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Abstract—In this paper, we consider a class of relay networks
made up of two partially connected subnetworks. Every subnet-
work consists of several relays along with the nearby source-
destination node pairs being connected to the relays and, is
assumed to be fully connected. The two subnetworks are coupled
through the so called inter-subnetwork direct links. A linear
interference alignment approach exploiting the one-way relaying
protocol is applied. The feasibility conditions for interference
alignment, i.e., the required numbers of relays in the whole
network and in every subnetwork, are investigated. To this end,
we develop a graph-based method to model the network topology
and introduce the external constraints, from which an upper
bound and a lower bound of the minimum required number
of relays in a single subnetwork are obtained. Furthermore,
we characterize the feasible region for achieving interference
alignment in the considered networks using these bounds.

I. INTRODUCTION

Recent research on interference management techniques in

relay interference channel has focused on the required number

of relays/relay antennas for achieving a certain number of

degrees of freedom (DoF). Interference alignment (IA) aided

by relays is a promising technique being able to achieve high

per-user DoF with only few time extensions as well as few

antennas at the source and at the destination nodes [1]–[4].

However, state of the art relay-aided IA algorithms assume

fully connected relay networks, i.e., the networks with all

communications links between the nodes and the relays having

non-negligible channel gains. To achieve IA in fully connected

networks, many relays/relay antennas are required [2]–[4],

especially in large networks with lots of node pairs, which is

one of the major difficulties for the implementation of relay-

aided IA. In realistic scenarios, some of the communications

links may be relatively weak as compared to the other links

and, can be even neglected at reasonable signal-to-noise-

ratios (SNRs), e.g., a relay may be only accessible by the

nearby nodes. Such networks can be assumed to have partial

connectivity. Partial connectivity has been exploited for IA

without relays to increase the achievable DoF [5]–[7], but it

has not yet been considered for relay-aided IA to reduce the

required number of relays/relay antennas.

In this paper, we consider the relay networks consisting

of several single-antenna source-destination node pairs and

several single-antenna amplify-and-forward relays. Informa-

tion shall be transmitted from the source nodes towards the

destination nodes exploiting both the direct links and the relay

links. Partial connectivity is introduced, i.e., some links with

negligibly small channel gains are assumed to be absent. More

specifically, the whole network are made up of two partially

connected subnetworks. Each subnetwork includes a subset of

the relays along with the nearby node pairs being connected

to these relays and, is assumed to be fully connected. The

two subnetworks have neither common relays nor common

node pairs. However, the so called inter-subnetwork direct

links between the source nodes in one subnetwork and the

destination nodes in the other one may exist. For instance, Fig.

1 illustrates a network made up of two partially connected

subnetworks. Due to the presence of the inter-subnetwork

links, the IA problems in the two subnetworks are coupled,

e.g., the required number of relays in a single subnetwork

is influenced by the number of available relays in the other

subnetwork. The influence will be interpreted as external

constraints. We develop a graph-based method to investigate

the external constraints. Furthermore, we also derive an upper

bound and a lower bound of the minimum required number

of relays in a single subnetwork and characterize the feasible

region for IA using these bounds.

In Section II, the system model and the IA conditions are

introduced. In Section III, we study the external constraints.

These external constraints will then be exploited in Section IV

for investigating the required numbers of relays in the consid-

ered networks. Finally, we compare the performances achieved

by a few representative scenarios based on simulations and

conclude our work.

II. SYSTEM MODEL AND LINEAR IA

Recall the relay network made up of two partially con-

nected subnetworks as introduced in Section I. The whole

network consists of a set of K single-antenna node pairs

{(s1, d1), . . . , (sK , dK)} and a set of Q single-antenna relays

{r1, . . . , rQ}. Let Kn and Qn denote the number of node pairs

and the number of relays in the n-th subnetwork, respectively.

Every subnetwork is assumed to have at least three node pairs.

Each source node sk transmits a single data symbol intended

for the corresponding destination node dk through a constant

interference channel using two time slots. In the first time

slot, each source node transmits to the connected destination

nodes and all relays in the corresponding subnetwork. In the

second time slot, the source nodes retransmit to the connected

destination nodes while every relay forwards a scaled version
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Fig. 1. A network made up of two partially connected subnetworks with Q1

and Q2 single-antenna relays, respectively

of its received signal to all the destination nodes in the

corresponding subnetwork. Let h
(k,j)
DS , h

(q,j)
RS , and h

(k,q)
DR denote

the channel coefficients of the links between sj and dk,

between sj and rq, and between rq and dk, respectively. The

channel coefficients of the present links are assumed to be

continuously and independently distributed over the complex

field. The other channel coefficients are set to zero. Global

channel state information is assumed to be available at all

nodes and relays. Furthermore, let v
(j) = (v

(j)
1 , v

(j)
2 )T and

u
(k) = (u

(k)
1 , u

(k)
2 )T denote the temporal transmit and receive

filters at sj and dk, respectively. Let g(q) denote the scaling

factor at the relay rq .

We exploit the linear algorithm proposed in [4] to achieve

IA. On the one hand, IA requires that the interferences at all

destination nodes shall be nulled:

Q
∑

q=1

h
(k,q)
DR g(q)h

(q,j)
RS +h

(k,j)
DS

(

v
(j)
2

v
(j)
1

+
u
(k)∗
1

u
(k)∗
2

)

= 0, ∀k, j, k �= j,

(1)

where the relay scaling factors g(q) and the ratios of the filter

coefficients v
(j)
2 /v

(j)
1 and u

(k)∗
1 /u

(k)∗
2 are chosen as variables.

Let a solution to the interference-nulling conditions of (1)

be written in the vector form x = (xT
1 ,x

T
2 )

T, where xn

is a vector including the Rn + 2Kn variables of the n-th

subnetwork. We refer to the solution space W of (1) as the

interference-nulling solution space. Note that if relay links are

not available between two directly connected nodes sj and dk,

the interference propagating through the direct link can only be

suppressed by choosing the corresponding filters orthogonal,

i.e., v
(j)
2 /v

(j)
1 = −u

(k)∗
1 /u

(k)∗
2 , almost surely. On the other

hand, if an interference-nulling solution x ∈ W also fulfills

the equality

Q
∑

q=1

h
(k,q)
DR g(q)h

(q,k)
RS + h

(k,k)
DS

(

v
(k)
2

v
(k)
1

+
u
(k)∗
1

u
(k)∗
2

)

= 0, (2)

the solution x is called an invalid solution with respect to the

k-th node pair since the useful signal at dk will be nulled by the

receive filter. Otherwise, we refer to x as a valid solution with

respect to the k-th node pair. The invalid solution subspace

with respect to the k-th node pair, which is implicitly defined

by equality (2) in W , can be either a strict subspace of W
having codimension one if (2) is linearly independent of the

interference-nulling conditions, or be identical to W . IA is

feasible if and only if a valid solution with respect to all node

pairs exists. This requires sufficient relays to ensure that the

invalid solution subspace with respect to every node pair is a

strict subspace of W , e.g., in a fully connected network,

Q ≥ K2 − 3K + 2 (3)

relays are required [3], [4]. For random channel coefficients,

the required number of relays is usually derived in the almost

sure sense.

III. EXTERNAL CONSTRAINTS

In this section, we first define the external constraints.

This involves the following vector spaces. Define orthogonal

projections P1 and P2 in C(Q+2K):

P1 =

(

IQ1+2K1
0

0 0

)

and P2 =

(

0 0

0 IQ2+2K2

)

, (4)

where I is identity matrix. Performing Pn on the interference-

nulling solution space W results in a space PnW . In other

words, for any vector (xT
1 ,x

T
2 )

T ∈ W , there are (xT
1 ,0)

T ∈
P1W and (0,xT

2 )
T ∈ P2W . Furthermore, let a subsystem of

the interference-nulling conditions be formed by the equations

corresponding to the intra-subnetwork interferences in the n-

th subnetwork. Denote the solution space of this subsystem

by Wn. Thus Wn consists of all the vectors that only null the

intra-subnetwork interferences in the n-th subnetwork, leaving

the remaining interferences unconsidered. Performing Pn on

Wn yields a space PnWn. Obviously, PnW is a subspace of

PnWn, because W is a common subspace of W1 and W2. With

the help of these vector spaces, a set of external constraints

of the n-th subnetwork can be defined as a system of linear

equations such that any vector x ∈ PnWn also belongs to

PnW if and only if x satisfies the system of linear equations.

Normally, the external constraints of a single subnetwork,

e.g., the first one, depend on the channel realization. However,

we will show that in special cases, e.g., if Q2 = 0 and

Q2 ≥ K2(K2−1), the external constraints only depend on the

network topology. In the following, we propose a graph-based

method to identify a set of external constraints of the first

subnetwork in each of the above cases. The same approach

applies for the second subnetwork. Define graph G to be an

undirected bipartite graph with the vertices being the source

and the destination nodes of a given network and the edges

being the direct interference links, i.e., the direct links except

for the ones between the node pairs (sk, dk). Particularly, we

define an external path to be a path on the graph G with both

ends belonging to the same subnetwork and all intermediate

vertices belonging to the other subnetwork. We also introduce



the following notations. If v
(j)
2 /v

(j)
1 = −u

(k)∗
1 /u

(k)∗
2 holds,

the filter v
(j) is orthogonal to u

(k). Let this be denoted by

v
(j) ⊥ u

(k). If v
(j)
2 /v

(j)
1 = v

(k)
2 /v

(k)
1 holds, the filter v

(j) is

aligned with v
(k). Let this be denoted by v

(j) ‖ v
(k).

In the case of Q2 = 0, nulling the intra-subnetwork

interference between two nodes in the second subnetwork

requires the corresponding transmit and receive filters being

orthogonal, almost surely. Consequently, if two nodes in the

first subnetwork, e.g., sj and dk, are connected by an external

path, the filters at any two neighboring nodes in the external

path are almost surely orthogonal. Furthermore, the total

number of edges in any external path connecting sj and dk
must be odd because G is a partite graph. Therefore, if sj and

dk are connected by at least one external path, v(j) ⊥ u
(k)

almost surely follows. Similarly, two source nodes sj and sk or

two destination nodes dj and dk in the first subnetwork being

connected by at least one external path respectively results in

the constraint v(j) ‖ v
(k) or u

(j) ‖ u
(k), almost surely. We

claim that in the case of Q2 = 0, all the constraints resulting

from the external paths of the first subnetwork as discussed

above form a set of external constraints specifying the sub-

space P1W in P1W1. To prove this, we need to show: (a) if

(xT
1 ,x

T
2 )

T is an interference-nulling solution, i.e., (xT
1 ,x

T
2 )

T

belongs to W , then (xT
1 ,0)

T satisfies these constraints; (b) for

any vector (xT
1 ,0)

T ∈ W1 satisfying these constraints, there

exists a vector x2 such that (xT
1 ,x

T
2 )

T belongs to W . The

necessity, i.e., (a), is trivial since these constraints are deduced

from the interference-nulling conditions and only involve the

filters in the first subnetwork. To show the sufficiency, i.e.,

(b), we can first choose the filter at the end of an inter-

subnetwork link in the second subnetwork to be orthogonal

to the filter at the other end of the link. Afterwards, the

remaining filters in the second subnetwork can be pairwise

orthogonalized according to the previous one. This yields the

required vector x2.

In the case of Q2 ≥ K2(K2 − 1), a set of external

constraints specifying the subspace P1W in P1W1 can be

formed by the constraints following from the external paths

of the first subnetwork consisting only of the inter-subnetwork

links. Similar to the case of Q2 = 0, the necessity is trivial. To

show the sufficiency, we first find all the external paths of the

first subnetwork consisting only of the inter-subnetwork links.

Each of these paths only has a single intermediate node in the

second subnetwork, otherwise it includes at least one intra-

subnetwork link. The filter at the intermediate node of any of

these external paths can then be chosen orthogonal to the filters

at the ends of the path. Finally, since the intra-subnetwork

interference-nulling conditions in the second subnetwork form

K2(K2−1) linear equations, K2(K2−1) relays are sufficient

for solving these equations with arbitrarily fixed filters. Hence,

the remaining filters and the relay scaling factors in the second

subnetwork can be obtained. This yields the required vector

x2.

However, the sets of external constraints derived above may

be linearly dependent. To find a set of linearly independent

external constraints in the case of Q2 = 0, we define another
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Fig. 2. Graph G1 with respect to the network shown in Fig. 1

graph G1. The vertices of G1 are the source and the destination

nodes in the first subnetwork. Every external constraint in the

case of Q2 = 0 corresponds to an edge of G1. For instance,

a diagram of the graph G1 for the network shown in Fig.

1 is illustrated in Fig. 2. By graph theory, a set of linearly

independent external constraints corresponds to the edges of a

maximal forest of G1, i.e., a maximal acyclic subgraph of G1

including all vertices [8]. In Fig. 2, a maximal forest of G1 has

three edges corresponding to, e.g., v(1) ‖ v
(2), v(2) ‖ v

(3), and

v
(3) ⊥ u

(3), which are linearly independent. Similarly, define

H1 to be a graph with the same vertices as G1 and the edges

being the external constraints in the case of Q2 ≥ K2(K2−1).
For instance, the graph H1 for the network shown in Fig. 1 has

only one edge v
(1) ‖ v

(2). The number of edges in a maximal

forest of G1 or H1 can be denoted by rank(G1) or rank(H1),
respectively.

IV. REQUIRED NUMBERS OF RELAYS

We then consider the required number of relays in a single

subnetwork. Let a valid solution with respect to the n-th

subnetwork be defined as an interference-nulling solution

which is valid with respect to all node pairs belonging to

the n-th subnetwork. Thus a valid solution with respect to

a single subnetwork exists if every invalid solution subspace

with respect to a node pair belonging to the subnetwork is a

strict subspace of W , and vise versa. Hence, IA is feasible,

i.e., all invalid solution subspaces are strict subspaces in

W , if and only if there is a valid solution with respect to

every single subnetwork. Thus, the number of relays in every

subnetwork shall be sufficient for guaranteeing the existence

of a valid solution with respect to the subnetwork. On the

one hand, since each individual subnetwork is fully connected,

the required number of relays in the n-th subnetwork without

external constraints is K2
n − 3Kn + 2 by (3). On the other

hand, the external constraints do not involve the relays. Thus

from an engineering point of view, they are almost surely

linearly independent of the intra-subnetwork interference-

nulling conditions if there are sufficient relays. Therefore,

satisfying each external constraint besides nulling the intra-

subnetwork interferences requires one more relay. Hence, the

required number of relays in the first subnetwork is at least

Q1 = K2
1 − 3K1 + 2 + rank(G1) if Q2 = 0 holds, and

Q
1
= K2

1 − 3K1 +2+ rank(H1) if Q2 ≥ K2(K2 − 1) holds.

Furthermore, in the case of Q2 ≥ K2(K2 − 1), the external

constraints of the first subnetwork only depends on the inter-

subnetwork connectivity. In other words, these constraints



always needs to be satisfied, almost surely, regardless of

the number of available relays in the second subnetwork.

Consequently, Q
1

is a lower bound of the minimum required

number of relays in the first subnetwork. Accordingly, if the

first subnetwork has at least Q1 relays, a valid solution with

respect to the first subnetwork exists for any number of relays

in the second subnetwork. Thus Q1 is an upper bound of the

minimum required number of relays in the first subnetwork.

Similarly, we can define Q2 and Q
2
, which are the upper and

the lower bound of the minimum required number of relays

in the second subnetwork, respectively.

Proposition 1: In a given network made up of two subnet-

works with at least three node pairs each, Qn and Q
n

satisfy

Q1 −Q
1
= Q2 −Q

2
. (5)

Proof: First consider two disconnected subnetworks. Thus

Qn = Q
n

= K2
n − 3Kn + 2 holds for both subnetworks

in this case. Then we modify the network by adding inter-

subnetwork links to it. Adding the first inter-subnetwork link

does not produce any external path in the modified network.

Thus equality (5) still holds. Without loss of generality, we

assume that an inter-subnetwork link e0 with the ends sj
in the first subnetwork and dk in the second subnetwork is

added to a network with at least one inter-subnetwork link,

which corresponds to the graphs G, Gn and Hn. The resulting

network corresponds to the graphs G′, G′

n and H ′

n. Then the

following three cases shall be distinguished.

Case I. Neither sj nor dk is an end of the previously added

inter-subnetwork links. If the second subnetwork has at least

three node pairs, any two nodes in the second subnetwork are

connected by a path in G. Therefore, adding e0 results in at

least one external path in G′ between sj and every end of the

previously added links in the first subnetwork. Accordingly,

new edges following from these paths shall be included in the

modified graph G′

1. However, only one more edge ending at sj
is included in a maximal forest of G′

1. Thus, adding e0 results

in increasing Q1 by one. On the other hand, since dk is not an

end of any previously added link, all the new external paths

resulting from adding e0 involve intra-subnetwork links of the

second subnetwork. Hence, the graph H ′

1 is identical to H1

and Q
1

remains unchanged. Accordingly, Q2 is increased by

one and Q
2

remains unchanged.

Case II. Either sj or dk is an end of a previously added

inter-subnetwork link. Firstly, assume that dk is an end of a

previously added link e1 which has the other end si in the

first subnetwork. For the same reason as in Case I, adding e0
results in increasing Q1 by one. However, e0 and e1 form a

new external path in G′ consisting only of inter-subnetwork

links. Therefore, the graph H ′

1 includes a new edge between

si and sj . Although several previously added links may have

dk as a common end, only one more edge ending at dk shall

be included in a maximal forest of graph H ′

1. Therefore, Q
1

is increased by one. However, adding e0 does not affect Q2

and Q
2

because e0 has the common end dk with e1 and,

therefore, does not produce new external constraints for the

second subnetwork. Secondly, if sj instead of dk is a common

end with e1, Q1 and Q
1

remain unchanged whereas Q2 and

Q
2

are both increased by one.

Case III. Both sj and dk are ends of previously added inter-

subnetwork links. Assume that dk is an end of e1 which has

the other end si in the first subnetwork, and sj is an end

of e2 which has the other end dl in the second subnetwork.

Then Q1 and Q2 remain unchanged, because G′

n is identical

to Gn for both subnetworks. We only consider the influence of

adding e0 on Q
1

and Q
2
. (a) If si and dl are already connected

by a previously added link e3, then e1, e2 and e3 form a

path between sj and dk in G, which results in v
(j) ⊥ u

(k).

Thus, adding e0 does not introduce a linearly independent

interference-nulling condition to the network. Consequently,

Q
1

and Q
2

remain unchanged. (b) If for any choice of e1
and e2, the ends si and dl are not connected by a previously

added link, then adding e0 result in a new edge ending at sj
in a maximal forest of H ′

1. Therefore, Q
1

is increased by one.

Accordingly, Q
2

is increased by one as well.

To conclude, the equality of (5) will not be affected by

adding an arbitrary number of inter-subnetwork links between

two disconnected subnetwork, in arbitrary order.

We will then characterize the feasible region for IA, i.e.,

the pairs of the required relay numbers (Q1, Q2) such that IA

is feasible, in the considered networks.

Proposition 2: In a network consisting of two subnetworks

with at least three node pairs each, the feasible region for IA

is given by
{

Q1 +Q2 > Q1 +Q
2
− 2 (6a)

Qn ≥ Q
n
, n = 1, 2 (6b)

in the almost sure sense.

Proof: If the two subnetworks are disconnected, then

Q
n
= Qn holds for both subnetworks. Consequently, the in-

equality of (6b) implies (6a). Besides, if (6b) holds, Qn ≥ Qn

holds as well in this case. Therefore, IA is almost surely

feasible. Otherwise, IA is almost surely infeasible.

If there is at least one inter-subnetwork link, we will obtain

(6a) by counting the number of variables NV and the number

of constraints NC while taking the invalid solution subspaces

into account. In other words, NV > NC + 1 shall hold so

that the equality of (2) with respect to each node pair is

linearly independent of the interference-nulling conditions.

The total number of free variables NV is simply Q+2K . The

total number of constraints consists of two parts. Firstly, the

intra-subnetwork interference-nulling conditions correspond to

K1(K1−1)+K2(K2−1) constraints. Secondly, adding every

inter-subnetwork link as we did in the proof of Proposition 1

produces an additional constraint that the filters at its ends need

to be orthogonal, except for Case III(a), because it does not

introduce a linearly independent constraint. Let N1, N2 and

N3 denote the numbers of times that Case I, II and III(b) occur

when adding the inter-subnetwork links, respectively. Since the

first link added between two disconnected subnetworks shall

be counted additionally, the inter-subnetwork links introduce



N1 +N2 +N3 + 1 constraints. Furthermore, the equations

N1 −N3 = Q1 −Q
1

(7)

N2 + 2N3 = Q
1
− (K2

1 − 3K1 + 2)

+Q
2
− (K2

2 − 3K2 + 2) (8)

can be summarized from the proof of Proposition 1. Hence,

the total number of constraints is

NC = Q1 +Q
2
+ 2K − 3. (9)

Comparing NV and NC obtained above yields condition (6a).

Furthermore, inequality (6b) is a necessary condition. Hence,

Proposition 2 follows.

Proposition 2 also implies that the bounds Qn and Q
n

are

tight for two subnetworks. Recall the example shown in Fig.

1. It is already derived in Section III that rank(G1) = 3 and

rank(H1) = 1 hold. This results in Q1 = 5 and Q
1
= 3. We

can also derive Q2 = 4 and Q
2
= 2 using the same approach.

By Proposition 2, the feasible region for IA as partly shown

in Table I is obtained.

TABLE I
FEASIBLE REGION FOR IA IN THE NETWORK SHOWN IN FIG. 1

�
�
�
�
��

Q2

Q1 0 1 2 3 4 5 6

0 × × × × × 1st 1st

1 × × × × × 1st 1st

2 × × × ×
√ √ √

3 × × ×
√ √ √ √

4 2nd 2nd 2nd
√ √ √ √

5 2nd 2nd 2nd
√ √ √ √

√
: Valid solutions w.r.t. both subnetworks exist.

1st/2nd: Valid solutions w.r.t. only one subnetwork exist.
×: All solutions are invalid w.r.t. both subnetworks.

V. SIMULATION RESULTS

In this section, we evaluate the performance achieved in the

network illustrated in Fig. 1 based on simulations. The present

links are assumed to be i.i.d. Rayleigh fading with unit average

gain. Zero mean additive white Gaussian noise is assumed at

the relays and at the destination nodes. Equal power allocation

is assumed among the source nodes. The total transmit power

at the relays is assumed to be equal to the total power at

the source nodes. The filters and the relay scaling factors are

obtained from a randomly picked interference-nulling solution

of (1). The performance is measured by the average sum-rate

per time-slot C as a function of the pseudo SNR γPSNR, which

is defined to be the ratio of the total transmitted energy by both

the source nodes and the relays to the noise variance [4]. Fig. 3

shows the achieved performances with different relay numbers.

With (3, 3) or (4, 2) relays, IA is almost surely feasible. The

total number of achieved DoF is 3. There is no qualitative sum-

rate difference between these two cases. With (5, 0) or (0, 4)
relays, valid solutions with respect to only one subnetwork

can be obtained and IA is almost surely infeasible. The total

number of DoF is 1.5. As a reference scenario, we also assume

that each relay is accessible by all node pairs. Then 20 global

relays are required to achieve 3 DoF in the network.
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Fig. 3. Achieved performances in the network shown in Fig. 1

VI. CONCLUSION

In this paper, we apply a linear relay-aided IA algorithm to

a class of networks made up of two partially connected sub-

networks. We introduce the external constraints to investigate

the coupling of the two subnetworks. A graph-based method

is proposed to identify the sets of external constraints as well

as the required numbers of relays. We show that using locally

connected relays can help to achieve IA with less relays as

compared to the one required in the fully connected networks.
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