relaying [12] is assumed. In the first time

slot called multiple access (MAC) phase, the 2K nodes transmit

their signals to the relays and in the second time slot called

broadcast (BC) phase, the relays broadcast a linearly processed

version of the signals received in the previous time slot to the

2K nodes. Let dj and Vj denote the data symbols and the

transmit filter matrix of node j, respectively. Since TxCSI is

not available at the nodes, Vj is fixed a priori. Each node has

a maximum transmit power Pnode. Let Hsr
jq and Hrd

qj denote the

MIMO channel matrix between node j and relay q in the first

and the second time slot, respectively. Let Gq denote the matrix

representing the linear signal processing performed at the relay

q. The relays have a total transmit power Prelay available for

transmission. The received signal yk at node k is given by

yk =
∑Q

q=1
Hrd

qkGqH
sr
jqVjdj +

∑Q

q=1
Hrd

qkGqH
sr
kqVkdk

+
∑2K

i=1,
i 6=j,k

∑Q

q=1
Hrd

qkGqH
sr
iqVidi + ñk (1)

where ñk =
∑Q

q=1
Hrd

qkGqn1q + n2k is the effective noise at

receiver k with n1q and n2k denoting the noise at relay q and

node k, respectively. The components of the noise vectors at

relay q and node k are i.i.d. complex Gaussian random variables

which follow CN (0, σ2
1q) and CN (0, σ2

2k), respectively. In (1),

the first term corresponds to the useful signal. The second

and the third terms correspond to the self interference and

unknown interferences, respectively. It is assumed that the self

interference can be perfectly cancelled. Let UH
k denote the

receive filter at node k. Then the estimated data symbols for

receiving dj at receiver k are given by

d̂j = UH
k

∑Q

q=1
Hrd

qkGqH
sr
jqVjdj +

UH
k

∑2K
i=1,
i 6=j,k

∑Q

q=1
Hrd

qkGqH
sr
iqVidi + UH

k ñk. (2)

Two different objectives are considered in this paper. The first

one is to perform IA at the receiver. Here, our objective is

to align all the interference within an N − d dimensional

interference subspace (ISS) and to ensure that the useful signals

fully occupy a d dimensional useful subspace (USS) which is

linearly independent from ISS. This means the condition

UH
k

Q∑

q=1

Hrd
qkGqH

sr
iqVi =

{
0 if i 6= j, k
I if i = j

(3)

needs to be satisfied for i = 1, . . . , 2K and k = 1, . . . , 2K.

Our second objective is to minimize the MSE subject to the

power constraints at the nodes and at the relays. The MSE of

the estimated data symbols at receiver k is given by

MSEk = E

{
‖d̂j − dj‖

2

}
. (4)

The IA and the minimization of MSE subject to power con-

straints are non-convex [13] problems. In the following, we

propose iterative schemes to obtain sub-optimum solutions.

III. PROPOSED INTERFERENCE ALIGNMENT ALGORITHM

In this section, an iterative algorithm to achieve IA is

described. Our objective is to design Gq for q = 1, . . . , Q
such that all the interferences are aligned at the receive nodes

within the ISS and the useful signals are within the USS and

to design Uk for k = 1, . . . , 2K to zero force the interferences

in order to satisfy (3). The basic idea of the proposed iterative

scheme is as follows. The condition of (3) is a set of bilinear

equations in Uk and Gq. Fixing one of the two matrices results

in a set of linear equations. Hence, we alternatingly optimize

Uk and Gq to satisfy (3).

First, we arbitrarily fix Uk for k = 1, . . . , 2K. Vectorizing

(3) and using the identity vec (YXZ) =
(
ZT ⊗ Y

)
vec (X) we

get

Q∑

q=1

(
Hsr

iqVi

)T
⊗
(
UH

kHrd
qk

)
vec (Gq) =

{
vec (0) if i 6= j, k
vec (I) if i = j

(5)

for i, k = 1, . . . , 2K. Let Di,q,k =
(
Hsr

iqVi

)T
⊗
(
UH

kHrd
qk

)
and

gq = vec (Gq). Then (5) can be written as




Dj,1,k · · · Dj,Q,k

D1,1,k · · · D1,Q,k

...
...

Di,1,k · · · Di,Q,k

...
...

D2K,1,k · · · D2K,Q,k




i 6=j,k︸ ︷︷ ︸




g1

...

gQ


 =




vec (I)
vec (0)

...

vec (0)


 (6)

Dk



for k = 1, . . . , 2K with i 6= j, k means that the rows

corresponding to these two indices are not part of Dk. Fur-

ther with D =
[
DT

1 · · · DT

2K

]T
, g =

[
gT

1 . . . gT

Q

]T
,

bk =
[
vec (I)

T
vec (0)

T
. . . vec (0)

T
]T

, and b =
[
bT

1 bT
2 . . . bT

2K

]T
. (6) can be written as

Dg = b. (7)

The matrix D is of dimension 2K(2K − 1)d2 × QR2. In this

paper, it is assumed that the relays cannot spatially separate the

data streams and hence, QR2 < 2K(2K − 1)d. In this case,

the least squares solution for (7) is given by

g = D†b (8)

where D† is the pseudo inverse of D. Now Gq for q = 1, . . . , Q
is obtained for fixed receive filters.

In the next step, we fix Gq for q = 1, . . . , Q and optimize

the receive filters as follows: Vectorization of (3) results in

Heff
ikvec

(
UH

k

)
=

{
0 if i 6= j, k
I if i = j

(9)

where Heff
ik =

((∑Q

q=1
Hrd

qkGqH
sr
iqVi

)T

⊗ I

)
. With

c =
[
vec (I)

T
vec (0)

T
. . . vec (0)

T
]T

,

uk = vec
(
UH

k

)
,

Hk =
[
HeffT

jk HeffT
1k · · · HeffT

ik · · · HeffT
2k

]T
i 6=j,k

.

(10)

(9) can be expressed as Hkuk = c. Then the least squares

solution for the receive filter is obtained as

uk = H
†
kc (11)

for k = 1, . . . , 2K. Iteratively optimizing the relay filters Gq

for q = 1, . . . , Q and the receive filters UH
k for k = 1, . . . , 2K

using (8) and (11), respectively, a least squares solution for (3)

can be found. As in each steps of the iterations, the remaining

error is reduced and the error is lower bounded by zero, the

algorithm converges to a local optimum. Convergence to a

global optimum cannot be guaranteed.

Properness condition: In order to identify if IA is possible

for a given scenario, we classify the system into proper and

improper systems [14]. This classification is performed by

counting the number Nv of variables and the number Ne of

equations in the system. If Nv ≥ Ne, then the system is

proper [14]. Otherwise, it is improper. The intuition is that

proper systems are likely to be feasible [14]. The variables

in the system are the relay and receive filter coefficients. Each

relay processing matrix is of dimension R×R and the receive

filters are of dimension d×N . Hence, there are 2KNd+QR2

variables. From (3), there are 2K(2K − 1)d2 equations. From

the total power constraint at the relays, we have one equation.

Therefore, for the system to be proper, the condition

2KNd + QR2 ≥ 2K(2K − 1)d2 + 1 (12)

should be satisfied. It has to be noted that in contrast to [14],

where the number of variables corresponding to each receive

filter is counted as Nd− d2 to make sure that the receive filter

spans a d dimensional subspace, in this paper, we count the

number of variables corresponding to each receive filter as

Nd. This is due to the fact that in (3), we explicitly make

the dimension of the subspace spanned by the columns of the

receiver filter matrix to be d.

IV. PROPOSED ITERATIVE MMSE ALGORITHM

In this section, an iterative algorithm to minimize the MSE

subject to a total power constraint at the relays is described.

First, we formulate the optimization problem. Then we propose

an iterative algorithm to obtain a local minimum. The algorithm

consist of two steps. First we arbitrarily fix the relay filters and

derive the optimum receive filters that minimize the MSE at

the receivers. In the second step, we fix the receive filters and

using the Lagrange multiplier method, we derive the optimum

relay filters that minimize the MSE subject to a total power

constraint at the relays. The receive filters and relay filters are

iteratively optimized until the algorithm converges to a local

optimum.

A. Formulation of MMSE problem

In this subsection, the problem of minimizing the MSE

subject to a total power constraint at the relays is formu-

lated. As we have a total power constraint, it is favourable

to represent the linear processing at the relays by one sin-

gle matrix G with block diagonal structure given by G =
blkdiag (G1, G2, . . . , GQ). The channels in the MAC and

BC phases are rewritten as Hir =
[
HT

i1 HT
i2 · · · HT

iQ

]T

and Hrk = [H1k H2k · · · HQk], respectively. Similarly, the

noise at the relays can be denoted by a single vector as

n1 =
[
nT

11 nT
12 · · · nT

1Q

]T
. Then ñk = HrkGn1 + n2k. It

is assumed that the data symbols are independent. Hence,

E
{
djd

H
j

}
= Rdj

and E
{
djd

H
i

}
= 0 for i 6= j. Let

Sk = HrkGHjrVj and ek =
∑2K

i=1
i 6=j,k

HrkGHirVidi. Then

(4) can be expressed as

MSEk =Tr
((

UH
kSk − I

)
Rdj

(
SH

kUk − I
))

+

Tr
(
UH

kE
{
eke

H
k

}
Uk

)
+ Tr

(
UH

kE
{
ñkñ

H
k

}
Uk

)
.

(13)

With RQ =
∑2K

i=1
(HirVi)Rdi

(HirVi)
H

+ E
{
n1n

H
1

}
the

optimization problem is given by

minimize
Uk,G

MSE =

2K∑

k=1

MSEk

subject to Tr
(
GRQGH

)
≤ Prelay.

(14)

The optimization problem is non-convex [13]. In the following,

an iterative algorithm to obtain a local minimum is proposed.

B. Receive filter design

In this subsection, for fixed relay filters the optimum receive

filters are derived. The derivation of the optimum receive

filters is similar to the derivation presented in [11] and it is

briefly repeated here for completeness. First we initalize the

relay filters arbitrarily. For fixed relay filters, the optimization



problem in (14) is an unconstrained quadratic optimization

problem [11]. For the optimum Uk the condition

∂MSE

∂U∗
k

!
= 0 (15)

holds. Substituting (14) in (15), the optimum Uk [11] that

minimizes MSE is given by

Uk =
[
SkRdj

SH
k + E

{
eke

H
k

}
+ E

{
ñkñ

H
k

}]−1

SkRdj
.
(16)

C. Relay filter design

In this subsection, for fixed receive filters, using the Lagrange

multiplier method the optimum relays filter subject to a total

power constraint at the relays are derived. For fixed receive

filters, the optimization problem of (14) is a quadratically

constrained quadratic minimization problem. This is a convex

problem whose optimum can be obtained using the Lagrange

multiplier method. The Lagrangian function is given by

L (G, λ) = MSE + λ
(
Tr
(
GRQGH

)
− Prelay

)
. (17)

Substituting MSE in (17) using (14) and (13) results in

L (G, λ) =Tr

[
GH

2K∑

k=1

(F2kGF1k − Fjk + F2kGRn1)

]

+ Tr
[
GHλGRQ

]
+ Tr [C] ,

(18)

where

F1k =

2K∑

i=1, i 6=k

HirViRddiV
H
i HH

ir, F2k = HH
rkUkU

H
kHrk,

Fjk = HH
rkUkRddjV

H
j HH

jr, Rn1 = E
{
n1n

H
1

}
, (19)

and C consists of the terms independent of G∗. The optimum

G and λ satisfy the KKT conditions given by

∂L (G, λ)

∂G∗
= 0 (20)

Tr
(
GRQGH

)
≤ Prelay (21)

λ
(
Tr
(
GRQGH

)
− Prelay

)
= 0 (22)

λ ≥ 0. (23)

In (20), the partial derivative is take only with respect to the

block diagonal elements of G. Let B denote a block diagonal

matrix of same dimension and same block diagonal structure

as G, but with all the block diagonal elements being equal to

one. Then (20) implies

B ◦

(
2K∑

k=1

(F2kGF1k − Fjk + F2kGRn1) + λGRQ

)
= 0,

(24)

where A◦B denotes the Hadamard product of A and B. With

F4k = F1k + Rn1 and Z =
∑2K

k=1
Fjk, (24) can be written as

B ◦

(
2K∑

k=1

F2kGF4k + λGRQ

)
= B ◦ Z (25)

In (25), F2k, F4k, RQ, and Z are matrices of dimension

QR × QR. Each of these matrices is composed of Q2 block

matrices of dimension R × R each. Let F
l,q
2k , F

l,q
4k , R

l,q
Q and

Zl,q denote the (l, q)th block of the matrices F2k, F4k, RQ,
and Z, respectively. Then (25) becomes

Q∑

q=1

2K∑

k=1

F
l,q
2kGqF

q,l
4k + λGR

l,l
Q = Zl,l (26)

for l = 1, . . . , Q. With Xl
q =

∑2K

k=1
F

q,lT
4k ⊗ F

l,q
2k and Yl =

R
l,lT
Q ⊗ I, vectorizing (26) we get

Q∑

q=1

Xl
qvec (Gq) + λYlvec (Gl) = vec

(
Zl,l
)
. (27)

Let X denote a block matrix whose (l, q)th block is Xl
q and Y

denote a block diagonal matrix whose (l, l)th block is Yl. Also,

let z =
[
vec
(
Z1,1

)T
. . . vec

(
ZQ,Q

)T]T
. Then (27) becomes

(X + λY)g = z. (28)

From the above equation, we get

g = (X + λY)
−1

z. (29)

Now we have the optimum G in closed form. However, λ needs

to be determined such that (21), (22) and (23) are satisfied.

From (23), λ ≥ 0. First set λ = 0. If (21) is satisfied, then the

optimum λ is equal to zero. If (21) is not satisfied, then λ > 0.

Hence, in order to satisfy (21) and (22), the condition

Tr
(
GRQGH

)
− Prelay = 0. (30)

needs to hold. From (28), we know that Tr
(
GRQGH

)
−Prelay

is a decreasing function of λ. Using the fact that X is a positive

semidefinite matrix and setting X = 0, it can be proven that λ
is bounded by

0 ≤ λ ≤

√
zHY−1z

Prelay

. (31)

Hence, (30) can be solved using the bisection method. The

receive and relay filters are optimized iteratively either till the

MSE does not change significantly or till a specified number

of iterations is reached. Since at each iteration step, the MSE

is minimized, the algorithm is guaranteed to converge to a

minimum, though not necessarily to a global minimum.

V. PERFORMANCE ANALYSIS

In this section, the sum rate performance of the proposed

iterative interference alignment (ItrIA) and iterative MMSE (Itr-

MMSE) schemes are compared with the pair-aware interference

alignment scheme (PAIA) from [6]. The simulation setting is

as follows: N = 2, R = 5, Q = 2, d = 1 and K = 5. From

the properness condition, if only Ks ≤ K node pairs can be

served simultaneously, then time sharing is assumed between

different sets of pairs in order to serve all the K pairs. The PAIA

scheme requires global CSI at all the nodes and is designed for

the case of a single relay only [6]. Hence, for the simulation

of the PAIA scheme, global CSI is assumed and only one of



Fig. 2. Sum rate performance for a scenario with N = 2, R = 5 and d = 1

the two relays is used. However, for the proposed schemes no

TxCSI is assumed at the nodes and both relays are used for

the transmission. Figure 2 shows the sum rate performance of

each method as a function of P/σ2. P is the transmit power

available at each node. The relays have a total transmit power

of KsP . σ2 is the receive noise power at each of the relays

and each of the receive nodes in the MAC and BC phases,

respectively. The transmit filter matrices are chosen as identity

matrices of appropriate size and are normalized to satisfy the

transmit power constraint. The channel matrices are normalized

such that, on average, the transmitted signal power is the same

as the received signal power. The sum rate is calculated as an

average value of 1000 channel realizations generated using the

i.i.d. frequency-flat Rayleigh fading channel model.

In PAIA and in the proposed ItrIA scheme, only Ks = 4
node pairs can be served simulataneously without interference.

ItrMMSE minimizes the MSE at the receivers and the number

of node pairs that can be served without interference is not

known. So first we consider the case Ks = 4 for all the three

schemes. From Figure 2 it can be seen that the proposed ItrIA

scheme achieves almost similar performance as the PAIA. The

ItrIA schemes do not have TxCSI, but it utilizes both the relays

to perform IA. Both the curves have the same slope which

implies that the second relay compensates for the absence

of TxCSI at the nodes and the ItrIA schemes achieves the

same number of degrees of freedom as the PAIA scheme. The

ItrMMSE scheme, in addition to achieving the same number of

degrees of freedom, also achieves a higher sum rate than the

other two schemes. This is due to the fact that for Ks = 4, the

properness condition is satisfied with inequality sign and there

are 9 additional variables which gives multiple solutions to IA

problem. The ItrIA scheme chooses one solution arbitrarily, but

ItrMMSE chooses the one that minimizes the MSE. Hence, it

achieves a higher sum rate performance at all the SNR values.

As the number of node pairs that can be served simulta-

neously without interference by the ItrMMSE scheme is not

known, we consider the case Ks = 5. From Figure 2, it can be

seen that the performance of the ItrMMSE scheme degrades at

the medium and high SNR regime due to residual interferences

at the receivers. Hence, only Ks = 4 node pairs can be served

without interference. This implies that ItrIA and ItrMMSE

achieves the same number of DoF. However, ItrMMSE has

a better sum rate performance. Hence, ItrIA can be used to

identify the DoF using the properness condition and ItrMMSE

can be used to maximize the sum rate in this proper system.

VI. CONCLUSION

In this paper, a multi-pair two-way relaying network with

multiple relays is considered. The nodes do not have transmit

CSI and the relays do not have a sufficient number of antennas

to spatially separate the data streams. For this scenario, two

algorithms one based on IA and one based on MMSE are

proposed. In the first case, the relays cooperate with each other

in chosing their filters and perform IA at the receivers. The

properness condition has been derived as 2KNd + QR2 ≥
2K(2K−1)d2+1. Secondly, an iterative algorithm to minimize

the MSE at the receivers has been proposed. Simulation results

show that both schemes achieve the same number of degrees of

freedom. However, the iterative MMSE scheme has better sum

rate performance than iterative IA scheme. Hence, IA scheme

can be used to identify the DoF and iterative MMSE scheme

can be used to maximize the sum rate achieved in the system.
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